1
|
Kelly CL, Manning C, Frey C, Kaiser J, Gluschankoff N, Casciotti KL. Pyisotopomer: A Python package for obtaining intramolecular isotope ratio differences from mass spectrometric analysis of nitrous oxide isotopocules. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9513. [PMID: 36971184 DOI: 10.1002/rcm.9513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023]
Abstract
RATIONALE Obtaining nitrous oxide isotopocule measurements with isotope ratio mass spectrometry (IRMS) involves analyzing the ion current ratios of the nitrous oxide parent ion (N2 O+ ) as well as those of the NO+ fragment ion. The data analysis requires correcting for "scrambling" in the ion source, whereby the NO+ fragment ion obtains the outer N atom from the N2 O molecule. While descriptions exist for this correction, and interlaboratory intercalibration efforts have been made, there has yet to be published a package of code for implementing isotopomer calibrations. METHODS We developed a user-friendly Python package (pyisotopomer) to determine two coefficients (γ and κ) that describe scrambling in the IRMS ion source, and then used this calibration to obtain intramolecular isotope deltas in N2 O samples. RESULTS With two appropriate reference materials, γ and κ can be determined robustly and accurately for a given IRMS system. An additional third reference material is needed to define the zero-point of the delta scale. We show that IRMS scrambling behavior can vary with time, necessitating regular calibrations. Finally, we present an intercalibration between two IRMS laboratories, using pyisotopomer to calculate γ and κ, and to obtain intramolecular N2 O isotope deltas in lake water unknowns. CONCLUSIONS Given these considerations, we discuss how to use pyisotopomer to obtain high-quality N2 O isotopocule data from IRMS systems, including the use of appropriate reference materials and frequency of calibration.
Collapse
Affiliation(s)
- Colette L Kelly
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Cara Manning
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Claudia Frey
- Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Jan Kaiser
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Noah Gluschankoff
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Karen L Casciotti
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Lu S, Liu X, Liu C, Cheng G, Zhou R, Li Y. A Review of Ammonia-Oxidizing Archaea and Anaerobic Ammonia-Oxidizing Bacteria in the Aquaculture Pond Environment in China. Front Microbiol 2021; 12:775794. [PMID: 34917055 PMCID: PMC8671037 DOI: 10.3389/fmicb.2021.775794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
The excessive ammonia produced in pond aquaculture processes cannot be ignored. In this review, we present the distribution and diversity of ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing bacteria (AnAOB) in the pond environment. Combined with environmental conditions, we analyze the advantages of AOA and AnAOB in aquaculture water treatment and discuss the current situation of pond water treatment engineering involving these microbes. AOA and AnAOB play an important role in the nitrogen removal process of aquaculture pond water, especially in seasonal low temperatures and anoxic sediment layers. Finally, we prospect the application of bioreactors to purify pond aquaculture water using AOA and AnAOB, in autotrophic nitrogen removal, which can reduce the production of greenhouse gases (such as nitrous oxide) and is conducive to the development of environmentally sustainable pond aquaculture.
Collapse
Affiliation(s)
- Shimin Lu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Chong Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Guofeng Cheng
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Runfeng Zhou
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yayuan Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Jung MY, Gwak JH, Rohe L, Giesemann A, Kim JG, Well R, Madsen EL, Herbold CW, Wagner M, Rhee SK. Indications for enzymatic denitrification to N 2O at low pH in an ammonia-oxidizing archaeon. ISME JOURNAL 2019; 13:2633-2638. [PMID: 31227816 PMCID: PMC6775971 DOI: 10.1038/s41396-019-0460-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/05/2019] [Accepted: 05/27/2019] [Indexed: 11/18/2022]
Abstract
Nitrous oxide (N2O) is a key climate change gas and nitrifying microbes living in terrestrial ecosystems contribute significantly to its formation. Many soils are acidic and global change will cause acidification of aquatic and terrestrial ecosystems, but the effect of decreasing pH on N2O formation by nitrifiers is poorly understood. Here, we used isotope-ratio mass spectrometry to investigate the effect of acidification on production of N2O by pure cultures of two ammonia-oxidizing archaea (AOA; Nitrosocosmicus oleophilus and Nitrosotenuis chungbukensis) and an ammonia-oxidizing bacterium (AOB; Nitrosomonas europaea). For all three strains acidification led to increased emission of N2O. However, changes of 15N site preference (SP) values within the N2O molecule (as indicators of pathways for N2O formation), caused by decreasing pH, were highly different between the tested AOA and AOB. While acidification decreased the SP value in the AOB strain, SP values increased to a maximum value of 29‰ in N. oleophilus. In addition, 15N-nitrite tracer experiments showed that acidification boosted nitrite transformation into N2O in all strains, but the incorporation rate was different for each ammonia oxidizer. Unexpectedly, for N. oleophilus more than 50% of the N2O produced at pH 5.5 had both nitrogen atoms from nitrite and we demonstrated that under these conditions expression of a putative cytochrome P450 NO reductase is strongly upregulated. Collectively, our results indicate that N. oleophilus might be able to enzymatically denitrify nitrite to N2O at low pH.
Collapse
Affiliation(s)
- Man-Young Jung
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea.,University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, A-1090, Vienna, Austria
| | - Joo-Han Gwak
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Lena Rohe
- Helmholtz Centre for Environmental Research-UFZ, Department of Soil System Sciences, Theodor-Lieser-Strasse 4, D-06120, Halle (Saale), Germany
| | - Anette Giesemann
- Thünen Institute of Climate-Smart Agriculture, Bundesallee 50, D-38116, Braunschweig, Germany
| | - Jong-Geol Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Reinhard Well
- Thünen Institute of Climate-Smart Agriculture, Bundesallee 50, D-38116, Braunschweig, Germany
| | - Eugene L Madsen
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | - Craig W Herbold
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, A-1090, Vienna, Austria.,The Comammox Research Platform, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, A-1090, Vienna, Austria.,The Comammox Research Platform, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria.,Department of Biotechnology, Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea.
| |
Collapse
|
4
|
Walters WW, Hastings MG. Collection of Ammonia for High Time-Resolved Nitrogen Isotopic Characterization Utilizing an Acid-Coated Honeycomb Denuder. Anal Chem 2018; 90:8051-8057. [DOI: 10.1021/acs.analchem.8b01007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wendell W. Walters
- Department of Earth, Environmental, and Planetary Sciences, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
- Institute at Brown for Environment and Society, Brown University, 85 Waterman Street, Providence, Rhode Island 02912, United States
| | - Meredith G. Hastings
- Department of Earth, Environmental, and Planetary Sciences, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
- Institute at Brown for Environment and Society, Brown University, 85 Waterman Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
5
|
Snider DM, Venkiteswaran JJ, Schiff SL, Spoelstra J. From the ground up: global nitrous oxide sources are constrained by stable isotope values. PLoS One 2015; 10:e0118954. [PMID: 25811179 PMCID: PMC4374930 DOI: 10.1371/journal.pone.0118954] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 01/08/2015] [Indexed: 11/18/2022] Open
Abstract
Rising concentrations of nitrous oxide (N2O) in the atmosphere are causing widespread concern because this trace gas plays a key role in the destruction of stratospheric ozone and it is a strong greenhouse gas. The successful mitigation of N2O emissions requires a solid understanding of the relative importance of all N2O sources and sinks. Stable isotope ratio measurements (δ15N-N2O and δ18O-N2O), including the intramolecular distribution of 15N (site preference), are one way to track different sources if they are isotopically distinct. ‘Top-down’ isotope mass-balance studies have had limited success balancing the global N2O budget thus far because the isotopic signatures of soil, freshwater, and marine sources are poorly constrained and a comprehensive analysis of global N2O stable isotope measurements has not been done. Here we used a robust analysis of all available in situ measurements to define key global N2O sources. We showed that the marine source is isotopically distinct from soil and freshwater N2O (the continental source). Further, the global average source (sum of all natural and anthropogenic sources) is largely controlled by soils and freshwaters. These findings substantiate past modelling studies that relied on several assumptions about the global N2O cycle. Finally, a two-box-model and a Bayesian isotope mixing model revealed marine and continental N2O sources have relative contributions of 24–26% and 74–76% to the total, respectively. Further, the Bayesian modeling exercise indicated the N2O flux from freshwaters may be much larger than currently thought.
Collapse
Affiliation(s)
- David M. Snider
- National Water Research Institute, Canada Centre for Inland Waters, Environment Canada, Burlington, ON, L7R 4A6, Canada
- * E-mail: (DMS); (JJV)
| | - Jason J. Venkiteswaran
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- * E-mail: (DMS); (JJV)
| | - Sherry L. Schiff
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - John Spoelstra
- National Water Research Institute, Canada Centre for Inland Waters, Environment Canada, Burlington, ON, L7R 4A6, Canada
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
6
|
Schilt A, Brook EJ, Bauska TK, Baggenstos D, Fischer H, Joos F, Petrenko VV, Schaefer H, Schmitt J, Severinghaus JP, Spahni R, Stocker TF. Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation. Nature 2015; 516:234-7. [PMID: 25503236 DOI: 10.1038/nature13971] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 10/13/2014] [Indexed: 11/09/2022]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas and ozone-depleting substance that has anthropogenic as well as natural marine and terrestrial sources. The tropospheric N2O concentrations have varied substantially in the past in concert with changing climate on glacial-interglacial and millennial timescales. It is not well understood, however, how N2O emissions from marine and terrestrial sources change in response to varying environmental conditions. The distinct isotopic compositions of marine and terrestrial N2O sources can help disentangle the relative changes in marine and terrestrial N2O emissions during past climate variations. Here we present N2O concentration and isotopic data for the last deglaciation, from 16,000 to 10,000 years before present, retrieved from air bubbles trapped in polar ice at Taylor Glacier, Antarctica. With the help of our data and a box model of the N2O cycle, we find a 30 per cent increase in total N2O emissions from the late glacial to the interglacial, with terrestrial and marine emissions contributing equally to the overall increase and generally evolving in parallel over the last deglaciation, even though there is no a priori connection between the drivers of the two sources. However, we find that terrestrial emissions dominated on centennial timescales, consistent with a state-of-the-art dynamic global vegetation and land surface process model that suggests that during the last deglaciation emission changes were strongly influenced by temperature and precipitation patterns over land surfaces. The results improve our understanding of the drivers of natural N2O emissions and are consistent with the idea that natural N2O emissions will probably increase in response to anthropogenic warming.
Collapse
Affiliation(s)
- Adrian Schilt
- 1] College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA [2] Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
| | - Edward J Brook
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Thomas K Bauska
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Daniel Baggenstos
- Scripps Institution of Oceanography, University of California, San Diego, California 92037, USA
| | - Hubertus Fischer
- Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
| | - Fortunat Joos
- Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
| | - Vasilii V Petrenko
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, New York 14627, USA
| | - Hinrich Schaefer
- National Institute of Water and Atmospheric Research, Wellington 6021, New Zealand
| | - Jochen Schmitt
- Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
| | - Jeffrey P Severinghaus
- Scripps Institution of Oceanography, University of California, San Diego, California 92037, USA
| | - Renato Spahni
- Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
| | - Thomas F Stocker
- Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME JOURNAL 2013; 8:1115-25. [PMID: 24225887 DOI: 10.1038/ismej.2013.205] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 10/01/2013] [Accepted: 10/09/2013] [Indexed: 11/09/2022]
Abstract
N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ(15)N(bulk) and δ(18)O -N2O of soil AOA strains were 13-30%, -13 to -35% and 22-36%, respectively, and strains MY1-3 and other soil AOA strains had distinct isotopic signatures. A (15)N-NH4(+)-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA.
Collapse
|
8
|
Kim JG, Jung MY, Park SJ, Rijpstra WIC, Sinninghe Damsté JS, Madsen EL, Min D, Kim JS, Kim GJ, Rhee SK. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. Environ Microbiol 2012; 14:1528-43. [PMID: 22515152 DOI: 10.1111/j.1462-2920.2012.02740.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrification of excess ammonia in soil causes eutrophication of water resources and emission of atmospheric N(2) O gas. The first step of nitrification, ammonia oxidation, is mediated by Archaea as well as Bacteria. The physiological reactions mediated by ammonia-oxidizing archaea (AOA) and their contribution to soil nitrification are still unclear. Results of non-culture-based studies have shown the thaumarchaeotal group I.1b lineage of AOA to be dominant over both AOA of group I.1a and ammonia-oxidizing bacteria in various soils. We obtained from an agricultural soil a highly enriched ammonia-oxidizing culture dominated by a single archaeal population [c. 90% of total cells, as determined microscopically (by fluorescence in situ hybridization) and by quantitative PCR of its 16S rRNA gene]. The archaeon (termed 'strain JG1') fell within thaumarchaeotal group I.1b and was related to the moderately thermophilic archaeon, Candidatus Nitrososphaera gargensis, and the mesophilic archaeon, Ca. Nitrososphaera viennensis with 97.0% and 99.1% 16S rRNA gene sequence similarity respectively. Strain JG1 was neutrophilic (growth range pH 6.0-8.0) and mesophilic (growth range temperature 25-40°C). The optimum temperature of strain JG1 (35-40°C) is > 10°C higher than that of ammonia-oxidizing bacteria (AOB). Membrane analysis showed that strain JG1 contained a glycerol dialkyl glycerol tetraether, GDGT-4, and its regioisomer as major core lipids; this crenarchaeol regioisomer was previously detected in similar abundance in the thermophile, Ca. N. gargensis and has been frequently observed in tropical soils. Substrate uptake assays showed that the affinity of strain JG1 for ammonia and oxygen was much higher than those of AOB. These traits may give a competitive advantage to AOA related to strain JG1 in oligotrophic environments. (13) C-bicarbonate incorporation into archaeal lipids of strain JG1 established its ability to grow autotrophically. Strain JG1 produced a significant amount of N(2) O gas - implicating AOA as a possible source of N(2) O emission from soils. Sequences of archaeal amoA and 16S rRNA genes closely related to those of strain JG1 have been retrieved from various terrestrial environments in which lineage of strain JG1 is likely engaged in autotrophic nitrification.
Collapse
Affiliation(s)
- Jong-Geol Kim
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Appl Environ Microbiol 2011; 77:8635-47. [PMID: 22003023 DOI: 10.1128/aem.05787-11] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soil nitrification is an important process for agricultural productivity and environmental pollution. Though one cultivated representative of ammonia-oxidizing Archaea from soil has been described, additional representatives warrant characterization. We describe an ammonia-oxidizing archaeon (strain MY1) in a highly enriched culture derived from agricultural soil. Fluorescence in situ hybridization microscopy showed that, after 2 years of enrichment, the culture was composed of >90% archaeal cells. Clone libraries of both 16S rRNA and archaeal amoA genes featured a single sequence each. No bacterial amoA genes could be detected by PCR. A [¹³C]bicarbonate assimilation assay showed stoichiometric incorporation of ¹³C into Archaea-specific glycerol dialkyl glycerol tetraethers. Strain MY1 falls phylogenetically within crenarchaeal group I.1a; sequence comparisons to "Candidatus Nitrosopumilus maritimus" revealed 96.9% 16S rRNA and 89.2% amoA gene similarities. Completed growth assays showed strain MY1 to be chemoautotrophic, mesophilic (optimum at 25°C), neutrophilic (optimum at pH 6.5 to 7.0), and nonhalophilic (optimum at 0.2 to 0.4% salinity). Kinetic respirometry assays showed that strain MY1's affinities for ammonia and oxygen were much higher than those of ammonia-oxidizing bacteria (AOB). The yield of the greenhouse gas N₂O in the strain MY1 culture was lower but comparable to that of soil AOB. We propose that this new soil ammonia-oxidizing archaeon be designated "Candidatus Nitrosoarchaeum koreensis."
Collapse
|
10
|
Weiss RF, Prinn RG. Quantifying greenhouse-gas emissions from atmospheric measurements: a critical reality check for climate legislation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:1925-1942. [PMID: 21502167 DOI: 10.1098/rsta.2011.0006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Emissions reduction legislation relies upon 'bottom-up' accounting of industrial and biogenic greenhouse-gas (GHG) emissions at their sources. Yet, even for relatively well-constrained industrial GHGs, global emissions based on 'top-down' methods that use atmospheric measurements often agree poorly with the reported bottom-up emissions. For emissions reduction legislation to be effective, it is essential that these discrepancies be resolved. Because emissions are regulated nationally or regionally, not globally, top-down estimates must also be determined at these scales. High-frequency atmospheric GHG measurements at well-chosen station locations record 'pollution events' above the background values that result from regional emissions. By combining such measurements with inverse methods and atmospheric transport and chemistry models, it is possible to map and quantify regional emissions. Even with the sparse current network of measurement stations and current inverse-modelling techniques, it is possible to rival the accuracies of regional 'bottom-up' emission estimates for some GHGs. But meeting the verification goals of emissions reduction legislation will require major increases in the density and types of atmospheric observations, as well as expanded inverse-modelling capabilities. The cost of this effort would be minor when compared with current investments in carbon-equivalent trading, and would reduce the volatility of that market and increase investment in emissions reduction.
Collapse
Affiliation(s)
- Ray F Weiss
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0244, USA.
| | | |
Collapse
|
11
|
Chen WC, Nanbu S, Marcus RA. Isotopomer fractionation in the UV photolysis of N(2)O: 3. 3D Ab initio surfaces and anharmonic effects. J Phys Chem A 2010; 114:9700-8. [PMID: 20513155 DOI: 10.1021/jp101691r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The wavelength-dependent isotopic fractionation of N(2)O is calculated, extending our previous work, Parts 1 and 2, in several aspects: (1) the fully three-dimensional ab initio electronic potential and transition dipole moment surfaces of S. Nanbu and M. S. Johnson (J. Chem. Phys. A 2004, 108, 8905) are used to calculate the absorption cross sections, instead of a 2D surface and (2) the vibrational frequencies and wave functions with anharmonicity correction are used for the ground electronic state. The results for the absorption spectrum and for the isotopic fractionation of the different isotopomers are discussed. One difference between experiments measuring the absorption coefficient (von Hessberg et al. Atmos. Chem. Phys. 2004, 4, 1237) and the others that measure instead the photodissociation is also discussed. Experiments on the quantum yield for wavelengths longer than 200 nm (>50 000 cm(-1)) would be helpful in treating the observed difference.
Collapse
Affiliation(s)
- Wei-Chen Chen
- Noyes Laboratory, 127-72, California Institute of Technology, Pasadena, California 91125, and Department of Materials & Life Sciences, Faculty of Science & Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | | | | |
Collapse
|
12
|
Source of nitrous oxide emissions during the cow manure composting process as revealed by isotopomer analysis of and amoA abundance in betaproteobacterial ammonia-oxidizing bacteria. Appl Environ Microbiol 2010. [PMID: 20048060 DOI: 10.1128/aem.01394‐09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A molecular analysis of betaproteobacterial ammonia oxidizers and a N(2)O isotopomer analysis were conducted to study the sources of N(2)O emissions during the cow manure composting process. Much NO(2)(-)-N and NO(3)(-)-N and the Nitrosomonas europaea-like amoA gene were detected at the surface, especially at the top of the composting pile, suggesting that these ammonia-oxidizing bacteria (AOB) significantly contribute to the nitrification which occurs at the surface layer of compost piles. However, the (15)N site preference within the asymmetric N(2)O molecule (SP = delta(15)N(alpha) - delta(15)N(beta), where (15)N(alpha) and (15)N(beta) represent the (15)N/(14)N ratios at the center and end sites of the nitrogen atoms, respectively) indicated that the source of N(2)O emissions just after the compost was turned originated mainly from the denitrification process. Based on these results, the reduction of accumulated NO(2)(-)-N or NO(3)(-)-N after turning was identified as the main source of N(2)O emissions. The site preference and bulk delta(15)N results also indicate that the rate of N(2)O reduction was relatively low, and an increased value for the site preference indicates that the nitrification which occurred mainly in the surface layer of the pile partially contributed to N(2)O emissions between the turnings.
Collapse
|
13
|
Source of nitrous oxide emissions during the cow manure composting process as revealed by isotopomer analysis of and amoA abundance in betaproteobacterial ammonia-oxidizing bacteria. Appl Environ Microbiol 2010; 76:1555-62. [PMID: 20048060 DOI: 10.1128/aem.01394-09] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A molecular analysis of betaproteobacterial ammonia oxidizers and a N(2)O isotopomer analysis were conducted to study the sources of N(2)O emissions during the cow manure composting process. Much NO(2)(-)-N and NO(3)(-)-N and the Nitrosomonas europaea-like amoA gene were detected at the surface, especially at the top of the composting pile, suggesting that these ammonia-oxidizing bacteria (AOB) significantly contribute to the nitrification which occurs at the surface layer of compost piles. However, the (15)N site preference within the asymmetric N(2)O molecule (SP = delta(15)N(alpha) - delta(15)N(beta), where (15)N(alpha) and (15)N(beta) represent the (15)N/(14)N ratios at the center and end sites of the nitrogen atoms, respectively) indicated that the source of N(2)O emissions just after the compost was turned originated mainly from the denitrification process. Based on these results, the reduction of accumulated NO(2)(-)-N or NO(3)(-)-N after turning was identified as the main source of N(2)O emissions. The site preference and bulk delta(15)N results also indicate that the rate of N(2)O reduction was relatively low, and an increased value for the site preference indicates that the nitrification which occurred mainly in the surface layer of the pile partially contributed to N(2)O emissions between the turnings.
Collapse
|
14
|
Mahata S, Bhattacharya SK. Anomalous enrichment of 17O and 13C in photodissociation products of CO2: possible role of nuclear spin. J Chem Phys 2009; 130:234312. [PMID: 19548732 DOI: 10.1063/1.3153845] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oxygen and carbon isotope fractionation associated with products (CO and O(2)) of gas phase photodissociation of CO(2) have been studied using photons from Hg lamp (184.9 nm) and Kr lamp (123.6 and 116.5 nm). In dissociation by Hg lamp photons both CO and O(2) are enriched in (17)O by about 81 per thousand compared to the estimate based on a kinetic model. Additionally, CO is enriched in (13)C by about 37 per thousand relative to the model composition. In contrast, in dissociation by higher energy Kr lamp photons no such anomaly was found in O(2). The observed isotopic enrichments in case of Hg lamp dissociation are proposed to be due to a hyperfine interaction between nuclear spin and electron spins or orbital motion causing enhanced dissociation of isotopologues of CO(2) containing (17)O and (13)C. The (17)O enrichment is higher than that of (13)C by a factor of 2.2+/-0.2 which can be explained by the known magnetic moment ratio of (17)O and (13)C due to differing nuclear spins and g-factors. These results have potential implications in studies of the planetary atmospheres.
Collapse
Affiliation(s)
- Sasadhar Mahata
- Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
| | | |
Collapse
|
15
|
Xiong ZQ, Khalil MAK, Xing G, Shearer MJ, Butenhoff C. Isotopic signatures and concentration profiles of nitrous oxide in a rice-based ecosystem during the drained crop-growing season. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jg000827] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Z. Q. Xiong
- College of Resources and Environmental Sciences; Nanjing Agricultural University; Nanjing China
- Department of Physics; Portland State University; Portland Oregon USA
| | - M. A. K. Khalil
- Department of Physics; Portland State University; Portland Oregon USA
| | - G. Xing
- State Key Laboratory of Soil and Sustainable Agriculture; Institute of Soil Science, Chinese Academy of Sciences; Nanjing China
| | - M. J. Shearer
- Department of Physics; Portland State University; Portland Oregon USA
| | - C. Butenhoff
- Department of Physics; Portland State University; Portland Oregon USA
| |
Collapse
|
16
|
Zhu R, Liu Y, Li X, Sun J, Xu H, Sun L. Stable isotope natural abundance of nitrous oxide emitted from Antarctic tundra soils: effects of sea animal excrement depositions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:3570-3578. [PMID: 18932270 DOI: 10.1002/rcm.3762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nitrous oxide (N2O), a greenhouse gas, is mainly emitted from soils during the nitrification and denitrification processes. N2O stable isotope investigations can help to characterize the N2O sources and N2O production mechanisms. N2O isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of N2O emitted from Antarctic tundra ecosystems have been reported although the coastal ice-free tundra around Antarctic continent is the largest sea animal colony on the global scale. Here, we report for the first time stable isotope composition of N2O emitted from Antarctic sea animal colonies (including penguin, seal and skua colonies) and normal tundra soils using in situ field observations and laboratory incubations, and we have analyzed the effects of sea animal excrement depositions on stable isotope natural abundance of N2O. For all the field sites, the soil-emitted N2O was 15N- and 18O-depleted compared with N2O in local ambient air. The mean delta values of the soil-emitted N2O were delta15N = -13.5 +/- 3.2 per thousand and delta18O = 26.2 +/- 1.4 per thousand for the penguin colony, delta15N = -11.5 +/- 5.1 per thousand and delta18O = 26.4 +/- 3.5 per thousand for the skua colony and delta15N = -18.9 +/- 0.7 per thousand and delta18O = 28.8 +/- 1.3 per thousand for the seal colony. In the soil incubations, the isotopic composition of N2O was measured under N2 and under ambient air conditions. The soils incubated under the ambient air emitted very little N2O (2.93 microg N2O--N kg(-1)). Under N2 conditions, much more N2O was formed (9.74 microg N2O--N kg(-1)), and the mean delta15N and delta18O values of N2O were -19.1 +/- 8.0 per thousand and 21.3 +/- 4.3 per thousand, respectively, from penguin colony soils, and -17.0 +/- 4.2 per thousand and 20.6 +/- 3.5 per thousand, respectively, from seal colony soils. The data from in situ field observations and laboratory experiments point to denitrification as the predominant N2O source from Antarctic sea animal colonies.
Collapse
Affiliation(s)
- Renbin Zhu
- Institute of Polar Environment, University of Science and Technology of China, Hefei City, Anhui Province 230026, PR China.
| | | | | | | | | | | |
Collapse
|
17
|
Boontanon N, Ueda S, Wada E. Estimation of pathways of the production of greenhouse gases in the tropical swamp forest in Thailand by stable isotope investigation. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2008; 44:253-265. [PMID: 18763183 DOI: 10.1080/10256010802309764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dynamics of greenhouse gases (N(2)O and CH(4)) with the dry-wet cycle along with the variation of oxidation-reduction boundaries were investigated in the tropical wetland in monsoon Asia. It was clarified that the production of N(2)O and CH(4) was closely related to the development of a redox boundary in the Bang Nara River systems. An intermittent increase in N(2)O was observed at the beginning of the rainy season, when a large amount of easily decomposable organic matter was introduced into the river. After 10 days, when dissolved oxygen was consumed completely at the middle reaches, the emission of CH(4) became maximal due to the possible occurrence of denitrification. The distribution of stable isotope ratios in N(2)O clearly demonstrated that nitrification is the major process for its production. Furthermore, the production of N(2)O in this study area was found to vary in time and space with changes in the redox boundary along the water flow.
Collapse
Affiliation(s)
- Narin Boontanon
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand.
| | | | | |
Collapse
|
18
|
Toyoda S, Yamamoto SI, Arai S, Nara H, Yoshida N, Kashiwakura K, Akiyama KI. Isotopomeric characterization of N2O produced, consumed, and emitted by automobiles. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:603-612. [PMID: 18247408 DOI: 10.1002/rcm.3400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fossil fuel combustion is the second largest anthropogenic source of nitrous oxide (N2O) after agriculture. The estimated global N2O flux from combustion sources, as well as from other sources, still has a large uncertainty. Herein, we characterize automobile sources using N2O isotopomer ratios (nitrogen and oxygen isotope ratios and intramolecular site preference of 15N, SP) to assess their contributions to total global sources and to deconvolute complex production/consumption processes during combustion and subsequent catalytic treatments of exhaust. Car exhaust gases were sampled under running and idling state, and N2O isotopomer ratios were measured by mass spectrometry. The N2O directly emitted from an engine of a vehicle running at constant velocity had almost constant isotopomer ratios (delta15Nbulk = -28.7 +/- 1.2 per thousand, delta18O = 28.6 +/- 3.3 per thousand, and SP = 4.2 +/- 0.8 per thousand) irrespective of the velocity. After passing through catalytic converters, the isotopomer ratios showed an increase which varied with the temperature and the aging of the catalysts. The increase suggests that both production and consumption of N2O occur on the catalyst and that their rates can be comparable. It was noticed that in the idling state, the N2O emitted from a brand new car has higher isotopomer ratios than that from used cars, which indicate that technical improvements in catalytic converters can reduce the N2O from mobile combustion sources. On average, the isotopomeric signatures of N2O finally emitted from automobiles are not sensitive to running/idling states or to aging of the catalysts. Characteristic average isotopomer ratios of N2O from automobile sources are estimated at -4.9 +/- 8.2 per thousand, 43.5 +/- 13.9 per thousand, and 12.2 +/- 9.1 per thousand for delta15Nbulk, delta18O, and SP, respectively.
Collapse
Affiliation(s)
- Sakae Toyoda
- Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Rock L, Ellert BH, Mayer B, Norman AL. Isotopic composition of tropospheric and soil N2O from successive depths of agricultural plots with contrasting crops and nitrogen amendments. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008330] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Ishijima K, Sugawara S, Kawamura K, Hashida G, Morimoto S, Murayama S, Aoki S, Nakazawa T. Temporal variations of the atmospheric nitrous oxide concentration and itsδ15N andδ18O for the latter half of the 20th century reconstructed from firn air analyses. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007208] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Westley MB, Popp BN, Rust TM. The calibration of the intramolecular nitrogen isotope distribution in nitrous oxide measured by isotope ratio mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:391-405. [PMID: 17216596 DOI: 10.1002/rcm.2828] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Two alternative approaches for the calibration of the intramolecular nitrogen isotope distribution in nitrous oxide using isotope ratio mass spectrometry have yielded a difference in the 15N site preference (defined as the difference between the delta15N of the central and end position nitrogen in NNO) of tropospheric N2O of almost 30 per thousand. One approach is based on adding small amounts of labeled 15N2O to the N2O reference gas and tracking the subsequent changes in m/z 30, 31, 44, 45 and 46, and this yields a 15N site preference of 46.3 +/- 1.4 per thousand for tropospheric N2O. The other involves the synthesis of N2O by thermal decomposition of isotopically characterized ammonium nitrate and yields a 15N site preference of 18.7 +/- 2.2 per thousand for tropospheric N2O. Both approaches neglect to fully account for isotope effects associated with the formation of NO+ fragment ions from the different isotopic species of N2O in the ion source of a mass spectrometer. These effects vary with conditions in the ion source and make it impossible to reproduce a calibration based on the addition of isotopically enriched N2O on mass spectrometers with different ion source configurations. These effects have a much smaller impact on the comparison of a laboratory reference gas with N2O synthesized from isotopically characterized ammonium nitrate. This second approach was successfully replicated and leads us to advocate the acceptance of the site preference value 18.7 +/- 2.2 per thousand for tropospheric N2O as the provisional community standard until further independent calibrations are developed and validated. We present a technique for evaluating the isotope effects associated with fragment ion formation and revised equations for converting ion signal ratios into isotopomer ratios.
Collapse
Affiliation(s)
- Marian B Westley
- Department of Oceanography, University of Hawaii, Honolulu, HI, USA
| | | | | |
Collapse
|
22
|
Rhee TS, Brenninkmeijer CAM, Braß M, Brühl C. Isotopic composition of H2
from CH4
oxidation in the stratosphere and the troposphere. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006760] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tae Siek Rhee
- Atmospheric Chemistry Division; Max Planck Institute for Chemistry; Mainz Germany
| | | | - Marc Braß
- Atmospheric Physics Division; Max Planck Institute for Nuclear Physics; Heidelberg Germany
| | - Christoph Brühl
- Atmospheric Chemistry Division; Max Planck Institute for Chemistry; Mainz Germany
| |
Collapse
|
23
|
Pérez T, Garcia-Montiel D, Trumbore S, Tyler S, de Camargo P, Moreira M, Piccolo M, Cerri C. Nitrous oxide nitrification and denitrification 15N enrichment factors from Amazon forest soils. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2006; 16:2153-67. [PMID: 17205894 DOI: 10.1890/1051-0761(2006)016[2153:nonadn]2.0.co;2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The isotopic signatures of 15N and 18O in N2O emitted from tropical soils vary both spatially and temporally, leading to large uncertainty in the overall tropical source signature and thereby limiting the utility of isotopes in constraining the global N2O budget. Determining the reasons for spatial and temporal variations in isotope signatures requires that we know the isotope enrichment factors for nitrification and denitrification, the two processes that produce N2O in soils. We have devised a method for measuring these enrichment factors using soil incubation experiments and report results from this method for three rain forest soils collected in the Brazilian Amazon: soil with differing sand and clay content from the Tapajos National Forest (TNF) near Santarém, Pará, and Nova Vida Farm, Rondônia. The 15N enrichment factors for nitrification and denitrification differ with soil texture and site: -111 per thousand +/- 12 per thousand and -31 per thousand +/- 11 per thousand for a clay-rich Oxisol (TNF), -102 per thousand +/- 5 per thousand and -45 per thousand +/- 5 per thousand for a sandier Ultisol (TNF), and -10.4 per thousand +/- 3.5 per thousand (enrichment factor for denitrification) for another Ultisol (Nova Vida) soil, respectively. We also show that the isotopomer site preference (delta15Nalpha - delta15Nbeta, where alpha indicates the central nitrogen atom and beta the terminal nitrogen atom in N2O) may allow differentiation between processes of production and consumption of N2O and can potentially be used to determine the contributions of nitrification and denitrification. The site preferences for nitrification and denitrification from the TNF-Ultisol incubated soils are: 4.2 per thousand +/- 8.4 per thousand and 31.6 per thousand +/- 8.1 per thousand, respectively. Thus, nitrifying and denitrifying bacteria populations under the conditions of our study exhibit significantly different 15N site preference fingerprints. Our data set strongly suggests that N2O isotopomers can be used in concert with traditional N2O stable isotope measurements as constraints to differentiate microbial N2O processes in soil and will contribute to interpretations of the isotopic site preference N2O values found in the free troposphere.
Collapse
Affiliation(s)
- Tibisay Pérez
- Atmospheric Chemistry Laboratory, Instituto Venezolano de Investigaciones Científicas (IVIC) Apartado 21827, Caracas 1020-A, Venezuela.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Röckmann T, Levin I. High-precision determination of the changing isotopic composition of atmospheric N2O from 1990 to 2002. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005jd006066] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Prakash MK, Weibel JD, Marcus RA. Isotopomer fractionation in the UV photolysis of N2O: Comparison of theory and experiment. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005jd006127] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Morgan CG, Allen M, Liang MC, Shia RL, Blake GA, Yung YL. Isotopic fractionation of nitrous oxide in the stratosphere: Comparison between model and observations. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd003402] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- C. G. Morgan
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | - M. Allen
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | - M. C. Liang
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | - R. L. Shia
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | - G. A. Blake
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | - Y. L. Yung
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| |
Collapse
|
27
|
Park S. Measurements of N2O isotopologues in the stratosphere: Influence of transport on the apparent enrichment factors and the isotopologue fluxes to the troposphere. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd003731] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Toyoda S. Temporal and latitudinal distributions of stratospheric N2O isotopomers. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004316] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Liang MC. A semianalytic model for photo-induced isotopic fractionation in simple molecules. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004jd004539] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Brenninkmeijer CAM, Janssen C, Kaiser J, Röckmann T, Rhee TS, Assonov SS. Isotope Effects in the Chemistry of Atmospheric Trace Compounds. Chem Rev 2003; 103:5125-62. [PMID: 14664646 DOI: 10.1021/cr020644k] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
McLinden CA. Global modeling of the isotopic analogues of N2O: Stratospheric distributions, budgets, and the17O–18O mass-independent anomaly. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd002560] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Röckmann T, Kaiser J, Brenninkmeijer CAM, Brand WA. Gas chromatography/isotope-ratio mass spectrometry method for high-precision position-dependent 15N and 18O measurements of atmospheric nitrous oxide. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:1897-1908. [PMID: 12876691 DOI: 10.1002/rcm.1132] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We describe an automated gas chromatography/isotope-ratio mass spectrometry (GC/IRMS) method for the determination of the (18)O and position-resolved (15)N content of nitrous oxide at natural isotope abundance. The position information is obtained from successive measurement of the isotopic composition of the N(2)O(+) ion at m/z 44, 45, 46 and the NO(+) fragment ion at m/z 30, 31. The fragment ion analysis is complicated by a non-linearity in the mass spectrometer that has to be taken into account. Evaluation of the absolute peak areas allows for a simultaneous determination of the N(2)O mixing ratio for atmospheric samples. Samples with mixing ratios ranging from a few nmol/mol up to the percent level can be analyzed using different sample inlet systems. The high concentration inlet system provides an easy and quick method to carry out various diagnostic tests, in particular to perform realistic linearity tests. A gas chromatographic set-up with a split column and a backflush possibility improves analytical precision and excludes interferences by substances with long retention times from preceding runs. We also describe a new open split interface that uses only a single transfer capillary to the mass spectrometer for sample and reference gas.
Collapse
Affiliation(s)
- Thomas Röckmann
- Max-Planck-Institut für Kernphysik, Bereich Atmosphärenphysik, Heidelberg, Germany.
| | | | | | | |
Collapse
|
33
|
Zieliński M, Zielińska A, Papiernik-Zielińska H, Yankwich PE. Nitrogen-15 fractionation in the thermal decomposition of nitrous oxide of natural isotopic composition. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2002; 38:159-172. [PMID: 12546411 DOI: 10.1080/10256010208033323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The 15N fractionation in the thermal decomposition of nitrous oxide (N2O) of natural isotopic composition has been investigated in quartz reaction vessel in the temperature interval 888-1073 K. The formulas relating the observed experimentally 15N fractionations with the primary 15N kinetic isotope effect, (k14/k15)p for 14N15N16O, and secondary 15N kinetic isotope effect, (k14/k15)s for 15N14N16O, have been derived. The experimentally estimated 15N kinetic isotope effects have been compared with the primary and secondary 15N kinetic isotope effects calculated with the absolute rate theory formulations applied to linear three atom molecules. A good agreement was found for the primary 15N kinetic isotope effect, (k14/k15)p, in the temperature interval 888-1007 K. But at 1073 K the decompositions of N2O, accompanied by NO (nitric oxide) formation proceed with a twice times smaller primary kinetic isotope effect, (k14/k15)p of 1.0251 +/- 0.0009, only, suggesting the nonlinear transition state structures with participation of the fourth external atom at high temperature decompositions of nitrous oxide. The nitrogen isotope effects determined in this study correlate well with nitrogen isotope fractionations observed in the natural biological, earth and atmospheric processes.
Collapse
Affiliation(s)
- M Zieliński
- Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | | | | | | |
Collapse
|
34
|
Estupiñán EG, Nicovich JM, Li J, Cunnold DM, Wine PH. Investigation of N2O Production from 266 and 532 nm Laser Flash Photolysis of O3/N2/O2 Mixtures. J Phys Chem A 2002. [DOI: 10.1021/jp014242c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- E. G. Estupiñán
- School of Earth and Atmospheric Sciences and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - J. M. Nicovich
- School of Earth and Atmospheric Sciences and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - J. Li
- School of Earth and Atmospheric Sciences and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - D. M. Cunnold
- School of Earth and Atmospheric Sciences and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - P. H. Wine
- School of Earth and Atmospheric Sciences and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
35
|
Kaiser J, Röckmann T, Brenninkmeijer CAM. Temperature dependence of isotope fractionation in N2O photolysis. Phys Chem Chem Phys 2002. [DOI: 10.1039/b204837j] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Kaiser J. Intramolecular15N and18O fractionation in the reaction of N2O with O(1D) and its implications for the stratospheric N2O isotope signature. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2001jd001506] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Bustos E, Velasco AM, Martín I, Lavín C. Photoabsorption of Nitrous Oxide through Rydberg States in the Bound and Continuum Spectral Regions: Main Ionization Channels. J Phys Chem A 2001. [DOI: 10.1021/jp012678m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E. Bustos
- Departamento de Química Física, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid, Spain
| | - A. M. Velasco
- Departamento de Química Física, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid, Spain
| | - I. Martín
- Departamento de Química Física, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid, Spain
| | - C. Lavín
- Departamento de Química Física, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
38
|
Sowers T. N2O record spanning the penultimate deglaciation from the Vostok ice core. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jd900707] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Johnson MS, Billing GD, Gruodis A, Janssen MHM. Photolysis of Nitrous Oxide Isotopomers Studied by Time-Dependent Hermite Propagation. J Phys Chem A 2001. [DOI: 10.1021/jp011449x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew S. Johnson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark, Department of General Physics and Spectroscopy, University of Vilnius, Sauletekio 9, b. 3, 2040 Vilnius, Lithuania, and Laser Centre and Department of Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Gert Due Billing
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark, Department of General Physics and Spectroscopy, University of Vilnius, Sauletekio 9, b. 3, 2040 Vilnius, Lithuania, and Laser Centre and Department of Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Alytis Gruodis
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark, Department of General Physics and Spectroscopy, University of Vilnius, Sauletekio 9, b. 3, 2040 Vilnius, Lithuania, and Laser Centre and Department of Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Maurice H. M. Janssen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark, Department of General Physics and Spectroscopy, University of Vilnius, Sauletekio 9, b. 3, 2040 Vilnius, Lithuania, and Laser Centre and Department of Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
40
|
Łapiński A, Spanget-Larsen J, Waluk J, Radziszewski JG. Vibrations of nitrous oxide: Matrix isolation Fourier transform infrared spectroscopy of twelve N2O isotopomers. J Chem Phys 2001. [DOI: 10.1063/1.1383031] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Pérez T, Trumbore SE, Tyler SC, Matson PA, Ortiz-Monasterio I, Rahn T, Griffith DWT. Identifying the agricultural imprint on the global N2O budget using stable isotopes. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jd900809] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Röckmann T, Kaiser J, Brenninkmeijer CAM, Crowley JN, Borchers R, Brand WA, Crutzen PJ. Isotopic enrichment of nitrous oxide (15N14NO,14N15NO,14N14N18O) in the stratosphere and in the laboratory. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jd900822] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Toyoda S, Yoshida N, Urabe T, Aoki S, Nakazawa T, Sugawara S, Honda H. Fractionation of N2O isotopomers in the stratosphere. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jd900680] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Estupiñán E, Stickel R, Wine P. An investigation of N2O production from quenching of OH(A2Σ+) by N2. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)00082-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
|
46
|
|
47
|
Lal S, Sheel V. A study of the atmospheric photochemical loss of N2O based on trace gas measurements. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1465-9972(00)00043-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Mandernack KW, Rahn T, Kinney C, Wahlen M. The biogeochemical controls of the δ15N and δ18O of N2O produced in landfill cover soils. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/2000jd900055] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Estupiñán E, Stickel R, Wine P. Is quenching of electronically excited NO2 by N2 an important atmospheric source of N2O? ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1465-9972(00)00014-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
|