1
|
Greco L, Rubbino F, Ferrari C, Cameletti M, Grizzi F, Bonelli F, Malesci A, Mazzone M, Ricciardiello L, Laghi L. Association of Fusobacterium nucleatum with colorectal cancer molecular subtypes and its outcome: a systematic review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2025; 6:e5. [PMID: 40297307 PMCID: PMC12035788 DOI: 10.1017/gmb.2025.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Colorectal cancer (CRC) represents a relevant public health problem, with high incidence and mortality in Western countries. CRC can occur as sporadic (65%-75%), common familial (25%), or as a consequence of an inherited predisposition (up to 10%). While unravelling its genetic basis has been a long trip leading to relevant clinical implementation over more than 30 years, other contributing factors remain to be clarified. Among these, micro-organisms have emerged as critical players in the development and progression of the disease, as well as for CRC treatment response. Fusobacterium nucleatum (Fn) has been associated with CRC development in both pre-clinical models and clinical settings. Fusobacteria are core members of the human oral microbiome, while being less prevalent in the healthy gut, prompting questions about their localization in CRC and its precursor lesions. This review aims to critically discuss the evidence connecting Fn with CRC pathogenesis, its molecular subtypes and clinical outcomes.
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Clarissa Ferrari
- Research and Clinical Trials Office, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Fabio Grizzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | - Massimiliano Mazzone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Macrophage Dynamics Lab, IRCCS Humanitas Research Hospital, Milan, Italy
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Luigi Ricciardiello
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Tian S, Chen M. The mechanisms and drug therapies of colorectal cancer and epigenetics: bibliometrics and visualized analysis. Front Pharmacol 2024; 15:1466156. [PMID: 39268463 PMCID: PMC11391208 DOI: 10.3389/fphar.2024.1466156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Numerous studies have demonstrated a link between epigenetics and CRC. However, there has been no systematic analysis or visualization of relevant publications using bibliometrics. METHODS 839 publications obtained from the Web of Science Core (WoSCC) were systematically analyzed using CiteSpace and VOSviewer software. RESULTS The results show that the countries, institutions, and authors with the most published articles are the United States, Harvard University, and Ogino and Shuji, respectively. SEPT9 is a blood test for the early detection of colorectal cancer. Vitamin D and gut microbiota mediate colorectal cancer and epigenetics, and probiotics may reduce colorectal cancer-related symptoms. We summarize the specific epigenetic mechanisms of CRC and the current existence and potential epigenetic drugs associated with these mechanisms. It is closely integrated with clinical practice, and the possible research directions and challenges in the future are proposed. CONCLUSION This study reviews the current research trends and hotspots in CRC and epigenetics, which can promote the development of this field and provide references for researchers in this field.
Collapse
Affiliation(s)
- Siyu Tian
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Min Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Boland CR, Koi M, Hawn MT, Carethers JM, Yurgelun MB. Serendipity Strikes: How Pursuing Novel Hypotheses Shifted the Paradigm Regarding the Genetic Basis of Colorectal Cancer and Changed Cancer Therapy. Dig Dis Sci 2023; 68:3504-3513. [PMID: 37402979 PMCID: PMC11262588 DOI: 10.1007/s10620-023-08006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 07/06/2023]
Abstract
In this installment of the "Paradigm Shifts in Perspective" series, the authors, all scientists who have been involved in colorectal cancer (CRC) research for most or all of their careers, have watched the field develop from early pathological descriptions of tumor formation to the current understanding of tumor pathogenesis that informs personalized therapies. We outline how our understanding of the pathogenetic basis of CRC began with seemingly isolated discoveries-initially with the mutations in RAS and the APC gene, the latter of which was initially found in the context of intestinal polyposis, to the more complex process of multistep carcinogenesis, to the chase for tumor suppressor genes, which led to the unexpected discovery of microsatellite instability (MSI). These discoveries enabled the authors to better understand how the DNA mismatch repair (MMR) system not only recognizes DNA damage but also responds to damage by DNA repair or by triggering apoptosis in the injured cell. This work served, in part, to link the earlier findings on the pathogenesis of CRC to the development of immune checkpoint inhibitors, which has been transformative-and curative-for certain types of CRCs and other cancers as well. These discoveries also highlight the circuitous routes that scientific progress takes, which can include thoughtful hypothesis testing and at other times recognizing the importance of seemingly serendipitous observations that substantially change the flow and direction of the discovery process. What has happened over the past 37 years was not predictable when this journey began, but it does speak to the power of careful scientific experimentation, following the facts, perseverance in the face of opposition, and the willingness to think outside of established paradigms.
Collapse
Affiliation(s)
| | | | - Mary T Hawn
- Department of Surgery, Stanford University School of Medicine, CJ Huang Bldg, Palo Alto, CA, 94306, USA
| | | | - Matthew B Yurgelun
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Najafi A, Jolly MK, George JT. Population dynamics of EMT elucidates the timing and distribution of phenotypic intra-tumoral heterogeneity. iScience 2023; 26:106964. [PMID: 37426354 PMCID: PMC10329148 DOI: 10.1016/j.isci.2023.106964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
The Epithelial-to-Mesenchymal Transition (EMT) is a hallmark of cancer metastasis and morbidity. EMT is a non-binary process, and cells can be stably arrested en route to EMT in an intermediate hybrid state associated with enhanced tumor aggressiveness and worse patient outcomes. Understanding EMT progression in detail will provide fundamental insights into the mechanisms underlying metastasis. Despite increasingly available single-cell RNA sequencing (scRNA-seq) data that enable in-depth analyses of EMT at the single-cell resolution, current inferential approaches are limited to bulk microarray data. There is thus a great need for computational frameworks to systematically infer and predict the timing and distribution of EMT-related states at single-cell resolution. Here, we develop a computational framework for reliable inference and prediction of EMT-related trajectories from scRNA-seq data. Our model can be utilized across a variety of applications to predict the timing and distribution of EMT from single-cell sequencing data.
Collapse
Affiliation(s)
- Annice Najafi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Mohit K. Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jason T. George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
5
|
Jin S, Huang D, Jin W, Wang Y, Shao H, Gong L, Luo Z, Yang Z, Luan J, Xie D, Ding C. Detection of DNA copy number alterations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of single nucleotide polymorphisms. Clin Chem Lab Med 2022; 60:1543-1550. [PMID: 35938948 DOI: 10.1515/cclm-2022-0511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Copy number alterations (CNAs) are frequently found in malignant tissues. Different approaches have been used for CNA detection. However, it is not easy to detect a large panel of CNA targets in heterogenous tumors. METHODS We have developed a CNAs detection approach through quantitatively analyzed allelic imbalance by allelotyping single nucleotide polymorphisms (SNPs) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Furthermore, the copy number changes were quantified by real-competitive PCR (rcPCR) to distinguish loss of heterozygosity (LOH) and genomic amplification. The approach was used to validate the CNA regions detected by next generation sequencing (NGS) in early-stage lung carcinoma. RESULTS CNAs were detected in heterogeneous DNA samples where tumor DNA is present at only 10% through the SNP based allelotyping. In addition, two different types of CNAs (loss of heterozygosity and chromosome amplification) were able to be distinguished quantitatively by rcPCR. Validation on a total of 41 SNPs from the selected CNA regions showed that copy number changes did occur, and the tissues from early-stage lung carcinoma were distinguished from normal. CONCLUSIONS CNA detection by MALDI-TOF MS can be used for validating potentially interesting genomic regions identified from next generation sequencing, and for detecting CNAs in tumor tissues consisting of a mixture of neoplastic and normal cells.
Collapse
Affiliation(s)
- Shengnan Jin
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Dan Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Weijiang Jin
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yourong Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Hengrong Shao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Lisha Gong
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Zhenni Luo
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Zhengquan Yang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ju Luan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; and InnoMed Diagnostics Inc., Wenzhou, P.R. China
| | - Deyao Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chunming Ding
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
6
|
Nakayama H, Ohnuki H, Nakahara M, Nishida-Fukuda H, Sakaue T, Fukuda S, Higashiyama S, Doi Y, Mitsuyoshi M, Okimoto T, Tosato G, Kusumoto C. Inactivation of axon guidance molecule netrin-1 in human colorectal cancer by an epigenetic mechanism. Biochem Biophys Res Commun 2022; 611:146-150. [PMID: 35489200 DOI: 10.1016/j.bbrc.2022.04.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/16/2023]
Abstract
Netrin-1, the protein product of the NTN1 gene, is an axon guidance molecule implicated in regulation of cell survival and tumorigenesis. Expression of the netrin-1 receptors deleted in colorectal cancer (DCC) and uncoordinated 5 homolog (UNC5H) is frequently silenced in colorectal cancer (CRC) by either loss of heterozygosity or epigenetic mechanisms. However, netrin-1 expression and regulation in CRC are mostly unknown. Here, we report that NTN1 expression is significantly reduced in most CRC tissues compared to the adjacent normal intestinal mucosa, and that NTN1 DNA methylation is significantly higher in CRCs (24.6%) than in the adjacent normal intestinal mucosa (4.0%). In 6 CRC cell lines, NTN1 expression is low. Treatment with 5-Aza-2'-deoxycytidine increased expression of NTN1 in CRC cell lines, indicating that DNA methylation represses NTN1 transcription in CRCs. NTN1 DNA hypermethylation was significantly associated with advanced CRC disease. Median netrin-1 serum levels were significantly decreased in CRC patients (330.1 pg/mL) compared with normal individuals (438.6 pg/mL). Our results suggest that netrin-1 is a candidate biomarker for CRC.
Collapse
Affiliation(s)
- Hironao Nakayama
- Department of Medical Science and Technology, Hiroshima International University, Higashi-hiroshima, Hiroshima, 739-2695, Japan.
| | - Hidetaka Ohnuki
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Masako Nakahara
- Department of Medical Science and Technology, Hiroshima International University, Higashi-hiroshima, Hiroshima, 739-2695, Japan
| | - Hisayo Nishida-Fukuda
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, 5731010, Japan
| | - Tomohisa Sakaue
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Shitsukawa, Ehime, 791-0295, Japan; Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Shitsukawa, Ehime, 791-0295, Japan
| | - Shinji Fukuda
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Shitsukawa, Ehime, 791-0295, Japan; Department of Biochemistry, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, 464-8650, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Shitsukawa, Ehime, 791-0295, Japan; Department of Molecular and Cellular Biology, Osaka International Cancer Institute, Chuo-ku, Osaka, 541-8567, Japan
| | - Yuki Doi
- Department of Surgery, Nippon Kokan Fukuyama Hospital, Fukuyama, Hiroshima, 721-0927, Japan
| | - Masahiro Mitsuyoshi
- Department of Surgery, Nippon Kokan Fukuyama Hospital, Fukuyama, Hiroshima, 721-0927, Japan; Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kita-kyushu, Fukuoka, 807-0804, Japan
| | - Takashi Okimoto
- Department of Surgery, Nippon Kokan Fukuyama Hospital, Fukuyama, Hiroshima, 721-0927, Japan; Department of Surgery, Kyushu Rosai Hospital, Kita-kyushu, Fukuoka, 800-0296, Japan
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chiaki Kusumoto
- Department of Medical Science and Technology, Hiroshima International University, Higashi-hiroshima, Hiroshima, 739-2695, Japan; Department of Gastroenterology, Nippon Kokan Fukuyama Hospital, Fukuyama, Hiroshima, 721-0927, Japan.
| |
Collapse
|
7
|
Curtius K, Gupta S, Boland CR. Review article: Lynch Syndrome-a mechanistic and clinical management update. Aliment Pharmacol Ther 2022; 55:960-977. [PMID: 35315099 DOI: 10.1111/apt.16826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lynch syndrome (LS) is an autosomal dominant familial condition caused by a pathogenic variant (PV) in a DNA mismatch repair gene, which then predisposes carriers to various cancers. AIM To review the pathogenesis, clinical presentation, differential diagnosis and clinical strategies for detection and management of LS. METHODS A narrative review synthesising knowledge from published literature, as well as current National Comprehensive Cancer Network guidelines for management of LS was conducted. RESULTS LS tumours are characterised by unique pathogenesis, ultimately resulting in hypermutation, microsatellite instability and high immunogenicity that has significant implications for cancer risk, clinical presentation, treatment and surveillance. LS is one of the most common hereditary causes of cancer, and about 1 in 279 individuals carry a PV in an LS gene that predisposes to associated cancers. Individuals with LS have increased risks for colorectal, endometrial and other cancers, with significant variation in lifetime risk by LS-associated gene. CONCLUSIONS As genetic testing becomes more widespread, the number of individuals identified with LS is expected to increase in the population. Understanding the pathogenesis of LS informs current strategies for detection and clinical management, and also guides future areas for clinical innovation. Unravelling the mechanisms by which these tumours evolve may help to more precisely tailor management by the gene involved.
Collapse
Affiliation(s)
- Kit Curtius
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samir Gupta
- Section of Gastroenterology, San Diego Veterans Affairs Healthcare System, San Diego, CA, USA.,Division of Gastroenterology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - C Richard Boland
- Division of Gastroenterology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Metastatic EMT Phenotype Is Governed by MicroRNA-200-Mediated Competing Endogenous RNA Networks. Cells 2021; 11:cells11010073. [PMID: 35011635 PMCID: PMC8749983 DOI: 10.3390/cells11010073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a fundamental physiologically relevant process that occurs during morphogenesis and organ development. In a pathological setting, the transition from epithelial toward mesenchymal cell phenotype is hijacked by cancer cells, allowing uncontrolled metastatic dissemination. The competing endogenous RNA (ceRNA) hypothesis proposes a competitive environment resembling a large-scale regulatory network of gene expression circuits where alterations in the expression of both protein-coding and non-coding genes can make relevant contributions to EMT progression in cancer. The complex regulatory diversity is exerted through an array of diverse epigenetic factors, reaching beyond the transcriptional control that was previously thought to single-handedly govern metastatic dissemination. The present review aims to unravel the competitive relationships between naturally occurring ceRNA transcripts for the shared pool of the miRNA-200 family, which play a pivotal role in EMT related to cancer dissemination. Upon acquiring more knowledge and clinical evidence on non-genetic factors affecting neoplasia, modulation of the expression levels of diverse ceRNAs may allow for the development of novel prognostic/diagnostic markers and reveal potential targets for the disruption of cancer-related EMT.
Collapse
|
9
|
Kwon M, Rubio G, Nolan N, Auteri P, Volmar JA, Adem A, Javidian P, Zhou Z, Verzi MP, Pine SR, Libutti SK. FILIP1L Loss Is a Driver of Aggressive Mucinous Colorectal Adenocarcinoma and Mediates Cytokinesis Defects through PFDN1. Cancer Res 2021; 81:5523-5539. [PMID: 34417201 DOI: 10.1158/0008-5472.can-21-0897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/25/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Aneuploid mucinous colorectal adenocarcinoma (MAC) is an aggressive subtype of colorectal cancer with poor prognosis. The tumorigenic mechanisms in aneuploid MAC are currently unknown. Here we show that downregulation of Filamin A-interacting protein 1-like (FILIP1L) is a driver of MAC. Loss of FILIP1L increased xenograft growth, and, in colon-specific knockout mice, induced colonic epithelial hyperplasia and mucin secretion. The molecular chaperone prefoldin 1 (PFDN1) was identified as a novel binding partner of FILIP1L at the centrosomes throughout mitosis. FILIP1L was required for proper centrosomal localization of PFDN1 and regulated proteasome-dependent degradation of PFDN1. Importantly, increased PFDN1, caused by downregulation of FILIP1L, drove multinucleation and cytokinesis defects in vitro and in vivo, which were confirmed by time-lapse imaging and 3D cultures of normal epithelial cells. Overall, these findings suggest that downregulation of FILIP1L and subsequent upregulation of PFDN1 is a driver of the unique neoplastic characteristics in aggressive aneuploid MAC. SIGNIFICANCE: This study identifies FILIP1L as a tumor suppressor in mucinous colon cancer and demonstrates that FILIP1L loss results in aberrant stabilization of a centrosome-associated chaperone protein to drive aneuploidy and disease progression.
Collapse
Affiliation(s)
- Mijung Kwon
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Genesaret Rubio
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Nicholas Nolan
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Peter Auteri
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Jean Arly Volmar
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Asha Adem
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Parisa Javidian
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Zhongren Zhou
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Sharon R Pine
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.,Department of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Steven K Libutti
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| |
Collapse
|
10
|
Ostovarpour M, Khalaj-Kondori M, Ghasemi T. Correlation between expression levels of lncRNA FER1L4 and RB1 in patients with colorectal cancer. Mol Biol Rep 2021; 48:4581-4589. [PMID: 34132945 DOI: 10.1007/s11033-021-06488-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is a major life-threatening malignancy. Studies demonstrated the lncRNA fer-1 like family member 4 (FER1L4) was downregulated in different cancers and its expression was positively correlated with the retinoblastoma 1 (RB1) mRNA in a competing endogenous RNAs network. We investigated expression levels of FER1L4 and RB1 in patients with colorectal cancer. 50 paired colorectal tumors and non-tumor marginal tissues, 30 paired adenomatous colorectal polyps (ACPs) and matched adjacent normal tissues were obtained from the patients. Total RNA was extracted from the samples and cDNAs were synthesized. Their expression was quantified by qRT-PCR. Correlation between FER1L4 and RB1 expression levels was analyzed by Pearson correlation test. Finally, ROC curve analysis was used to evaluate their biomarker potency. We observed significant downregulation of FER1L4, but upregulation of RB1 in the colorectal tumors compared with non-tumor and the polyp tissues. However, RB1 expression was positively correlated with FER1L4 expression both in the tumor and polyp samples. ROC curve analysis showed both FER1L4 and RB1 expression levels could discriminate tumor from non-tumor and tumor from polyp samples. None of the clinicopathological characteristics of patients were associated with FER1L4 or RB1 expression levels. Despite the downregulation of FER1L4 and upregulation of RB1 in tumors compared with non-tumor tissues, the expression of RB1 was positively correlated with the expression of FER1L4 in the colorectal tumor as well as in the polyp tissues. FER1L4 expression level might be considered as a potential biomarker for colorectal cancer development.
Collapse
Affiliation(s)
- Marjan Ostovarpour
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Tayyebeh Ghasemi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
11
|
Li D, Zhao W, Zhang X, Lv H, Li C, Sun L. NEFM DNA methylation correlates with immune infiltration and survival in breast cancer. Clin Epigenetics 2021; 13:112. [PMID: 34001208 PMCID: PMC8130356 DOI: 10.1186/s13148-021-01096-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/02/2021] [Indexed: 11/25/2022] Open
Abstract
Background This study aims to determine whether NEFM (neurofilament medium) DNA methylation correlates with immune infiltration and prognosis in breast cancer (BRCA) and to explore NEFM-connected immune gene signature. Methods NEFM transcriptional expression was analyzed in BRCA and normal breast tissues using Oncomine and Tumor Immune Estimation Resource (TIMER) databases. The relationship between NEFM DNA methylation and NEFM transcriptional expression was investigated in TCGA. Potential influence of NEFM DNA methylation/expression on clinical outcome was evaluated using TCGA BRCA, The Human Protein Atlas and Kaplan–Meier plotter databases. Association of NEFM transcriptional expression/DNA methylation with cancer immune infiltration was investigated using TIMER and TISIDB databases. Results High expression of NEFM correlated with better overall survival (OS) and recurrence-free survival (RFS) in TCGA BRCA and Kaplan–Meier plotter, whereas NEFM DNA methylation with worse OS in TCGA BRCA. NEFM transcriptional expression negatively correlated with DNA methylation. NEFM DNA methylation significantly negatively correlated with infiltrating levels of B, CD8+ T/CD4+ T cells, macrophages, neutrophils and dendritic cells in TIMER and TISIDB. NEFM expression positively correlated with macrophage infiltration in TIMER and TISIDB. After adjusted with tumor purity, NEFM expression weekly negatively correlated with infiltration level of B cells, whereas positively correlated with CD8+ T cell infiltration in TIMER gene modules. NEFM expression/DNA methylation correlated with diverse immune markers in TCGA and TISIDB. Conclusions NEFM low-expression/DNA methylation correlates with poor prognosis. NEFM expression positively correlates with macrophage infiltration. NEFM DNA methylation strongly negatively correlates with immune infiltration in BRCA. Our study highlights novel potential functions of NEFM expression/DNA methylation in regulation of tumor immune microenvironment. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01096-4.
Collapse
Affiliation(s)
- Dandan Li
- Department of Radiotherapy Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenhao Zhao
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Xinyu Zhang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Hanning Lv
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Chunhong Li
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China.
| | - Lichun Sun
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
12
|
Hwang MS, Mog BJ, Douglass J, Pearlman AH, Hsiue EHC, Paul S, DiNapoli SR, Konig MF, Pardoll DM, Gabelli SB, Bettegowda C, Papadopoulos N, Vogelstein B, Zhou S, Kinzler KW. Targeting loss of heterozygosity for cancer-specific immunotherapy. Proc Natl Acad Sci U S A 2021; 118:e2022410118. [PMID: 33731480 PMCID: PMC8000272 DOI: 10.1073/pnas.2022410118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Developing therapeutic agents with potent antitumor activity that spare normal tissues remains a significant challenge. Clonal loss of heterozygosity (LOH) is a widespread and irreversible genetic alteration that is exquisitely specific to cancer cells. We hypothesized that LOH events can be therapeutically targeted by "inverting" the loss of an allele in cancer cells into an activating signal. Here we describe a proof-of-concept approach utilizing engineered T cells approximating NOT-gate Boolean logic to target counterexpressed antigens resulting from LOH events in cancer. The NOT gate comprises a chimeric antigen receptor (CAR) targeting the allele of human leukocyte antigen (HLA) that is retained in the cancer cells and an inhibitory CAR (iCAR) targeting the HLA allele that is lost in the cancer cells. We demonstrate that engineered T cells incorporating such NOT-gate logic can be activated in a genetically predictable manner in vitro and in mice to kill relevant cancer cells. This therapeutic approach, termed NASCAR (Neoplasm-targeting Allele-Sensing CAR), could, in theory, be extended to LOH of other polymorphic genes that result in altered cell surface antigens in cancers.
Collapse
Affiliation(s)
- Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287;
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287;
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
13
|
Zhang X, Sjöblom T. Targeting Loss of Heterozygosity: A Novel Paradigm for Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:ph14010057. [PMID: 33450833 PMCID: PMC7828287 DOI: 10.3390/ph14010057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Loss of heterozygosity (LOH) is a common genetic event in the development of cancer. In certain tumor types, LOH can affect more than 20% of the genome, entailing loss of allelic variation in thousands of genes. This reduction of heterozygosity creates genetic differences between tumor and normal cells, providing opportunities for development of novel cancer therapies. Here, we review and summarize (1) mutations associated with LOH on chromosomes which have been shown to be promising biomarkers of cancer risk or the prediction of clinical outcomes in certain types of tumors; (2) loci undergoing LOH that can be targeted for development of novel anticancer drugs as well as (3) LOH in tumors provides up-and-coming possibilities to understand the underlying mechanisms of cancer evolution and to discover novel cancer vulnerabilities which are worth a further investigation in the near future.
Collapse
|
14
|
KAMATANI Y, NAKAMURA Y. Genetic variations in medical research in the past, at present and in the future. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:324-335. [PMID: 34121043 PMCID: PMC8403528 DOI: 10.2183/pjab.97.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
As we look so different, our genomic sequences vary enormously. The differences in our genome, genetic variations, have played very significant roles in medical research and have contributed to improvement of medical managements in the last 2-3 decades. Genetic variations include germline variations, somatic mutations, and diversities in receptor genes of rearranged immune cells, T cells and B cells. Germline variants are in some cases causative of genetic diseases, are associated with the risk of various diseases, and also affect drug efficacies or adverse events. Some somatic mutations are causative of tumor development. Recent DNA sequencing technologies allow us to perform single-cell analysis or detailed repertoire analysis of B and T cells. It is critically important to investigate temporal changes in immune environment in various anatomical regions in the next one to two decades. In this review article, we would like to introduce the roles of genetic variations in medical fields in the past, at present and in the future.
Collapse
Affiliation(s)
- Yoichiro KAMATANI
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke NAKAMURA
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
15
|
Zhang C, Cui M, Xing J, Yang H, Yao Z, Zhang N, Su X. Clinicopathologic features and prognosis of synchronous and metachronous multiple primary colorectal cancer. Clin Transl Oncol 2020; 23:335-343. [PMID: 32592156 DOI: 10.1007/s12094-020-02426-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Multiple primary colorectal cancers (MPCCs) are different from solitary colorectal cancers in many aspects, which are not well studied. The aim of this study was to clarify the clinicopathological features and prognosis of MPCCs. METHODS The data of 64 patients with MPCCs out of 2300 patients with colorectal cancers (CRCs) from January 2009 to December 2017 were retrospectively analyzed. Stratified analysis was conducted based on subtypes and microsatellite status. RESULTS The overall incidence of MPCC was 2.8% and the median follow-up duration was 51.5 (range 1-120) months. Metachronous CRCs (MCRCs) are more likely to appear in the right colon (p < 0.05). However, no significant differences regarding age, sex, BMI, tumor size, smoking/drinking history, TNM stage, family history of cancer, and 5-year survival rate were observed between synchronous CRC (SCRC) and MCRC. Advanced TNM stage (III) and the presence of polyps were found to be independent poor prognostic factors for MPCCs. The prevalence of mismatch repair deficiency (dMMR) in MPCCs was 28.1%. Deficient MMR is more likely to appear in younger, lighter MPCC patients with polyps (p < 0.05). Of four mismatch repair proteins, MLH-1, MSH-2, MSH-6, and PMS-2 were negative in nine, nine, five, and nine patients, respectively. The 5-year survival rate did not differ significantly between MMR-proficient (pMMR) and dMMR groups (p = 0.752). CONCLUSIONS Synchronous CRC (SCRC) and MCRC might represent similar disease entities with different courses. Deficient MMR is more likely to appear in younger, lighter MPCC patients with polyps and it is an essential indicator for screening Lynch syndrome.
Collapse
Affiliation(s)
- C Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital and Institute, 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China
| | - M Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital and Institute, 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China
| | - J Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital and Institute, 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China
| | - H Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital and Institute, 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China
| | - Z Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital and Institute, 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China
| | - N Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital and Institute, 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China
| | - X Su
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital and Institute, 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China.
| |
Collapse
|
16
|
Lim KS, Yong ZWE, Wang H, Tan TZ, Huang RYJ, Yamamoto D, Inaki N, Hazawa M, Wong RW, Oshima H, Oshima M, Ito Y, Voon DCC. Inflammatory and mitogenic signals drive interleukin 23 subunit alpha (IL23A) secretion independent of IL12B in intestinal epithelial cells. J Biol Chem 2020; 295:6387-6400. [PMID: 32209656 DOI: 10.1074/jbc.ra120.012943] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/29/2020] [Indexed: 01/15/2023] Open
Abstract
The heterodimeric cytokine interleukin-23 (IL-23 or IL23A/IL12B) is produced by dendritic cells and macrophages and promotes the proinflammatory and regenerative activities of T helper 17 (Th17) and innate lymphoid cells. A recent study has reported that IL-23 is also secreted by lung adenoma cells and generates an inflammatory and immune-suppressed stroma. Here, we observed that proinflammatory tumor necrosis factor (TNF)/NF-κB and mitogen-activated protein kinase (MAPK) signaling strongly induce IL23A expression in intestinal epithelial cells. Moreover, we identified a strong crosstalk between the NF-κB and MAPK/ERK kinase (MEK) pathways, involving the formation of a transcriptional enhancer complex consisting of proto-oncogene c-Jun (c-Jun), RELA proto-oncogene NF-κB subunit (RelA), RUNX family transcription factor 1 (RUNX1), and RUNX3. Collectively, these proteins induced IL23A secretion, confirmed by immunoprecipitation of endogenous IL23A from activated human colorectal cancer (CRC) cell culture supernatants. Interestingly, IL23A was likely secreted in a noncanonical form, as it was not detected by an ELISA specific for heterodimeric IL-23 likely because IL12B expression is absent in CRC cells. Given recent evidence that IL23A promotes tumor formation, we evaluated the efficacy of MAPK/NF-κB inhibitors in attenuating IL23A expression and found that the MEK inhibitor trametinib and BAY 11-7082 (an IKKα/IκB inhibitor) effectively inhibited IL23A in a subset of human CRC lines with mutant KRAS or BRAFV600E mutations. Together, these results indicate that proinflammatory and mitogenic signals dynamically regulate IL23A in epithelial cells. They further reveal its secretion in a noncanonical form independent of IL12B and that small-molecule inhibitors can attenuate IL23A secretion.
Collapse
Affiliation(s)
- Kee Siang Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Zachary Wei Ern Yong
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Huajing Wang
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore 138669
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,Department of Obstetrics & Gynaecology, National University Hospital, Singapore 119228
| | - Daisuke Yamamoto
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Department of Gastroenterological Surgery, Ishikawa Prefectural Central Hospital, Ishikawa 920-8530, Japan
| | - Noriyuki Inaki
- Department of Digestive and General Surgery, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
| | - Masaharu Hazawa
- Faculty of Natural System, Institute of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Richard W Wong
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Faculty of Natural System, Institute of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroko Oshima
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Masanobu Oshima
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Dominic Chih-Cheng Voon
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan .,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
17
|
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019; 20:69-84. [PMID: 30459476 DOI: 10.1038/s41580-018-0080-4] [Citation(s) in RCA: 2442] [Impact Index Per Article: 407.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular programme that is known to be crucial for embryogenesis, wound healing and malignant progression. During EMT, cell-cell and cell-extracellular matrix interactions are remodelled, which leads to the detachment of epithelial cells from each other and the underlying basement membrane, and a new transcriptional programme is activated to promote the mesenchymal fate. In the context of neoplasias, EMT confers on cancer cells increased tumour-initiating and metastatic potential and a greater resistance to elimination by several therapeutic regimens. In this Review, we discuss recent findings on the mechanisms and roles of EMT in normal and neoplastic tissues, and the cell-intrinsic signals that sustain expression of this programme. We also highlight how EMT gives rise to a variety of intermediate cell states between the epithelial and the mesenchymal state, which could function as cancer stem cells. In addition, we describe the contributions of the tumour microenvironment in inducing EMT and the effects of EMT on the immunobiology of carcinomas.
Collapse
Affiliation(s)
- Anushka Dongre
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA. .,MIT Ludwig Center for Molecular Oncology, Cambridge, MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
18
|
Pfeifer JD. Identity determination in diagnostic surgical pathology. Semin Diagn Pathol 2019; 36:355-365. [PMID: 31196743 DOI: 10.1053/j.semdp.2019.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
From a technical perspective, specimen identity determination in surgical pathology over the last several decades has primarily focused on analysis of repetitive DNA sequences, specifically microsatellite repeats. However, a number of techniques have recently been developed that have similar, if not greater, utility in surgical pathology, most notably analysis of single nucleotide polymorphism (SNPs) and gene panels by next generation sequencing (NGS). For cases with an extremely limited sample or a degraded sample, sequence analysis of mitochondrial DNA continues to be the method of choice. From a diagnostic perspective, interest in identity determination in surgical pathology is usually centered on resolving issues of specimen provenance due to specimen labeling/accessioning deficiencies and possible contamination, but is also frequently performed in cases for which the patient's clinical course following definitive therapy is remarkably atypical, in cases of an unexpected diagnosis, and by patient request for "peace of mind". However, the methods used for identity determination have a much broader range of applications in surgical pathology beyond tissue provenance analysis. The methods can be used to provide ancillary information for cases in which the histomorphology is not definitively diagnostic, as for example for tumors that have a virtually identical microscopic appearance but for which the differential diagnosis includes synchronous/metachronous tumors versus a metastasis, and for the diagnosis of hydropic early gestations versus hydatidiform molar pregnancies. The methods also have utility in several other clinical settings, for example to rule out a donor-transmitted malignancy in a transplant recipient, to monitor bone marrow transplant engraftment, and to evaluate natural chimerism.
Collapse
Affiliation(s)
- John D Pfeifer
- Department of Pathology, Washington University School of Medicine, Campus Box 8118, 660 S. Euclid Ave, St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
Zhang X, Hu Y, Wang M, Zhang R, Wang P, Cui M, Su Z, Gao X, Liao Q, Zhao Y. Profiling analysis of long non-coding RNA and mRNA in parathyroid carcinoma. Endocr Relat Cancer 2019; 26:163-176. [PMID: 30403657 DOI: 10.1530/erc-18-0480] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022]
Abstract
Parathyroid carcinoma (PCa) is a rare endocrine neoplasia that typically has unfavourable outcomes. The contribution of long non-coding RNAs (lncRNAs) to the development of malignant and benign parathyroid tumours remains largely unknown. In this study, we explored transcriptomic profiling of lncRNA and mRNA expression in 6 PCa, 6 parathyroid adenoma (PAd) and 4 normal parathyroid (PaN) tissues. In total, 2641 lncRNA transcripts and 2165 mRNA transcripts were differentially expressed between PCa and PAd. Enrichment analysis demonstrated that dysregulated transcripts were involved mainly in the extracellular matrix (ECM)-receptor interaction and energy metabolism pathways. Bioinformatics analysis suggested that ATF3, ID1, FOXM1, EZH2 and MITF may be crucial to parathyroid carcinogenesis. Series test of cluster analysis segregated differentially expressed lncRNAs and mRNAs into several expression profile models, among which the 'plateau' profile representing components specific to parathyroid carcinogenesis was selected to build a co-expression network. Seven lncRNAs and three mRNAs were selected for quantitative RT-PCR validation in 16 PCa, 41 PAd and 4 PaN samples. Receiver-operator characteristic curves analysis showed that lncRNA PVT1 and GLIS2-AS1 yielded the area under the curve values of 0.871 and 0.860, respectively. Higher hybridization signals were observed in PCa for PVT1 and PAd for GLIS2-AS1. In conclusion, the current evidence indicates that PAd and PCa partially share common signalling molecules and pathways, but have independent transcriptional events. Differentially expressed lncRNAs and mRNAs have intricate interactions and are involved in parathyroid tumourigenesis. The lncRNA PVT1 and GLIS2-AS1 may be new potential markers for the diagnosis of PCa.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ya Hu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mengyi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ronghua Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - PeiPei Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhe Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiang Gao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Abstract
Point mutations in cancer have been extensively studied but chromosomal gains and losses have been more challenging to interpret due to their unspecific nature. Here we examine high-resolution allelic imbalance (AI) landscape in 1699 colorectal cancers, 256 of which have been whole-genome sequenced (WGSed). The imbalances pinpoint 38 genes as plausible AI targets based on previous knowledge. Unbiased CRISPR-Cas9 knockout and activation screens identified in total 79 genes within AI peaks regulating cell growth. Genetic and functional data implicate loss of TP53 as a sufficient driver of AI. The WGS highlights an influence of copy number aberrations on the rate of detected somatic point mutations. Importantly, the data reveal several associations between AI target genes, suggesting a role for a network of lineage-determining transcription factors in colorectal tumorigenesis. Overall, the results unravel the contribution of AI in colorectal cancer and provide a plausible explanation why so few genes are commonly affected by point mutations in cancers. In this study the authors examine the allelic imbalance (AI) landscape of colorectal cancer, reporting loss of TP53 as a driver of AI. They use CRISPR-Cas9 screens to identify 79 genes (within AI regions) regulating cell growth and identify a network of transcription factors that may contribute to colorectal tumorigenesis.
Collapse
|
21
|
Negulescu A, Mehlen P. Dependence receptors – the dark side awakens. FEBS J 2018; 285:3909-3924. [DOI: 10.1111/febs.14507] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Ana‐Maria Negulescu
- Apoptosis, Cancer and Development Laboratory – Equipe labelisée “La Ligue” LabEx DEVweCAN INSERM U1052 – CNRS UMR5286 Centre de Cancérologie de Lyon Centre Léon Bérard Université Claude Bernard Lyon‐1 Université de Lyon France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory – Equipe labelisée “La Ligue” LabEx DEVweCAN INSERM U1052 – CNRS UMR5286 Centre de Cancérologie de Lyon Centre Léon Bérard Université Claude Bernard Lyon‐1 Université de Lyon France
| |
Collapse
|
22
|
Tanaka T, Kobunai T, Yamamoto Y, Emoto S, Murono K, Kaneko M, Sasaki K, Otani K, Nishikawa T, Kawai K, Hata K, Nozawa H, Watanabe T. Colitic Cancer Develops Through Mutational Alteration Distinct from that in Sporadic Colorectal Cancer: A Comparative Analysis of Mutational Rates at Each Step. Cancer Genomics Proteomics 2018; 14:341-348. [PMID: 28871001 DOI: 10.21873/cgp.20044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Patients with ulcerative colitis (UC) are at risk of UC-associated colorectal cancer (CRC); however, little is known about genetic alterations occurring during UC carcinogenesis. We examined mutational changes in patients with colitic cancer and the features that differed between the carcinogenesis of UC and sporadic CRC. MATERIAL AND METHODS Specimens were obtained from the non-neoplastic mucosa and cancer cells of 12 patients with colitic cancer. The mutational rate of oncogenes in colitic cancer was analyzed and compared to that of oncogenes in sporadic CRC. RESULTS We observed a lower mutation rate in adenomatous polyposis coli (APC) (16.7%(2/12) vs. 75.9%(161/212), respectively, p=0.0001) and KRAS (16.7%(2/12) vs. 42% (89/212), respectively, p=0.04) in colitic cancer than in sporadic CRC. With respect to cadherin 1 (CDH1) and fibroblast growth factor receptor 2 (FGFR2), the mutational rates for non-neoplastic colorectal mucosa were similar to those in sporadic CRC. CONCLUSION We demonstrated that mutational rates for APC and KRAS differ between colitic cancer and sporadic CRC. Furthermore, we revealed that CDH1 and FGFR2 become mutated at an earlier stage in colitic carcinogenesis than in sporadic CRC.
Collapse
Affiliation(s)
- Toshiaki Tanaka
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Takashi Kobunai
- Translational Research Laboratory, Taiho Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Yoko Yamamoto
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Shigenobu Emoto
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Koji Murono
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Manabu Kaneko
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Kazuhito Sasaki
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Kensuke Otani
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Takeshi Nishikawa
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Kazushige Kawai
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Keisuke Hata
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Hiroaki Nozawa
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Toshiaki Watanabe
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Kopnin B. Genetic Events Responsible for Colorectal Tumorigenesis: Achievements and Challenges. TUMORI JOURNAL 2018; 79:235-43. [PMID: 8249174 DOI: 10.1177/030089169307900401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Colorectal carcinogenesis is a multistep process that is accompanied by accumulation of changes in proto-oncogenes and tumor-suppressor genes. APC/MCC, RAS, DCC, p53 mutations and/or allelic losses, hyperexpression of c-MYC and RB genes, as well as other genomic alterations appear at characteristic stages of tumor development and are observed in most neoplasms. However, consideration of each of these abnormalities leaves many unanswered questions. The striking data on recurrent amplification of the RB tumor-suppressor gene as well as suppressive activities of protein kinase C and activated RAS genes, at least in some colon carcinoma cell lines, suggest the unusual effects of some signalling pathways in colonic epithelial cells. The results obtained to date indicate that distinct sets of genetic changes may underlie the development of colorectal tumors.
Collapse
Affiliation(s)
- B Kopnin
- Institute of Carcinogenesis, Cancer Research Center, Moscow
| |
Collapse
|
24
|
Castelli C, Mazzucchelli F, Sensi M, Fossati G, Parmiani G. Loss of Heterozygosity of Dq Alpha Gene in Human Malignant Melanoma. TUMORI JOURNAL 2018; 75:378-82. [PMID: 2573190 DOI: 10.1177/030089168907500415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNAs from human melanoma cells, used at early in vitro passage, were evaluated by Southern blot analysis for somatic loss of heterozygosity at the DQ alpha gene. A total of 7 melanomas, 3 primary and 4 metastatic derived from 5 different patients were studied; in one case (pt 665) cell lines were derived from two anatomically different subcutaneous metastasis, whereas in a second case (pt 9923) both the primary tumor and a lymph node metastasis were available. Restriction length polymorphism (RFLP) analysis, performed on autologous peripheral blood lymphocyte (PBL) DNA digested with different enzymes, showed a pattern of bands compatible with the constitutional heterozygous typing at DQ alpha gene in 4 cases whereas 1 case revealed an homozygous typing. When melanoma DNAs were analysed, 1 out of the 4 informative cases (pt 1007) showed a loss of a diagnostic fragment for DQ alpha gene when digested with both Taq I and Bgl I enzymes. These results indicate that class II allelic losses detectable by RFLP can be found on malignant melanoma and add further complexity on the involvement of chromosome 6 whose cytogenetic abnormality are the most consistent in this human neoplasia.
Collapse
Affiliation(s)
- C Castelli
- Division of Experimental Oncology D, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | |
Collapse
|
25
|
Abstract
The analysis of the molecular mechanisms governing multistep carcinogenesis became experimentally approachable since the identification and characterization in tumor cells of altered or activated versions of cellular genes (oncogenes) that normally control cell growth and differentiation. The activating mutations confer new properties to the oncogene products and should therefore be considered as gain of function mutations. In addition, the oncogenes appear to act as dominant genetic traits since they act also in the presence of the homologous wild-type allele. However, the concept of a dominance of the transformed phenotype has been challenged by early experiments with somatic cell hybrids which showed that the fusion of normal and malignant cells may suppress the tumorigenic phenotype. The suppression or reversion of the malignant phenotype by the introduction of a normal chromosome into a tumor cell line has lent support to the idea that a family of cellular genes are coding for factors capable to interact with the cell-growth control machinery. These genes seem to reconstitute the normal control of cell growth even in the presence of an activated oncogene. In addition, a two-mutation model has been proposed to explain the epidemiological and clinical features of childhood cancers. According to the model, the development of these malignancies can be caused by the loss or inactivation of both alleles of cellular genes, as suggested by the somatic cell hybrid experiments where the function of the inactivated genes is restored by the contribution of those derived from the normal parental cells. This family of genes is designated as onco-suppressor genes since their product is necessary for the normal regulated cell growth and is lacking or inactivated in malignant cells. At gene level they should be considered as recessive genetic traits, since the tumor phenotype appears when both alleles of an oncosuppressor gene are inactivated. The mutations affecting their normal functions belong to the type « loss of function ». The molecular analysis of retinoblastoma has led to the cloning and sequencing of the related onco-suppressor gene (RB gene) whose product displays the features of a gene-regulatory protein. In addition, a binding between the RB product and various viral onco-proteins (E1A, large T, E7) has been demonstrated, thus suggesting a mechanism of RB inactivation by which some DNA viruses can transform the host cell. Finally, the increasing availability of DNA markers, defining restriction fragment length polymorphisms, has led to the mapping of the loci of inherited predisposition for familial cancer syndromes such as MEN-1, VHL and NF-2 and to the extension to common cancers of the allele losses analysis that can reveal onco-suppressor gene inactivation. This indirect approach has suggested the occurrence of different onco-suppressor genes for sporadic breast, colonic and lung cancers, bladder carcinoma, germinal tumors of the testis and malignant melanoma. In particular, colonic cancer provides a significant example of a possible multistep scenario for carcinogenesis in humans in which activated oncogenes (e.g. ras) and inactivated putative onco-suppressor genes (on chromosome 17 and 18) coexist in the same cell.
Collapse
Affiliation(s)
- G Della Porta
- Division of Experimental Oncology A, Istituto Nazionale Tumori, Milan, Italy
| | | | | |
Collapse
|
26
|
Agostini M, Pucciarelli S, Calandra P, Villani F, Lise M, Nitti D. Genetic Heterogeneity of Variable Number Tandem Repeats in Thymidylate Synthase Gene in Colorectal Cancer Patients. Int J Biol Markers 2018. [DOI: 10.1177/172460080401900413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Purpose To analyze the genetic variability in a variable number of tandem repeats (VNTR) in the thymidylate synthase (TS) enhancer promoter region and assess the influence of functional alterations in mismatch repair genes by analyzing constitutional and tumoral DNA from patients with colorectal adenocarcinoma with a high microsatellite instability (MSI-H) or microsatellite stability (MSS) status. Patients and methods Patients who underwent surgery for colorectal adenocarcinoma were selected from the colorectal database of our institute and, on the basis of MSI status, assigned to a study group and a control group: group A, MSI-H; group B, MSS. Microsatellite status was investigated using the Bethesda recommended panel (BAT-26, BAT-25, D2S123, D5S346, D17S250). In MSI-H patients an additional analysis was made of the microsatellite loci D18S61 and D18S58, both mapping in the region containing the TS gene (18p11.2–11.32). Based on the number of altered microsatellites (≥2, 1, or 0), tumors were considered as having high (MSI-H) or low (MSI-L) instability or microsatellite stability (MSS), respectively. Genotyping for thymidylate synthase promoter polymorphism was carried out on constitutional and tumor DNA of each patient by PCR amplification of the polymorphic region. Results MSI-H was found in 55 patients (group A) and MSS in 50 patients (group B). In none of the MSI-H patients was microsatellite instability found in the additional D18S61 and D18S58 loci. In five group A and ten group B cases the analysis was not performed because constitutional DNA and/or tumoral DNA were not amplifiable. Homozygotes for the triple repeat variant (3R/3R) displayed only the large PCR product, homozygotes for the double repeat variant (2R/2R) displayed only the smaller PCR product, while heterozygotes (2R/3R) displayed both the larger and smaller PCR products. In 3/50 (6%) group A patients and 5/40 (12%) group B patients repeat variations were found in tumoral DNA. Conclusion Our findings demonstrate that there is genetic homogeneity between constitutional and tumoral DNA but do not support the hypothesis that mismatch repair genes are involved in VNTR recombinant events in TS gene variability.
Collapse
Affiliation(s)
- M. Agostini
- Second Division of Surgery, Department of Surgery and Oncology, University of Padua, Padua - Italy
| | - S. Pucciarelli
- Second Division of Surgery, Department of Surgery and Oncology, University of Padua, Padua - Italy
| | - P. Calandra
- Second Division of Surgery, Department of Surgery and Oncology, University of Padua, Padua - Italy
| | - F. Villani
- Second Division of Surgery, Department of Surgery and Oncology, University of Padua, Padua - Italy
| | - M. Lise
- Second Division of Surgery, Department of Surgery and Oncology, University of Padua, Padua - Italy
| | - D. Nitti
- Second Division of Surgery, Department of Surgery and Oncology, University of Padua, Padua - Italy
| |
Collapse
|
27
|
Druliner BR, Ruan X, Sicotte H, O'Brien D, Liu H, Kocher JPA, Boardman L. Early genetic aberrations in patients with sporadic colorectal cancer. Mol Carcinog 2017; 57:114-124. [PMID: 28926134 DOI: 10.1002/mc.22738] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 09/01/2017] [Accepted: 09/18/2017] [Indexed: 01/10/2023]
Abstract
Chromosome instability (CIN) is widely observed in both sporadic and hereditary colorectal cancer (CRC). Defects in APC and WNT signaling are primarily associated with CIN in hereditary CRC, but the genetic causes for CIN in sporadic CRC remain elusive. Using high-density SNP array and exome data from The Cancer Genome Atlas (TCGA), we characterized loss of heterozygosity (LOH) and copy number variation (CNV) in the peripheral blood, normal colon, and corresponding tumor tissue in 15 CRC patients with proficient mismatch repair (MMR) and 24 CRC patients with deficient MMR. We found a high frequency of 18q LOH in tumors and arm-specific enrichment of genetic aberrations on 18q in the normal colon (primarily copy neutral LOH) and blood (primarily copy gain). These aberrations were specific to the sporadic, pMMR CRC. Though in tumor samples genetic aberrations were observed for genes commonly mutated in hereditary CRC (eg, APC, CTNNB1, SMAD4, BRAF), none of them showed LOH or CNV in the normal colon or blood. DCC located on 18q21.1 topped the list of genes with genetic aberrations in the tumor. In an independent cohort of 13 patients subjected to Whole Genome Sequencing (WGS), we found LOH and CNV on 18q in adenomatous polyp and tumor tissues. Our data suggests that patients with sporadic CRC may have genetic aberrations preferentially enriched on 18q in their blood, normal colon epithelium, and non-malignant polyp lesions that may prove useful as a clinical marker for sporadic CRC detection and risk assessment.
Collapse
Affiliation(s)
- Brooke R Druliner
- Division of Internal Medicine, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Xiaoyang Ruan
- Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Hugues Sicotte
- Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Daniel O'Brien
- Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Hongfang Liu
- Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Jean-Pierre A Kocher
- Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lisa Boardman
- Division of Internal Medicine, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
28
|
Kakumu T, Sato M, Goto D, Kato T, Yogo N, Hase T, Morise M, Fukui T, Yokoi K, Sekido Y, Girard L, Minna JD, Byers LA, Heymach JV, Coombes KR, Kondo M, Hasegawa Y. Identification of proteasomal catalytic subunit PSMA6 as a therapeutic target for lung cancer. Cancer Sci 2017; 108:732-743. [PMID: 28165654 PMCID: PMC5406588 DOI: 10.1111/cas.13185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/21/2017] [Accepted: 01/30/2017] [Indexed: 12/12/2022] Open
Abstract
To identify potential therapeutic targets for lung cancer, we performed semi‐genome‐wide shRNA screening combined with the utilization of genome‐wide expression and copy number data. shRNA screening targeting 5043 genes in NCI‐H460 identified 51 genes as candidates. Pathway analysis revealed that the 51 genes were enriched for the five pathways, including ribosome, proteasome, RNA polymerase, pyrimidine metabolism and spliceosome pathways. We focused on the proteasome pathway that involved six candidate genes because its activation has been demonstrated in diverse human malignancies, including lung cancer. Microarray expression and array CGH data showed that PSMA6, a proteasomal subunit of a 20S catalytic core complex, was highly expressed in lung cancer cell lines, with recurrent gene amplifications in some cases. Therefore, we further examined the roles of PSMA6 in lung cancer. Silencing of PSMA6 induced apoptosis or G2/M cell cycle arrest in cancer cell lines but not in an immortalized normal lung cell line. These results suggested that PSMA6 serves as an attractive target with a high therapeutic index for lung cancer.
Collapse
Affiliation(s)
- Tomohiko Kakumu
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuo Sato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daiki Goto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Kato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoyuki Yogo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Morise
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sekido
- Department of Cancer Genetics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Lauren A Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Kevin R Coombes
- Department of Biomedical Informatics, Ohio State University, Columbus, Ohio, USA
| | - Masashi Kondo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
29
|
Wolfe AR, Ernlund A, McGuinness W, Lehmann C, Carl K, Balmaceda N, Neufeld KL. Suppression of intestinal tumorigenesis in Apc mutant mice upon Musashi-1 deletion. J Cell Sci 2017; 130:805-813. [PMID: 28082422 DOI: 10.1242/jcs.197574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Therapeutic strategies based on a specific oncogenic target are better justified when elimination of that particular oncogene reduces tumorigenesis in a model organism. One such oncogene, Musashi-1 (Msi-1), regulates translation of target mRNAs and is implicated in promoting tumorigenesis in the colon and other tissues. Msi-1 targets include the tumor suppressor adenomatous polyposis coli (Apc), a Wnt pathway antagonist lost in ∼80% of all colorectal cancers. Cell culture experiments have established that Msi-1 is a Wnt target, thus positioning Msi-1 and Apc as mutual antagonists in a mutually repressive feedback loop. Here, we report that intestines from mice lacking Msi-1 display aberrant Apc and Msi-1 mutually repressive feedback, reduced Wnt and Notch signaling, decreased proliferation, and changes in stem cell populations, features predicted to suppress tumorigenesis. Indeed, mice with germline Apc mutations (ApcMin ) or with the Apc1322T truncation mutation have a dramatic reduction in intestinal polyp number when Msi-1 is deleted. Taken together, these results provide genetic evidence that Msi-1 contributes to intestinal tumorigenesis driven by Apc loss, and validate the pursuit of Msi-1 inhibitors as chemo-prevention agents to reduce tumor burden.
Collapse
Affiliation(s)
- Andy R Wolfe
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Amanda Ernlund
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - William McGuinness
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Carl Lehmann
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Kaitlyn Carl
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Nicole Balmaceda
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Kristi L Neufeld
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| |
Collapse
|
30
|
Rodriguez-Salas N, Dominguez G, Barderas R, Mendiola M, García-Albéniz X, Maurel J, Batlle JF. Clinical relevance of colorectal cancer molecular subtypes. Crit Rev Oncol Hematol 2017; 109:9-19. [DOI: 10.1016/j.critrevonc.2016.11.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/12/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022] Open
|
31
|
Extended Abstracts. Toxicol Pathol 2016. [DOI: 10.1177/019262339702500633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Ali A, Mehdi SJ, Hajela K, Saluja SS, Mishra PK, Sameer AS, Rizvi MMA. Allelic loss at PTEN locus leads to progression of colorectal carcinoma among North Indian patients. Biomarkers 2016; 21:716-720. [PMID: 27098297 DOI: 10.3109/1354750x.2016.1172115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We evaluated the loss of heterozygosity (LOH) at 10q23.3 locus of microsatellite markers; D10S198, D10S192, and D10S541 of PTEN gene in 223 North Indian colorectal cancer (CRC) specimens. DNA was isolated and microsatellite-specific markers polymerase chain reaction was performed. Out of total 223 cases 102 showed LOH for at least one of the locus. In addition, thereto a significant association was found with the clinicopathologic features like grade of differentiation, clinical stage, invasion, lymph node invasion, and the clinical outcome (p < 0.05). These data argue that the given markers to check the possible LOH of PTEN gene at locus 10q23.3 could be considered as one of the diagnostic markers in CRC.
Collapse
Affiliation(s)
- Asgar Ali
- a Department of Biochemistry , AIIMS , Patna , India
| | - Syed Jafar Mehdi
- b Department of Biosciences, Genome Biology Lab , Jamia Millia Islamia , New Delhi , India
| | - Krishnan Hajela
- c School of Life Sciences , Devi Ahilya Vishwavidyalaya , Indore , India
| | - Sundeep Singh Saluja
- d Department of Gastrointestinal Surgery , G. B. Pant Hospital , New Delhi , India
| | - Pramod Kumar Mishra
- d Department of Gastrointestinal Surgery , G. B. Pant Hospital , New Delhi , India
| | - Aga Syed Sameer
- e Basic Medical Sciences, College of Medicine-Jeddah, King Saud bin Abdulaziz University for Health Sciences , Riyadh , Saudi Arabia
| | - M Moshahid Alam Rizvi
- b Department of Biosciences, Genome Biology Lab , Jamia Millia Islamia , New Delhi , India
| |
Collapse
|
33
|
The 100 most influential manuscripts in colorectal cancer: A bibliometric analysis. Surgeon 2016; 14:327-336. [PMID: 27091391 DOI: 10.1016/j.surge.2016.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Bibliometric analysis highlights the key topics and studies which have led to the current understanding and treatment of a disease of interest. In this original article we analyze the 100 most cited manuscripts in the field of colorectal cancer (CRC). MATERIALS AND METHODS The Thomson Reuters Web of Science database with the search terms 'colorectal cancer,' 'colorectal cancer surgery,' 'colon cancer,' 'rectal cancer,' 'colorectal carcinoma,' 'colon carcinoma,' 'rectal carcinoma' and/or 'colonoscopy' was used to identify the manuscripts for the study. Only full length manuscripts were included. The 100 most cited papers were identified and further analyzed by topic, journal, author, year and institution. The journals' 5 year impact factor and Eigenfactor scores were recorded. RESULTS 146,833 eligible papers were returned. Within the top 100 cited manuscripts, the most studied topic was genetics in CRC (n = 41), followed by chemotherapy (n = 20) and surgical management (n = 7). The most cited paper authored by Fearon et al. (7850 citations) focused on genetic models of tumorgenesis. The NEJM published the highest number of papers (n = 23 with 42,576 citations). The country and year with the greatest number of publications were the USA (n = 62) and 2004 (n = 13) respectively. CONCLUSION The most cited manuscripts highlighted in the current work describe the genetic, immunologic, basic science and surgical techniques that have resulted in the current understanding and treatment of CRC. The majority of these works were published in high impact journals and have been cited at least 900 times each reflecting their quality and influence. This work provides a reference of what could be considered as the most influential papers in CRC and serves as a reference for researchers and clinicians as to what makes a 'citable' paper.
Collapse
|
34
|
Huang MC, Chuang TP, Chen CH, Wu JY, Chen YT, Li LH, Yang HC. An integrated analysis tool for analyzing hybridization intensities and genotypes using new-generation population-optimized human arrays. BMC Genomics 2016; 17:266. [PMID: 27029637 PMCID: PMC4815280 DOI: 10.1186/s12864-016-2478-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/16/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Affymetrix Axiom single nucleotide polymorphism (SNP) arrays provide a cost-effective, high-density, and high-throughput genotyping solution for population-optimized analyses. However, no public software is available for the integrated genomic analysis of hybridization intensities and genotypes for this new-generation population-optimized genotyping platform. RESULTS A set of statistical methods was developed for an integrated analysis of allele frequency (AF), allelic imbalance (AI), loss of heterozygosity (LOH), long contiguous stretch of homozygosity (LCSH), and copy number variation or alteration (CNV/CNA) on the basis of SNP probe hybridization intensities and genotypes. This study analyzed 3,236 samples that were genotyped using different SNP platforms. The proposed AF adjustment method considerably increased the accuracy of AF estimation. The proposed quick circular binary segmentation algorithm for segmenting copy number reduced the computation time of the original segmentation method by 30-67 %. The proposed CNV/CNA detection, which integrates AI and LOH/LCSH detection, had a promising true positive rate and well-controlled false positive rate in simulation studies. Moreover, our real-time quantitative polymerase chain reaction experiments successfully validated the CNVs/CNAs that were identified in the Axiom data analyses using the proposed methods; some of the validated CNVs/CNAs were not detected in the Affymetrix Array 6.0 data analysis using the Affymetrix Genotyping Console. All the analysis functions are packaged into the ALICE (AF/LOH/LCSH/AI/CNV/CNA Enterprise) software. CONCLUSIONS ALICE and the used genomic reference databases, which can be downloaded from http://hcyang.stat.sinica.edu.tw/software/ALICE.html , are useful resources for analyzing genomic data from the Axiom and other SNP arrays.
Collapse
Affiliation(s)
- Mei-Chu Huang
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan.,Institute of Statistical Science, Academia Sinica, No 128, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, 112, Taiwan
| | - Tzu-Po Chuang
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 115, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan
| | - Ling-Hui Li
- Institute of Biomedical Sciences, Academia Sinica, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan.
| | - Hsin-Chou Yang
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan. .,Institute of Statistical Science, Academia Sinica, No 128, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan. .,Institute of Public Health, National Yang Ming University, Taipei, 112, Taiwan. .,Department of Statistics, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Statistics, National Tsing Hua University, Hsinchu, 300, Taiwan. .,School of Public Health, National Defense Medical Center, Taipei, 114, Taiwan.
| |
Collapse
|
35
|
Williams C, DiLeo A, Niv Y, Gustafsson JÅ. Estrogen receptor beta as target for colorectal cancer prevention. Cancer Lett 2016; 372:48-56. [PMID: 26708506 PMCID: PMC4744541 DOI: 10.1016/j.canlet.2015.12.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/05/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of death in the United States. Despite its slow development and the capacity for early diagnosis, current preventive approaches are not sufficient. However, a role for estrogen has been demonstrated in multiple epidemiologic studies, which may benefit CRC prevention. A large body of evidence from preclinical studies indicates that expression of the estrogen receptor beta (ERβ/ESR2) demonstrates an inverse relationship with the presence of colorectal polyps and stage of tumors, and can mediate a protective response. Natural compounds, including phytoestrogens, or synthetic ERβ selective agonists, can activate or upregulate ERβ in the colon and promote apoptosis in preclinical models and in clinical experience. Importantly, this activity has been associated with a reduction in polyp formation and, in rodent models of CRC, has been shown to lower incidence of colon adenocarcinoma. Collectively, these findings indicate that targeted activation of ERβ may represent a novel clinical approach for management of colorectal adenomatous polyps and prevention of colorectal carcinoma in patients at risk for this condition. In this review, we discuss the potential of new chemopreventive or dietary approaches based on estrogen signaling.
Collapse
Affiliation(s)
- Cecilia Williams
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5056, USA; SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, 171 21 Solna, Sweden; Department of Biosciences and Nutrition, Novum, Karolinska Institutet, 141 83 Stockholm, Sweden.
| | - Alfredo DiLeo
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Yaron Niv
- Department of Gastroenterology, Rabin Medical Center, Tel Aviv University, Petach Tikva 49100, Israel
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5056, USA; Department of Biosciences and Nutrition, Novum, Karolinska Institutet, 141 83 Stockholm, Sweden
| |
Collapse
|
36
|
Gérard C, Goldbeter A. Dynamics of the mammalian cell cycle in physiological and pathological conditions. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 8:140-56. [PMID: 26613368 DOI: 10.1002/wsbm.1325] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/22/2015] [Accepted: 10/08/2015] [Indexed: 01/01/2023]
Abstract
A network of cyclin-dependent kinases (Cdks) controls progression along the successive phases G1, S, G2, and M of the mammalian cell cycle. Deregulations in the expression of molecular components in this network often lead to abusive cell proliferation and cancer. Given the complex nature of the Cdk network, it is fruitful to resort to computational models to grasp its dynamical properties. Investigated by means of bifurcation diagrams, a detailed computational model for the Cdk network shows how the balance between quiescence and proliferation is affected by activators (oncogenes) and inhibitors (tumor suppressors) of cell cycle progression, as well as by growth factors and other external factors such as the extracellular matrix (ECM) and cell contact inhibition. Suprathreshold changes in all these factors can trigger a switch in the dynamical behavior of the network corresponding to a bifurcation between a stable steady state, associated with cell cycle arrest, and sustained oscillations of the various cyclin/Cdk complexes, corresponding to cell proliferation. The model for the Cdk network accounts for the dependence or independence of cell proliferation on serum and/or cell anchorage to the ECM. Such computational approach provides an integrated view of the control of cell proliferation in physiological or pathological conditions. Whether the balance is tilted toward cell cycle arrest or cell proliferation depends on the direction in which the threshold associated with the bifurcation is passed once the cell integrates the multiple signals, internal or external to the Cdk network, that promote or impede progression in the cell cycle.
Collapse
Affiliation(s)
- Claude Gérard
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Albert Goldbeter
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Marais Street, Stellenbosch, South Africa
| |
Collapse
|
37
|
Mirone G, Shukla A, Marfe G. Signaling mechanisms of resistance to EGFR- and Anti-Angiogenic Inhibitors cancer. Crit Rev Oncol Hematol 2015; 97:85-95. [PMID: 26364891 DOI: 10.1016/j.critrevonc.2015.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 06/16/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is among four most common malignancies and the second leading cause of cancer death in the western world. Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor (VEGF) are often overexpressed in colorectal cancer and are associated with inferior outcomes. More recently, further improvements in survival have occurred due to the use of novel targeted therapies such EGFR Tyrosine Kinase Inibitors (EGFR-TKIs), EGFR monoclonal antibodies (EGFR-mAb), and VEGF antibodies. Despite the initial clinical efficacy of these inhibitors in such cancer, resistance invariably develops, typically within 1 to 2 years. Over the past several years, multiple molecular mechanisms of resistance have been identified, and some common themes have emerged. One is the development of resistance mutations in the drug target and another it is activation of alternative signaling of key downstream pathways despite sustained inhibition of the original drug target. In this mini-review, we summarize the concepts underlying EGFR- and VEGF-mediated resistance, the specific examples known to date, and the challenges of applying this knowledge to develop improved therapeutic strategies to prevent or overcome resistance.
Collapse
Affiliation(s)
- Giovanna Mirone
- Department of Medical Oncology B, Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome 00144, Italy.
| | - Arvind Shukla
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Plot No.50, Sector- 15, C.B.D. Belapur, Navi Mumbai, 400614, Maharastra, India
| | - Gabriella Marfe
- Department of Biochemistry and Biophysics, Second University of Naples, via De Crecchio 7, Naples 80138, Italy
| |
Collapse
|
38
|
Quantitative assessment of the association between MS gene polymorphism and colorectal cancer risk. Cell Biochem Biophys 2015; 70:1943-9. [PMID: 25077679 DOI: 10.1007/s12013-014-0154-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Accumulating genetic association studies have investigated the risk of colorectal cancer (CRC) in relation to MS gene polymorphism with uncertain conclusions. In the current study, we sought to assess the association between MS gene and CRC. We performed an updated meta-analysis including 18 case-control studies with a total of 10, 303 CRC patients and 15, 389 CRC-free controls to estimate the strength of the association using odds ratios with the corresponding 95 % confidence intervals. Overall, no CRC risk associated with the genotypes of MS gene polymorphism was indicated in our meta-analysis. Similarly, the stratified analysis according to ethnicity and control source did not show any evident association either. The results of our updated meta-analysis suggest that MS gene polymorphism may not serve as a biomarker for the CRC risk. Future large-scale and well-designed studies are required to clarify the association identified in the present meta-analysis.
Collapse
|
39
|
Clinical Implications of Rabphillin-3A-Like Gene Alterations in Breast Cancer. PLoS One 2015; 10:e0129216. [PMID: 26070152 PMCID: PMC4466565 DOI: 10.1371/journal.pone.0129216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/06/2015] [Indexed: 11/29/2022] Open
Abstract
For the rabphillin-3A-like (RPH3AL) gene, a putative tumor suppressor, the clinical significance of genetic alterations in breast cancers was evaluated. DNA and RNA were extracted from formalin-fixed, paraffin-embedded (FFPE) cancers and matching normal tissues. DNA samples were assessed for loss of heterozygosity (LOH) at the 17p13.3 locus of RPH3AL and the 17p13.1 locus of the tumor suppressor, TP53. RPH3AL was sequenced, and single nucleotide polymorphisms (SNPs) were genotyped. RNA samples were evaluated for expression of RPH3AL, and FFPE tissues were profiled for its phenotypic expression. Alterations in RPH3AL were correlated with clinicopathological features, LOH of TP53, and patient survival. Of 121 cancers, 80 had LOH at one of the RPH3AL locus. LOH of RHP3AL was associated with nodal metastasis, advanced stage, large tumor size, and poor survival. Although ~50% were positive for LOH at the RPH3AL and TP53 loci, 19 of 105 exhibited LOH only at the RPH3AL locus. Of these, 12 were non-Hispanic Caucasians (Whites), 15 had large tumors, and 12 were older (>50 years). Patients exhibiting LOH at both loci had shorter survival than those without LOH at these loci (log-rank, P = 0.014). LOH at the TP53 locus alone was not associated with survival. Analyses of RPH3AL identified missense point mutations in 19 of 125 cases, a SNP (C>A) in the 5’untranslated region at -25 (5’UTR-25) in 26 of 104, and a SNP (G>T) in the intronic region at 43 bp downstream to exon-6 (intron-6-43) in 79 of 118. Genotype C/A or A/A of the SNP at 5’UTR-25 and genotype T/T of a SNP at intron-6-43 were predominantly in Whites. Low levels of RNA and protein expression of RPH3AL were present in cancers relative to normal tissues. Thus, genetic alterations in RPH3AL are associated with aggressive behavior of breast cancers and with short survival of patients.
Collapse
|
40
|
Rebbani K, Marchio A, Ezzikouri S, Afifi R, Kandil M, Bahri O, Triki H, El Feydi AE, Dejean A, Benjelloun S, Pineau P. TP53 R72P polymorphism modulates DNA methylation in hepatocellular carcinoma. Mol Cancer 2015; 14:74. [PMID: 25889455 PMCID: PMC4393630 DOI: 10.1186/s12943-015-0340-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 03/11/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is characterized by widespread epidemiological and molecular heterogeneity. Previous work showed that in the western part of North Africa, a region of low incidence of HCC, mutations are scarce for this tumor type. As epigenetic changes are considered possible surrogates to mutations in human cancers, we decided, thus, to characterize DNA methylation in HCC from North-African patients. METHODS A set of 11 loci was investigated in a series of 45 tumor specimens using methylation-specific and combined-bisulfite restriction assay PCR. Results obtained on clinical samples were subsequently validated in liver cancer cell lines. RESULTS DNA methylation at tumor suppressor loci is significantly higher in samples displaying chromosome instability. More importantly, DNA methylation was significantly higher in Arg/Arg when compared to Pro/Pro genotype carriers at codon 72 rs1042522 of TP53 (65% vs 20% methylated loci, p = 0.0006), a polymorphism already known to affect somatic mutation rate in human carcinomas. In vitro experiments in cell lines indicated that enzymes controlling DNA methylation were differentially regulated by codon 72 Arg or Pro isoforms of p53. Furthermore, the Arg72-carrying version of p53 was shown to re-methylate DNA more rapidly than the pro-harboring isoform. Finally, Pro-carrying cell lines were shown to be significantly more resistant to decitabine treatment (two-fold, p = 0.005). CONCLUSIONS Our data suggest that Arg72Pro polymorphism in a WT p53 context may act as a primary driver of epigenetic changes in HCC. It suggests, in addition, that rs1042522 genotype may predict sensitivity to epigenetic-targeted therapy. This model of liver tumorigenesis that associates low penetrance genetic predisposition to epigenetic changes emerges from a region of low HCC incidence and it may, therefore, apply essentially to population living in similar areas. Surveys on populations submitted to highly mutagenic conditions as perinatally-acquired chronic hepatitis B or aflatoxin B1 exposure remained to be conducted to validate our observations as a general model.
Collapse
Affiliation(s)
- Khadija Rebbani
- Unité d'Organisation Nucléaire et Oncogenèse, INSERM U993, Institut Pasteur, 28 rue du Docteur Roux, F-75724, Paris, Cedex 15, France. .,Laboratoire des Hépatites Virales, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360, Casablanca, Morocco.
| | - Agnès Marchio
- Unité d'Organisation Nucléaire et Oncogenèse, INSERM U993, Institut Pasteur, 28 rue du Docteur Roux, F-75724, Paris, Cedex 15, France.
| | - Sayeh Ezzikouri
- Laboratoire des Hépatites Virales, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360, Casablanca, Morocco.
| | - Rajaa Afifi
- Service de Médecine C-Gastroentérologie, CHU Ibn-Sina, Rabat, Morocco.
| | - Mostafa Kandil
- Equipe d'Anthropogénétique et de Biotechnologies, Faculté des Sciences Chouaib Doukkali, El Jadida, Morocco.
| | - Olfa Bahri
- Laboratoire de Virologie Clinique, Institut Pasteur de Tunis, Tunis, Tunisie.
| | - Henda Triki
- Laboratoire de Virologie Clinique, Institut Pasteur de Tunis, Tunis, Tunisie.
| | | | - Anne Dejean
- Unité d'Organisation Nucléaire et Oncogenèse, INSERM U993, Institut Pasteur, 28 rue du Docteur Roux, F-75724, Paris, Cedex 15, France.
| | - Soumaya Benjelloun
- Laboratoire des Hépatites Virales, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360, Casablanca, Morocco.
| | - Pascal Pineau
- Unité d'Organisation Nucléaire et Oncogenèse, INSERM U993, Institut Pasteur, 28 rue du Docteur Roux, F-75724, Paris, Cedex 15, France.
| |
Collapse
|
41
|
Matsusaka S, Lenz HJ. Pharmacogenomics of fluorouracil -based chemotherapy toxicity. Expert Opin Drug Metab Toxicol 2015; 11:811-21. [PMID: 25800061 DOI: 10.1517/17425255.2015.1027684] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION 5- fluorouracil (5-FU), alone or in combination, is the most prevalent and effective chemotherapeutic agent for the treatment of cancers of the head and neck, breast, pancreas and gastrointestinal tract. AREAS COVERED Three rare DPYD mutations, a splice mutation in intron 14 (c.1905+1G>A) and two nonsynonymous coding variants (c.1679T>G, c.2846A>T), have consistently been associated with severe 5-FU toxicity. A relatively common haplotype, hapB3, containing three intronic polymorphisms (c.483+18G>A; c.680+139G>A; c.959-51T>C) and a synonymous mutation c.1236G>A linked to c.1129-5923C>G, is a major contributor to early onset severe toxicity. TYMS VNTR 2R and TYMS-3'-UTR 6-bp ins-del variants were associated with global toxicity in capecitabine-treated patients. A candidate gene study of capecitabine-related toxicity reported that the s12132152 were strongly associated with hand-foot syndrome (HFS), whereas rs7548189 was associated with diarrhea. The rs2612091 and rs2741171, which are downstream of TYMS and intronic for ENOSF1, were associated with increased global toxicity and HFS. EXPERT OPINION Sex-dependent differences, ethnicity, cancer types and 5-FU-based chemotherapy regimens might affect the heterogeneity of genetic variants for predictive 5-FU-related toxicity. Future approaches using genome-wide association analyses may help in identifying additional candidate genes causally involved in the path mechanisms of 5-FU-related toxicity.
Collapse
Affiliation(s)
- Satoshi Matsusaka
- University of Southern California, Keck School of Medicine, Norris Comprehensive Cancer Center, Division of Medical Oncology , Los Angeles, CA , USA
| | | |
Collapse
|
42
|
Yang HC, Chang LC, Huggins RM, Chen CH, Mullighan CG. LOHAS: loss-of-heterozygosity analysis suite. Genet Epidemiol 2015; 35:247-60. [PMID: 21312262 DOI: 10.1002/gepi.20573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 11/10/2010] [Accepted: 01/10/2011] [Indexed: 12/13/2022]
Abstract
Detection of loss of heterozygosity (LOH) plays an important role in genetic, genomic and cancer research. We develop computational methods to estimate the proportion of homozygous SNP calls, identify samples with structural alterations and/or unusual genotypic patterns, cluster samples with close LOH structures and map the genomic segments bearing LOH by analyzing data of genome-wide SNP arrays or customized SNP arrays. In addition to cancer genetics/genomics, we also apply the methods to study long contiguous stretches of homozygosity (LCSH) in general populations. The LCSH analysis aids in the identification of samples with complex LCSH patterns indicative of nonrandom mating and/or meiotic recombination cold spots, separation of samples with different genetic backgrounds and sex, and mapping of regions of LCSH. Affymetrix Human Mapping 500K Set SNP data from an acute lymphoblastic leukemia study containing 304 cancer patients and 50 normal controls and from the HapMap Project containing 30 African trios, 30 Caucasian trios and 90 independent Asian samples were analyzed. We identified common gene regions of LOH, e.g., ETV6 and CDKN1B, and identified frequent regions of LCSH, e.g., the region that encompasses the centromeric gene desert region of chromosome 16. Unsupervised analysis separated cancer subtypes and ethnic subpopulations by patterns of LOH/LCSH. Simulation studies considering LOH width, effect size and heterozygous interference fraction were performed, and the results show that the proposed LOH association test has good test power and controls type 1 error well. The developed algorithms are packaged into LOHAS written in R and R GUI.
Collapse
Affiliation(s)
- Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Nankang, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
43
|
Calmon MF, Jeschke J, Zhang W, Dhir M, Siebenkäs C, Herrera A, Tsai HC, O'Hagan HM, Pappou EP, Hooker CM, Fu T, Schuebel KE, Gabrielson E, Rahal P, Herman JG, Baylin SB, Ahuja N. Epigenetic silencing of neurofilament genes promotes an aggressive phenotype in breast cancer. Epigenetics 2015; 10:622-632. [PMID: 25985363 PMCID: PMC4622480 DOI: 10.1080/15592294.2015.1050173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/24/2015] [Accepted: 05/04/2015] [Indexed: 12/14/2022] Open
Abstract
Neurofilament heavy polypeptide (NEFH) has recently been identified as a candidate DNA hypermethylated gene within the functional breast cancer hypermethylome. NEFH exists in a complex with neurofilament medium polypeptide (NEFM) and neurofilament light polypeptide (NEFL) to form neurofilaments, which are structural components of the cytoskeleton in mature neurons. Recent studies reported the deregulation of these proteins in several malignancies, suggesting that neurofilaments may have a role in other cell types as well. Using a comprehensive approach, we studied the epigenetic inactivation of neurofilament genes in breast cancer and the functional significance of this event. We report that DNA methylation-associated silencing of NEFH, NEFL, and NEFM in breast cancer is frequent, cancer-specific, and correlates with clinical features of disease progression. DNA methylation-mediated inactivation of these genes occurs also in multiple other cancer histologies including pancreas, gastric, and colon. Restoration of NEFH function, the major subunit of the neurofilament complex, reduces proliferation and growth of breast cancer cells and arrests them in Go/G1 phase of the cell cycle along with a reduction in migration and invasion. These findings suggest that DNA methylation-mediated silencing of the neurofilament genes NEFH, NEFM, and NEFL are frequent events that may contribute to the progression of breast cancer and possibly other malignancies.
Collapse
Affiliation(s)
- Marilia Freitas Calmon
- Department of Biology; University of São Paulo State; São Paulo, Brazil
- Department of Surgery; Johns Hopkins University; Baltimore, MD, USA
- Department of Oncology; Johns Hopkins University; Baltimore, MD, USA
| | - Jana Jeschke
- Department of Surgery; Johns Hopkins University; Baltimore, MD, USA
- Department of Oncology; Johns Hopkins University; Baltimore, MD, USA
- Laboratory of Cancer Epigenetics; Faculty of Medicine; Université Libre de Bruxelles; Brussels, Belgium
| | - Wei Zhang
- Department of Oncology; Johns Hopkins University; Baltimore, MD, USA
| | - Mashaal Dhir
- Department of Surgery; Johns Hopkins University; Baltimore, MD, USA
| | | | | | - Hsing-Chen Tsai
- Department of Oncology; Johns Hopkins University; Baltimore, MD, USA
| | - Heather M O'Hagan
- Department of Oncology; Johns Hopkins University; Baltimore, MD, USA
| | | | - Craig M Hooker
- Department of Oncology; Johns Hopkins University; Baltimore, MD, USA
| | - Tao Fu
- Department of Surgery; Johns Hopkins University; Baltimore, MD, USA
| | - Kornel E Schuebel
- Department of Oncology; Johns Hopkins University; Baltimore, MD, USA
| | - Edward Gabrielson
- Department of Pathology; Johns Hopkins University; Baltimore, MD, USA
| | - Paula Rahal
- Department of Biology; University of São Paulo State; São Paulo, Brazil
| | - James G Herman
- Department of Oncology; Johns Hopkins University; Baltimore, MD, USA
| | - Stephen B Baylin
- Department of Oncology; Johns Hopkins University; Baltimore, MD, USA
| | - Nita Ahuja
- Department of Surgery; Johns Hopkins University; Baltimore, MD, USA
- Department of Oncology; Johns Hopkins University; Baltimore, MD, USA
- Department of Urology; Johns Hopkins University; Baltimore, MD, USA
| |
Collapse
|
44
|
Abstract
The research on colorectal cancer (CRC) biology has been leading the oncology field since the early 1990s. The search for genetic alterations has allowed the identification of the main tumour suppressors or oncogenes. Recent work obtained in CRC has unexpectedly proposed the existence of novel category of tumour suppressors, the so-called 'dependence receptors'. These transmembrane receptors behave as Dr Jekyll and Mr Hyde with two opposite sides: they induce a positive signalling (survival, proliferation, differentiation) in presence of their ligand, but are not inactive in the absence of their ligand and rather trigger apoptosis when unbound. This trait confers them a conditional tumour suppressor activity: they eliminate cells that grow abnormally in an environment offering a limited quantity of ligand. This review will describe how receptors such as deleted in colorectal carcinoma (DCC), uncoordinated 5 (UNC5), rearranged during transfection (RET) or TrkC constrain CRC progression and how this dependence receptor paradigm may open up therapeutical perspectives.
Collapse
Affiliation(s)
- Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Servane Tauszig-Delamasure
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| |
Collapse
|
45
|
Rovcanin B, Ivanovski I, Djuric O, Nikolic D, Petrovic J, Ivanovski P. Mitotic crossover - an evolutionary rudiment which promotes carcinogenesis of colorectal carcinoma. World J Gastroenterol 2014; 20:12522-12525. [PMID: 25253953 PMCID: PMC4168086 DOI: 10.3748/wjg.v20.i35.12522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/22/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Mitotic crossover is a natural mechanism that is a main source of the genetic variability of primitive organisms. In complex organisms such as mammals, it represents an evolutionary rudiment which persisted as one of the numerous DNA repair mechanisms, and results in the production of homozygous allele combinations in all heterozygous genes located on the chromosome arm distal to the crossover. This event is familiar as loss of heterozygosity, which is one of the key mechanisms responsible for the development and progression of almost all cancers. We propose the hypothesis in which mitotic crossover is a principal source of the increased loss of heterozygosity that leads to the initiation and progression of colorectal carcinoma. The hypothesis could be tested by in vitro inhibition of Rad51 protein, orthotopic grafting of human colon cancer tissue into the gut of mice, and treatment with potential inhibitors. After these procedures, the frequency of mitotic crossover would be estimated. The development of selective inhibitors of mitotic crossover could stop further carcinogenesis of colorectal carcinoma, as well as many other neoplastic events. Loss of heterozygosity is an event responsible for carcinogenesis, its reduction by selective inhibitors of mitotic crossover could have a positive effect on cancer chemoprevention, as well as on growth reduction and a cessation in the progression of earlier developed tumors.
Collapse
|
46
|
Single nucleotide polymorphisms associated with colorectal cancer susceptibility and loss of heterozygosity in a Taiwanese population. PLoS One 2014; 9:e100060. [PMID: 24968322 PMCID: PMC4072675 DOI: 10.1371/journal.pone.0100060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/22/2014] [Indexed: 01/01/2023] Open
Abstract
Given the significant racial and ethnic diversity in genetic variation, we are intrigued to find out whether the single nucleotide polymorphisms (SNPs) identified in genome-wide association studies of colorectal cancer (CRC) susceptibility in East Asian populations are also relevant to the population of Taiwan. Moreover, loss of heterozygosity (LOH) may provide insight into how variants alter CRC risk and how regulatory elements control gene expression. To investigate the racial and ethnic diversity of CRC-susceptibility genetic variants and their relevance to the Taiwanese population, we genotyped 705 CRC cases and 1,802 healthy controls (Taiwan Biobank) for fifteen previously reported East Asian CRC-susceptibility SNPs and four novel genetic variants identified by whole-exome sequencing. We found that rs10795668 in FLJ3802842 and rs4631962 in CCND2 were significantly associated with CRC risk in the Taiwanese population. The previously unreported rs1338565 was associated with a significant increased risk of CRC. In addition, we also genotyped tumor tissue and paired adjacent normal tissues of these 705 CRC cases to search for LOH, as well as risk-associated and protective alleles. LOH analysis revealed preferential retention of three SNPs, rs12657484, rs3802842, and rs4444235, in tumor tissues. rs4444235 has been recently reported to be a cis-acting regulator of BMP4 gene; in this study, the C allele was preferentially retained in tumor tissues (p = 0.0023). rs4631962 and rs10795668 contribute to CRC risk in the Taiwanese and East Asian populations, and the newly identified rs1338565 was specifically associated with CRC, supporting the ethnic diversity of CRC-susceptibility SNPs. LOH analysis suggested that the three CRC risk variants, rs12657484, rs3802842, and rs4444235, exhibited somatic allele-specific imbalance and might be critical during neoplastic progression.
Collapse
|
47
|
Coming full circle-from endless complexity to simplicity and back again. Cell 2014; 157:267-71. [PMID: 24679541 DOI: 10.1016/j.cell.2014.03.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/26/2014] [Accepted: 03/02/2014] [Indexed: 11/22/2022]
Abstract
Cell has celebrated the powers of reductionist molecular biology and its major successes for four decades. Those who have participated in cancer research during this period have witnessed wild fluctuations from times where endless inexplicable phenomenology reigned supreme to periods of reductionist triumphalism and, in recent years, to a move back to confronting the endless complexity of this disease.
Collapse
|
48
|
Francis JM, Zhang CZ, Maire CL, Jung J, Manzo VE, Adalsteinsson VA, Homer H, Haidar S, Blumenstiel B, Pedamallu CS, Ligon AH, Love JC, Meyerson M, Ligon KL. EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov 2014; 4:956-71. [PMID: 24893890 DOI: 10.1158/2159-8290.cd-13-0879] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED Glioblastomas (GBM) with EGFR amplification represent approximately 50% of newly diagnosed cases, and recent studies have revealed frequent coexistence of multiple EGFR aberrations within the same tumor, which has implications for mutation cooperation and treatment resistance. However, bulk tumor sequencing studies cannot resolve the patterns of how the multiple EGFR aberrations coexist with other mutations within single tumor cells. Here, we applied a population-based single-cell whole-genome sequencing methodology to characterize genomic heterogeneity in EGFR-amplified glioblastomas. Our analysis effectively identified clonal events, including a novel translocation of a super enhancer to the TERT promoter, as well as subclonal LOH and multiple EGFR mutational variants within tumors. Correlating the EGFR mutations onto the cellular hierarchy revealed that EGFR truncation variants (EGFRvII and EGFR carboxyl-terminal deletions) identified in the bulk tumor segregate into nonoverlapping subclonal populations. In vitro and in vivo functional studies show that EGFRvII is oncogenic and sensitive to EGFR inhibitors currently in clinical trials. Thus, the association between diverse activating mutations in EGFR and other subclonal mutations within a single tumor supports an intrinsic mechanism for proliferative and clonal diversification with broad implications in resistance to treatment. SIGNIFICANCE We developed a novel single-cell sequencing methodology capable of identifying unique, nonoverlapping subclonal alterations from archived frozen clinical specimens. Using GBM as an example, we validated our method to successfully define tumor cell subpopulations containing distinct genetic and treatment resistance profiles and potentially mutually cooperative combinations of alterations in EGFR and other genes.
Collapse
Affiliation(s)
- Joshua M Francis
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Cecile L Maire
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joonil Jung
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Veronica E Manzo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Viktor A Adalsteinsson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Heather Homer
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sam Haidar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Chandra Sekhar Pedamallu
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Azra H Ligon
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts. Department of Pathology, Boston Children's Hospital, Boston, Massachusetts. Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - J Christopher Love
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Matthew Meyerson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Harvard Medical School, Boston, Massachusetts. Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Keith L Ligon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts. Department of Pathology, Boston Children's Hospital, Boston, Massachusetts. Department of Pathology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
49
|
Costa-Guda J, Arnold A. Genetic and epigenetic changes in sporadic endocrine tumors: parathyroid tumors. Mol Cell Endocrinol 2014; 386:46-54. [PMID: 24035866 PMCID: PMC3943641 DOI: 10.1016/j.mce.2013.09.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 01/05/2023]
Abstract
Parathyroid neoplasia is most commonly due to benign parathyroid adenoma but rarely can be caused by malignant parathyroid carcinoma. Evidence suggests that parathyroid carcinomas rarely, if ever, evolve through an identifiable benign intermediate, with the notable exception of carcinomas associated with the familial hyperparathyroidism-jaw tumor syndrome. Several genes have been directly implicated in the pathogenesis of typical sporadic parathyroid adenoma; somatic mutations in the MEN1 tumor suppressor gene are the most frequent finding, and alterations in the cyclin D1/PRAD1 oncogene are also firmly established molecular drivers of sporadic adenomas. In addition, good evidence supports mutation in the CDKN1B/p27 cyclin-dependent kinase inhibitor (CDKI) gene, and in other CDKI genes as contributing to disease pathogenesis in this context. Somatic defects in additional genes, including β-catenin, POT1 and EZH2 may contribute to parathyroid adenoma formation but, for most, their ability to drive parathyroid tumorigenesis remains to be demonstrated experimentally. Further, genetic predisposition to sporadic presentations of parathyroid adenoma appears be conferred by rare, and probably low-penetrance, germline variants in CDKI genes and, perhaps, in other genes such as CASR and AIP. The HRPT2 tumor suppressor gene is commonly mutated in parathyroid carcinoma.
Collapse
Affiliation(s)
- Jessica Costa-Guda
- Center for Molecular Medicine and Division of Endocrinology & Metabolism, University of Connecticut School of Medicine, Farmington, CT 06030-3101, USA
| | - Andrew Arnold
- Center for Molecular Medicine and Division of Endocrinology & Metabolism, University of Connecticut School of Medicine, Farmington, CT 06030-3101, USA.
| |
Collapse
|
50
|
Screening of hub genes and pathways in colorectal cancer with microarray technology. Pathol Oncol Res 2014; 20:611-8. [PMID: 24504536 DOI: 10.1007/s12253-013-9739-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/12/2013] [Indexed: 12/12/2022]
Abstract
Here we intend to identify key genes and pathways in the pathogenesis of colorectal cancer (CRC) through analyzing microarray data with bioinformatic tools. The gene expression profile dataset GSE23878 was downloaded from Gene Expression Omnibus and differentially expressed genes (DEGs) were screened out using Student's t-test. GO function and KEGG pathway enrichment analyses were performed for these DEGs with the DAVID online tool. Interaction network was constructed among the over-represented pathways based on the protein-protein interactions within the pathways. Besides, the protein interaction information obtained from HPRD database were applied to constructed protein-protein interaction networks among the DEGs and hub genes and function module were screened out. A total of 2,296 DEGs were obtained and they were enriched in 34 pathways. An interaction network was constructed among 32 pathways, in which p53 signaling pathway acted as the hub pathway as it showed the highest node degree. The protein-protein interaction network comprised 1,481 interaction relationships among 332 genes which included 40 DEGs. Further analysis revealed that theses DEGs formed 7 function modules and many genes, such as PDGFRB, MET, FZD2, CCND1, PRKCB, ARHGEF6, JUP, WNT2, WNT5A and WNT11 were key genes in the networks. The DEGs and disturbed biological functions uncovered in present study may play important roles in the development of CRC and can contribute to the understanding on molecular mechanisms of CRC. Further these DEGs we obtained can be acted as potential biomarkers for diagnosis and therapy of CRC.
Collapse
|