1
|
Jiang C, Jiang Y, Li H, Du S. Initial results of the meteorological data from the first 325 sols of the Tianwen-1 mission. Sci Rep 2023; 13:3325. [PMID: 36849722 PMCID: PMC9971204 DOI: 10.1038/s41598-023-30513-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
As the Zhurong rover landed on the surface of Mars in 2021, it began a months-long collection of Mars data. Equipped with highly sensitive sensors, Zhurong is capable of being a meteorological station at the surface of Mars. The Mars Climate Station, one of the onboard sensors with high sensitivity, helps the Tianwen-1 lander to collect meteorological data at the Martian surface, via which the air temperature, atmospheric pressure, wind speed and direction are measured. In this paper, we present results of surface pressure, air temperature and wind data from the Mars Climate Station at Zhurong's landing site. The data is collected in 176 solar days out of the entire rover's mission time, 325 solar days. We use a trigonometric function to fit the relationship between the solar longitude (Ls) and the pressure, after which we compare the results with those of Viking I. Our analysis of the temperature shows that seasonal evolution is similar to the patterns concluded in previous Mars missions at different landing sites. We discover that wind speed appears the maximum in early summer near Zhurong's landing site, and analyze the occurrence of dust storms by combining the data of wind and temperature. Our results provide some evidence of the seasonal changes in meteorological pattern at Tianwen-1's landing site, south of Utopia Planitia. With the mission ongoing further, more results are expected in the future.
Collapse
Affiliation(s)
- Chunsheng Jiang
- State Key Laboratory of Astronautic Dynamics, Xi’an, China ,Xi’an Satellite Control Center, Xi’an, China
| | - Yu Jiang
- State Key Laboratory of Astronautic Dynamics, Xi'an, China. .,Xi'an Satellite Control Center, Xi'an, China.
| | - Hengnian Li
- State Key Laboratory of Astronautic Dynamics, Xi’an, China ,Xi’an Satellite Control Center, Xi’an, China
| | - Sen Du
- grid.6835.80000 0004 1937 028XPolytechnic University of Catalonia, Barcelona, Spain
| |
Collapse
|
2
|
Zhang J, Ji Q, Sheng Z, He M, He Y, Zuo X, He Z, Qin Z, Wu G. Observation based climatology Martian atmospheric waves perturbation Datasets. Sci Data 2023; 10:4. [PMID: 36596794 PMCID: PMC9810594 DOI: 10.1038/s41597-022-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
The Martian atmospheric waves perturbation Datasets (MAWPD) version 2.0 is the first observation-based climatology dataset of Martian atmospheric waves. It contains climatology-gridded temperature, gravity waves, and tides spanning the whole Martian year. MAWPD uses the Data INterpolating Empirical Orthogonal Functions method (DINEOF) reconstruction method for data assimilation with the observational data from the Mars Global Surveyor (MGS), Mars Reconnaissance Orbiter (MRO), Mars Atmosphere and Volatile EvolutioN (MAVEN), Mars Pathfinder (MP), Mars Phoenix Lander (MPL), Mars Exploration Rover (MER) and Mars Express (MEX) temperature retrievals. The dataset includes gridded fields of temperature (Level 1 data) as well as the physical quantities of GWs (Level 2 data, amplitude, and potential energies), SPWs and tides (Level 2 data, amplitude, and phase). The MAWPD, based entirely on multiple reliable observations, provides climatological background atmospheric information of temperature and wave disturbances on Mars. The dataset is not only useful for observation-based scientific studies concerning Martian atmospheric waves, e.g., circulation, dust storms, and wave excitation mechanism, but also for cross-validating with model-based datasets or model results.
Collapse
Affiliation(s)
- Jie Zhang
- College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
| | - Qianqian Ji
- College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
| | - Zheng Sheng
- College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China.
| | - Mingyuan He
- College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
| | - Yang He
- College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
| | - Xinjie Zuo
- High-tech Institute, Fan Gong-ting South Street on the 12th, Qingzhou, ShanDong, China
| | - Zefeng He
- College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
| | - Zilin Qin
- College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
| | - Gangyao Wu
- College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
| |
Collapse
|
3
|
Rodriguez JAP, Robertson DK, Kargel JS, Baker VR, Berman DC, Cohen J, Costard F, Komatsu G, Lopez A, Miyamoto H, Zarroca M. Evidence of an oceanic impact and megatsunami sedimentation in Chryse Planitia, Mars. Sci Rep 2022; 12:19589. [PMID: 36456647 PMCID: PMC9715952 DOI: 10.1038/s41598-022-18082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
In 1976, NASA's Viking 1 Lander (V1L) was the first spacecraft to operate successfully on the Martian surface. The V1L landed near the terminus of an enormous catastrophic flood channel, Maja Valles. However, instead of the expected megaflood record, its cameras imaged a boulder-strewn surface of elusive origin. We identified a 110-km-diameter impact crater (Pohl) ~ 900 km northeast of the landing site, stratigraphically positioned (a) above catastrophic flood-eroded surfaces formed ~ 3.4 Ga during a period of northern plains oceanic inundation and (b) below the younger of two previously hypothesized megatsunami deposits. These stratigraphic relationships suggest that a marine impact likely formed the crater. Our simulated impact-generated megatsunami run-ups closely match the mapped older megatsunami deposit's margins and predict fronts reaching the V1L site. The site's location along a highland-facing lobe aligned to erosional grooves supports a megatsunami origin. Our mapping also shows that Pohl's knobby rim regionally represents a broader history of megatsunami modification involving circum-oceanic glaciation and sedimentary extrusions extending beyond the recorded megatsunami emplacement in Chryse Planitia. Our findings allow that rocks and soil salts at the landing site are of marine origin, inviting the scientific reconsideration of information gathered from the first in-situ measurements on Mars.
Collapse
Affiliation(s)
- J. Alexis P. Rodriguez
- grid.423138.f0000 0004 0637 3991Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ 85719-2395 USA
| | - Darrel K. Robertson
- grid.419075.e0000 0001 1955 7990NASA Ames Research Center, Moffett Field, CA 94035 USA
| | - Jeffrey S. Kargel
- grid.423138.f0000 0004 0637 3991Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ 85719-2395 USA
| | - Victor R. Baker
- grid.134563.60000 0001 2168 186XDepartment of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721 USA
| | - Daniel C. Berman
- grid.423138.f0000 0004 0637 3991Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ 85719-2395 USA
| | - Jacob Cohen
- grid.419075.e0000 0001 1955 7990NASA Ames Research Center, Moffett Field, CA 94035 USA
| | - Francois Costard
- grid.503243.3GEOPS-Géosciences Paris Sud, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Goro Komatsu
- grid.412451.70000 0001 2181 4941International Research School of Planetary Sciences, Università D’Annunzio, Viale Pindaro 42, 65127 Pescara, Italy
| | - Anthony Lopez
- grid.423138.f0000 0004 0637 3991Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ 85719-2395 USA
| | - Hideaki Miyamoto
- grid.26999.3d0000 0001 2151 536XDepartment of Systems Innovation, University of Tokyo, Tokyo, 113-8656 Japan
| | - Mario Zarroca
- grid.7080.f0000 0001 2296 0625External Geodynamics and Hydrogeology Group, Department of Geology, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Kinematic design of a novel Multi-legged robot with Rigid-flexible coupling grippers for asteroid exploration. ROBOTICA 2022. [DOI: 10.1017/s0263574722000509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Multi-legged robots with rigid-flexible coupling grippers have appealing applications to asteroid exploration with the microgravity. However, these robots usually have significantly complicated structures, which leads to a great challenge for the kinematic design.This paper proposes the kinematic design method for a novel multi-legged robot with the microspine gripper. First, the structure of the multi-legged asteroid exploration robot and the microspine gripper are demonstrated. Second, four performance evaluation indices, which are used to evaluate the stiffness, velocity, motion / force transfer efficiency and gripper attachment efficiency of the robot, are derived from the kinematic model. Non-dimensional design spaces of parameters to be optimized are drawn, and performance atlases are presented in design spaces. Third, the stiffness model of the microspine is derived. In addition, the constraint condition of the restoring spring is established, and the stiffness of restoring springs are optimized using the genetic algorithm. Several experiments are conducted to verify the stiffness model of the microspine. Finally, the prototype is developed and the experimental results validates the kinematic design method.
Collapse
|
5
|
Heydari E, Schroeder JF, Calef FJ, Van Beek J, Rowland SK, Parker TJ, Fairén AG. Deposits from giant floods in Gale crater and their implications for the climate of early Mars. Sci Rep 2020; 10:19099. [PMID: 33154453 PMCID: PMC7645609 DOI: 10.1038/s41598-020-75665-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022] Open
Abstract
This study reports in-situ sedimentologic evidence of giant floods in Gale crater, Mars, during the Noachian Period. Features indicative of floods are a series of symmetrical, 10 m-high gravel ridges that occur in the Hummocky Plains Unit (HPU). Their regular spacing, internal sedimentary structures, and bedload transport of fragments as large as 20 cm suggest that these ridges are antidunes: a type of sedimentary structure that forms under very strong flows. Their 150 m wavelength indicates that the north-flowing water that deposited them was at least 24 m deep and had a minimum velocity of 10 m/s. Floods waned rapidly, eroding antidune crests, and re-deposited removed sediments as patches on the up-flow limbs and trough areas between these ridges forming the Striated Unit (SU). Each patch of the SU is 50-200 m wide and long and consists of 5-10 m of south-dipping layers. The strike and dip of the SU layers mimic the attitude of the flank of the antidune on which they were deposited. The most likely mechanism that generated flood waters of this magnitude on a planet whose present-day average temperature is - 60 °C was the sudden heat produced by a large impact. The event vaporized frozen reservoirs of water and injected large amounts of CO2 and CH4 from their solid phases into the atmosphere. It temporarily interrupted a cold and dry climate and generated a warm and wet period. Torrential rainfall occurred planetwide some of which entered Gale crater and combined with water roaring down from Mt. Sharp to cause gigantic flash floods that deposited the SU and the HPU on Aeolis Palus. The warm and wet climate persisted even after the flooding ended, but its duration cannot be determined by our study.
Collapse
Affiliation(s)
- E Heydari
- Department of Physics, Atmospheric Sciences, and Geoscience, Jackson State University, 1400 Lynch Street, Jackson, MS, 39217, USA.
| | - J F Schroeder
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - F J Calef
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - J Van Beek
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - S K Rowland
- Department of Earth Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - T J Parker
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - A G Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
6
|
Golombek M, Williams N, Warner NH, Parker T, Williams MG, Daubar I, Calef F, Grant J, Bailey P, Abarca H, Deen R, Ruoff N, Maki J, McEwen A, Baugh N, Block K, Tamppari L, Call J, Ladewig J, Stoltz A, Weems WA, Mora‐Sotomayor L, Torres J, Johnson M, Kennedy T, Sklyanskiy E. Location and Setting of the Mars InSight Lander, Instruments, and Landing Site. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2020; 7:e2020EA001248. [PMID: 33134434 PMCID: PMC7583488 DOI: 10.1029/2020ea001248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Knowing precisely where a spacecraft lands on Mars is important for understanding the regional and local context, setting, and the offset between the inertial and cartographic frames. For the InSight spacecraft, the payload of geophysical and environmental sensors also particularly benefits from knowing exactly where the instruments are located. A ~30 cm/pixel image acquired from orbit after landing clearly resolves the lander and the large circular solar panels. This image was carefully georeferenced to a hierarchically generated and coregistered set of decreasing resolution orthoimages and digital elevation models to the established positive east, planetocentric coordinate system. The lander is located at 4.502384°N, 135.623447°E at an elevation of -2,613.426 m with respect to the geoid in Elysium Planitia. Instrument locations (and the magnetometer orientation) are derived by transforming from Instrument Deployment Arm, spacecraft mechanical, and site frames into the cartographic frame. A viewshed created from 1.5 m above the lander and the high-resolution orbital digital elevation model shows the lander is on a shallow regional slope down to the east that reveals crater rims on the east horizon ~400 m and 2.4 km away. A slope up to the north limits the horizon to about 50 m away where three rocks and an eolian bedform are visible on the rim of a degraded crater rim. Azimuths to rocks and craters identified in both surface panoramas and high-resolution orbital images reveal that north in the site frame and the cartographic frame are the same (within 1°).
Collapse
Affiliation(s)
- M. Golombek
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - N. Williams
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - N. H. Warner
- Department of Geological SciencesSUNY GeneseoGeneseoNYUSA
| | - T. Parker
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - M. G. Williams
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - I. Daubar
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- Department of Earth, Environmental, and Planetary SciencesBrown UniversityProvidenceRIUSA
| | - F. Calef
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - J. Grant
- Smithsonian Institution, National Air and Space MuseumWashingtonDCUSA
| | - P. Bailey
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - H. Abarca
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - R. Deen
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - N. Ruoff
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - J. Maki
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - A. McEwen
- Lunar and Planetary LaboratoryUniversity of ArizonaTucsonAZUSA
| | - N. Baugh
- Lunar and Planetary LaboratoryUniversity of ArizonaTucsonAZUSA
| | - K. Block
- Lunar and Planetary LaboratoryUniversity of ArizonaTucsonAZUSA
| | - L. Tamppari
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - J. Call
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | | | | | - L. Mora‐Sotomayor
- Centro de Astrobiología (CSIC/INTA)Instituto Nacional de Técnica AeroespacialMadridSpain
| | - J. Torres
- Centro de Astrobiología (CSIC/INTA)Instituto Nacional de Técnica AeroespacialMadridSpain
| | | | | | - E. Sklyanskiy
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
7
|
Riccobono D, Genta G, Moreland S, Backes P. A multidisciplinary design tool for robotic systems involved in sampling operations on planetary bodies. CEAS SPACE JOURNAL 2020; 13:155-174. [PMID: 34804247 PMCID: PMC8591676 DOI: 10.1007/s12567-020-00330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/10/2020] [Accepted: 07/24/2020] [Indexed: 06/13/2023]
Abstract
The analysis of robotic systems (e.g. landers and rovers) involved in sampling operations on planetary bodies is crucial to ensure mission success, since those operations generate forces that could affect the stability of the robotic system. This paper presents MISTRAL (MultIdisciplinary deSign Tool for Robotic sAmpLing), a novel tool conceived for trade space exploration during early conceptual and preliminary design phases, where a rapid and broad evaluation is required for a very high number of configurations and boundary conditions. The tool rapidly determines the preliminary design envelope of a sampling apparatus to guarantee the stability condition of the whole robotic system. The tool implements a three-dimensional analytical model capable to reproduce several scenarios, being able to accept various input parameters, including the physical and geometrical characteristics of the robotic system, the properties related to the environment and the characteristics related to the sampling system. This feature can be exploited to infer multidisciplinary high-level requirements concerning several other elements of the investigated system, such as robotic arms and footpads. The presented research focuses on the application of MISTRAL to landers. The structure of the tool and the analysis model are presented. Results from the application of the tool to real mission data from NASA's Phoenix Mars lander are included. Moreover, the tool was adopted for the definition of the high-level requirements of the lander for a potential future mission to the surface of Saturn's moon Enceladus, currently under investigation at NASA Jet Propulsion Laboratory. This case study was included to demonstrate the tool's capabilities. MISTRAL represents a comprehensive, versatile, and powerful tool providing guidelines for cognizant decisions in the early and most crucial stages of the design of robotic systems involved in sampling operations on planetary bodies.
Collapse
Affiliation(s)
- Dario Riccobono
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico Di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 USA
| | - Giancarlo Genta
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico Di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Scott Moreland
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 USA
| | - Paul Backes
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 USA
| |
Collapse
|
8
|
Abstract
To assess Mars’ potential for both harboring life and providing useable resources for future human exploration, it is of paramount importance to comprehend the water situation on the planet. Therefore, studies have been conducted to determine any evidence of past or present water existence on Mars. While the presence of abundant water on Mars very early in its history is widely accepted, on its modern form, only a fraction of this water can be found, as either ice or locked into the structure of Mars’ plentiful water-rich materials. Water on the planet is evaluated through various evidence such as rocks and minerals, Martian achondrites, low volume transient briny outflows (e.g., dune flows, reactivated gullies, slope streaks, etc.), diurnal shallow soil moisture (e.g., measurements by Curiosity and Phoenix Lander), geomorphic representation (possibly from lakes and river valleys), and groundwater, along with further evidence obtained by probe and rover discoveries. One of the most significant lines of evidence is for an ancient streambed in Gale Crater, implying ancient amounts of “vigorous” water on Mars. Long ago, hospitable conditions for microbial life existed on the surface of Mars, as it was likely periodically wet. However, its current dry surface makes it almost impossible as an appropriate environment for living organisms; therefore, scientists have recognized the planet’s subsurface environments as the best potential locations for exploring life on Mars. As a result, modern research has aimed towards discovering underground water, leading to the discovery of a large amount of underground ice in 2016 by NASA, and a subglacial lake in 2018 by Italian scientists. Nevertheless, the presence of life in Mars’ history is still an open question. In this unifying context, the current review summarizes results from a wide variety of studies and reports related to the history of water on Mars, as well as any related discussions on the possibility of living organism existence on the planet.
Collapse
|
9
|
Rodriguez JAP, Baker VR, Liu T, Zarroca M, Travis B, Hui T, Komatsu G, Berman DC, Linares R, Sykes MV, Banks ME, Kargel JS. The 1997 Mars Pathfinder Spacecraft Landing Site: Spillover Deposits from an Early Mars Inland Sea. Sci Rep 2019; 9:4045. [PMID: 30837500 PMCID: PMC6401135 DOI: 10.1038/s41598-019-39632-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/22/2019] [Indexed: 11/16/2022] Open
Abstract
The Martian outflow channels comprise some of the largest known channels in the Solar System. Remote-sensing investigations indicate that cataclysmic floods likely excavated the channels ~3.4 Ga. Previous studies show that, in the southern circum-Chryse region, their flooding pathways include hundreds of kilometers of channel floors with upward gradients. However, the impact of the reversed channel-floor topography on the cataclysmic floods remains uncertain. Here, we show that these channel floors occur within a vast basin, which separates the downstream reaches of numerous outflow channels from the northern plains. Consequently, floods propagating through these channels must have ponded, producing an inland sea, before reaching the northern plains as enormous spillover discharges. The resulting paleohydrological reconstruction reinterprets the 1997 Pathfinder landing site as part of a marine spillway, which connected the inland sea to a hypothesized northern plains ocean. Our flood simulation shows that the presence of the sea would have permitted the propagation of low-depth floods beyond the areas of reversed channel-floor topography. These results explain the formation at the landing site of possible fluvial features indicative of flow depths at least an order of magnitude lower than those apparent from the analyses of orbital remote-sensing observations.
Collapse
Affiliation(s)
- J A P Rodriguez
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA.
| | - V R Baker
- Department of Hydrology & Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - T Liu
- Department of Hydrology & Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - M Zarroca
- External Geodynamics and Hydrogeology Group, Department of Geology, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - B Travis
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - T Hui
- Department of Hydrology & Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - G Komatsu
- International Research School of Planetary Sciences, Università D'Annunzio, Viale Pindaro 42, 65127, Pescara, Italy
| | - D C Berman
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - R Linares
- External Geodynamics and Hydrogeology Group, Department of Geology, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - M V Sykes
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - M E Banks
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
- NASA Goddard Space Flight Center, Goddard, MD, 20771, USA
| | - J S Kargel
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| |
Collapse
|
10
|
Gao Y, Chien S. Review on space robotics: Toward top-level science through space exploration. Sci Robot 2017; 2:2/7/eaan5074. [DOI: 10.1126/scirobotics.aan5074] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/07/2017] [Indexed: 11/02/2022]
|
11
|
Baker VR, Hamilton CW, Burr DM, Gulick VC, Komatsu G, Luo W, Rice JW, Rodriguez J. Fluvial geomorphology on Earth-like planetary surfaces: A review. GEOMORPHOLOGY (AMSTERDAM, NETHERLANDS) 2015; 245:149-182. [PMID: 29176917 PMCID: PMC5701759 DOI: 10.1016/j.geomorph.2015.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.
Collapse
Affiliation(s)
- Victor R. Baker
- Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721, USA
- Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Christopher W. Hamilton
- Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Devon M. Burr
- Earth and Planetary Sciences Department, University of Tennessee-Knoxville, Knoxville, TN 37996-1410, USA
| | - Virginia C. Gulick
- SETI Institute, Mountain View, CA 94043, USA
- NASA Ames Research Center, MS 239-20, Moffett Field, CA 94035, USA
| | - Goro Komatsu
- International Research School of Planetary Sciences, Università d’Annunzio, Viale Pindaro 42, 65127 Pescara, Italy
| | - Wei Luo
- Department of Geography, Northern Illinois University, DeKalb, IL 60115, USA
| | | | - J.A.P. Rodriguez
- NASA Ames Research Center, MS 239-20, Moffett Field, CA 94035, USA
- Planetary Science Institute, Tucson, AZ 85719, USA
| |
Collapse
|
12
|
An Alternative Approach to Mapping Thermophysical Units from Martian Thermal Inertia and Albedo Data Using a Combination of Unsupervised Classification Techniques. REMOTE SENSING 2014. [DOI: 10.3390/rs6065184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Zhou F, Arvidson RE, Bennett K, Trease B, Lindemann R, Bellutta P, Iagnemma K, Senatore C. Simulations of Mars Rover Traverses. J FIELD ROBOT 2013. [DOI: 10.1002/rob.21483] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Feng Zhou
- Department of Earth and Planetary Sciences; Washington University in St Louis; St Louis Missouri 63130
| | - Raymond E. Arvidson
- Department of Earth and Planetary Sciences; Washington University in St Louis; St Louis Missouri 63130
| | - Keith Bennett
- Department of Earth and Planetary Sciences; Washington University in St Louis; St Louis Missouri 63130
| | - Brian Trease
- California Institute of Technology/Jet Propulsion Laboratory; Pasadena California 91011
| | - Randel Lindemann
- California Institute of Technology/Jet Propulsion Laboratory; Pasadena California 91011
| | - Paolo Bellutta
- California Institute of Technology/Jet Propulsion Laboratory; Pasadena California 91011
| | - Karl Iagnemma
- Robotic Mobility Group; Massachusetts Institute of Technology; Cambridge Massachusetts 02139
| | - Carmine Senatore
- Robotic Mobility Group; Massachusetts Institute of Technology; Cambridge Massachusetts 02139
| |
Collapse
|
14
|
Kerney KR, Schuerger AC. Survival of Bacillus subtilis endospores on ultraviolet-irradiated rover wheels and Mars regolith under simulated Martian conditions. ASTROBIOLOGY 2011; 11:477-485. [PMID: 21707388 DOI: 10.1089/ast.2011.0615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Endospores of Bacillus subtilis HA101 were applied to a simulated Mars Exploration Rover (MER) wheel and exposed to Mars-normal UV irradiation for 1, 3, or 6 h. The experiment was designed to simulate a contaminated rover wheel sitting on its landing platform before rolling off onto the martian terrain, as was encountered during the Spirit and Opportunity missions. When exposed to 1 h of Mars UV, a reduction of 81% of viable endospores was observed compared to the non-UV irradiated controls. When exposed for 3 or 6 h, reductions of 94.6% and 96.6%, respectively, were observed compared to controls. In a second experiment, the contaminated rover wheel was rolled over a bed of heat-sterilized Mars analog soil; then the analog soil was exposed to full martian conditions of UV irradiation, low pressure (6.9 mbar), low temperature (-10°C), and an anaerobic CO(2) martian atmosphere for 24 h to determine whether endospores of B. subtilis on the contaminated rover wheel could be transferred to the surface of the analog soil and survive martian conditions. The experiment simulated conditions in which a rover wheel might come into contact with martian regolith immediately after landing, such as is designed for the upcoming Mars Science Laboratory (MSL) rover. The contaminated rover wheel transferred viable endospores of B. subtilis to the Mars analog soil, as demonstrated by 31.7% of samples showing positive growth. However, when contaminated soil samples were exposed to full martian conditions for 24 h, only 16.7% of samples exhibited positive growth-a 50% reduction in the number of soil samples positive for the transferred viable endospores.
Collapse
Affiliation(s)
- Krystal R Kerney
- Department of Plant Pathology, University of Florida , Space Life Sciences Lab, Kennedy Space Center, USA
| | | |
Collapse
|
15
|
Holstein-Rathlou C, Gunnlaugsson HP, Merrison JP, Bean KM, Cantor BA, Davis JA, Davy R, Drake NB, Ellehoj MD, Goetz W, Hviid SF, Lange CF, Larsen SE, Lemmon MT, Madsen MB, Malin M, Moores JE, Nørnberg P, Smith P, Tamppari LK, Taylor PA. Winds at the Phoenix landing site. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003411] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
|
17
|
Yingst RA, Haldemann AFC, Biedermann KL, Monhead AM. Quantitative morphology of rocks at the Mars Pathfinder landing site. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2005je002582] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Golombek MP, Crumpler LS, Grant JA, Greeley R, Cabrol NA, Parker TJ, Rice JW, Ward JG, Arvidson RE, Moersch JE, Fergason RL, Christensen PR, Castaño A, Castaño R, Haldemann AFC, Li R, Bell JF, Squyres SW. Geology of the Gusev cratered plains from the Spirit rover transverse. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002503] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- M. P. Golombek
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - L. S. Crumpler
- New Mexico Museum of Natural History and Science; Albuquerque New Mexico USA
| | | | - R. Greeley
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - N. A. Cabrol
- NASA Ames Research Center; Moffett Field California USA
| | - T. J. Parker
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - J. W. Rice
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - J. G. Ward
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - R. E. Arvidson
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - J. E. Moersch
- Department of Geological Sciences; University of Tennessee; Knoxville Tennessee USA
| | - R. L. Fergason
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - P. R. Christensen
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - A. Castaño
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - R. Castaño
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - A. F. C. Haldemann
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - R. Li
- Department of Civil and Environmental Engineering and Geodetic Science; Ohio State University; Columbus Ohio USA
| | - J. F. Bell
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| |
Collapse
|
19
|
Martínez-Alonso S, Mellon MT, Kindel BC, Jakosky BM. Mapping compositional diversity on the surface of Mars: The Spectral Variance Index. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Yen AS, Gellert R, Schröder C, Morris RV, Bell JF, Knudson AT, Clark BC, Ming DW, Crisp JA, Arvidson RE, Blaney D, Brückner J, Christensen PR, DesMarais DJ, de Souza PA, Economou TE, Ghosh A, Hahn BC, Herkenhoff KE, Haskin LA, Hurowitz JA, Joliff BL, Johnson JR, Klingelhöfer G, Madsen MB, McLennan SM, McSween HY, Richter L, Rieder R, Rodionov D, Soderblom L, Squyres SW, Tosca NJ, Wang A, Wyatt M, Zipfel J. An integrated view of the chemistry and mineralogy of martian soils. Nature 2005; 436:49-54. [PMID: 16001059 DOI: 10.1038/nature03637] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Accepted: 04/08/2005] [Indexed: 11/09/2022]
Abstract
The mineralogical and elemental compositions of the martian soil are indicators of chemical and physical weathering processes. Using data from the Mars Exploration Rovers, we show that bright dust deposits on opposite sides of the planet are part of a global unit and not dominated by the composition of local rocks. Dark soil deposits at both sites have similar basaltic mineralogies, and could reflect either a global component or the general similarity in the compositions of the rocks from which they were derived. Increased levels of bromine are consistent with mobilization of soluble salts by thin films of liquid water, but the presence of olivine in analysed soil samples indicates that the extent of aqueous alteration of soils has been limited. Nickel abundances are enhanced at the immediate surface and indicate that the upper few millimetres of soil could contain up to one per cent meteoritic material.
Collapse
Affiliation(s)
- Albert S Yen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Quantin C. Fluvial and lacustrine activity on layered deposits in Melas Chasma, Valles Marineris, Mars. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002440] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Golombek MP, Grant JA, Parker TJ, Kass DM, Crisp JA, Squyres SW, Haldemann AFC, Adler M, Lee WJ, Bridges NT, Arvidson RE, Carr MH, Kirk RL, Knocke PC, Roncoli RB, Weitz CM, Schofield JT, Zurek RW, Christensen PR, Fergason RL, Anderson FS, Rice JW. Selection of the Mars Exploration Rover landing sites. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003je002074] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. P. Golombek
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - J. A. Grant
- Center for Earth and Planetary Studies; National Air and Space Museum, Smithsonian Institution; Washington DC USA
| | - T. J. Parker
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - D. M. Kass
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - J. A. Crisp
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - A. F. C. Haldemann
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - M. Adler
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - W. J. Lee
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - N. T. Bridges
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - R. E. Arvidson
- Department of Earth and Space Sciences; Washington University; St. Louis Missouri USA
| | - M. H. Carr
- U.S. Geological Survey; Menlo Park California USA
| | - R. L. Kirk
- U.S. Geological Survey; Flagstaff Arizona USA
| | - P. C. Knocke
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - R. B. Roncoli
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | | | - J. T. Schofield
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - R. W. Zurek
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - P. R. Christensen
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - R. L. Fergason
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - F. S. Anderson
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - J. W. Rice
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| |
Collapse
|
23
|
Golombek MP, Haldemann AFC, Forsberg-Taylor NK, DiMaggio EN, Schroeder RD, Jakosky BM, Mellon MT, Matijevic JR. Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002je002035] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. P. Golombek
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - A. F. C. Haldemann
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - N. K. Forsberg-Taylor
- Department of Environmental Sciences; University of Virginia; Charlottesville Virginia USA
| | - E. N. DiMaggio
- Department of Geological Sciences; University of Michigan; Ann Arbor Michigan USA
| | - R. D. Schroeder
- Department of Geology; California State University; Bakersfield California USA
| | - B. M. Jakosky
- Laboratory for Atmospheric and Space Physics; University of Colorado; Boulder Colorado USA
| | - M. T. Mellon
- Laboratory for Atmospheric and Space Physics; University of Colorado; Boulder Colorado USA
| | - J. R. Matijevic
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| |
Collapse
|
24
|
Schuerger AC, Mancinelli RL, Kern RG, Rothschild LJ, McKay CP. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars. ICARUS 2003; 165:253-276. [PMID: 14649627 DOI: 10.1016/s0019-1035(03)00200-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Experiments were conducted in a Mars simulation chamber (MSC) to characterize the survival of endospores of Bacillus subtilis under high UV irradiation and simulated martian conditions. The MSC was used to create Mars surface environments in which pressure (8.5 mb), temperature (-80, -40, -10, or +23 degrees C), gas composition (Earth-normal N2/O2 mix, pure N2, pure CO2, or a Mars gas mix), and UV-VIS-NIR fluence rates (200-1200 nm) were maintained within tight limits. The Mars gas mix was composed of CO2 (95.3%), N2 (2.7%), Ar (1.7%), O2 (0.2%), and water vapor (0.03%). Experiments were conducted to measure the effects of pressure, gas composition, and temperature alone or in combination with Mars-normal UV-VIS-NIR light environments. Endospores of B. subtilis, were deposited on aluminum coupons as monolayers in which the average density applied to coupons was 2.47 x 10(6) bacteria per sample. Populations of B. subtilis placed on aluminum coupons and subjected to an Earth-normal temperature (23 degrees C), pressure (1013 mb), and gas mix (normal N2/O2 ratio) but illuminated with a Mars-normal UV-VIS-NIR spectrum were reduced by over 99.9% after 30 sec exposure to Mars-normal UV fluence rates. However, it required at least 15 min of Mars-normal UV exposure to reduce bacterial populations on aluminum coupons to non-recoverable levels. These results were duplicated when bacteria were exposed to Mars-normal environments of temperature (-10 degrees C), pressure (8.5 mb), gas composition (pure CO2), and UV fluence rates. In other experiments, results indicated that the gas composition of the atmosphere and the temperature of the bacterial monolayers at the time of Mars UV exposure had no effects on the survival of bacterial endospores. But Mars-normal pressures (8.5 mb) were found to reduce survival by approximately 20-35% compared to Earth-normal pressures (1013 mb). The primary implications of these results are (a) that greater than 99.9% of bacterial populations on sun-exposed surfaces of spacecraft are likely to be inactivated within a few tens of seconds to a few minutes on the surface of Mars, and (b) that within a single Mars day under clear-sky conditions bacterial populations on sun-exposed surfaces of spacecraft will be sterilized. Furthermore, these results suggest that the high UV fluence rates on the martian surface can be an important resource in minimizing the forward contamination of Mars.
Collapse
|
25
|
Affiliation(s)
- Matthew P Golombek
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
| |
Collapse
|
26
|
|
27
|
|
28
|
Stoker CR, Roush TL, Arvidson RE, Bresina JL, Bualat MG, Edwards LJ, Flueckiger LJ, Washington RM, Nguyen LA, Thomas H, Wright AR. Two dogs, new tricks: A two-rover mission simulation using K9 and FIDO at Black Rock Summit, Nevada. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2000je001490] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carol R. Stoker
- Space Science Division, NASA Ames Research Center; Moffett Field California USA
| | - Ted L. Roush
- Space Science Division, NASA Ames Research Center; Moffett Field California USA
| | - Raymond E. Arvidson
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - John L. Bresina
- Computational Sciences Division, NASA Ames Research Center; Moffett Field California USA
| | - Maria G. Bualat
- Computational Sciences Division, NASA Ames Research Center; Moffett Field California USA
| | - Laurence J. Edwards
- Computational Sciences Division, NASA Ames Research Center; Moffett Field California USA
| | - Lorenzo J. Flueckiger
- Computational Sciences Division, NASA Ames Research Center; Moffett Field California USA
| | - Richard M. Washington
- Computational Sciences Division, NASA Ames Research Center; Moffett Field California USA
| | - Laurent A. Nguyen
- Computational Sciences Division, NASA Ames Research Center; Moffett Field California USA
| | - Hans Thomas
- Computational Sciences Division, NASA Ames Research Center; Moffett Field California USA
| | - Anne R. Wright
- Computational Sciences Division, NASA Ames Research Center; Moffett Field California USA
| |
Collapse
|
29
|
Jolliff B, Knoll A, Morris RV, Moersch J, McSween H, Gilmore M, Arvidson R, Greeley R, Herkenhoff K, Squyres S. Remotely sensed geology from lander-based to orbital perspectives: Results of FIDO rover May 2000 field tests. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2000je001470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- B. Jolliff
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - A. Knoll
- Botanical Museum; Harvard University; Cambridge Massachusetts USA
| | | | - J. Moersch
- Department of Geological Sciences; University of Tennessee; Knoxville Tennessee USA
| | - H. McSween
- Department of Geological Sciences; University of Tennessee; Knoxville Tennessee USA
| | - M. Gilmore
- Jet Propulsion Laboratory; Pasadena California USA
| | - R. Arvidson
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - R. Greeley
- Department of Geology; Arizona State University; Tempe Arizona USA
| | | | - S. Squyres
- Center for Radiophysics and Space Research; Cornell University; Ithaca New York USA
| |
Collapse
|
30
|
Li R, Ma F, Xu F, Matthies LH, Olson CF, Arvidson RE. Localization of Mars rovers using descent and surface-based image data. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2000je001443] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rongxing Li
- Department of Civil and Environmental Engineering and Geodetic Science; Ohio State University; Columbus Ohio USA
| | - Fei Ma
- Department of Civil and Environmental Engineering and Geodetic Science; Ohio State University; Columbus Ohio USA
| | - Fengliang Xu
- Department of Civil and Environmental Engineering and Geodetic Science; Ohio State University; Columbus Ohio USA
| | - Larry H. Matthies
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - Clark F. Olson
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - Raymond E. Arvidson
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| |
Collapse
|
31
|
Wiens RC, Arvidson RE, Cremers DA, Ferris MJ, Blacic JD, Seelos FP, Deal KS. Combined remote mineralogical and elemental identification from rovers: Field and laboratory tests using reflectance and laser-induced breakdown spectroscopy. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2000je001439] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Roger C. Wiens
- Space and Atmospheric Sciences; Los Alamos National Laboratory; Los Alamos New Mexico USA
| | - Raymond E. Arvidson
- Department of Earth and Planetary Sciences, McDonnell Center for the Space Sciences; Washington University; St. Louis Missouri USA
| | - David A. Cremers
- Chemistry Division; Los Alamos National Laboratory; Los Alamos New Mexico USA
| | - Monty J. Ferris
- Chemistry Division; Los Alamos National Laboratory; Los Alamos New Mexico USA
| | - James D. Blacic
- Earth and Environmental Sciences; Los Alamos National Laboratory; Los Alamos New Mexico USA
| | - Frank P. Seelos
- Department of Earth and Planetary Sciences, McDonnell Center for the Space Sciences; Washington University; St. Louis Missouri USA
| | - Kim S. Deal
- Department of Earth and Planetary Sciences, McDonnell Center for the Space Sciences; Washington University; St. Louis Missouri USA
| |
Collapse
|
32
|
Smith DE, Zuber MT, Frey HV, Garvin JB, Head JW, Muhleman DO, Pettengill GH, Phillips RJ, Solomon SC, Zwally HJ, Banerdt WB, Duxbury TC, Golombek MP, Lemoine FG, Neumann GA, Rowlands DD, Aharonson O, Ford PG, Ivanov AB, Johnson CL, McGovern PJ, Abshire JB, Afzal RS, Sun X. Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000je001364] [Citation(s) in RCA: 1152] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Jakosky BM, Mellon MT. High-resolution thermal inertia mapping of Mars: Sites of exobiological interest. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000je001311] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Aharonson O, Zuber MT, Rothman DH. Statistics of Mars' topography from the Mars Orbiter Laser Altimeter: Slopes, correlations, and physical Models. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000je001403] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Spectroscopic and photometric evaluation of images from the Mars Pathfinder camera. Anal Chim Acta 2000. [DOI: 10.1016/s0003-2670(00)00894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Abstract
Relatively young landforms on Mars, seen in high-resolution images acquired by the Mars Global Surveyor Mars Orbiter Camera since March 1999, suggest the presence of sources of liquid water at shallow depths beneath the martian surface. Found at middle and high martian latitudes (particularly in the southern hemisphere), gullies within the walls of a very small number of impact craters, south polar pits, and two of the larger martian valleys display geomorphic features that can be explained by processes associated with groundwater seepage and surface runoff. The relative youth of the landforms is indicated by the superposition of the gullies on otherwise geologically young surfaces and by the absence of superimposed landforms or cross-cutting features, including impact craters, small polygons, and eolian dunes. The limited size and geographic distribution of the features argue for constrained source reservoirs.
Collapse
Affiliation(s)
- M C Malin
- Malin Space Science Systems, Post Office Box 910148, San Diego, CA 92191-0148, USA
| | | |
Collapse
|
37
|
Kraft MD, Greeley R. Rock coatings and aeolian abrasion on Mars: Application to the Pathfinder landing site. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001229] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Smith MD, Pearl JC, Conrath BJ, Christensen PR. Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of dust opacity during aerobraking and science phasing. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001097] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Jakosky BM, Mellon MT, Kieffer HH, Christensen PR, Varnes ES, Lee SW. The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001088] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Bell JF, McSween HY, Crisp JA, Morris RV, Murchie SL, Bridges NT, Johnson JR, Britt DT, Golombek MP, Moore HJ, Ghosh A, Bishop JL, Anderson RC, Brückner J, Economou T, Greenwood JP, Gunnlaugsson HP, Hargraves RM, Hviid S, Knudsen JM, Madsen MB, Reid R, Rieder R, Soderblom L. Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001060] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Golombek MP, Bridges NT. Erosion rates on Mars and implications for climate change: Constraints from the Pathfinder landing site. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001043] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Greeley R, Kraft MD, Kuzmin RO, Bridges NT. Mars Pathfinder landing site: Evidence for a change in wind regime from lander and orbiter data. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001072] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Edgett KS, Malin MC. New views of Mars eolian activity, materials, and surface properties: Three vignettes from the Mars Global Surveyor Mars Orbiter Camera. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001152] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Head JW, Hiesinger H, Ivanov MA, Kreslavsky MA, Pratt S, Thomson BJ. Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science 1999; 286:2134-7. [PMID: 10591640 DOI: 10.1126/science.286.5447.2134] [Citation(s) in RCA: 306] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
High-resolution altimetric data define the detailed topography of the northern lowlands of Mars, and a range of data is consistent with the hypothesis that a lowland-encircling geologic contact represents the ancient shoreline of a large standing body of water present in middle Mars history. The contact altitude is close to an equipotential line, the topography is smoother at all scales below the contact than above it, the volume enclosed by this contact is within the range of estimates of available water on Mars, and a series of extensive terraces parallel the contact in many places.
Collapse
Affiliation(s)
- J W Head
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Ultraviolet (UV) radiation has been an important environmental parameter during the evolution of life on Earth, both in its role as a mutagen and as a selective agent. This was probably especially true during the time from 3.8 to 2.5 billion years ago, when atmospheric ozone levels were less than 1% of present levels. Early Mars may not have had an "ozone shield" either, and it never developed a significant one. Even though Mars is farther away from the Sun than the Earth, a substantial surficial UV flux is present on Mars today. But organisms respond to dose rate, and on Mars, like on Earth, organisms would be exposed to diurnal variations in UV flux. Here we present data on the effect of diurnal patterns of UV flux on microbial ecosystems in nature, with an emphasis on photosynthesis and DNA synthesis effects. These results indicate that diurnal patterns of metabolism occur in nature with a dip in photosynthesis and DNA synthesis in the afternoon, in part regulated by UV flux. Thus, diurnal patterns must be studied in order to understand the effect of UV radiation in nature. The results of this work are significant to the success of human missions to Mars for several reasons. For example, human missions must include photosynthetic organisms for food production and likely oxygen production. An evolutionary approach suggests which organisms might be best suited for high UV fluxes. The diurnal aspect of these studies is critical. Terraforming is a potential goal of Mars exploration, and it will require studies of the effect of Martian UV fluxes, including their diurnal changes, on terrestrial organisms. Such studies may suggest that diurnal changes in UV only require mitigation at some times of day or year.
Collapse
Affiliation(s)
- L J Rothschild
- Ecosystem Science and Technology Branch, Mail Stop 239-20, NASA Ames Research Center, Moffett Field, CA, USA.
| | | |
Collapse
|
46
|
Farmer JD, Des Marais DJ. Exploring for a record of ancient Martian life. JOURNAL OF GEOPHYSICAL RESEARCH 1999; 104:26977-95. [PMID: 11543200 DOI: 10.1029/1998je000540] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The immediate task facing exopaleontology is to define a strategy to explore Mars for a fossil record during the decade-long exploration program that lies ahead. Consideration of the quality of paleontological information preserved under different geological conditions is important if we are to develop a strategy with broad applicability. The preservation of microbial fossils is strongly influenced by the physical, chemical, and biological factors of the environment which, acting together, determine the types of information that will be captured and retained in the rock record. In detrital sedimentary systems, preservation is favored by rapid burial in fine-grained, clay-rich sediments. In chemical sedimentary systems, preservation is enhanced by rapid entombment in fine-grained chemical precipitates. For long-term preservation, host rocks must be composed of stable minerals that are resistant to chemical weathering and that form an impermeable matrix and closed chemical system to protect biosignatures from alteration during subsequent diagenesis or metamorphism. In this context, host rocks composed of highly ordered, chemically stable mineral phases, like silica (e.g., cherts) or phosphate (e.g., phosphorites), are especially favored. Such lithologies tend to have very long crustal residence times and, along with carbonates and shales, are the most common host rocks for the Precambrian microfossil record on Earth. Although we make the defensible assumption that Mars was more like the Earth early in its history, clearly, the geological and historical differences between the two planets are many. Such differences must be carefully considered when adapting an Earth-based strategy to Mars.
Collapse
Affiliation(s)
- J D Farmer
- Department of Geology, Arizona State University, Tempe, USA.
| | | |
Collapse
|
47
|
Abstract
The Pathfinder landing site on Mars has boulders that may be cratered (Stimpy), split (Chimp), fragmented (Book End and Flat Top), or otherwise partly destroyed (Yogi and Frog) by collisional processes. Atmospheric-entry calculations show that centimeter-sized projectiles survive passage through the martian atmosphere and encounter the surface of Mars at velocities of a few kilometers per second. Craters less than 1 meter in diameter may contribute to the evolution of the martian surface and its soils.
Collapse
Affiliation(s)
- F Horz
- NASA Johnson Space Center, Houston, TX 77058, USA. Lockheed Martin, 2400 NASA Road 1, Houston, TX 77058, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Ultraviolet radiation has provided an evolutionary challenge to life on Earth. Recent increases in surficial ultraviolet B fluxes have focused attention on the role of UV radiation in protistan ecology, cancer, and DNA damage. Exploiting this new wealth of data, I examine the possibility that ultraviolet radiation may have played a significant role in the evolution of the first eukaryotes, that is, protists. Protists probably arose well before the formation of a significant ozone shield, and thus were probably subjected to substantial ultraviolet A, ultraviolet B, and ultraviolet C fluxes early in their evolution. Evolution consists of the generation of heritable variations and the subsequent selection of these variants. Ultraviolet radiation has played a role both as a mutagen and as a selective agent. In its role as a mutagen, it may have been crucial in the origin of sex and as a driver of molecular evolution. As a selective agent, its influence has been broad. Discussed in this paper are the influence of ultraviolet radiation on biogeography, photosynthesis, and desiccation resistance.
Collapse
Affiliation(s)
- L J Rothschild
- Ecosystem Science and Technology Branch, NASA Ames Research Center, Moffett Field, California 94035-1000, USA.
| |
Collapse
|
49
|
Golombek MP, Anderson RC, Barnes JR, Bell JF, Bridges NT, Britt DT, Brückner J, Cook RA, Crisp D, Crisp JA, Economou T, Folkner WM, Greeley R, Haberle RM, Hargraves RB, Harris JA, Haldemann AFC, Herkenhoff KE, Hviid SF, Jaumann R, Johnson JR, Kallemeyn PH, Keller HU, Kirk RL, Knudsen JM, Larsen S, Lemmon MT, Madsen MB, Magalhães JA, Maki JN, Malin MC, Manning RM, Matijevic J, McSween HY, Moore HJ, Murchie SL, Murphy JR, Parker TJ, Rieder R, Rivellini TP, Schofield JT, Seiff A, Singer RB, Smith PH, Soderblom LA, Spencer DA, Stoker CR, Sullivan R, Thomas N, Thurman SW, Tomasko MG, Vaughan RM, Wänke H, Ward AW, Wilson GR. Overview of the Mars Pathfinder Mission: Launch through landing, surface operations, data sets, and science results. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/98je02554] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
McSween HY, Murchie SL, Crisp JA, Bridges NT, Anderson RC, Bell JF, Britt DT, Brückner J, Dreibus G, Economou T, Ghosh A, Golombek MP, Greenwood JP, Johnson JR, Moore HJ, Morris RV, Parker TJ, Rieder R, Singer R, Wänke H. Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/98je02551] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|