1
|
Reinehr S, Rahim Pamuk M, Fuchshofer R, Burkhard Dick H, Joachim SC. Increased inflammation in older high-pressure glaucoma mice. Neurobiol Aging 2025; 145:55-64. [PMID: 39481321 DOI: 10.1016/j.neurobiolaging.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024]
Abstract
Besides an elevated intraocular pressure (IOP), advanced age is one of the most crucial risk factors for developing glaucoma. βB1-Connective Tissue Growth Factor (βB1-CTGF) high-pressure glaucoma mice were used in this study to assess whether glaucoma mice display more inflammatory and aging processes than age-matched controls. Therefore, 20-month-old βB1-CTGF and corresponding wildtype (WT) controls were examined. After IOP measurements, retinas were processed for (immuno-)histological and quantitative real-time PCR analyses. A significantly higher IOP and diminished retinal ganglion cell numbers were noted in βB1-CTGF mice compared to WT. An enhanced macrogliosis as well as an increased number of microglia/macrophages and microglia was detected in retinas of old glaucoma mice. Interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and transforming growth factor-β2 were upregulated, suggesting an ongoing inflammation. Moreover, βB1-CTGF retinas displayed an increased senescence-associated β-galactosidase staining accompanied by a downregulation of Lmnb1 (laminin-B1) mRNA levels. Our results provide a deeper insight into the association between inflammation and high-pressure glaucoma and thus might help to develop new therapy strategies.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany.
| | - M Rahim Pamuk
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany
| |
Collapse
|
2
|
Gutierrez JI, Tyler JK. A mortality timer based on nucleolar size triggers nucleolar integrity loss and catastrophic genomic instability. NATURE AGING 2024; 4:1782-1793. [PMID: 39587368 PMCID: PMC11964297 DOI: 10.1038/s43587-024-00754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/18/2024] [Indexed: 11/27/2024]
Abstract
Genome instability is a hallmark of aging, with the highly repetitive ribosomal DNA (rDNA) within the nucleolus being particularly prone to genome instability. Nucleolar enlargement accompanies aging in organisms ranging from yeast to mammals, and treatment with many antiaging interventions results in small nucleoli. Here, we report that an engineered system to reduce nucleolar size robustly extends budding yeast replicative lifespan in a manner independent of protein synthesis rate or rDNA silencing. Instead, when nucleoli expand beyond a size threshold, their biophysical properties change, allowing entry of proteins normally excluded from the nucleolus, including the homologous recombinational repair protein Rad52. This triggers rDNA instability due to aberrant recombination, catastrophic genome instability and imminent death. These results establish that nucleolar expansion is sufficient to drive aging. Moreover, nucleolar expansion beyond a specific size threshold is a mortality timer, as the accompanying disruption of the nucleolar condensate boundary results in catastrophic genome instability that ends replicative lifespan.
Collapse
Affiliation(s)
- J Ignacio Gutierrez
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY, USA.
| | - Jessica K Tyler
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Liu Y, Zhou Z, Su H, Wu S, Ni G, Zhang A, Tsimring LS, Hasty J, Hao N. Enhanced cellular longevity arising from environmental fluctuations. Cell Syst 2024; 15:738-752.e5. [PMID: 39173586 PMCID: PMC11380573 DOI: 10.1016/j.cels.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 05/07/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Cellular longevity is regulated by both genetic and environmental factors. However, the interactions of these factors in the context of aging remain largely unclear. Here, we formulate a mathematical model for dynamic glucose modulation of a core gene circuit in yeast aging, which not only guided the design of pro-longevity interventions but also revealed the theoretical principles underlying these interventions. We introduce the dynamical systems theory to capture two general means for promoting longevity-the creation of a stable fixed point in the "healthy" state of the cell and the "dynamic stabilization" of the system around this healthy state through environmental oscillations. Guided by the model, we investigate how both of these can be experimentally realized by dynamically modulating environmental glucose levels. The results establish a paradigm for theoretically analyzing the trajectories and perturbations of aging that can be generalized to aging processes in diverse cell types and organisms.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Hetian Su
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Songlin Wu
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gavin Ni
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alex Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Fang S, Ji Y, Shen Y, Yang S, Zhang H, Xin W, Shi W, Chen W. TET3 Contributes to Exercise-Induced Functional Axon Regeneration and Visual Restoration. Adv Biol (Weinh) 2024:e2400145. [PMID: 39007414 DOI: 10.1002/adbi.202400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Indexed: 07/16/2024]
Abstract
Axons have intrinsically poor regenerative capacity in the mature central nervous system (CNS), leading to permanent neurological impairments in individuals. There is growing evidence that exercise is a powerful physiological intervention that can obviously enhance cell rejuvenate capacity, but its molecular mechanisms that mediate the axonal regenerative benefits remain largely unclear. Using the eye as the CNS model, here it is first indicated that placing mice in an exercise stimulation environment induced DNA methylation patterns and transcriptomes of retinal ganglion cell, promoted axon regeneration after injury, and reversed vision loss in aged mice. These beneficial effects are dependent on the DNA demethylases TET3-mediated epigenetic effects, which increased the expression of genes associated with the regenerative growth programs, such as STAT3, Wnt5a, Klf6. Exercise training also shows with the improved mitochondrial and metabolic dysfunction in retinas and optic nerves via TET3. Collectively, these results suggested that the increased regenerative capacity induced by enhancing physical activity is mediated through epigenetic reprogramming in mouse model of optic nerve injury and in aged mouse. Understanding the molecular mechanism underlying exercise-dependent neuronal plasticity led to the identification of novel targets for ameliorating pathologies associated with etiologically diverse diseases.
Collapse
Affiliation(s)
- Si Fang
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Yunxiang Ji
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Yilan Shen
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Simin Yang
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Hongli Zhang
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wenfeng Xin
- College of Notoginseng Medicine and Pharmacy, Wenshan University, Wenshan, 663000, China
| | - Weidong Shi
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Wei Chen
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| |
Collapse
|
5
|
Dada T, Mahalingam K, Bhartiya S. Reversing Aging and Improving Health Span in Glaucoma Patients: The Next Frontier? J Curr Glaucoma Pract 2024; 18:87-93. [PMID: 39575133 PMCID: PMC11576344 DOI: 10.5005/jp-journals-10078-1451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
How to cite this article: Dada T, Mahalingam K, Bhartiya S. Reversing Aging and Improving Health Span in Glaucoma Patients: The Next Frontier? J Curr Glaucoma Pract 2024;18(3):87-93.
Collapse
Affiliation(s)
- Tanuj Dada
- Department of Ophthalmology, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Karthikeyan Mahalingam
- Department of Ophthalmology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Shibal Bhartiya
- Department of Ophthalmology and Community Outreach, Marengo Asia Hospitals, Gurugram and Faridabad, Haryana, India; Mayo Clinic, Jacksonville, Florida, United States
| |
Collapse
|
6
|
González-Arzola K. The nucleolus: Coordinating stress response and genomic stability. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195029. [PMID: 38642633 DOI: 10.1016/j.bbagrm.2024.195029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
The perception that the nucleoli are merely the organelles where ribosome biogenesis occurs is challenged. Only around 30 % of nucleolar proteins are solely involved in producing ribosomes. Instead, the nucleolus plays a critical role in controlling protein trafficking during stress and, according to its dynamic nature, undergoes continuous protein exchange with nucleoplasm under various cellular stressors. Hence, the concept of nucleolar stress has evolved as cellular insults that disrupt the structure and function of the nucleolus. Considering the emerging role of this organelle in DNA repair and the fact that rDNAs are the most fragile genomic loci, therapies targeting the nucleoli are increasingly being developed. Besides, drugs that target ribosome synthesis and induce nucleolar stress can be used in cancer therapy. In contrast, agents that regulate nucleolar activity may be a potential treatment for neurodegeneration caused by abnormal protein accumulation in the nucleolus. Here, I explore the roles of nucleoli beyond their ribosomal functions, highlighting the factors triggering nucleolar stress and their impact on genomic stability.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
7
|
Dubey SK, Dubey R, Prajapati SC, Jung K, Mohan K, Liu X, Roney J, Tian W, Abney J, Giarmarco MM, Hernandez AG, Liu J, Kleinman ME. Histone deficiency and hypoacetylation in the aging retinal pigment epithelium. Aging Cell 2024; 23:e14108. [PMID: 38408164 PMCID: PMC11113634 DOI: 10.1111/acel.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Histones serve as a major carrier of epigenetic information in the form of post-translational modifications which are vital for controlling gene expression, maintaining cell identity, and ensuring proper cellular function. Loss of histones in the aging genome can drastically impact the epigenetic landscape of the cell leading to altered chromatin structure and changes in gene expression profiles. In this study, we investigated the impact of age-related changes on histone levels and histone acetylation in the retinal pigment epithelium (RPE) and retina of mice. We observed a global reduction of histones H1, H2A, H2B, H3, and H4 in aged RPE/choroid but not in the neural retina. Transcriptomic analyses revealed significant downregulation of histones in aged RPE/choroid including crucial elements of the histone locus body (HLB) complex involved in histone pre-mRNA processing. Knockdown of HINFP, a key HLB component, in human RPE cells induced histone loss, senescence, and the upregulation of senescence-associated secretory phenotype (SASP) markers. Replicative senescence and chronological aging in human RPE cells similarly resulted in progressive histone loss and acquisition of the SASP. Immunostaining of human retina sections revealed histone loss in RPE with age. Acetyl-histone profiling in aged mouse RPE/choroid revealed a specific molecular signature with loss of global acetyl-histone levels, including H3K14ac, H3K56ac, and H4K16ac marks. These findings strongly demonstrate histone loss as a unique feature of RPE aging and provide critical insights into the potential mechanisms linking histone dynamics, cellular senescence, and aging.
Collapse
Affiliation(s)
- Sushil K. Dubey
- Department of SurgeryEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Rashmi Dubey
- Department of SurgeryEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Subhash C. Prajapati
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Kyungsik Jung
- Department of SurgeryEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Kabhilan Mohan
- Department of SurgeryEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Xinan Liu
- Department of Computer ScienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Jacob Roney
- Department of Ophthalmology and Visual SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - Wenjian Tian
- Department of SurgeryEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Jennifer Abney
- Department of Ophthalmology and Visual SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Alvaro G. Hernandez
- Roy J. Carver Biotechnology CenterUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Jinze Liu
- Department of BiostatisticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Mark E. Kleinman
- Department of SurgeryEast Tennessee State UniversityJohnson CityTennesseeUSA
| |
Collapse
|
8
|
Zhou L, Tang W, Ye B, Zou L. Characterization, biogenesis model, and current bioinformatics of human extrachromosomal circular DNA. Front Genet 2024; 15:1385150. [PMID: 38746056 PMCID: PMC11092383 DOI: 10.3389/fgene.2024.1385150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Human extrachromosomal circular DNA, or eccDNA, has been the topic of extensive investigation in the last decade due to its prominent regulatory role in the development of disorders including cancer. With the rapid advancement of experimental, sequencing and computational technology, millions of eccDNA records are now accessible. Unfortunately, the literature and databases only provide snippets of this information, preventing us from fully understanding eccDNAs. Researchers frequently struggle with the process of selecting algorithms and tools to examine eccDNAs of interest. To explain the underlying formation mechanisms of the five basic classes of eccDNAs, we categorized their characteristics and functions and summarized eight biogenesis theories. Most significantly, we created a clear procedure to help in the selection of suitable techniques and tools and thoroughly examined the most recent experimental and bioinformatics methodologies and data resources for identifying, measuring and analyzing eccDNA sequences. In conclusion, we highlighted the current obstacles and prospective paths for eccDNA research, specifically discussing their probable uses in molecular diagnostics and clinical prediction, with an emphasis on the potential contribution of novel computational strategies.
Collapse
Affiliation(s)
- Lina Zhou
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wenyi Tang
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Bo Ye
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Lingyun Zou
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
- School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Sirozh O, Saez-Mas A, Jung B, Sanchez-Burgos L, Zarzuela E, Rodrigo-Perez S, Ventoso I, Lafarga V, Fernandez-Capetillo O. Nucleolar stress caused by arginine-rich peptides triggers a ribosomopathy and accelerates aging in mice. Mol Cell 2024; 84:1527-1540.e7. [PMID: 38521064 DOI: 10.1016/j.molcel.2024.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Nucleolar stress (NS) has been associated with age-related diseases such as cancer or neurodegeneration. To investigate how NS triggers toxicity, we used (PR)n arginine-rich peptides present in some neurodegenerative diseases as inducers of this perturbation. We here reveal that whereas (PR)n expression leads to a decrease in translation, this occurs concomitant with an accumulation of free ribosomal (r) proteins. Conversely, (PR)n-resistant cells have lower rates of r-protein synthesis, and targeting ribosome biogenesis by mTOR inhibition or MYC depletion alleviates (PR)n toxicity in vitro. In mice, systemic expression of (PR)97 drives widespread NS and accelerated aging, which is alleviated by rapamycin. Notably, the generalized accumulation of orphan r-proteins is a common outcome of chemical or genetic perturbations that induce NS. Together, our study presents a general model to explain how NS induces cellular toxicity and provides in vivo evidence supporting a role for NS as a driver of aging in mammals.
Collapse
Affiliation(s)
- Oleksandra Sirozh
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Anabel Saez-Mas
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Bomi Jung
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 21 Stockholm, Sweden
| | - Laura Sanchez-Burgos
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Eduardo Zarzuela
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sara Rodrigo-Perez
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Ivan Ventoso
- Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Departamento de Biologia Molecular, Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 21 Stockholm, Sweden.
| |
Collapse
|
10
|
Lu YR, Tian X, Sinclair DA. The Information Theory of Aging. NATURE AGING 2023; 3:1486-1499. [PMID: 38102202 DOI: 10.1038/s43587-023-00527-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/02/2023] [Indexed: 12/17/2023]
Abstract
Information storage and retrieval is essential for all life. In biology, information is primarily stored in two distinct ways: the genome, comprising nucleic acids, acts as a foundational blueprint and the epigenome, consisting of chemical modifications to DNA and histone proteins, regulates gene expression patterns and endows cells with specific identities and functions. Unlike the stable, digital nature of genetic information, epigenetic information is stored in a digital-analog format, susceptible to alterations induced by diverse environmental signals and cellular damage. The Information Theory of Aging (ITOA) states that the aging process is driven by the progressive loss of youthful epigenetic information, the retrieval of which via epigenetic reprogramming can improve the function of damaged and aged tissues by catalyzing age reversal.
Collapse
Affiliation(s)
- Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiao Tian
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Yamashita YM. Asymmetric Stem Cell Division and Germline Immortality. Annu Rev Genet 2023; 57:181-199. [PMID: 37552892 DOI: 10.1146/annurev-genet-022123-040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Germ cells are the only cell type that is capable of transmitting genetic information to the next generation, which has enabled the continuation of multicellular life for the last 1.5 billion years. Surprisingly little is known about the mechanisms supporting the germline's remarkable ability to continue in this eternal cycle, termed germline immortality. Even unicellular organisms age at a cellular level, demonstrating that cellular aging is inevitable. Extensive studies in yeast have established the framework of how asymmetric cell division and gametogenesis may contribute to the resetting of cellular age. This review examines the mechanisms of germline immortality-how germline cells reset the aging of cells-drawing a parallel between yeast and multicellular organisms.
Collapse
Affiliation(s)
- Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
12
|
Németh-Szatmári O, Nagy-Mikó B, Györkei Á, Varga D, Kovács BBH, Igaz N, Bognár B, Rázga Z, Nagy G, Zsindely N, Bodai L, Papp B, Erdélyi M, Kiricsi M, Blastyák A, Collart MA, Boros IM, Villányi Z. Phase-separated ribosome-nascent chain complexes in genotoxic stress response. RNA (NEW YORK, N.Y.) 2023; 29:1557-1574. [PMID: 37460154 PMCID: PMC10578487 DOI: 10.1261/rna.079755.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 09/20/2023]
Abstract
Assemblysomes are EDTA- and RNase-resistant ribonucleoprotein (RNP) complexes of paused ribosomes with protruding nascent polypeptide chains. They have been described in yeast and human cells for the proteasome subunit Rpt1, and the disordered amino-terminal part of the nascent chain was found to be indispensable for the accumulation of the Rpt1-RNP into assemblysomes. Motivated by this, to find other assemblysome-associated RNPs we used bioinformatics to rank subunits of Saccharomyces cerevisiae protein complexes according to their amino-terminal disorder propensity. The results revealed that gene products involved in DNA repair are enriched among the top candidates. The Sgs1 DNA helicase was chosen for experimental validation. We found that indeed nascent chains of Sgs1 form EDTA-resistant RNP condensates, assemblysomes by definition. Moreover, upon exposure to UV, SGS1 mRNA shifted from assemblysomes to polysomes, suggesting that external stimuli are regulators of assemblysome dynamics. We extended our studies to human cell lines. The BLM helicase, ortholog of yeast Sgs1, was identified upon sequencing assemblysome-associated RNAs from the MCF7 human breast cancer cell line, and mRNAs encoding DNA repair proteins were overall enriched. Using the radiation-resistant A549 cell line, we observed by transmission electron microscopy that 1,6-hexanediol, an agent known to disrupt phase-separated condensates, depletes ring ribosome structures compatible with assemblysomes from the cytoplasm of cells and makes the cells more sensitive to X-ray treatment. Taken together, these findings suggest that assemblysomes may be a component of the DNA damage response from yeast to human.
Collapse
Affiliation(s)
- Orsolya Németh-Szatmári
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - Bence Nagy-Mikó
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - Ádám Györkei
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Dániel Varga
- Department of Optics and Quantum Electronics, University of Szeged, 6720 Szeged, Hungary
| | - Bálint Barna H Kovács
- Department of Optics and Quantum Electronics, University of Szeged, 6720 Szeged, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - Bence Bognár
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - Zsolt Rázga
- Department of Pathology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - Balázs Papp
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, 6720 Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - András Blastyák
- Institute of Genetics, Biological Research Centre, 6726 Szeged, Hungary
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Imre M Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - Zoltán Villányi
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
13
|
Sasaki M, Kobayashi T. Regulatory processes that maintain or alter ribosomal DNA stability during the repair of programmed DNA double-strand breaks. Genes Genet Syst 2023; 98:103-119. [PMID: 35922917 DOI: 10.1266/ggs.22-00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Organisms have evolved elaborate mechanisms that maintain genome stability. Deficiencies in these mechanisms result in changes to the nucleotide sequence as well as copy number and structural variations in the genome. Genome instability has been implicated in numerous human diseases. However, genomic alterations can also be beneficial as they are an essential part of the evolutionary process. Organisms sometimes program genomic changes that drive genetic and phenotypic diversity. Therefore, genome alterations can have both positive and negative impacts on cellular growth and functions, which underscores the need to control the processes that restrict or induce such changes to the genome. The ribosomal RNA gene (rDNA) is highly abundant in eukaryotic genomes, forming a cluster where numerous rDNA copies are tandemly arrayed. Budding yeast can alter the stability of its rDNA cluster by changing the rDNA copy number within the cluster or by producing extrachromosomal rDNA circles. Here, we review the mechanisms that regulate the stability of the budding yeast rDNA cluster during repair of DNA double-strand breaks that are formed in response to programmed DNA replication fork arrest.
Collapse
Affiliation(s)
- Mariko Sasaki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
14
|
Gastelum S, Michael AF, Bolger TA. Saccharomyces cerevisiae as a research tool for RNA-mediated human disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1814. [PMID: 37671427 DOI: 10.1002/wrna.1814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023]
Abstract
The budding yeast, Saccharomyces cerevisiae, has been used for decades as a powerful genetic tool to study a broad spectrum of biological topics. With its ease of use, economic utility, well-studied genome, and a highly conserved proteome across eukaryotes, it has become one of the most used model organisms. Due to these advantages, it has been used to study an array of complex human diseases. From broad, complex pathological conditions such as aging and neurodegenerative disease to newer uses such as SARS-CoV-2, yeast continues to offer new insights into how cellular processes are affected by disease and how affected pathways might be targeted in therapeutic settings. At the same time, the roles of RNA and RNA-based processes have become increasingly prominent in the pathology of many of these same human diseases, and yeast has been utilized to investigate these mechanisms, from aberrant RNA-binding proteins in amyotrophic lateral sclerosis to translation regulation in cancer. Here we review some of the important insights that yeast models have yielded into the molecular pathology of complex, RNA-based human diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Stephanie Gastelum
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Allison F Michael
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Timothy A Bolger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
15
|
Zylstra A, Hadj-Moussa H, Horkai D, Whale AJ, Piguet B, Houseley J. Senescence in yeast is associated with amplified linear fragments of chromosome XII rather than ribosomal DNA circle accumulation. PLoS Biol 2023; 21:e3002250. [PMID: 37643194 PMCID: PMC10464983 DOI: 10.1371/journal.pbio.3002250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
The massive accumulation of extrachromosomal ribosomal DNA circles (ERCs) in yeast mother cells has been long cited as the primary driver of replicative ageing. ERCs arise through ribosomal DNA (rDNA) recombination, and a wealth of genetic data connects rDNA instability events giving rise to ERCs with shortened life span and other ageing pathologies. However, we understand little about the molecular effects of ERC accumulation. Here, we studied ageing in the presence and absence of ERCs, and unexpectedly found no evidence of gene expression differences that might indicate stress responses or metabolic feedback caused by ERCs. Neither did we observe any global change in the widespread disruption of gene expression that accompanies yeast ageing, altogether suggesting that ERCs are largely inert. Much of the differential gene expression that accompanies ageing in yeast was actually associated with markers of the senescence entry point (SEP), showing that senescence, rather than age, underlies these changes. Cells passed the SEP irrespective of ERCs, but we found the SEP to be associated with copy number amplification of a region of chromosome XII between the rDNA and the telomere (ChrXIIr) forming linear fragments up to approximately 1.8 Mb size, which arise in aged cells due to rDNA instability but through a different mechanism to ERCs. Therefore, although rDNA copy number increases dramatically with age due to ERC accumulation, our findings implicate ChrXIIr, rather than ERCs, as the primary driver of senescence during budding yeast ageing.
Collapse
Affiliation(s)
- Andre Zylstra
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Dorottya Horkai
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Baptiste Piguet
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
16
|
Horkai D, Hadj-Moussa H, Whale AJ, Houseley J. Dietary change without caloric restriction maintains a youthful profile in ageing yeast. PLoS Biol 2023; 21:e3002245. [PMID: 37643155 PMCID: PMC10464975 DOI: 10.1371/journal.pbio.3002245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
Caloric restriction increases lifespan and improves ageing health, but it is unknown whether these outcomes can be separated or achieved through less severe interventions. Here, we show that an unrestricted galactose diet in early life minimises change during replicative ageing in budding yeast, irrespective of diet later in life. Average mother cell division rate is comparable between glucose and galactose diets, and lifespan is shorter on galactose, but markers of senescence and the progressive dysregulation of gene expression observed on glucose are minimal on galactose, showing that these are not intrinsic aspects of replicative ageing but rather associated processes. Respiration on galactose is critical for minimising hallmarks of ageing, and forced respiration during ageing on glucose by overexpression of the mitochondrial biogenesis factor Hap4 also has the same effect though only in a fraction of cells. This fraction maintains Hap4 activity to advanced age with low senescence and a youthful gene expression profile, whereas other cells in the same population lose Hap4 activity, undergo dramatic dysregulation of gene expression and accumulate fragments of chromosome XII (ChrXIIr), which are tightly associated with senescence. Our findings support the existence of two separable ageing trajectories in yeast. We propose that a complete shift to the healthy ageing mode can be achieved in wild-type cells through dietary change in early life without caloric restriction.
Collapse
Affiliation(s)
- Dorottya Horkai
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
17
|
Yang JH, Petty CA, Dixon-McDougall T, Lopez MV, Tyshkovskiy A, Maybury-Lewis S, Tian X, Ibrahim N, Chen Z, Griffin PT, Arnold M, Li J, Martinez OA, Behn A, Rogers-Hammond R, Angeli S, Gladyshev VN, Sinclair DA. Chemically induced reprogramming to reverse cellular aging. Aging (Albany NY) 2023; 15:5966-5989. [PMID: 37437248 PMCID: PMC10373966 DOI: 10.18632/aging.204896] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
A hallmark of eukaryotic aging is a loss of epigenetic information, a process that can be reversed. We have previously shown that the ectopic induction of the Yamanaka factors OCT4, SOX2, and KLF4 (OSK) in mammals can restore youthful DNA methylation patterns, transcript profiles, and tissue function, without erasing cellular identity, a process that requires active DNA demethylation. To screen for molecules that reverse cellular aging and rejuvenate human cells without altering the genome, we developed high-throughput cell-based assays that distinguish young from old and senescent cells, including transcription-based aging clocks and a real-time nucleocytoplasmic compartmentalization (NCC) assay. We identify six chemical cocktails, which, in less than a week and without compromising cellular identity, restore a youthful genome-wide transcript profile and reverse transcriptomic age. Thus, rejuvenation by age reversal can be achieved, not only by genetic, but also chemical means.
Collapse
Affiliation(s)
- Jae-Hyun Yang
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Christopher A. Petty
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Thomas Dixon-McDougall
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Maria Vina Lopez
- Molecular and Biomedical Sciences, University of Maine, Orono, ME 04467, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Sun Maybury-Lewis
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Xiao Tian
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Nabilah Ibrahim
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Zhili Chen
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Patrick T. Griffin
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Matthew Arnold
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Jien Li
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Oswaldo A. Martinez
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
- Department of Biology and Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alexander Behn
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Ryan Rogers-Hammond
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Suzanne Angeli
- Molecular and Biomedical Sciences, University of Maine, Orono, ME 04467, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David A. Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| |
Collapse
|
18
|
Liu Y, Zhou Z, Wu S, Ni G, Zhang A, Tsimring LS, Hasty J, Hao N. Enhanced cellular longevity arising from environmental fluctuations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547867. [PMID: 37461504 PMCID: PMC10350066 DOI: 10.1101/2023.07.05.547867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Cellular longevity is regulated by both genetic and environmental factors. However, the interactions of these factors in the context of aging remain largely unclear. Here, we formulate a mathematical model for dynamic glucose modulation of a core gene circuit in yeast aging, which not only guided the design of pro-longevity interventions, but also revealed the theoretical principles underlying these interventions. We introduce the dynamical systems theory to capture two general means for promoting longevity - the creation of a stable fixed point in the "healthy" state of the cell and the dynamic stabilization of the system around this healthy state through environmental oscillations. Guided by the model, we investigate how both of these can be experimentally realized by dynamically modulating environmental glucose levels. The results establish a paradigm for theoretically analyzing the trajectories and perturbations of aging that can be generalized to aging processes in diverse cell types and organisms.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Songlin Wu
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gavin Ni
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Lev S. Tsimring
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Pan C, Zhou F, Zhang L. The loss of epigenetic information: not only consequences but a cause of mammalian aging. Signal Transduct Target Ther 2023; 8:140. [PMID: 36973241 PMCID: PMC10042813 DOI: 10.1038/s41392-023-01412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Affiliation(s)
- Chen Pan
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| | - Long Zhang
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Kwan EX, Alvino GM, Lynch KL, Levan PF, Amemiya HM, Wang XS, Johnson SA, Sanchez JC, Miller MA, Croy M, Lee SB, Naushab M, Bedalov A, Cuperus JT, Brewer BJ, Queitsch C, Raghuraman MK. Ribosomal DNA replication time coordinates completion of genome replication and anaphase in yeast. Cell Rep 2023; 42:112161. [PMID: 36842087 PMCID: PMC10142053 DOI: 10.1016/j.celrep.2023.112161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
Timely completion of genome replication is a prerequisite for mitosis, genome integrity, and cell survival. A challenge to this timely completion comes from the need to replicate the hundreds of untranscribed copies of rDNA that organisms maintain in addition to the copies required for ribosome biogenesis. Replication of these rDNA arrays is relegated to late S phase despite their large size, repetitive nature, and essentiality. Here, we show that, in Saccharomyces cerevisiae, reducing the number of rDNA repeats leads to early rDNA replication, which results in delaying replication elsewhere in the genome. Moreover, cells with early-replicating rDNA arrays and delayed genome-wide replication aberrantly release the mitotic phosphatase Cdc14 from the nucleolus and enter anaphase prematurely. We propose that rDNA copy number determines the replication time of the rDNA locus and that the release of Cdc14 upon completion of rDNA replication is a signal for cell cycle progression.
Collapse
Affiliation(s)
- Elizabeth X Kwan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Gina M Alvino
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kelsey L Lynch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Paula F Levan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Haley M Amemiya
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Xiaobin S Wang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sarah A Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Joseph C Sanchez
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Madison A Miller
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Mackenzie Croy
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Seung-Been Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Maria Naushab
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Bonita J Brewer
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | - M K Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
21
|
Wei Y, Jia S, Ding Y, Xia S, Giunta S. Balanced basal-levels of ROS (redox-biology), and very-low-levels of pro-inflammatory cytokines (cold-inflammaging), as signaling molecules can prevent or slow-down overt-inflammaging, and the aging-associated decline of adaptive-homeostasis. Exp Gerontol 2023; 172:112067. [PMID: 36535453 DOI: 10.1016/j.exger.2022.112067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Both reactive oxygen species (ROS) from redox-biology and pro-inflammatory cytokines from innate immunity/and other sources, in addition to their role in redox-biology, and in defense and repair, have long been regarded as potentially harmful factors associated with oxidative stress and inflammatory states. However, their important physiological functions as signaling molecules have been demonstrated to be of importance, also in Geroscience, particularly when ROS are at balanced basal levels (redox-biology) and pro-inflammatory cytokines are at very low levels (cold-inflammaging). Under these conditions, both of these components (alone or in combination) may act as signaling/response molecules involved in regulating/maintaining or restoring adaptive homeostasis during aging, particularly in the early phases of even very-mild non-damaging internal or external environmental stimuli that could nevertheless elicit low-grade warnings-signals for homeostatic stability. If signals potentially perturbing homeostasis persist, the levels of ROS and pro-inflammatory mediators increase resulting in a switch from adaptive to maladaptive responses which may lead to oxidative stress and overt-inflammaging (or even to an overt inflammatory state), thus paving the way to the risks of aging-related diseases (ARDs). Conversely, upon adaptive-responses, low-levels of ROS and very-low-levels of pro-inflammatory-cytokines, alone or in combination, can result in an amplified capacity to prevent or slow-down overt-inflammaging (2-fold to 4-fold increase of pro-inflammatory cytokines) thus maintaining or restoring homeostasis. Therefore, these signaling molecules may also have the sequential incremental potential to prevent or slow the subsequent decline of adaptive homeostasis that will occur later in the lifespan. These scenarios may lead us to conceive of, and conceptualize, both these molecules and their basal-low levels, as well as their dynamics and the time-course of responses, as 'potential important pillars of adaptive-homeostasis in aging' since the earliest phases of the occurrence of any even very- mild environmental potential imbalance.
Collapse
Affiliation(s)
- Yaqin Wei
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China.
| | - Shuang Jia
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| | - Yuanyuan Ding
- Shanghai Medical Information Center, Shanghai Health Development Research Center, Shanghai, China.
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China.
| | - Sergio Giunta
- Casa di Cura Prof. Nobili-GHC Garofalo Health Care, Bologna, Italy.
| |
Collapse
|
22
|
Yokoyama M, Sasaki M, Kobayashi T. Spt4 promotes cellular senescence by activating non-coding RNA transcription in ribosomal RNA gene clusters. Cell Rep 2023; 42:111944. [PMID: 36640349 DOI: 10.1016/j.celrep.2022.111944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Genome instability can drive aging in many organisms. The ribosomal RNA gene (rDNA) cluster is one of the most unstable regions in the genome and the stability of this region impacts replicative lifespan in budding yeast. To understand the underlying mechanism, we search for yeast mutants with stabler rDNA and longer lifespans than wild-type cells. We show that absence of a transcription elongation factor, Spt4, results in increased rDNA stability, reduced levels of non-coding RNA transcripts from the regulatory E-pro promoter in the rDNA, and extended replicative lifespan in a SIR2-dependent manner. Spt4-dependent lifespan restriction is abolished in the absence of non-coding RNA transcription at the E-pro locus. The amount of Spt4 increases and its function becomes more important as cells age. These findings suggest that Spt4 is a promising aging factor that accelerates cellular senescence through rDNA instability driven by non-coding RNA transcription.
Collapse
Affiliation(s)
- Masaaki Yokoyama
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mariko Sasaki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
23
|
Yang JH, Hayano M, Griffin PT, Amorim JA, Bonkowski MS, Apostolides JK, Salfati EL, Blanchette M, Munding EM, Bhakta M, Chew YC, Guo W, Yang X, Maybury-Lewis S, Tian X, Ross JM, Coppotelli G, Meer MV, Rogers-Hammond R, Vera DL, Lu YR, Pippin JW, Creswell ML, Dou Z, Xu C, Mitchell SJ, Das A, O'Connell BL, Thakur S, Kane AE, Su Q, Mohri Y, Nishimura EK, Schaevitz L, Garg N, Balta AM, Rego MA, Gregory-Ksander M, Jakobs TC, Zhong L, Wakimoto H, El Andari J, Grimm D, Mostoslavsky R, Wagers AJ, Tsubota K, Bonasera SJ, Palmeira CM, Seidman JG, Seidman CE, Wolf NS, Kreiling JA, Sedivy JM, Murphy GF, Green RE, Garcia BA, Berger SL, Oberdoerffer P, Shankland SJ, Gladyshev VN, Ksander BR, Pfenning AR, Rajman LA, Sinclair DA. Loss of epigenetic information as a cause of mammalian aging. Cell 2023; 186:305-326.e27. [PMID: 36638792 PMCID: PMC10166133 DOI: 10.1016/j.cell.2022.12.027] [Citation(s) in RCA: 316] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 08/09/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.
Collapse
Affiliation(s)
- Jae-Hyun Yang
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA.
| | - Motoshi Hayano
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; Department of Ophthalmology, Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Patrick T Griffin
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - João A Amorim
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Michael S Bonkowski
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - John K Apostolides
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Elias L Salfati
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | | | | | - Mital Bhakta
- Cantata/Dovetail Genomics, Scotts Valley, CA, USA
| | | | - Wei Guo
- Zymo Research Corporation, Irvine, CA, USA
| | | | - Sun Maybury-Lewis
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Xiao Tian
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Jaime M Ross
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Giuseppe Coppotelli
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Margarita V Meer
- Department of Medicine, Brigham and Women's Hospital, HMS, Boston, MA, USA
| | - Ryan Rogers-Hammond
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Daniel L Vera
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, WA, USA
| | - Michael L Creswell
- Division of Nephrology, University of Washington, Seattle, WA, USA; Georgetown University School of Medicine, Washington, DC, USA
| | - Zhixun Dou
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Caiyue Xu
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Abhirup Das
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; Department of Pharmacology, UNSW, Sydney, NSW, Australia
| | | | - Sachin Thakur
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Alice E Kane
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Qiao Su
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yasuaki Mohri
- Department of Stem Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Emi K Nishimura
- Department of Stem Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Neha Garg
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Ana-Maria Balta
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Meghan A Rego
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | | | - Tatjana C Jakobs
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, HMS, Boston, MA, USA
| | - Lei Zhong
- The Massachusetts General Hospital Cancer Center, HMS, Boston, MA, USA
| | | | - Jihad El Andari
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, BioQuant, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, BioQuant, Heidelberg, Germany
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, HMS, Boston, MA, USA
| | - Amy J Wagers
- Paul F. Glenn Center for Biology of Aging Research, Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Joslin Diabetes Center, Boston, MA, USA
| | - Kazuo Tsubota
- Department of Ophthalmology, Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stephen J Bonasera
- Division of Geriatrics, University of Nebraska Medical Center, Durham Research Center II, Omaha, NE, USA
| | - Carlos M Palmeira
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | | | | | - Norman S Wolf
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - George F Murphy
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard E Green
- Department of Biomolecular Engineering, UCSC, Santa Cruz, CA, USA
| | - Benjamin A Garcia
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Vadim N Gladyshev
- Department of Medicine, Brigham and Women's Hospital, HMS, Boston, MA, USA
| | - Bruce R Ksander
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, HMS, Boston, MA, USA
| | - Andreas R Pfenning
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Luis A Rajman
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - David A Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA.
| |
Collapse
|
24
|
Sing TL, Brar GA, Ünal E. Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control. Annu Rev Genet 2022; 56:89-112. [PMID: 35878627 PMCID: PMC9712276 DOI: 10.1146/annurev-genet-080320-025104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
25
|
Bensidoun P, Reiter T, Montpetit B, Zenklusen D, Oeffinger M. Nuclear mRNA metabolism drives selective basket assembly on a subset of nuclear pore complexes in budding yeast. Mol Cell 2022; 82:3856-3871.e6. [PMID: 36220102 PMCID: PMC10300651 DOI: 10.1016/j.molcel.2022.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/24/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022]
Abstract
To determine which transcripts should reach the cytoplasm for translation, eukaryotic cells have established mechanisms to regulate selective mRNA export through the nuclear pore complex (NPC). The nuclear basket, a substructure of the NPC protruding into the nucleoplasm, is thought to function as a stable platform where mRNA-protein complexes (mRNPs) are rearranged and undergo quality control prior to export, ensuring that only mature mRNAs reach the cytoplasm. Here, we use proteomic, genetic, live-cell, and single-molecule resolution microscopy approaches in budding yeast to demonstrate that basket formation is dependent on RNA polymerase II transcription and subsequent mRNP processing. We further show that while all NPCs can bind Mlp1, baskets assemble only on a subset of nucleoplasmic NPCs, and these basket-containing NPCs associate a distinct protein and RNA interactome. Taken together, our data point toward NPC heterogeneity and an RNA-dependent mechanism for functionalization of NPCs in budding yeast through nuclear basket assembly.
Collapse
Affiliation(s)
- Pierre Bensidoun
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Taylor Reiter
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, USA
| | - Ben Montpetit
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, USA
| | - Daniel Zenklusen
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada.
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada; Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
26
|
Abstract
Sirtuins are a family of proteins that protect against cellular injury and aging; understanding their evolution should reveal fundamental mechanisms governing longevity. “Early-branching” animals such as sea sponges and jellyfish have been understudied in previous analyses of sirtuin diversity. These organisms not only hold important positions at the base of the evolutionary tree, but also have unique aging dynamics that defy convention, such as quasi-immortality and high regenerative capacity. In this study, we survey the evolution of sirtuin proteins in animals, with a focus on the oldest living lineages. We describe previously unrecognized expansions of “Class IV” and “Class I” sirtuins around the origin of animals, raising the number of sirtuin families in the last common ancestor to at least nine. Most of these undescribed sirtuins have been lost in vertebrates and other bilaterian animals. Our work also clarifies the evolution of PNC1 and NAMPT enzymes that carry out the rate-limiting step in sirtuin-related NAD+ biosynthesis. The genes for PNC1 and NAMPT enzymes were both present in the first animals, with the genes being lost a minimum of 11 and 13 times, respectively, over the course of animal evolution. We propose that species with these ancestral gene repertoires are ideal model organisms for studying the genetic regulation of animal longevity and will provide clues to increasing longevity in humans.
Collapse
Affiliation(s)
- David A Gold
- Department of Earth and Planetary Sciences. University of California, Davis. Davis, CA, USA
| | | |
Collapse
|
27
|
Yang EJ, Pernice WM, Pon LA. A role for cell polarity in lifespan and mitochondrial quality control in the budding yeast Saccharomyces cerevisiae. iScience 2022; 25:103957. [PMID: 35281729 PMCID: PMC8914336 DOI: 10.1016/j.isci.2022.103957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/15/2021] [Accepted: 02/17/2022] [Indexed: 01/03/2023] Open
Abstract
Babies are born young, largely independent of the age of their mothers. Mother-daughter age asymmetry in yeast is achieved, in part, by inheritance of higher-functioning mitochondria by buds and retention of some high-functioning mitochondria in mother cells. The mitochondrial F box protein, Mfb1p, tethers mitochondria at both poles in a cell cycle-regulated manner: it localizes to and anchors mitochondria at the mother cell tip throughout the cell cycle and at the bud tip before cytokinesis. Here, we report that cell polarity and polarized localization of Mfb1p decline with age in Saccharomyces cerevisiae. Moreover, deletion of genes (BUD1, BUD2, and BUD5) that mediate symmetry breaking during establishment of cell polarity and asymmetric yeast cell division cause depolarized Mfb1p localization and defects in mitochondrial distribution and quality control. Our results support a role for the polarity machinery in lifespan through modulating Mfb1 function in asymmetric inheritance of mitochondria during yeast cell division.
Collapse
Affiliation(s)
- Emily J. Yang
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Wolfgang M. Pernice
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Liza A. Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
28
|
Kasselimi E, Pefani DE, Taraviras S, Lygerou Z. Ribosomal DNA and the nucleolus at the heart of aging. Trends Biochem Sci 2022; 47:328-341. [DOI: 10.1016/j.tibs.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
|
29
|
Datta A, Pollock KJ, Kormuth KA, Brosh RM. G-Quadruplex Assembly by Ribosomal DNA: Emerging Roles in Disease Pathogenesis and Cancer Biology. Cytogenet Genome Res 2021; 161:285-296. [PMID: 34469893 DOI: 10.1159/000516394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Unique repetitive elements of the eukaryotic genome can be problematic for cellular DNA replication and transcription and pose a source of genomic instability. Human ribosomal DNA (rDNA) exists as repeating units clustered together on several chromosomes. Understanding the molecular mechanisms whereby rDNA interferes with normal genome homeostasis is the subject of this review. We discuss the instability of rDNA as a driver of senescence and the important roles of helicases to suppress its deleterious effects. The propensity of rDNA that is rich in guanine bases to form G-quadruplexes (G4) is discussed and evaluated in disease pathogenesis. Targeting G4 in the ribosomes and other chromosomal loci may represent a useful synthetic lethal approach to combating cancer.
Collapse
Affiliation(s)
- Arindam Datta
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Kevin J Pollock
- Department of Biology, Bethany College, Bethany, West Virginia, USA
| | - Karen A Kormuth
- Department of Biology, Bethany College, Bethany, West Virginia, USA
| | - Robert M Brosh
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Moradi‐Fard S, Mojumdar A, Chan M, Harkness TA, Cobb JA. Smc5/6 in the rDNA modulates lifespan independently of Fob1. Aging Cell 2021; 20:e13373. [PMID: 33979898 PMCID: PMC8208791 DOI: 10.1111/acel.13373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
Abstract
The ribosomal DNA (rDNA) in Saccharomycescerevisiae is in one tandem repeat array on Chromosome XII. Two regions within each repetitive element, called intergenic spacer 1 (IGS1) and IGS2, are important for organizing the rDNA within the nucleolus. The Smc5/6 complex localizes to IGS1 and IGS2. We show that Smc5/6 has a function in the rDNA beyond its role in homologous recombination (HR) at the replication fork barrier (RFB) located in IGS1. Fob1 is required for optimal binding of Smc5/6 at IGS1 whereas the canonical silencing factor Sir2 is required for its optimal binding at IGS2, independently of Fob1. Through interdependent interactions, Smc5/6 stabilizes Sir2 and Cohibin at both IGS and its recovery at IGS2 is important for nucleolar compaction and transcriptional silencing, which in turn supports rDNA stability and lifespan.
Collapse
Affiliation(s)
- Sarah Moradi‐Fard
- Departments of Biochemistry & Molecular Biology and Oncology Robson DNA Science Centre Arnie Charbonneau Cancer Institute Cumming School of Medicine University of Calgary Calgary AB Canada
| | - Aditya Mojumdar
- Departments of Biochemistry & Molecular Biology and Oncology Robson DNA Science Centre Arnie Charbonneau Cancer Institute Cumming School of Medicine University of Calgary Calgary AB Canada
| | - Megan Chan
- Departments of Biochemistry & Molecular Biology and Oncology Robson DNA Science Centre Arnie Charbonneau Cancer Institute Cumming School of Medicine University of Calgary Calgary AB Canada
| | - Troy A.A. Harkness
- Department of Biochemistry, Microbiology and Immunology University of Saskatchewan Saskatoon SK Canada
| | - Jennifer A. Cobb
- Departments of Biochemistry & Molecular Biology and Oncology Robson DNA Science Centre Arnie Charbonneau Cancer Institute Cumming School of Medicine University of Calgary Calgary AB Canada
| |
Collapse
|
31
|
Kumanski S, Viart BT, Kossida S, Moriel-Carretero M. Lipid Droplets Are a Physiological Nucleoporin Reservoir. Cells 2021; 10:472. [PMID: 33671805 PMCID: PMC7926788 DOI: 10.3390/cells10020472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid Droplets (LD) are dynamic organelles that originate in the Endoplasmic Reticulum and mostly bud off toward the cytoplasm, where they store neutral lipids for energy and protection purposes. LD also have diverse proteins on their surface, many of which are necessary for the their correct homeostasis. However, these organelles also act as reservoirs of proteins that can be made available elsewhere in the cell. In this sense, they act as sinks that titrate key regulators of many cellular processes. Among the specialized factors that reside on cytoplasmic LD are proteins destined for functions in the nucleus, but little is known about them and their impact on nuclear processes. By screening for nuclear proteins in publicly available LD proteomes, we found that they contain a subset of nucleoporins from the Nuclear Pore Complex (NPC). Exploring this, we demonstrate that LD act as a physiological reservoir, for nucleoporins, that impacts the conformation of NPCs and hence their function in nucleo-cytoplasmic transport, chromatin configuration, and genome stability. Furthermore, our in silico modeling predicts a role for LD-released fatty acids in regulating the transit of nucleoporins from LD through the cytoplasm and to nuclear pores.
Collapse
Affiliation(s)
- Sylvain Kumanski
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France;
| | - Benjamin T. Viart
- International ImMunoGeneTics Information System (IMGT®), Institut de Génétique Humaine (IGH), Université de Montpellier, Centre National de la Recherche Scientifique, 34396 Montpellier CEDEX 05, France; (B.T.V.); (S.K.)
| | - Sofia Kossida
- International ImMunoGeneTics Information System (IMGT®), Institut de Génétique Humaine (IGH), Université de Montpellier, Centre National de la Recherche Scientifique, 34396 Montpellier CEDEX 05, France; (B.T.V.); (S.K.)
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France;
| |
Collapse
|
32
|
Ruault M, Scolari VF, Lazar-Stefanita L, Hocher A, Loïodice I, Koszul R, Taddei A. Sir3 mediates long-range chromosome interactions in budding yeast. Genome Res 2021; 31:411-425. [PMID: 33579753 PMCID: PMC7919453 DOI: 10.1101/gr.267872.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/30/2020] [Indexed: 11/24/2022]
Abstract
Physical contacts between distant loci contribute to regulate genome function. However, the molecular mechanisms responsible for settling and maintaining such interactions remain poorly understood. Here, we investigate the well-conserved interactions between heterochromatin loci. In budding yeast, the 32 telomeres cluster in 3–5 foci in exponentially growing cells. This clustering is functionally linked to the formation of heterochromatin in subtelomeric regions through the recruitment of the silencing SIR complex composed of Sir2/3/4. Combining microscopy and Hi-C on strains expressing different alleles of SIR3, we show that the binding of Sir3 directly promotes long-range contacts between distant regions, including the rDNA, telomeres, and internal Sir3-bound sites. Furthermore, we unveil a new property of Sir3 in promoting rDNA compaction. Finally, using a synthetic approach, we demonstrate that Sir3 can bond loci belonging to different chromosomes together, when targeted to these loci, independently of its interaction with its known partners (Rap1, Sir4), Sir2 activity, or chromosome context. Altogether, these data suggest that Sir3 acts as a molecular bridge that stabilizes long-range interactions.
Collapse
Affiliation(s)
- Myriam Ruault
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - Vittore F Scolari
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France.,Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, F-75015 Paris, France
| | - Luciana Lazar-Stefanita
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, F-75015 Paris, France.,Sorbonne Université, collège Doctoral, F-75005 Paris, France
| | - Antoine Hocher
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - Isabelle Loïodice
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - Romain Koszul
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, F-75015 Paris, France.,Cogitamus Laboratory, F-75005 Paris, France
| | - Angela Taddei
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France.,Cogitamus Laboratory, F-75005 Paris, France
| |
Collapse
|
33
|
Zhu M, Wu W, Togashi Y, Liang W, Miyoshi Y, Ohta T. HERC2 inactivation abrogates nucleolar localization of RecQ helicases BLM and WRN. Sci Rep 2021; 11:360. [PMID: 33432007 PMCID: PMC7801386 DOI: 10.1038/s41598-020-79715-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
The nucleolus is a nuclear structure composed of ribosomal DNA (rDNA), and functions as a site for rRNA synthesis and processing. The rDNA is guanine-rich and prone to form G-quadruplex (G4), a secondary structure of DNA. We have recently found that HERC2, an HECT ubiquitin ligase, promotes BLM and WRN RecQ DNA helicases to resolve the G4 structure. Here, we report the role of HERC2 in the regulation of nucleolar localization of the helicases. Furthermore, HERC2 inactivation enhances the effects of CX-5461, an inhibitor of RNA polymerase I (Pol I)-mediated transcription of rRNA with an intrinsic G4-stabilizing activity. HERC2 depletion or homozygous deletion of the C-terminal HECT domain of HERC2 prevented the nucleolar localization of BLM and WRN, and inhibited relocalization of BLM to replication stress-induced nuclear RPA foci. HERC2 colocalized with fibrillarin and Pol I subunit RPA194, both of which are required for rRNA transcription. The HERC2 dysfunction enhanced the suppression of pre-rRNA transcription by CX-5461. These results suggest the effect of HERC2 status on the functions of BLM and WRN on rRNA transcription in the nucleolus. Since HERC2 is downregulated in numerous cancers, this effect may be clinically relevant considering the beneficial effects of CX-5461 in cancer treatments.
Collapse
Affiliation(s)
- Mingzhang Zhu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan.,Department of General Surgery, The People's Hospital of Gaoming District of Foshan City, Foshan, 528500, Guangdong, China
| | - Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Yukiko Togashi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Weixin Liang
- Department of General Surgery, The People's Hospital of Gaoming District of Foshan City, Foshan, 528500, Guangdong, China
| | - Yasuo Miyoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo College of Medicine, Hyogo, 663-8501, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan.
| |
Collapse
|
34
|
Checkpoint functions of RecQ helicases at perturbed DNA replication fork. Curr Genet 2021; 67:369-382. [PMID: 33427950 DOI: 10.1007/s00294-020-01147-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 01/17/2023]
Abstract
DNA replication checkpoint is a cell signaling pathway that is activated in response to perturbed replication. Although it is crucial for maintaining genomic integrity and cell survival, the exact mechanism of the checkpoint signaling remains to be understood. Emerging evidence has shown that RecQ helicases, a large family of helicases that are conserved from bacteria to yeasts and humans, contribute to the replication checkpoint as sensors, adaptors, or regulation targets. Here, we highlight the multiple functions of RecQ helicases in the replication checkpoint in four model organisms and present additional evidence that fission yeast RecQ helicase Rqh1 may participate in the replication checkpoint as a sensor.
Collapse
|
35
|
Kuo CC, Lin YC, Chen LH, Lin MY, Shih MC, Lee MH. CaNRT2.1 Is Required for Nitrate but Not Nitrite Uptake in Chili Pepper Pathogen Colletotrichum acutatum. Front Microbiol 2021; 11:613674. [PMID: 33469454 PMCID: PMC7813687 DOI: 10.3389/fmicb.2020.613674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
Chili peppers are an important food additive used in spicy cuisines worldwide. However, the yield and quality of chilis are threatened by anthracnose disease caused by Colletotrichum acutatum. Despite the impact of C. acutatum on chili production, the genes involved in fungal development and pathogenicity in this species have not been well characterized. In this study, through T-DNA insertional mutagenesis, we identified a mutant strain termed B7, which is defective for the growth of C. acutatum on a minimal nutrient medium. Our bioinformatics analysis revealed that a large fragment DNA (19.8 kb) is deleted from the B7 genome, thus resulting in the deletion of three genes, including CaGpiP1 encoding a glycosylphosphatidyl-inisotol (GPI)-anchored protein, CaNRT2.1 encoding a membrane-bound nitrate/nitrite transporter, and CaRQH1 encoding a RecQ helicase protein. In addition, T-DNA is inserted upstream of the CaHP1 gene encoding a hypothetical protein. Functional characterization of CaGpiP1, CaNRT2.1, and CaHP1 by targeted gene disruption and bioassays indicated that CaNRT2.1 is responsible for the growth-defective phenotype of B7. Both B7 and CaNRT2.1 mutant strains cannot utilize nitrate as nitrogen sources, thus restraining the fungal growth on a minimal nutrient medium. In addition to CaNRT2.1, our results showed that CaGpiP1 is a cell wall-associated GPI-anchored protein. However, after investigating the functions of CaGpiP1 and CaHP1 in fungal pathogenicity, growth, development and stress tolerance, we were unable to uncover the roles of these two genes in C. acutatum. Collectively, in this study, our results identify the growth-defective strain B7 via T-DNA insertion and reveal the critical role of CaNRT2.1 in nitrate transportation for the fungal growth of C. acutatum.
Collapse
Affiliation(s)
- Chia-Chi Kuo
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Yung-Chu Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Li-Hung Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Yi Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academic Sinica, Taipei, Taiwan
| | - Miin-Huey Lee
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
36
|
Lu Y, Brommer B, Tian X, Krishnan A, Meer M, Wang C, Vera DL, Zeng Q, Yu D, Bonkowski MS, Yang JH, Zhou S, Hoffmann EM, Karg MM, Schultz MB, Kane AE, Davidsohn N, Korobkina E, Chwalek K, Rajman LA, Church GM, Hochedlinger K, Gladyshev VN, Horvath S, Levine ME, Gregory-Ksander MS, Ksander BR, He Z, Sinclair DA. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020; 588:124-129. [PMID: 33268865 PMCID: PMC7752134 DOI: 10.1038/s41586-020-2975-4] [Citation(s) in RCA: 452] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Ageing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity1-3. Changes to DNA methylation patterns over time form the basis of ageing clocks4, but whether older individuals retain the information needed to restore these patterns-and, if so, whether this could improve tissue function-is not known. Over time, the central nervous system (CNS) loses function and regenerative capacity5-7. Using the eye as a model CNS tissue, here we show that ectopic expression of Oct4 (also known as Pou5f1), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice. The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2. These data indicate that mammalian tissues retain a record of youthful epigenetic information-encoded in part by DNA methylation-that can be accessed to improve tissue function and promote regeneration in vivo.
Collapse
Affiliation(s)
- Yuancheng Lu
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Benedikt Brommer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Xiao Tian
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Anitha Krishnan
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Margarita Meer
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Chen Wang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Daniel L Vera
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Qiurui Zeng
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Doudou Yu
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Michael S Bonkowski
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Jae-Hyun Yang
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Songlin Zhou
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Emma M Hoffmann
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Margarete M Karg
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Michael B Schultz
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Alice E Kane
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Noah Davidsohn
- Department of Genetics, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ekaterina Korobkina
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Karolina Chwalek
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Luis A Rajman
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - George M Church
- Department of Genetics, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Morgan E Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Meredith S Gregory-Ksander
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Bruce R Ksander
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Zhigang He
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA.
- Laboratory for Ageing Research, Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
37
|
Luo Y, Fefelova E, Ninova M, Chen YCA, Aravin AA. Repression of interrupted and intact rDNA by the SUMO pathway in Drosophila melanogaster. eLife 2020; 9:e52416. [PMID: 33164748 PMCID: PMC7676866 DOI: 10.7554/elife.52416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/06/2020] [Indexed: 11/17/2022] Open
Abstract
Ribosomal RNAs (rRNAs) are essential components of the ribosome and are among the most abundant macromolecules in the cell. To ensure high rRNA level, eukaryotic genomes contain dozens to hundreds of rDNA genes, however, only a fraction of the rRNA genes seems to be active, while others are transcriptionally silent. We found that individual rDNA genes have high level of cell-to-cell heterogeneity in their expression in Drosophila melanogaster. Insertion of heterologous sequences into rDNA leads to repression associated with reduced expression in individual cells and decreased number of cells expressing rDNA with insertions. We found that SUMO (Small Ubiquitin-like Modifier) and SUMO ligase Ubc9 are required for efficient repression of interrupted rDNA units and variable expression of intact rDNA. Disruption of the SUMO pathway abolishes discrimination of interrupted and intact rDNAs and removes cell-to-cell heterogeneity leading to uniformly high expression of individual rDNA in single cells. Our results suggest that the SUMO pathway is responsible for both repression of interrupted units and control of intact rDNA expression.
Collapse
Affiliation(s)
- Yicheng Luo
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Elena Fefelova
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Institute of Molecular Genetics, Russian Academy of SciencesMoscowRussian Federation
| | - Maria Ninova
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Yung-Chia Ariel Chen
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Alexei A Aravin
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
38
|
Goodman JS, King GA, Ünal E. Cellular quality control during gametogenesis. Exp Cell Res 2020; 396:112247. [PMID: 32882217 PMCID: PMC7572901 DOI: 10.1016/j.yexcr.2020.112247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
A hallmark of aging is the progressive accumulation of cellular damage. Age-induced damage arises due to a decrease in organelle function along with a decline in protein quality control. Although somatic tissues deteriorate with age, the germline must maintain cellular homeostasis in order to ensure the production of healthy progeny. While germline quality control has been primarily studied in multicellular organisms, recent evidence suggests the existence of gametogenesis-specific quality control mechanisms in unicellular eukaryotes, highlighting the evolutionary conservation of meiotic events beyond chromosome morphogenesis. Notably, budding yeast eliminates age-induced damage during meiotic differentiation, employing novel organelle and protein quality control mechanisms to produce young and healthy gametes. Similarly, organelle and protein quality control is present in metazoan gametogenesis; however, whether and how these mechanisms contribute to cellular rejuvenation requires further investigation. Here, we summarize recent findings that describe organelle and protein quality control in budding yeast gametogenesis, examine similar quality control mechanisms in metazoan development, and identify research directions that will improve our understanding of meiotic cellular rejuvenation.
Collapse
Affiliation(s)
- Jay S Goodman
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA
| | - Grant A King
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA.
| |
Collapse
|
39
|
Excessive rDNA Transcription Drives the Disruption in Nuclear Homeostasis during Entry into Senescence in Budding Yeast. Cell Rep 2020; 28:408-422.e4. [PMID: 31291577 DOI: 10.1016/j.celrep.2019.06.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 01/11/2023] Open
Abstract
Budding yeast cells undergo a limited number of divisions before they enter senescence and die. Despite recent mechanistic advances, whether and how molecular events are temporally and causally linked during the transition to senescence remain elusive. Here, using real-time observation of the accumulation of extrachromosomal rDNA circles (ERCs) in single cells, we provide evidence that ERCs build up rapidly with exponential kinetics well before any physiological decline. We then show that ERCs fuel a massive increase in ribosomal RNA (rRNA) levels in the nucleolus, which do not mature into functional ribosomes. This breakdown in nucleolar coordination is followed by a loss of nuclear homeostasis, thus defining a chronology of causally related events leading to cell death. A computational analysis supports a model in which a series of age-independent processes lead to an age-dependent increase in cell mortality, hence explaining the emergence of aging in budding yeast.
Collapse
|
40
|
Abstract
The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid-liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction.
Collapse
|
41
|
Li Y, Jiang Y, Paxman J, O'Laughlin R, Klepin S, Zhu Y, Pillus L, Tsimring LS, Hasty J, Hao N. A programmable fate decision landscape underlies single-cell aging in yeast. Science 2020; 369:325-329. [PMID: 32675375 DOI: 10.1126/science.aax9552] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 01/24/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Chromatin instability and mitochondrial decline are conserved processes that contribute to cellular aging. Although both processes have been explored individually in the context of their distinct signaling pathways, the mechanism that determines which process dominates during aging of individual cells is unknown. We show that interactions between the chromatin silencing and mitochondrial pathways lead to an epigenetic landscape of yeast replicative aging with multiple equilibrium states that represent different types of terminal states of aging. The structure of the landscape drives single-cell differentiation toward one of these states during aging, whereby the fate is determined quite early and is insensitive to intracellular noise. Guided by a quantitative model of the aging landscape, we genetically engineered a long-lived equilibrium state characterized by an extended life span.
Collapse
Affiliation(s)
- Yang Li
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Yanfei Jiang
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Julie Paxman
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard O'Laughlin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Stephen Klepin
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Yuelian Zhu
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Lorraine Pillus
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.,UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Lev S Tsimring
- BioCircuits Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.,BioCircuits Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA. .,BioCircuits Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
42
|
King GA, Ünal E. The dynamic nuclear periphery as a facilitator of gamete health and rejuvenation. Curr Genet 2020; 66:487-493. [PMID: 31915924 PMCID: PMC7202962 DOI: 10.1007/s00294-019-01050-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/26/2022]
Abstract
The nuclear periphery is a hotspot for the accumulation of age-induced damage in eukaryotic cells. The types of damage that occur at the periphery and their phenotypic consequences have begun to be characterized; however, the mechanisms by which cells repair or eliminate nuclear damage remain poorly understood. Using budding yeast meiosis as a natural system to study cellular rejuvenation, we recently discovered a novel nuclear quality control event, in which age-induced damage is sequestered away from dividing chromosomes to a discarded nuclear compartment that we term the GUNC (for "Gametogenesis Uninherited Nuclear Compartment"). Interestingly, extensive nuclear remodeling occurs even in young cells, including a surprising modularity of the nuclear pore complex, suggesting a general contribution to gamete fitness. In this review, we discuss these findings in the context of recent evidence that the nuclear periphery is a highly dynamic region critical for cellular health.
Collapse
Affiliation(s)
- Grant A King
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720, USA.
| |
Collapse
|
43
|
The Y chromosome may contribute to sex-specific ageing in Drosophila. Nat Ecol Evol 2020; 4:853-862. [PMID: 32313175 PMCID: PMC7274899 DOI: 10.1038/s41559-020-1179-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/16/2020] [Indexed: 12/03/2022]
Abstract
Heterochromatin suppresses repetitive DNA, and a loss of heterochromatin has been observed in aged cells of several species, including humans and Drosophila. Males often contain substantially more heterochromatic DNA than females, due to the presence of a large, repeat-rich Y chromosome, and male flies generally have shorter average life spans than females. Here we show that repetitive DNA becomes de-repressed more rapidly in old male flies relative to females, and repeats on the Y chromosome are disproportionally mis-expressed during aging. This is associated with a loss of heterochromatin at repetitive elements during aging in male flies, and a general loss of repressive chromatin in aged males away from pericentromeric regions and the Y. By generating flies with different sex chromosome karyotypes (XXY females; X0 and XYY males), we show that repeat de-repression and average lifespan is correlated with the number of Y chromosomes. This suggests that sex-specific chromatin differences may contribute to sex-specific aging in flies.
Collapse
|
44
|
The adaptive potential of circular DNA accumulation in ageing cells. Curr Genet 2020; 66:889-894. [PMID: 32296868 PMCID: PMC7497353 DOI: 10.1007/s00294-020-01069-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/20/2022]
Abstract
Carefully maintained and precisely inherited chromosomal DNA provides long-term genetic stability, but eukaryotic cells facing environmental challenges can benefit from the accumulation of less stable DNA species. Circular DNA molecules lacking centromeres segregate randomly or asymmetrically during cell division, following non-Mendelian inheritance patterns that result in high copy number instability and massive heterogeneity across populations. Such circular DNA species, variously known as extrachromosomal circular DNA (eccDNA), microDNA, double minutes or extrachromosomal DNA (ecDNA), are becoming recognised as a major source of the genetic variation exploited by cancer cells and pathogenic eukaryotes to acquire drug resistance. In budding yeast, circular DNA molecules derived from the ribosomal DNA (ERCs) have been long known to accumulate with age, but it is now clear that aged yeast also accumulate other high-copy protein-coding circular DNAs acquired through both random and environmentally-stimulated recombination processes. Here, we argue that accumulation of circular DNA provides a reservoir of heterogeneous genetic material that can allow rapid adaptation of aged cells to environmental insults, but avoids the negative fitness impacts on normal growth of unsolicited gene amplification in the young population.
Collapse
|
45
|
Shen D, Skibbens RV. Promotion of Hyperthermic-Induced rDNA Hypercondensation in Saccharomyces cerevisiae. Genetics 2020; 214:589-604. [PMID: 31980450 PMCID: PMC7054013 DOI: 10.1534/genetics.119.302994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/29/2019] [Indexed: 12/11/2022] Open
Abstract
Ribosome biogenesis is tightly regulated through stress-sensing pathways that impact genome stability, aging and senescence. In Saccharomyces cerevisiae, ribosomal RNAs are transcribed from rDNA located on the right arm of chromosome XII. Numerous studies reveal that rDNA decondenses into a puff-like structure during interphase, and condenses into a tight loop-like structure during mitosis. Intriguingly, a novel and additional mechanism of increased mitotic rDNA compaction (termed hypercondensation) was recently discovered that occurs in response to temperature stress (hyperthermic-induced) and is rapidly reversible. Here, we report that neither changes in condensin binding or release of DNA during mitosis, nor mutation of factors that regulate cohesin binding and release, appear to play a critical role in hyperthermic-induced rDNA hypercondensation. A candidate genetic approach revealed that deletion of either HSP82 or HSC82 (Hsp90 encoding heat shock paralogs) result in significantly reduced hyperthermic-induced rDNA hypercondensation. Intriguingly, Hsp inhibitors do not impact rDNA hypercondensation. In combination, these findings suggest that Hsp90 either stabilizes client proteins, which are sensitive to very transient thermic challenges, or directly promotes rDNA hypercondensation during preanaphase. Our findings further reveal that the high mobility group protein Hmo1 is a negative regulator of mitotic rDNA condensation, distinct from its role in promoting premature condensation of rDNA during interphase upon nutrient starvation.
Collapse
Affiliation(s)
- Donglai Shen
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| |
Collapse
|
46
|
Brosh RM, Matson SW. History of DNA Helicases. Genes (Basel) 2020; 11:genes11030255. [PMID: 32120966 PMCID: PMC7140857 DOI: 10.3390/genes11030255] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the DNA double helix, there has been a fascination in understanding the molecular mechanisms and cellular processes that account for: (i) the transmission of genetic information from one generation to the next and (ii) the remarkable stability of the genome. Nucleic acid biologists have endeavored to unravel the mysteries of DNA not only to understand the processes of DNA replication, repair, recombination, and transcription but to also characterize the underlying basis of genetic diseases characterized by chromosomal instability. Perhaps unexpectedly at first, DNA helicases have arisen as a key class of enzymes to study in this latter capacity. From the first discovery of ATP-dependent DNA unwinding enzymes in the mid 1970's to the burgeoning of helicase-dependent pathways found to be prevalent in all kingdoms of life, the story of scientific discovery in helicase research is rich and informative. Over four decades after their discovery, we take this opportunity to provide a history of DNA helicases. No doubt, many chapters are left to be written. Nonetheless, at this juncture we are privileged to share our perspective on the DNA helicase field - where it has been, its current state, and where it is headed.
Collapse
Affiliation(s)
- Robert M. Brosh
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| | - Steven W. Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| |
Collapse
|
47
|
Gupta SV, Schmidt KH. Maintenance of Yeast Genome Integrity by RecQ Family DNA Helicases. Genes (Basel) 2020; 11:E205. [PMID: 32085395 PMCID: PMC7074392 DOI: 10.3390/genes11020205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022] Open
Abstract
With roles in DNA repair, recombination, replication and transcription, members of the RecQ DNA helicase family maintain genome integrity from bacteria to mammals. Mutations in human RecQ helicases BLM, WRN and RecQL4 cause incurable disorders characterized by genome instability, increased cancer predisposition and premature adult-onset aging. Yeast cells lacking the RecQ helicase Sgs1 share many of the cellular defects of human cells lacking BLM, including hypersensitivity to DNA damaging agents and replication stress, shortened lifespan, genome instability and mitotic hyper-recombination, making them invaluable model systems for elucidating eukaryotic RecQ helicase function. Yeast and human RecQ helicases have common DNA substrates and domain structures and share similar physical interaction partners. Here, we review the major cellular functions of the yeast RecQ helicases Sgs1 of Saccharomyces cerevisiae and Rqh1 of Schizosaccharomyces pombe and provide an outlook on some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Sonia Vidushi Gupta
- Department of Cell Biology, Microbiology and Molecular Biology, University of South, Florida, Tampa, FL 33620, USA;
| | - Kristina Hildegard Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South, Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research, Institute, Tampa, FL 33612, USA
| |
Collapse
|
48
|
Crosstalk of Phosphorylation and Arginine Methylation in Disordered SRGG Repeats of Saccharomyces cerevisiae Fibrillarin and Its Association with Nucleolar Localization. J Mol Biol 2020; 432:448-466. [DOI: 10.1016/j.jmb.2019.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/18/2019] [Accepted: 11/05/2019] [Indexed: 11/19/2022]
|
49
|
Cell organelles and yeast longevity: an intertwined regulation. Curr Genet 2019; 66:15-41. [PMID: 31535186 DOI: 10.1007/s00294-019-01035-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
Organelles are dynamic structures of a eukaryotic cell that compartmentalize various essential functions and regulate optimum functioning. On the other hand, ageing is an inevitable phenomenon that leads to irreversible cellular damage and affects optimum functioning of cells. Recent research shows compelling evidence that connects organelle dysfunction to ageing-related diseases/disorders. Studies in several model systems including yeast have led to seminal contributions to the field of ageing in uncovering novel pathways, proteins and their functions, identification of pro- and anti-ageing factors and so on. In this review, we present a comprehensive overview of findings that highlight the role of organelles in ageing and ageing-associated functions/pathways in yeast.
Collapse
|
50
|
King GA, Goodman JS, Schick JG, Chetlapalli K, Jorgens DM, McDonald KL, Ünal E. Meiotic cellular rejuvenation is coupled to nuclear remodeling in budding yeast. eLife 2019; 8:e47156. [PMID: 31397671 PMCID: PMC6711709 DOI: 10.7554/elife.47156] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Production of healthy gametes in meiosis relies on the quality control and proper distribution of both nuclear and cytoplasmic contents. Meiotic differentiation naturally eliminates age-induced cellular damage by an unknown mechanism. Using time-lapse fluorescence microscopy in budding yeast, we found that nuclear senescence factors - including protein aggregates, extrachromosomal ribosomal DNA circles, and abnormal nucleolar material - are sequestered away from chromosomes during meiosis II and subsequently eliminated. A similar sequestration and elimination process occurs for the core subunits of the nuclear pore complex in both young and aged cells. Nuclear envelope remodeling drives the formation of a membranous compartment containing the sequestered material. Importantly, de novo generation of plasma membrane is required for the sequestration event, preventing the inheritance of long-lived nucleoporins and senescence factors into the newly formed gametes. Our study uncovers a new mechanism of nuclear quality control and provides insight into its function in meiotic cellular rejuvenation.
Collapse
Affiliation(s)
- Grant A King
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Jay S Goodman
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Jennifer G Schick
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Keerthana Chetlapalli
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Danielle M Jorgens
- Electron Microscope LabUniversity of California, BerkeleyBerkeleyUnited States
| | - Kent L McDonald
- Electron Microscope LabUniversity of California, BerkeleyBerkeleyUnited States
| | - Elçin Ünal
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|