1
|
Tai PWL, Zaidi SK, Wu H, Grandy RA, Montecino MM, van Wijnen AJ, Lian JB, Stein GS, Stein JL. The dynamic architectural and epigenetic nuclear landscape: developing the genomic almanac of biology and disease. J Cell Physiol 2014; 229:711-27. [PMID: 24242872 PMCID: PMC3996806 DOI: 10.1002/jcp.24508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
Abstract
Compaction of the eukaryotic genome into the confined space of the cell nucleus must occur faithfully throughout each cell cycle to retain gene expression fidelity. For decades, experimental limitations to study the structural organization of the interphase nucleus restricted our understanding of its contributions towards gene regulation and disease. However, within the past few years, our capability to visualize chromosomes in vivo with sophisticated fluorescence microscopy, and to characterize chromosomal regulatory environments via massively parallel sequencing methodologies have drastically changed how we currently understand epigenetic gene control within the context of three-dimensional nuclear structure. The rapid rate at which information on nuclear structure is unfolding brings challenges to compare and contrast recent observations with historic findings. In this review, we discuss experimental breakthroughs that have influenced how we understand and explore the dynamic structure and function of the nucleus, and how we can incorporate historical perspectives with insights acquired from the ever-evolving advances in molecular biology and pathology.
Collapse
Affiliation(s)
- Phillip W. L. Tai
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Sayyed K. Zaidi
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Hai Wu
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Rodrigo A. Grandy
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Martin M. Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - André J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Jane B. Lian
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Gary S. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Janet L. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| |
Collapse
|
2
|
|
3
|
Malyavantham KS, Bhattacharya S, Barbeitos M, Mukherjee L, Xu J, Fackelmayer FO, Berezney R. Identifying functional neighborhoods within the cell nucleus: proximity analysis of early S-phase replicating chromatin domains to sites of transcription, RNA polymerase II, HP1gamma, matrin 3 and SAF-A. J Cell Biochem 2009; 105:391-403. [PMID: 18618731 DOI: 10.1002/jcb.21834] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Higher order chromatin organization in concert with epigenetic regulation is a key process that determines gene expression at the global level. The organization of dynamic chromatin domains and their associated protein factors is intertwined with nuclear function to create higher levels of functional zones within the cell nucleus. As a step towards elucidating the organization and dynamics of these functional zones, we have investigated the spatial proximities among a constellation of functionally related sites that are found within euchromatic regions of the cell nucleus including: HP1gamma, nascent transcript sites (TS), active DNA replicating sites in early S-phase (PCNA) and RNA polymerase II sites. We report close associations among these different sites with proximity values specific for each combination. Analysis of matrin 3 and SAF-A sites demonstrates that these nuclear matrix proteins are highly proximal with the functionally related sites as well as to each other and display closely aligned and overlapping regions following application of the minimal spanning tree (MST) algorithm to visualize higher order network-like patterns. Our findings suggest that multiple factors within the nuclear microenvironment collectively form higher order combinatorial arrays of function. We propose a model for the organization of these functional neighborhoods which takes into account the proximity values of the individual sites and their spatial organization within the nuclear architecture.
Collapse
|
4
|
Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc Natl Acad Sci U S A 2008; 105:19199-204. [PMID: 19052240 DOI: 10.1073/pnas.0810634105] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the role of liganded nuclear receptors in mediating coactivator/corepressor exchange is well-established, little is known about the potential regulation of chromosomal organization in the 3-dimensional space of the nucleus in achieving integrated transcriptional responses to diverse signaling events. Here, we report that ligand induces rapid interchromosomal interactions among specific subsets of estrogen receptor alpha-bound transcription units, with a dramatic reorganization of nuclear territories, which depends on the actions of nuclear actin/myosin-I machinery and dynein light chain 1. The histone lysine demethylase, LSD1, is required for these ligand-induced interactive loci to associate with distinct interchromatin granules, long thought to serve as "storage" sites for the splicing machinery, some critical transcription elongation factors, and various chromatin remodeling complexes. We demonstrate that this 2-step nuclear rearrangement is essential for achieving enhanced, coordinated transcription of nuclear receptor target genes.
Collapse
|
5
|
Spatio-temporal dynamics of replication and transcription sites in the mammalian cell nucleus. Chromosoma 2008; 117:553-67. [PMID: 18600338 DOI: 10.1007/s00412-008-0172-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 12/16/2022]
Abstract
To study when and where active genes replicated in early S phase are transcribed, a series of pulse-chase experiments are performed to label replicating chromatin domains (RS) in early S phase and subsequently transcription sites (TS) after chase periods of 0 to 24 h. Surprisingly, transcription activity throughout these chase periods did not show significant colocalization with early RS chromatin domains. Application of novel image segmentation and proximity algorithms, however, revealed close proximity of TS with the labeled chromatin domains independent of chase time. In addition, RNA polymerase II was highly proximal and showed significant colocalization with both TS and the chromatin domains. Based on these findings, we propose that chromatin activated for transcription dynamically unfolds or "loops out" of early RS chromatin domains where it can interact with RNA polymerase II and other components of the transcriptional machinery. Our results further suggest that the early RS chromatin domains are transcribing genes throughout the cell cycle and that multiple chromatin domains are organized around the same transcription factory.
Collapse
|
6
|
Chakalova L, Debrand E, Mitchell JA, Osborne CS, Fraser P. Replication and transcription: shaping the landscape of the genome. Nat Rev Genet 2006; 6:669-77. [PMID: 16094312 DOI: 10.1038/nrg1673] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
As the relationship between nuclear structure and function begins to unfold, a picture is emerging of a dynamic landscape that is centred on the two main processes that execute the regulated use and propagation of the genome. Rather than being subservient enzymatic activities, the replication and transcriptional machineries provide potent forces that organize the genome in three-dimensional nuclear space. Their activities provide opportunities for epigenetic changes that are required for differentiation and development. In addition, they impose physical constraints on the genome that might help to shape its evolution.
Collapse
Affiliation(s)
- Lyubomira Chakalova
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Berezney R, Malyavantham KS, Pliss A, Bhattacharya S, Acharya R. Spatio-temporal dynamics of genomic organization and function in the mammalian cell nucleus. ACTA ACUST UNITED AC 2005; 45:17-26. [PMID: 16139341 DOI: 10.1016/j.advenzreg.2005.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ronald Berezney
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | |
Collapse
|
8
|
Shimizu N, Shingaki K. Macroscopic folding and replication of the homogeneously staining region in late S phase leads to the appearance of replication bands in mitotic chromosomes. J Cell Sci 2004; 117:5303-12. [PMID: 15454579 DOI: 10.1242/jcs.01414] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chromosomal G/R bands are alternating domains differing in their nucleotide sequence biases. The bands are also related to the time of replication: pulse-labeling during S phase makes the replication sites as visible as replication bands that are close to the G/R bands in mitotic chromosomes. We previously showed that a plasmid bearing a mammalian replication origin efficiently generated a chromosomal homogeneously staining region (HSR). Here, we analyze the replication of this artificial HSR and show that it was replicated at the last stage of S phase. The HSR was composed of plasmid repeats only; nonetheless, we found that replication sites pulse-labeled during late S phase appeared as bands in the mitotic HSR and their number was dependent on the length of the HSR. Therefore, replication bands might not arise from sequence information per se. To understand the chronological order of appearance of replication sites, we performed a double pulse-chase experiment using IdU and CldU. Replication of the entire HSR required 100-120 minutes. During this period, the replicated sites appeared as bands at the first and last stages, but in between were apparently scattered along the entire HSR. An analysis of S-phase nuclei revealed that the replication started at the periphery of the globular HSR domain, followed by initiation in the internal domain. The replicated HSR appeared as a ring or a pair of extended spirals in late G2-phase nuclei. To account for these findings, we present a model in which the HSR is folded as a coiled-coil structure that is replicated from the outside to the inside in S phase nuclei.
Collapse
Affiliation(s)
- Noriaki Shimizu
- Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, 739-8521, Japan.
| | | |
Collapse
|
9
|
Abstract
DNA replication is the process by which cells make one complete copy of their genetic information before cell division. In bacteria, readily identifiable DNA sequences constitute the start sites or origins of DNA replication. In eukaryotes, replication origins have been difficult to identify. In some systems, any DNA sequence can promote replication, but other systems require specific DNA sequences. Despite these disparities, the proteins that regulate replication are highly conserved from yeast to humans. The resolution may lie in a current model for once-per-cell-cycle regulation of eukaryotic replication that does not require defined origin sequences. This model implies that the specification of precise origins is a response to selective pressures that transcend those of once-per-cell-cycle replication, such as the coordination of replication with other chromosomal functions. Viewed in this context, the locations of origins may be an integral part of the functional organization of eukaryotic chromosomes.
Collapse
Affiliation(s)
- D M Gilbert
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
10
|
Hanzálek P, Kypr J. Tertiary structures of the Escherichia coli and human chromosome 21 molecules of DNA. Biochem Biophys Res Commun 2001; 283:219-23. [PMID: 11322791 DOI: 10.1006/bbrc.2001.4755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using the NDB database, we calculated geometrical parameters that were needed to reproduce crystal structures of short DNA fragments in a phosphorus atom representation. The geometrical parameters were included in a software generating tertiary structures of, for example, the Escherichia coli and human chromosome 21 molecules of DNA whose complete nucleotide sequences are deposited in the EMBL and related databases. Both molecules were found to be heavily folded and composed of domains. A more elaborate version of the present approach will make analysis and comparison possible of tertiary structures of genomic DNA molecules of various chromosomes to identify the chromosome evolutionary and functional relationships.
Collapse
Affiliation(s)
- P Hanzálek
- Institute of Biophysics of the Academy of Sciences of the Czech Republic, Královopolská 135, Brno, CZ-61265, Czech Republic
| | | |
Collapse
|
11
|
Tang L, Guo B, Javed A, Choi JY, Hiebert S, Lian JB, van Wijnen AJ, Stein JL, Stein GS, Zhou GW. Crystal structure of the nuclear matrix targeting signal of the transcription factor acute myelogenous leukemia-1/polyoma enhancer-binding protein 2alphaB/core binding factor alpha2. J Biol Chem 1999; 274:33580-6. [PMID: 10559245 DOI: 10.1074/jbc.274.47.33580] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors of the acute myelogenous leukemia (AML)/polyoma enhancer-binding protein (PEBP2alpha)/core-binding factor alpha (CBFA) class are key transactivators of tissue-specific genes of the hematopoietic and bone lineages. AML-1/PEBP2alphaB/CBFA2 proteins participating in transcription are associated with the nuclear matrix. This association is solely dependent on a highly conserved C-terminal protein segment, designated the nuclear matrix targeting signal (NMTS). The NMTS of AML-1 is physically distinct from the nuclear localization signal, operates autonomously, and supports transactivation. Our data indicate that the related AML-3 and AML-2 proteins are also targeted to the nuclear matrix in situ by analogous C-terminal domains. Here we report the first crystal structure of an NMTS in an AML-1 segment fused to glutathione S-transferase. The model of the NMTS consists of two loops connected by a flexible U-shaped peptide chain.
Collapse
Affiliation(s)
- L Tang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Berezney R, Wei X. The new paradigm: Integrating genomic function and nuclear architecture. J Cell Biochem 1998; 72:238-242. [DOI: 10.1002/(sici)1097-4644(1998)72:30/31+<238::aid-jcb29>3.0.co;2-f] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/1998] [Accepted: 10/29/1998] [Indexed: 11/06/2022]
|