1
|
Aguilar GR, Vidal B, Ji H, Evenblij J, Liao CP, Ji H, Valperga G, Fang-Yen C, Hobert O. Functional analysis of conserved C. elegans bHLH family members uncovers lifespan control by a peptidergic hub neuron. PLoS Biol 2025; 23:e3002979. [PMID: 39761329 PMCID: PMC11703107 DOI: 10.1371/journal.pbio.3002979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025] Open
Abstract
Throughout the animal kingdom, several members of the basic helix-loop-helix (bHLH) family act as proneural genes during early steps of nervous system development. Roles of bHLH genes in specifying terminal differentiation of postmitotic neurons have been less extensively studied. We analyze here the function of 5 Caenorhabditis elegans bHLH genes, falling into 3 phylogenetically conserved subfamilies, which are continuously expressed in a very small number of postmitotic neurons in the central nervous system. We show (a) that 2 orthologs of the vertebrate bHLHe22/e23 genes, called hlh-17 and hlh-32, function redundantly to specify the identity of a single head interneuron class (AUA), as well as an individual motor neuron (VB2); (b) that the PTF1a ortholog hlh-13 acts as a terminal selector to control terminal differentiation and function of the sole octopaminergic neuron class in C. elegans, RIC; and (c) that the NHLH1/2 ortholog hlh-15 controls terminal differentiation and function of the peptidergic AVK head interneuron class, a known neuropeptidergic signaling hub in the animal. Strikingly, through null mutant analysis and cell-specific rescue experiments, we find that loss of hlh-15/NHLH in the peptidergic AVK neurons and the resulting abrogation of neuropeptide secretion from these neurons causes a substantially extended lifespan of the animal, which we propose to be akin to hypothalamic control of lifespan in vertebrates. Our functional analysis reveals themes of bHLH gene function during terminal differentiation that are complementary to the earlier lineage specification roles of other bHLH family members. However, such late functions are much more sparsely employed by members of the bHLH transcription factor family, compared to the function of the much more broadly employed homeodomain transcription factor family.
Collapse
Affiliation(s)
- G. Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Hongzhu Ji
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Joke Evenblij
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
- Technische Universität, Braunschweig, Germany
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Hongfei Ji
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Giulio Valperga
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Christopher Fang-Yen
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| |
Collapse
|
2
|
Harel Y, Nasser RA, Stern S. Mapping the developmental structure of stereotyped and individual-unique behavioral spaces in C. elegans. Cell Rep 2024; 43:114683. [PMID: 39196778 PMCID: PMC11422485 DOI: 10.1016/j.celrep.2024.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/31/2024] [Accepted: 08/09/2024] [Indexed: 08/30/2024] Open
Abstract
Developmental patterns of behavior are variably organized in time and among different individuals. However, long-term behavioral diversity was previously studied using pre-defined behavioral parameters, representing a limited fraction of the full individuality structure. Here, we continuously extract ∼1.2 billion body postures of ∼2,200 single C. elegans individuals throughout their full development time to create a complete developmental atlas of stereotyped and individual-unique behavioral spaces. Unsupervised inference of low-dimensional movement modes of each single individual identifies a dynamic developmental trajectory of stereotyped behavioral spaces and exposes unique behavioral trajectories of individuals that deviate from the stereotyped patterns. Moreover, classification of behavioral spaces within tens of neuromodulatory and environmentally perturbed populations shows plasticity in the temporal structures of stereotyped behavior and individuality. These results present a comprehensive atlas of continuous behavioral dynamics across development time and a general framework for unsupervised dissection of shared and unique developmental signatures of behavior.
Collapse
Affiliation(s)
- Yuval Harel
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Reemy Ali Nasser
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shay Stern
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
3
|
Aguilar GR, Vidal B, Ji H, Evenblij J, Ji H, Valperga G, Liao CP, Fang-Yen C, Hobert O. Functional analysis of conserved C. elegans bHLH family members uncovers lifespan control by a peptidergic hub neuron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603289. [PMID: 39071424 PMCID: PMC11275782 DOI: 10.1101/2024.07.12.603289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Throughout the animal kingdom, several members of the basic helix-loop-helix (bHLH) family act as proneural genes during early steps of nervous system development. Roles of bHLH genes in specifying terminal differentiation of postmitotic neurons have been less extensively studied. We analyze here the function of five C. elegans bHLH genes, falling into three phylogenetically conserved subfamilies, which are continuously expressed in a very small number of postmitotic neurons in the central nervous system. We show (a) that two orthologs of the vertebrate bHLHb4/b5 genes, called hlh-17 and hlh-32, function redundantly to specify the identity of a single head interneuron (AUA), as well as an individual motor neuron (VB2), (b) that the PTF1a ortholog hlh-13 acts as a terminal selector to control terminal differentiation and function of the sole octopaminergic neuron class in C. elegans, RIC, and (c) that the NHLH1/2 ortholog hlh-15 controls terminal differentiation and function of the peptidergic AVK head interneuron class, a known neuropeptidergic signaling hub in the animal. Strikingly, through null mutant analysis and cell-specific rescue experiments, we find that loss of hlh-15/NHLH in the peptidergic AVK neurons and the resulting abrogation of neuropeptide secretion causes a substantially expanded lifespan of the animal, revealing an unanticipated impact of a central, peptidergic hub neuron in regulating lifespan, which we propose to be akin to hypothalamic control of lifespan in vertebrates. Taken together, our functional analysis reveals themes of bHLH gene function during terminal differentiation that are complementary to the earlier lineage specification roles of other bHLH family members. However, such late functions are much more sparsely employed by members of the bHLH transcription factor family, compared to the function of the much more broadly employed homeodomain transcription factor family.
Collapse
Affiliation(s)
- G. Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Hongzhu Ji
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Joke Evenblij
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
- Technische Universität, Braunschweig, Germany
| | - Hongfei Ji
- Department of Biomedical Engineering, Ohio State University, Columbus, OH
| | - Giulio Valperga
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | | | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| |
Collapse
|
4
|
Schulreich SM, Salamanca-Díaz DA, Zieger E, Calcino AD, Wanninger A. A mosaic of conserved and novel modes of gene expression and morphogenesis in mesoderm and muscle formation of a larval bivalve. ORG DIVERS EVOL 2022; 22:893-913. [PMID: 36398106 PMCID: PMC9649484 DOI: 10.1007/s13127-022-00569-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
Abstract
The mesoderm gives rise to several key morphological features of bilaterian animals including endoskeletal elements and the musculature. A number of regulatory genes involved in mesoderm and/or muscle formation (e.g., Brachyury (Bra), even-skipped (eve), Mox, myosin II heavy chain (mhc)) have been identified chiefly from chordates and the ecdysozoans Drosophila and Caenorhabditis elegans, but data for non-model protostomes, especially those belonging to the ecdysozoan sister clade, Lophotrochozoa (e.g., flatworms, annelids, mollusks), are only beginning to emerge. Within the lophotrochozoans, Mollusca constitutes the most speciose and diverse phylum. Interestingly, however, information on the morphological and molecular underpinnings of key ontogenetic processes such as mesoderm formation and myogenesis remains scarce even for prominent molluscan sublineages such as the bivalves. Here, we investigated myogenesis and developmental expression of Bra, eve, Mox, and mhc in the quagga mussel Dreissena rostriformis, an invasive freshwater bivalve and an emerging model in invertebrate evodevo. We found that all four genes are expressed during mesoderm formation, but some show additional, individual sites of expression during ontogeny. While Mox and mhc are involved in early myogenesis, eve is also expressed in the embryonic shell field and Bra is additionally present in the foregut. Comparative analysis suggests that Mox has an ancestral role in mesoderm and possibly muscle formation in bilaterians, while Bra and eve are conserved regulators of mesoderm development of nephrozoans (protostomes and deuterostomes). The fully developed Dreissena veliger larva shows a highly complex muscular architecture, supporting a muscular ground pattern of autobranch bivalve larvae that includes at least a velum muscle ring, three or four pairs of velum retractors, one or two pairs of larval retractors, two pairs of foot retractors, a pedal plexus, possibly two pairs of mantle retractors, and the muscles of the pallial line, as well as an anterior and a posterior adductor. As is typical for their molluscan kin, remodelling and loss of prominent larval features such as the velum musculature and various retractor systems appear to be also common in bivalves. Supplementary information The online version contains supplementary material available at 10.1007/s13127-022-00569-5.
Collapse
Affiliation(s)
- Stephan M. Schulreich
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - David A. Salamanca-Díaz
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Elisabeth Zieger
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Andrew D. Calcino
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Andreas Wanninger
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
5
|
Zhu A, Zheng F, Zhang W, Li L, Li Y, Hu H, Wu Y, Bao W, Li G, Wang Q, Li H. Oxidation and Antioxidation of Natural Products in the Model Organism Caenorhabditiselegans. Antioxidants (Basel) 2022; 11:antiox11040705. [PMID: 35453390 PMCID: PMC9029379 DOI: 10.3390/antiox11040705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Natural products are small molecules naturally produced by multiple sources such as plants, animals, fungi, bacteria and archaea. They exert both beneficial and detrimental effects by modulating biological targets and pathways involved in oxidative stress and antioxidant response. Natural products’ oxidative or antioxidative properties are usually investigated in preclinical experimental models, including virtual computing simulations, cell and tissue cultures, rodent and nonhuman primate animal models, and human studies. Due to the renewal of the concept of experimental animals, especially the popularization of alternative 3R methods for reduction, replacement and refinement, many assessment experiments have been carried out in new alternative models. The model organism Caenorhabditis elegans has been used for medical research since Sydney Brenner revealed its genetics in 1974 and has been introduced into pharmacology and toxicology in the past two decades. The data from C. elegans have been satisfactorily correlated with traditional experimental models. In this review, we summarize the advantages of C. elegans in assessing oxidative and antioxidative properties of natural products and introduce methods to construct an oxidative damage model in C. elegans. The biomarkers and signaling pathways involved in the oxidative stress of C. elegans are summarized, as well as the oxidation and antioxidation in target organs of the muscle, nervous, digestive and reproductive systems. This review provides an overview of the oxidative and antioxidative properties of natural products based on the model organism C. elegans.
Collapse
Affiliation(s)
- An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Wenjing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wenqiang Bao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Guojun Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
- School of Public Health, Capital Medical University, Beijing 100069, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| |
Collapse
|
6
|
Vidal B, Gulez B, Cao WX, Leyva-Diaz E, Reilly MB, Tekieli T, Hobert O. The enteric nervous system of the C. elegans pharynx is specified by the Sine oculis-like homeobox gene ceh-34. eLife 2022; 11:76003. [PMID: 35324425 PMCID: PMC8989417 DOI: 10.7554/elife.76003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Overarching themes in the terminal differentiation of the enteric nervous system, an autonomously acting unit of animal nervous systems, have so far eluded discovery. We describe here the overall regulatory logic of enteric nervous system differentiation of the nematode Caenorhabditis elegans that resides within the foregut (pharynx) of the worm. A C. elegans homolog of the Drosophila Sine oculis homeobox gene, ceh-34, is expressed in all 14 classes of interconnected pharyngeal neurons from their birth throughout their life time, but in no other neuron type of the entire animal. Constitutive and temporally controlled ceh-34 removal shows that ceh-34 is required to initiate and maintain the neuron type-specific terminal differentiation program of all pharyngeal neuron classes, including their circuit assembly. Through additional genetic loss of function analysis, we show that within each pharyngeal neuron class, ceh-34 cooperates with different homeodomain transcription factors to individuate distinct pharyngeal neuron classes. Our analysis underscores the critical role of homeobox genes in neuronal identity specification and links them to the control of neuronal circuit assembly of the enteric nervous system. Together with the pharyngeal nervous system simplicity as well as its specification by a Sine oculis homolog, our findings invite speculations about the early evolution of nervous systems.
Collapse
Affiliation(s)
- Berta Vidal
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Burcu Gulez
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Wen Xi Cao
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Eduardo Leyva-Diaz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Molly B Reilly
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Tessa Tekieli
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
7
|
Sachslehner A, Zieger E, Calcino A, Wanninger A. HES and Mox genes are expressed during early mesoderm formation in a mollusk with putative ancestral features. Sci Rep 2021; 11:18030. [PMID: 34504115 PMCID: PMC8429573 DOI: 10.1038/s41598-021-96711-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/13/2021] [Indexed: 11/08/2022] Open
Abstract
The mesoderm is considered the youngest of the three germ layers. Although its morphogenesis has been studied in some metazoans, the molecular components underlying this process remain obscure for numerous phyla including the highly diverse Mollusca. Here, expression of Hairy and enhancer of split (HES), Mox, and myosin heavy chain (MHC) was investigated in Acanthochitona fascicularis, a representative of Polyplacophora with putative ancestral molluscan features. While AfaMHC is expressed throughout myogenesis, AfaMox1 is only expressed during early stages of mesodermal band formation and in the ventrolateral muscle, an autapomorphy of the polyplacophoran trochophore. Comparing our findings to previously published data across Metazoa reveals Mox expression in the mesoderm in numerous bilaterians including gastropods, polychaetes, and brachiopods. It is also involved in myogenesis in molluscs, annelids, tunicates, and craniates, suggesting a dual role of Mox in mesoderm and muscle formation in the last common bilaterian ancestor. AfaHESC2 is expressed in the ectoderm of the polyplacophoran gastrula and later in the mesodermal bands and in putative neural tissue, whereas AfaHESC7 is expressed in the trochoblasts of the gastrula and during foregut formation. This confirms the high developmental variability of HES gene expression and demonstrates that Mox and HES genes are pleiotropic.
Collapse
Affiliation(s)
- Attila Sachslehner
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Elisabeth Zieger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Andrew Calcino
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Andreas Wanninger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Marín I. Tumor Necrosis Factor Superfamily: Ancestral Functions and Remodeling in Early Vertebrate Evolution. Genome Biol Evol 2020; 12:2074-2092. [PMID: 33210144 PMCID: PMC7674686 DOI: 10.1093/gbe/evaa140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
The evolution of the tumor necrosis factor superfamily (TNFSF) in early vertebrates is inferred by comparing the TNFSF genes found in humans and nine fishes: three agnathans, two chondrichthyans, three actinopterygians, and the sarcopterygian Latimeria chalumnae. By combining phylogenetic and synteny analyses, the TNFSF sequences detected are classified into five clusters of genes and 24 orthology groups. A model for their evolution since the origin of vertebrates is proposed. Fifteen TNFSF genes emerged from just three progenitors due to the whole-genome duplications (WGDs) that occurred before the agnathan/gnathostome split. Later, gnathostomes not only kept most of the genes emerged in the WGDs but soon added several tandem duplicates. More recently, complex, lineage-specific patterns of duplications and losses occurred in different gnathostome lineages. In agnathan species only seven to eight TNFSF genes are detected, because this lineage soon lost six of the genes emerged in the ancestral WGDs and additional losses in both hagfishes and lampreys later occurred. The orthologs of many of these lost genes are, in mammals, ligands of death-domain-containing TNFSF receptors, indicating that the extrinsic apoptotic pathway became simplified in the agnathan lineage. From the patterns of emergence of these genes, it is deduced that both the regulation of apoptosis and the control of the NF-κB pathway that depends in modern mammals on TNFSF members emerged before the ancestral vertebrate WGDs.
Collapse
Affiliation(s)
- Ignacio Marín
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| |
Collapse
|
9
|
Wong SS, Yu J, Schroeder FC, Kim DH. Population Density Modulates the Duration of Reproduction of C. elegans. Curr Biol 2020; 30:2602-2607.e2. [PMID: 32442457 DOI: 10.1016/j.cub.2020.04.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Population density can modulate the developmental trajectory of Caenorhabditis elegans larvae by promoting entry into dauer diapause, which is characterized by metabolic and anatomical remodeling and stress resistance [1, 2]. Genetic analysis of dauer formation has identified the involvement of evolutionarily conserved endocrine signaling pathways, including the DAF-2/insulin-like receptor signaling pathway [3-7]. Chemical and metabolomic analysis of dauer-inducing pheromone has identified a family of small molecules, ascarosides, which act potently to communicate increased population density and promote dauer formation [1, 8-10]. Here, we show that adult animals respond to ascarosides produced under conditions of increased population density by increasing the duration of reproduction. We observe that the ascarosides that promote dauer entry of larvae also act on adult animals to attenuate expression of the insulin peptide INS-6 from the ASI chemosensory neurons, resulting in diminished neuroendocrine insulin signaling that extends the duration of reproduction. Genetic analysis of ins-6 and corresponding insulin-signaling pathway mutants showed that the effect of increased population density on reproductive span was mimicked by ins-6 loss of function that exerted effects on duration of reproduction through the canonical DAF-2-DAF-16 pathway. We further observed that the effect of population density on reproductive span acted through DAF-16-dependent and DAF-16-independent pathways upstream of DAF-12, paralleling in adults what has been observed for the dauer developmental decision of larvae. Our data suggest that, under conditions of increased population density, C. elegans animals prolong the duration of reproductive egg laying, which may enable the subsequent development of progeny under more favorable conditions.
Collapse
Affiliation(s)
- Spencer S Wong
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jingfang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14850, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca 14850, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14850, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca 14850, NY, USA
| | - Dennis H Kim
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Lim H, Xie L. Target Gene Prediction of Transcription Factor Using a New Neighborhood-regularized Tri-factorization One-class Collaborative Filtering Algorithm. ACM-BCB ... ... : THE ... ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE. ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE 2019; 2018:1-10. [PMID: 31061989 DOI: 10.1145/3233547.3233551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Identifying the target genes of transcription factors (TFs) is one of the key factors to understand transcriptional regulation. However, our understanding of genome-wide TF targeting profile is limited due to the cost of large scale experiments and intrinsic complexity. Thus, computational prediction methods are useful to predict the unobserved associations. Here, we developed a new one-class collaborative filtering algorithm tREMAP that is based on regularized, weighted nonnegative matrix tri-factorization. The algorithm predicts unobserved target genes for TFs using known gene-TF associations and protein-protein interaction network. Our benchmark study shows that tREMAP significantly outperforms its counterpart REMAP, a bi-factorization-based algorithm, for transcription factor target gene prediction in all four performance metrics AUC, MAP, MPR, and HLU. When evaluated by independent data sets, the prediction accuracy is 37.8% on the top 495 predicted associations, an enrichment factor of 4.19 compared with the random guess. Furthermore, many of the predicted novel associations by tREMAP are supported by evidence from literature. Although we only use canonical TF-target gene interaction data in this study, tREMAP can be directly applied to tissue-specific data sets. tREMAP provides a framework to integrate multiple omics data for the further improvement of TF target gene prediction. Thus, tREMAP is a potentially useful tool in studying gene regulatory networks. The benchmark data set and the source code of tREMAP are freely available at https://github.com/hansaimlim/REMAP/tree/master/TriFacREMAP.
Collapse
Affiliation(s)
- Hansaim Lim
- PhD program in Biochemistry, Graduate Center of the City University of New York NY 10016 United States
| | - Lei Xie
- Department of Computer Science, Hunter College and Graduate Center, the City University of New York NY 10065 United States
| |
Collapse
|
11
|
Gérard D, Schmidt F, Ginolhac A, Schmitz M, Halder R, Ebert P, Schulz MH, Sauter T, Sinkkonen L. Temporal enhancer profiling of parallel lineages identifies AHR and GLIS1 as regulators of mesenchymal multipotency. Nucleic Acids Res 2019; 47:1141-1163. [PMID: 30544251 PMCID: PMC6380961 DOI: 10.1093/nar/gky1240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/23/2018] [Accepted: 12/03/2018] [Indexed: 01/04/2023] Open
Abstract
Temporal data on gene expression and context-specific open chromatin states can improve identification of key transcription factors (TFs) and the gene regulatory networks (GRNs) controlling cellular differentiation. However, their integration remains challenging. Here, we delineate a general approach for data-driven and unbiased identification of key TFs and dynamic GRNs, called EPIC-DREM. We generated time-series transcriptomic and epigenomic profiles during differentiation of mouse multipotent bone marrow stromal cell line (ST2) toward adipocytes and osteoblasts. Using our novel approach we constructed time-resolved GRNs for both lineages and identifed the shared TFs involved in both differentiation processes. To take an alternative approach to prioritize the identified shared regulators, we mapped dynamic super-enhancers in both lineages and associated them to target genes with correlated expression profiles. The combination of the two approaches identified aryl hydrocarbon receptor (AHR) and Glis family zinc finger 1 (GLIS1) as mesenchymal key TFs controlled by dynamic cell type-specific super-enhancers that become repressed in both lineages. AHR and GLIS1 control differentiation-induced genes and their overexpression can inhibit the lineage commitment of the multipotent bone marrow-derived ST2 cells.
Collapse
Affiliation(s)
- Deborah Gérard
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Florian Schmidt
- Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Computational Biology & Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Aurélien Ginolhac
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Martine Schmitz
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
| | - Peter Ebert
- Computational Biology & Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Marcel H Schulz
- Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Computational Biology & Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Thomas Sauter
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Lasse Sinkkonen
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
12
|
Zhang Q, Wu X, Chen P, Liu L, Xin N, Tian Y, Dillin A. The Mitochondrial Unfolded Protein Response Is Mediated Cell-Non-autonomously by Retromer-Dependent Wnt Signaling. Cell 2018; 174:870-883.e17. [PMID: 30057120 DOI: 10.1016/j.cell.2018.06.029] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/18/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
Abstract
The mitochondrial unfolded protein response (UPRmt) can be triggered in a cell-non-autonomous fashion across multiple tissues in response to mitochondrial dysfunction. The ability to communicate information about the presence of mitochondrial stress enables a global response that can ultimately better protect an organism from local mitochondrial challenges. We find that animals use retromer-dependent Wnt signaling to propagate mitochondrial stress signals from the nervous system to peripheral tissues. Specifically, the polyQ40-triggered activation of mitochondrial stress or reduction of cco-1 (complex IV subunit) in neurons of C. elegans results in the Wnt-dependent induction of cell-non-autonomous UPRmt in peripheral cells. Loss-of-function mutations of retromer complex components that are responsible for recycling the Wnt secretion-factor/MIG-14 prevent Wnt secretion and thereby suppress cell-non-autonomous UPRmt. Neuronal expression of the Wnt ligand/EGL-20 is sufficient to induce cell-non-autonomous UPRmt in a retromer complex-, Wnt signaling-, and serotonin-dependent manner, clearly implicating Wnt signaling as a strong candidate for the "mitokine" signal.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Peng Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Limeng Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Nan Xin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, and The Paul F. Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China.
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, and The Paul F. Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Regulation of Axon Guidance by the Wnt Receptor Ror/CAM-1 in the PVT Guidepost Cell in Caenorhabditis elegans. Genetics 2017; 207:1533-1545. [PMID: 28993416 DOI: 10.1534/genetics.117.300375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/27/2017] [Indexed: 01/24/2023] Open
Abstract
The Caenorhabditis elegans ventral nerve cord (VNC) consists of two asymmetric bundles of neurons and axons that are separated by the midline. How the axons are guided to stay on the correct sides of the midline remains poorly understood. Here we provide evidence that the conserved Wnt signaling pathway along with the Netrin and Robo pathways constitute a combinatorial code for midline guidance of PVP and PVQ axons that extend into the VNC. Combined loss of the Wnts CWN-1, CWN-2, and EGL-20 or loss of the Wnt receptor CAM-1 caused >70% of PVP and PVQ axons to inappropriately cross over from the left side to the right side. Loss of the Frizzled receptor LIN-17 or the planar cell polarity (PCP) protein VANG-1 also caused cross over defects that did not enhance those in the cam-1 mutant, indicating that the proteins function together in midline guidance. Strong cam-1 expression can be detected in the PVQs and the guidepost cell PVT that is located on the midline. However, only when cam-1 is expressed in PVT are the crossover defects of PVP and PVQ rescued, showing that CAM-1 functions nonautonomously in PVT to prevent axons from crossing the midline.
Collapse
|
14
|
De Oliveira AL, Wollesen T, Kristof A, Scherholz M, Redl E, Todt C, Bleidorn C, Wanninger A. Comparative transcriptomics enlarges the toolkit of known developmental genes in mollusks. BMC Genomics 2016; 17:905. [PMID: 27832738 PMCID: PMC5103448 DOI: 10.1186/s12864-016-3080-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/08/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mollusks display a striking morphological disparity, including, among others, worm-like animals (the aplacophorans), snails and slugs, bivalves, and cephalopods. This phenotypic diversity renders them ideal for studies into animal evolution. Despite being one of the most species-rich phyla, molecular and in silico studies concerning specific key developmental gene families are still scarce, thus hampering deeper insights into the molecular machinery that governs the development and evolution of the various molluscan class-level taxa. RESULTS Next-generation sequencing was used to retrieve transcriptomes of representatives of seven out of the eight recent class-level taxa of mollusks. Similarity searches, phylogenetic inferences, and a detailed manual curation were used to identify and confirm the orthology of numerous molluscan Hox and ParaHox genes, which resulted in a comprehensive catalog that highlights the evolution of these genes in Mollusca and other metazoans. The identification of a specific molluscan motif in the Hox paralog group 5 and a lophotrochozoan ParaHox motif in the Gsx gene is described. Functional analyses using KEGG and GO tools enabled a detailed description of key developmental genes expressed in important pathways such as Hedgehog, Wnt, and Notch during development of the respective species. The KEGG analysis revealed Wnt8, Wnt11, and Wnt16 as Wnt genes hitherto not reported for mollusks, thereby enlarging the known Wnt complement of the phylum. In addition, novel Hedgehog (Hh)-related genes were identified in the gastropod Lottia cf. kogamogai, demonstrating a more complex gene content in this species than in other mollusks. CONCLUSIONS The use of de novo transcriptome assembly and well-designed in silico protocols proved to be a robust approach for surveying and mining large sequence data in a wide range of non-model mollusks. The data presented herein constitute only a small fraction of the information retrieved from the analysed molluscan transcriptomes, which can be promptly employed in the identification of novel genes and gene families, phylogenetic inferences, and other studies using molecular tools. As such, our study provides an important framework for understanding some of the underlying molecular mechanisms involved in molluscan body plan diversification and hints towards functions of key developmental genes in molluscan morphogenesis.
Collapse
Affiliation(s)
- A. L. De Oliveira
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, Vienna, 1090 Austria
| | - T. Wollesen
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, Vienna, 1090 Austria
| | - A. Kristof
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, Vienna, 1090 Austria
| | - M. Scherholz
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, Vienna, 1090 Austria
| | - E. Redl
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, Vienna, 1090 Austria
| | - C. Todt
- University of Bergen, University Museum, The Natural History Collections, Allégaten 41, 5007 Bergen, Norway
| | - C. Bleidorn
- Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), José Gutiérrez Abascal 2, Madrid, 28006 Spain
- Institute of Biology, University of Leipzig, Leipzig, 04103 Germany
| | - A. Wanninger
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, Vienna, 1090 Austria
| |
Collapse
|
15
|
Ellis RE. "The persistence of memory"-Hermaphroditism in nematodes. Mol Reprod Dev 2016; 84:144-157. [PMID: 27291983 DOI: 10.1002/mrd.22668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
Self-fertility has evolved many times in nematodes. This transition often produces an androdioecious species, with XX hermaphrodites and XO males. Although these hermaphrodites resemble females in most respects, early germ cells differentiate as sperm, and late ones as oocytes. The sperm then receive an activation signal, populate the spermathecae, and are stored for later use in self-fertilization. These traits are controlled by complex modifications to the sex-determination and sperm activation pathways, which have arisen independently during the evolution of each hermaphroditic species. This transformation in reproductive strategy then promotes other major changes in the development, evolution, and population structure of these animals. Mol. Reprod. Dev. 84: 144-157, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey
| |
Collapse
|
16
|
Hobert O. A map of terminal regulators of neuronal identity in Caenorhabditis elegans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:474-98. [PMID: 27136279 PMCID: PMC4911249 DOI: 10.1002/wdev.233] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/07/2016] [Accepted: 02/21/2016] [Indexed: 12/31/2022]
Abstract
Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nematode Caenorhabditis elegans is the nature of the gene regulatory programs that specify hardwired, terminal cellular identities. I first summarize a number of maps (anatomical, functional, and molecular) that describe the terminal identity of individual neurons in the C. elegans nervous system. I then provide a comprehensive summary of regulatory factors that specify terminal identities in the nervous system, synthesizing these past studies into a regulatory map of cellular identities in the C. elegans nervous system. This map shows that for three quarters of all neurons in the C. elegans nervous system, regulatory factors that control terminal identity features are known. In-depth studies of specific neuron types have revealed that regulatory factors rarely act alone, but rather act cooperatively in neuron-type specific combinations. In most cases examined so far, distinct, biochemically unlinked terminal identity features are coregulated via cooperatively acting transcription factors, termed terminal selectors, but there are also cases in which distinct identity features are controlled in a piecemeal fashion by independent regulatory inputs. The regulatory map also illustrates that identity-defining transcription factors are reemployed in distinct combinations in different neuron types. However, the same transcription factor can drive terminal differentiation in neurons that are unrelated by lineage, unrelated by function, connectivity and neurotransmitter deployment. Lastly, the regulatory map illustrates the preponderance of homeodomain transcription factors in the control of terminal identities, suggesting that these factors have ancient, phylogenetically conserved roles in controlling terminal neuronal differentiation in the nervous system. WIREs Dev Biol 2016, 5:474-498. doi: 10.1002/wdev.233 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Müller A, Winkler J, Fiedler F, Sastradihardja T, Binder C, Schnabel R, Kungel J, Rothemund S, Hennig C, Schöneberg T, Prömel S. Oriented Cell Division in the C. elegans Embryo Is Coordinated by G-Protein Signaling Dependent on the Adhesion GPCR LAT-1. PLoS Genet 2015; 11:e1005624. [PMID: 26505631 PMCID: PMC4624771 DOI: 10.1371/journal.pgen.1005624] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 10/01/2015] [Indexed: 12/20/2022] Open
Abstract
Orientation of spindles and cell division planes during development of many species ensures that correct cell-cell contacts are established, which is vital for proper tissue formation. This is a tightly regulated process involving a complex interplay of various signals. The molecular mechanisms underlying several of these pathways are still incompletely understood. Here, we identify the signaling cascade of the C. elegans latrophilin homolog LAT-1, an essential player in the coordination of anterior-posterior spindle orientation during the fourth round of embryonic cell division. We show that the receptor mediates a G protein-signaling pathway revealing that G-protein signaling in oriented cell division is not solely GPCR-independent. Genetic analyses showed that through the interaction with a Gs protein LAT-1 elevates intracellular cyclic AMP (cAMP) levels in the C. elegans embryo. Stimulation of this G-protein cascade in lat-1 null mutant nematodes is sufficient to orient spindles and cell division planes in the embryo in the correct direction. Finally, we demonstrate that LAT-1 is activated by an intramolecular agonist to trigger this cascade. Our data support a model in which a novel, GPCR-dependent G protein-signaling cascade mediated by LAT-1 controls alignment of cell division planes in an anterior-posterior direction via a metabotropic Gs-protein/adenylyl cyclase pathway by regulating intracellular cAMP levels. During embryogenesis an entire organism develops from a single cell. This process is vital for the formation of life, thus cell division occurs with a very distinct orientation and pattern that is tightly controlled by several signaling pathways. The mechanisms underlying these pathways are complex and not yet fully understood. In the roundworm Caenorhabditis elegans, a common genetic model, the patterns and orientations in which cells divide in the embryo have been well characterized offering an ideal model to study the molecular mechanisms involved. Here, we show that the signal mediated by the adhesion G protein-coupled receptor LAT-1 is based on cAMP. This second messenger is essential for the orientation of distinct cell division planes in the early embryo. Studies based on a lat-1 knockout mutant reveal that LAT-1 signaling affects the levels of the second messenger cAMP in the cells via a specific G protein. Thereby the receptor is activated by an intrinsic sequence. This pathway is the first one clearly shown to involve a G protein-coupled receptor-dependent G-protein signal in orientation of embryonic cell division, offering a novel level of regulation of this process among other described pathways.
Collapse
Affiliation(s)
- Antje Müller
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Jana Winkler
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Franziska Fiedler
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | - Claudia Binder
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ralf Schnabel
- Institute of Genetics, TU Braunschweig, Braunschweig, Germany
| | - Jana Kungel
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Sven Rothemund
- Core Unit Peptide Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | - Torsten Schöneberg
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Simone Prömel
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
- * E-mail:
| |
Collapse
|
18
|
Abstract
A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host-parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues.
Collapse
Affiliation(s)
- Ann K Corsi
- Biology Department, The Catholic University of America, Washington, DC 20064
| | - Bruce Wightman
- Biology Department, Muhlenberg College, Allentown, Pennsylvania 18104
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, New York 10027
| |
Collapse
|
19
|
Hench J, Henriksson J, Abou-Zied AM, Lüppert M, Dethlefsen J, Mukherjee K, Tong YG, Tang L, Gangishetti U, Baillie DL, Bürglin TR. The Homeobox Genes of Caenorhabditis elegans and Insights into Their Spatio-Temporal Expression Dynamics during Embryogenesis. PLoS One 2015; 10:e0126947. [PMID: 26024448 PMCID: PMC4448998 DOI: 10.1371/journal.pone.0126947] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022] Open
Abstract
Homeobox genes play crucial roles for the development of multicellular eukaryotes. We have generated a revised list of all homeobox genes for Caenorhabditis elegans and provide a nomenclature for the previously unnamed ones. We show that, out of 103 homeobox genes, 70 are co-orthologous to human homeobox genes. 14 are highly divergent, lacking an obvious ortholog even in other Caenorhabditis species. One of these homeobox genes encodes 12 homeodomains, while three other highly divergent homeobox genes encode a novel type of double homeodomain, termed HOCHOB. To understand how transcription factors regulate cell fate during development, precise spatio-temporal expression data need to be obtained. Using a new imaging framework that we developed, Endrov, we have generated spatio-temporal expression profiles during embryogenesis of over 60 homeobox genes, as well as a number of other developmental control genes using GFP reporters. We used dynamic feedback during recording to automatically adjust the camera exposure time in order to increase the dynamic range beyond the limitations of the camera. We have applied the new framework to examine homeobox gene expression patterns and provide an analysis of these patterns. The methods we developed to analyze and quantify expression data are not only suitable for C. elegans, but can be applied to other model systems or even to tissue culture systems.
Collapse
Affiliation(s)
- Jürgen Hench
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Johan Henriksson
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Akram M. Abou-Zied
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Martin Lüppert
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Johan Dethlefsen
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Krishanu Mukherjee
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Yong Guang Tong
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Lois Tang
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Umesh Gangishetti
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
| | - David L. Baillie
- Dept. of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Thomas R. Bürglin
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| |
Collapse
|
20
|
|
21
|
Ren G, Cui K, Zhang Z, Zhao K. Division of labor between IRF1 and IRF2 in regulating different stages of transcriptional activation in cellular antiviral activities. Cell Biosci 2015; 5:17. [PMID: 25960866 PMCID: PMC4424430 DOI: 10.1186/s13578-015-0007-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/27/2015] [Indexed: 12/21/2022] Open
Abstract
Background Cellular antiviral activities are critically controlled by transcriptional activation of interferon-inducible genes, involving interferon regulatory factors (IRFs). Previous data suggested that IRF1 is an activator and IRF2 is a repressor, which functionally antagonize each other in transcriptional regulation. However, it is not clear how these two factors function to regulate cellular antiviral activities. Results We show that IRF2 is critically required for the induction of the TLR3 and other interferon-inducible genes in a chromatin environment. While both IRF1 and IRF2 directly interact with the BAF chromatin remodeling complex, IRF2 is associated with the TLR3 promoter in the unstimulated state and IRF1 binding to the promoter is strongly induced by stimulation with interferon, suggesting that these two factors may function at different stages of gene induction in the recruitment of the BAF complex. IRF2 acts to maintain the basal level expression, an open chromatin structure, and active histone modification marks (H3K9, K14 acetylation and H3K4 tri-methylation) of the TLR3 promoter in the unstimulated state, while IRF1 serves to rapidly activate the promoter upon stimulation. Conclusions IRF1 and IRF2 of the IRF family of transcription factors play distinct roles in cellular response to viral infection. IRF2 binds to TLR3 and other IFN-inducible gene promoters and maintains an active chromatin structure in the unstimulated state, which is required for their induction, while IRF1 binding to these promoters activates their transcription upon viral infection. Thus, the division of labor between the IRF transcription factor family members plays a pivotal role in coordinating the transcriptional activation in the cellular antiviral response.
Collapse
Affiliation(s)
- Gang Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 PR China.,Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Kairong Cui
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 PR China
| | - Keji Zhao
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
22
|
Emmons SW. The development of sexual dimorphism: studies of the Caenorhabditis elegans male. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:239-62. [PMID: 25262817 PMCID: PMC4181595 DOI: 10.1002/wdev.136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/02/2014] [Indexed: 01/09/2023]
Abstract
Studies of the development of the Caenorhabditis elegans male have been carried out with the aim of understanding the basis of sexual dimorphism. Postembryonic development of the two C. elegans sexes differs extensively. Development along either the hermaphrodite or male pathway is specified initially by the X to autosome ratio. The regulatory events initiated by this ratio include a male-determining paracrine intercellular signal. Expression of this signal leads to different consequences in three regions of the body: the nongonadal soma, the somatic parts of the gonad, and the germ line. In the nongonadal soma, activity of the key Zn-finger transcription factor TRA-1 determines hermaphrodite development; in its absence, the male pathway is followed. Only a few genes directly regulated by TRA-1 are currently known, including members of the evolutionarily conserved, male-determining DM domain Zn-finger transcription factors. In the somatic parts of the gonad and germ line, absence of TRA-1 activity is not sufficient for full expression of the male pathway. Several additional transcription factors involved have been identified. In the germ line, regulatory genes for sperm development that act at the level of RNA in the cytoplasm play a prominent role.
Collapse
Affiliation(s)
- Scott W. Emmons
- Albert Einstein College of Medicine 1300 Morris Park Ave. Bronx, New York 10461
| |
Collapse
|
23
|
Ansell BRE, Schnyder M, Deplazes P, Korhonen PK, Young ND, Hall RS, Mangiola S, Boag PR, Hofmann A, Sternberg PW, Jex AR, Gasser RB. Insights into the immuno-molecular biology of Angiostrongylus vasorum through transcriptomics--prospects for new interventions. Biotechnol Adv 2013; 31:1486-500. [PMID: 23895945 DOI: 10.1016/j.biotechadv.2013.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/28/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
Angiostrongylus vasorum is a metastrongyloid nematode of dogs and other canids of major clinical importance in many countries. In order to gain first insights into the molecular biology of this worm, we conducted the first large-scale exploration of its transcriptome, and predicted essential molecules linked to metabolic and biological processes as well as host immune responses. We also predicted and prioritized drug targets and drug candidates. Following Illumina sequencing (RNA-seq), 52.3 million sequence reads representing adult A. vasorum were assembled and annotated. The assembly yielded 20,033 contigs, which encoded proteins with 11,505 homologues in Caenorhabditis elegans, and additional 2252 homologues in various other parasitic helminths for which curated data sets were publicly available. Functional annotation was achieved for 11,752 (58.6%) proteins predicted for A. vasorum, including peptidases (4.5%) and peptidase inhibitors (1.6%), protein kinases (1.7%), G protein-coupled receptors (GPCRs) (1.5%) and phosphatases (1.2%). Contigs encoding excretory/secretory and immuno-modulatory proteins represented some of the most highly transcribed molecules, and encoded enzymes that digest haemoglobin were conserved between A. vasorum and other blood-feeding nematodes. Using an essentiality-based approach, drug targets, including neurotransmitter receptors, an important chemosensory ion channel and cysteine proteinase-3 were predicted in A. vasorum, as were associated small molecular inhibitors/activators. Future transcriptomic analyses of all developmental stages of A. vasorum should facilitate deep explorations of the molecular biology of this important parasitic nematode and support the sequencing of its genome. These advances will provide a foundation for exploring immuno-molecular aspects of angiostrongylosis and have the potential to underpin the discovery of new methods of intervention.
Collapse
Affiliation(s)
- Brendan R E Ansell
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ikuta T, Chen YC, Annunziata R, Ting HC, Tung CH, Koyanagi R, Tagawa K, Humphreys T, Fujiyama A, Saiga H, Satoh N, Yu JK, Arnone MI, Su YH. Identification of an intact ParaHox cluster with temporal colinearity but altered spatial colinearity in the hemichordate Ptychodera flava. BMC Evol Biol 2013; 13:129. [PMID: 23802544 PMCID: PMC3698058 DOI: 10.1186/1471-2148-13-129] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ParaHox and Hox genes are thought to have evolved from a common ancestral ProtoHox cluster or from tandem duplication prior to the divergence of cnidarians and bilaterians. Similar to Hox clusters, chordate ParaHox genes including Gsx, Xlox, and Cdx, are clustered and their expression exhibits temporal and spatial colinearity. In non-chordate animals, however, studies on the genomic organization of ParaHox genes are limited to only a few animal taxa. Hemichordates, such as the Enteropneust acorn worms, have been used to gain insights into the origins of chordate characters. In this study, we investigated the genomic organization and expression of ParaHox genes in the indirect developing hemichordate acorn worm Ptychodera flava. RESULTS We found that P. flava contains an intact ParaHox cluster with a similar arrangement to that of chordates. The temporal expression order of the P. flava ParaHox genes is the same as that of the chordate ParaHox genes. During embryogenesis, the spatial expression pattern of PfCdx in the posterior endoderm represents a conserved feature similar to the expression of its orthologs in other animals. On the other hand, PfXlox and PfGsx show a novel expression pattern in the blastopore. Nevertheless, during metamorphosis, PfXlox and PfCdx are expressed in the endoderm in a spatially staggered pattern similar to the situation in chordates. CONCLUSIONS Our study shows that P. flava ParaHox genes, despite forming an intact cluster, exhibit temporal colinearity but lose spatial colinearity during embryogenesis. During metamorphosis, partial spatial colinearity is retained in the transforming larva. These results strongly suggest that intact ParaHox gene clustering was retained in the deuterostome ancestor and is correlated with temporal colinearity.
Collapse
Affiliation(s)
- Tetsuro Ikuta
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Giudice J, Barcos LS, Guaimas FF, Penas-Steinhardt A, Giordano L, Jares-Erijman EA, Coluccio Leskow F. Insulin and insulin like growth factor II endocytosis and signaling via insulin receptor B. Cell Commun Signal 2013; 11:18. [PMID: 23497114 PMCID: PMC3607927 DOI: 10.1186/1478-811x-11-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/14/2012] [Indexed: 12/12/2022] Open
Abstract
Background Insulin and insulin-like growth factors (IGFs) act on tetrameric tyrosine kinase receptors controlling essential functions including growth, metabolism, reproduction and longevity. The insulin receptor (IR) binds insulin and IGFs with different affinities triggering different cell responses. Results We showed that IGF-II induces cell proliferation and gene transcription when IR-B is over-expressed. We combined biotinylated ligands with streptavidin conjugated quantum dots and visible fluorescent proteins to visualize the binding of IGF-II and insulin to IR-B and their ensuing internalization. By confocal microscopy and flow cytometry in living cells, we studied the internalization kinetic through the IR-B of both IGF-II, known to elicit proliferative responses, and insulin, a regulator of metabolism. Conclusions IGF-II promotes a faster internalization of IR-B than insulin. We propose that IGF-II differentially activates mitogenic responses through endosomes, while insulin-activated IR-B remains at the plasma membrane. This fact could facilitate the interaction with key effector molecules involved in metabolism regulation.
Collapse
Affiliation(s)
- Jimena Giudice
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), IQUIBICEN, CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
26
|
Baldwin KL, Dinh EM, Hart BM, Masson PH. CACTIN is an essential nuclear protein in Arabidopsis and may be associated with the eukaryotic spliceosome. FEBS Lett 2013; 587:873-9. [PMID: 23454656 DOI: 10.1016/j.febslet.2013.02.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 11/15/2022]
Abstract
CACTIN is a conserved eukaryotic protein without known functional domains. Previous research revealed that CACTIN is essential in animals and protists and that it may function in inflammation pathways in animals; however, these pathways are not as broadly conserved as CACTIN. Therefore, the ancestral molecular function of CACTIN remains unknown. Our studies using Arabidopsis show that CACTIN is required for embryogenesis. Fluorescently tagged CACTIN localizes to nuclear speckles and colocalizes with known splicing proteins. In yeast-two-hybrid studies, we found that CACTIN binds to a putative component of the spliceosome. These findings support a possible role for CACTIN in splicing.
Collapse
Affiliation(s)
- Katherine L Baldwin
- Laboratory of Genetics and Program of Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | | | | | |
Collapse
|
27
|
Dillman AR, Minor PJ, Sternberg PW. Origin and evolution of dishevelled. G3 (BETHESDA, MD.) 2013; 3:251-62. [PMID: 23390601 PMCID: PMC3564985 DOI: 10.1534/g3.112.005314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/09/2012] [Indexed: 12/31/2022]
Abstract
Dishevelled (Dsh or Dvl) is an important signaling protein, playing a key role in Wnt signaling and relaying cellular information for several developmental pathways. Dsh is highly conserved among metazoans and has expanded into a multigene family in most bilaterian lineages, including vertebrates, planarians, and nematodes. These orthologs, where explored, are known to have considerable overlap in function, but evidence for functional specialization continues to mount. We performed a comparative analysis of Dsh across animals to explore protein architecture and identify conserved and divergent features that could provide insight into functional specialization with an emphasis on invertebrates, especially nematodes. We find evidence of dynamic evolution of Dsh, particularly among nematodes, with taxa varying in ortholog number from one to three. We identify a new domain specific to some nematode lineages and find an unexpected nuclear localization signal conserved in many Dsh orthologs. Our findings raise questions of protein evolution in general and provide clues as to how animals have dealt with the complex intricacies of having a protein, such as Dsh, act as a central messenger hub connected to many different and vitally important pathways. We discuss our findings in the context of functional specialization and bring many testable hypotheses to light.
Collapse
Affiliation(s)
| | | | - Paul W. Sternberg
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
28
|
Gallegos ME, Balakrishnan S, Chandramouli P, Arora S, Azameera A, Babushekar A, Bargoma E, Bokhari A, Chava SK, Das P, Desai M, Decena D, Saramma SDD, Dey B, Doss AL, Gor N, Gudiputi L, Guo C, Hande S, Jensen M, Jones S, Jones N, Jorgens D, Karamchedu P, Kamrani K, Kolora LD, Kristensen L, Kwan K, Lau H, Maharaj P, Mander N, Mangipudi K, Menakuru H, Mody V, Mohanty S, Mukkamala S, Mundra SA, Nagaraju S, Narayanaswamy R, Ndungu-Case C, Noorbakhsh M, Patel J, Patel P, Pendem SV, Ponakala A, Rath M, Robles MC, Rokkam D, Roth C, Sasidharan P, Shah S, Tandon S, Suprai J, Truong TQN, Uthayaruban R, Varma A, Ved U, Wang Z, Yu Z. The C. elegans rab family: identification, classification and toolkit construction. PLoS One 2012; 7:e49387. [PMID: 23185324 PMCID: PMC3504004 DOI: 10.1371/journal.pone.0049387] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 10/09/2012] [Indexed: 11/29/2022] Open
Abstract
Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB).
Collapse
Affiliation(s)
- Maria E Gallegos
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jackson BM, Eisenmann DM. β-catenin-dependent Wnt signaling in C. elegans: teaching an old dog a new trick. Cold Spring Harb Perspect Biol 2012; 4:a007948. [PMID: 22745286 PMCID: PMC3405868 DOI: 10.1101/cshperspect.a007948] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Wnt signaling is an evolutionarily ancient pathway used to regulate many events during metazoan development. Genetic results from Caenorhabditis elegans more than a dozen years ago suggested that Wnt signaling in this nematode worm might be different than in vertebrates and Drosophila: the worm had a small number of Wnts, too many β-catenins, and some Wnt pathway components functioned in an opposite manner than in other species. Work over the ensuing years has clarified that C. elegans does possess a canonical Wnt/β-catenin signaling pathway similar to that in other metazoans, but that the majority of Wnt signaling in this species may proceed via a variant Wnt/β-catenin signaling pathway that uses some new components (mitogen-activated protein kinase signaling enzymes), and in which some conserved pathway components (β-catenin, T-cell factor [TCF]) are used in new and interesting ways. This review summarizes our current understanding of the canonical and novel TCF/β-catenin-dependent signaling pathways in C. elegans.
Collapse
Affiliation(s)
- Belinda M Jackson
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | |
Collapse
|
30
|
Moreno E, Permanyer J, Martinez P. The origin of patterning systems in bilateria-insights from the Hox and ParaHox genes in Acoelomorpha. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 9:65-76. [PMID: 21802044 PMCID: PMC5054442 DOI: 10.1016/s1672-0229(11)60010-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/24/2011] [Indexed: 01/22/2023]
Abstract
Hox and ParaHox genes constitute two families of developmental regulators that pattern the Anterior–Posterior body axis in all bilaterians. The members of these two groups of genes are usually arranged in genomic clusters and work in a coordinated fashion, both in space and in time. While the mechanistic aspects of their action are relatively well known, it is still unclear how these systems evolved. For instance, we still need a proper model of how the Hox and ParaHox clusters were assembled over time. This problem is due to the shortage of information on gene complements for many taxa (mainly basal metazoans) and the lack of a consensus phylogenetic model of animal relationships to which we can relate our new findings. Recently, several studies have shown that the Acoelomorpha most probably represent the first offshoot of the Bilateria. This finding has prompted us, and others, to study the Hox and ParaHox complements in these animals, as well as their activity during development. In this review, we analyze how the current knowledge of Hox and ParaHox genes in the Acoelomorpha is shaping our view of bilaterian evolution.
Collapse
|
31
|
Ezziane Z. Analysis of the Hox epigenetic code. World J Clin Oncol 2012; 3:48-56. [PMID: 22553504 PMCID: PMC3341740 DOI: 10.5306/wjco.v3.i4.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/21/2011] [Accepted: 04/01/2012] [Indexed: 02/06/2023] Open
Abstract
Archetypes of histone modifications associated with diverse chromosomal states that regulate access to DNA are leading the hypothesis of the histone code (or epigenetic code). However, it is still not evident how these post-translational modifications of histone tails lead to changes in chromatin structure. Histone modifications are able to activate and/or inactivate several genes and can be transmitted to next generation cells due to an epigenetic memory. The challenging issue is to identify or “decrypt” the code used to transmit these modifications to descent cells. Here, an attempt is made to describe how histone modifications operate as part of histone code that stipulates patterns of gene expression. This papers emphasizes particularly on the correlation between histone modifications and patterns of Hox gene expression in Caenorhabditis elegans. This work serves as an example to illustrate the power of the epigenetic machinery and its use in drug design and discovery.
Collapse
Affiliation(s)
- Zoheir Ezziane
- Zoheir Ezziane, Welcome Trust Centre For Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| |
Collapse
|
32
|
Hulme SE, Whitesides GM. Die Chemie und der Wurm: Caenorhabditis elegans als Plattform für das Zusammenführen von chemischer und biologischer Forschung. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Hulme SE, Whitesides GM. Chemistry and the Worm: Caenorhabditis elegans as a Platform for Integrating Chemical and Biological Research. Angew Chem Int Ed Engl 2011; 50:4774-807. [DOI: 10.1002/anie.201005461] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Indexed: 12/15/2022]
|
34
|
Abbasi AA. Evolution of vertebrate appendicular structures: Insight from genetic and palaeontological data. Dev Dyn 2011; 240:1005-16. [PMID: 21337665 DOI: 10.1002/dvdy.22572] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2011] [Indexed: 01/18/2023] Open
Abstract
The new body of evidence from fossils and comparative-developmental analysis of subset of appendicular patterning genes has revealed that limb elements seen in tetrapods are assembled in fish fin over evolutionary time. However, despite of deep homology in basic structure and underlying developmental system, there remains a large morphological gap between distal elements of tetrapod limb and distal fin skeleton of tetrapodomorph fish. Understanding the genetic basis of major transformations in distal-limb morphology is the next challenge for evolutionary developmental biologists. Here by integrating data from fossils, comparative-developmental and genetic studies, models are proposed describing the evolution of cis-regulatory elements as a basis for diversification of appendicular architecture. Instead of emphasizing the subset of developmental genes, for instance Hoxd genes, the focus here is on the significance of elucidating cis-regulatory elements for multiple other key molecular players of limb/fin development and genetic/molecular interactions among them, for a better understanding of the developmental and genetic basis of limb evolution.
Collapse
Affiliation(s)
- Amir Ali Abbasi
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
35
|
Abstract
The Caenorhabditis elegans hermaphrodite is a complex multicellular animal that is composed of 959 somatic cells. The C. elegans genome contains ∼20,000 protein-coding genes, 940 of which encode regulatory transcription factors (TFs). In addition, the worm genome encodes more than 100 microRNAs and many other regulatory RNA and protein molecules. Most C. elegans genes are subject to regulatory control, most likely by multiple regulators, and combined, this dictates the activation or repression of the gene and corresponding protein in the relevant cells and under the appropriate conditions. A major goal in C. elegans research is to determine the spatiotemporal expression pattern of each gene throughout development and in response to different signals, and to determine how this expression pattern is accomplished. Gene regulatory networks describe physical and/or functional interactions between genes and their regulators that result in specific spatiotemporal gene expression. Such regulators can act at transcriptional or post-transcriptional levels. Here, I will discuss the methods that can be used to delineate gene regulatory networks in C. elegans. I will mostly focus on gene-centered yeast one-hybrid (Y1H) assays that are used to map interactions between non-coding genic regions, such as promoters, and regulatory TFs. The approaches discussed here are not only relevant to C. elegans biology, but can also be applied to other model organisms and humans.
Collapse
Affiliation(s)
- Albertha J.M. Walhout
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Phone: 508-856-4364
| |
Collapse
|
36
|
Deep insights into Dictyocaulus viviparus transcriptomes provides unique prospects for new drug targets and disease intervention. Biotechnol Adv 2010; 29:261-71. [PMID: 21182926 DOI: 10.1016/j.biotechadv.2010.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/22/2010] [Indexed: 11/23/2022]
Abstract
The lungworm, Dictyocaulus viviparus, causes parasitic bronchitis in cattle, and is responsible for substantial economic losses in temperate regions of the world. Here, we undertake the first large-scale exploration of available transcriptomic data for this lungworm, examine differences in transcription between different stages/both genders and identify and prioritize essential molecules linked to fundamental metabolic pathways, which could represent novel drug targets. Approximately 3 million expressed sequence tags (ESTs), generated by 454 sequencing from third-stage larvae (L3s) as well as adult females and males of D. viviparus, were assembled and annotated. The assembly of these sequences yielded ~61,000 contigs, of which relatively large proportions encoded collagens (4.3%), ubiquitins (2.1%) and serine/threonine protein kinases (1.9%). Subtractive analysis in silico identified 6928 nucleotide sequences as being uniquely transcribed in L3, and 5203 and 7889 transcripts as being exclusive to the adult female and male, respectively. Most peptides predicted from the conceptual translations were nucleoplasmins (L3), serine/threonine protein kinases (female) and major sperm proteins (male). Additional analyses allowed the prediction of three drug target candidates, whose Caenorhabditis elegans homologues were linked to a lethal RNA interference phenotype. This detailed exploration, combined with future transcriptomic sequencing of all developmental stages of D. viviparus, will facilitate future investigations of the molecular biology of this parasitic nematode as well as genomic sequencing. These advances will underpin the discovery of new drug and/or vaccine targets, focused on biotechnological outcomes.
Collapse
|
37
|
Samadi L, Steiner G. Conservation of ParaHox genes' function in patterning of the digestive tract of the marine gastropod Gibbula varia. BMC DEVELOPMENTAL BIOLOGY 2010; 10:74. [PMID: 20624311 PMCID: PMC2913954 DOI: 10.1186/1471-213x-10-74] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 07/12/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Presence of all three ParaHox genes has been described in deuterostomes and lophotrochozoans, but to date one of these three genes, Xlox has not been reported from any ecdysozoan taxa and both Xlox and Gsx are absent in nematodes. There is evidence that the ParaHox genes were ancestrally a single chromosomal cluster. Colinear expression of the ParaHox genes in anterior, middle, and posterior tissues of several species studied so far suggest that these genes may be responsible for axial patterning of the digestive tract. So far, there are no data on expression of these genes in molluscs. RESULTS We isolated the complete coding sequences of the three Gibbula varia ParaHox genes, and then tested their expression in larval and postlarval development. In Gibbula varia, the ParaHox genes participate in patterning of the digestive tract and are expressed in some cells of the neuroectoderm. The expression of these genes coincides with the gradual formation of the gut in the larva. Gva-Gsx patterns potential neural precursors of cerebral ganglia as well as of the apical sensory organ. During larval development this gene is involved in the formation of the mouth and during postlarval development it is expressed in the precursor cells involved in secretion of the radula, the odontoblasts. Gva-Xolx and Gva-Cdx are involved in gut patterning in the middle and posterior parts of digestive tract, respectively. Both genes are expressed in some ventral neuroectodermal cells; however the expression of Gva-Cdx fades in later larval stages while the expression of Gva-Xolx in these cells persists. CONCLUSIONS In Gibbula varia the ParaHox genes are expressed during anterior-posterior patterning of the digestive system. This colinearity is not easy to spot during early larval stages because the differentiated endothelial cells within the yolk permanently migrate to their destinations in the gut. After torsion, Gsx patterns the mouth and foregut, Xlox the midgut gland or digestive gland, and Cdx the hindgut. ParaHox genes of Gibbula are also expressed during specification of cerebral and ventral neuroectodermal cells. Our results provide additional support for the ancestral complexity of Gsx expression and its ancestral role in mouth patterning in protostomes, which was secondarily lost or simplified in some species.
Collapse
Affiliation(s)
- Leyli Samadi
- Department of Evolutionary Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
38
|
Mócsai A, Ruland J, Tybulewicz VLJ. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010; 10:387-402. [PMID: 20467426 PMCID: PMC4782221 DOI: 10.1038/nri2765] [Citation(s) in RCA: 1028] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spleen tyrosine kinase (SYK) is known to have a crucial role in adaptive immune receptor signalling. However, recent reports indicate that SYK also mediates other, unexpectedly diverse biological functions, including cellular adhesion, innate immune recognition, osteoclast maturation, platelet activation and vascular development. SYK is activated by C-type lectins and integrins, and activates new targets, including the CARD9-BCL-10-MALT1 pathway and the NLRP3 inflammasome. Studies using Drosophila melanogaster suggest that there is an evolutionarily ancient origin of SYK-mediated signalling. Moreover, SYK has a crucial role in autoimmune diseases and haematological malignancies. This Review summarizes our current understanding of the diverse functions of SYK and how this is being translated for therapeutic purposes.
Collapse
Affiliation(s)
- Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.
| | | | | |
Collapse
|
39
|
Hueber SD, Weiller GF, Djordjevic MA, Frickey T. Improving Hox protein classification across the major model organisms. PLoS One 2010; 5:e10820. [PMID: 20520839 PMCID: PMC2876039 DOI: 10.1371/journal.pone.0010820] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/26/2010] [Indexed: 11/18/2022] Open
Abstract
The family of Hox-proteins has been a major focus of research for over 30 years. Hox-proteins are crucial to the correct development of bilateral organisms, however, some uncertainty remains as to which Hox-proteins are functionally equivalent across different species. Initial classification of Hox-proteins was based on phylogenetic analysis of the 60 amino acid homeodomain. This approach was successful in classifying Hox-proteins with differing homeodomains, but the relationships of Hox-proteins with nearly identical homeodomains, yet distinct biological functions, could not be resolved. Correspondingly, these ‘problematic’ proteins were classified into one large unresolved group. Other classifications used the relative location of the Hox-protein coding genes on the chromosome (synteny) to further resolve this group. Although widely used, this synteny-based classification is inconsistent with experimental evidence from functional equivalence studies. These inconsistencies led us to re-examine and derive a new classification for the Hox-protein family using all Hox-protein sequences available in the GenBank non-redundant protein database (NCBI-nr). We compare the use of the homeodomain, the homeodomain with conserved flanking regions (the YPWM and linker region), and full length Hox-protein sequences as a basis for classification of Hox-proteins. In contrast to previous attempts, our approach is able to resolve the relationships for the ‘problematic’ as well as ABD-B-like Hox-proteins. We highlight differences to previous classifications and clarify the relationships of Hox-proteins across the five major model organisms, Caenorhabditis elegans, Drosophila melanogaster, Branchiostoma floridae, Mus musculus and Danio rerio. Comparative and functional analysis of Hox-proteins, two fields crucial to understanding the development of bilateral organisms, have been hampered by difficulties in predicting functionally equivalent Hox-proteins across species. Our classification scheme offers a higher-resolution classification that is in accordance with phylogenetic as well as experimental data and, thereby, provides a novel basis for experiments, such as comparative and functional analyses of Hox-proteins.
Collapse
Affiliation(s)
- Stefanie D. Hueber
- Genomic Interactions Group, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Georg F. Weiller
- Genomic Interactions Group, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail:
| | - Michael A. Djordjevic
- Genomic Interactions Group, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Tancred Frickey
- Genomic Interactions Group, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
40
|
Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol 2010; 10:47-58. [PMID: 20029447 DOI: 10.1038/nri2689] [Citation(s) in RCA: 325] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genetically tractable model organism Caenorhabditis elegans was first used to model bacterial virulence in vivo a decade ago. Since then, great strides have been made in identifying the host response pathways that are involved in its defence against infection. Strikingly, C. elegans seems to detect, and respond to, infection without the involvement of its homologue of Toll-like receptors, in contrast to the well-established role for these proteins in innate immunity in mammals. What, therefore, do we know about host defence mechanisms in C. elegans and what can they tell us about innate immunity in higher organisms?
Collapse
|
41
|
Aboobaker A, Blaxter M. The nematode story: Hox gene loss and rapid evolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:101-10. [PMID: 20795325 DOI: 10.1007/978-1-4419-6673-5_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The loss in some taxa of conserved developmental control genes that are present in the vast majority of animal lineages is an understudied phenomenon. It is likely that in those lineages in which loss has occurred it may be a strong signal of the mode, tempo and direction of developmental evolution and thus identify ways of generating morphological novelties. Intuitively we might expect these novelties to be particularly those associated with morphological simplifications. One striking example of this has occurred within the nematodes. It appears that over half the ancestral bilaterian Hox cluster has been lost from the model organism Caenorhabditis elegans and its closest related species. Studying the Hox gene complement of nematodes across the phylum has shown that many, if not all these losses occurred within the phylum. Other nematode clades only distantly related to C. elegans have additional Hox genes orthologous to those present in the ancestral bilaterian but absent from the model nematode. In some of these cases rapid sequence evolution of the homeodomain itself obscures orthology assignment until comparison is made with sequences from multiple nematode clades with slower evolving Hox genes. Across the phylum the homeodomains of the Hox genes that are present are evolving very rapidly. In one particular case the genomic arrangement of two homeodomains suggests a mechanism for gene loss. Studying the function in nematodes of the Hox genes absent from C. elegans awaits further research and the establishment of new nematode models. However, what we do know about Hox gene functions suggests that the genetic circuits within which Hox genes act have changed significantly within C. elegans and its close relatives.
Collapse
Affiliation(s)
- Aziz Aboobaker
- Institute of Genetics, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
42
|
Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 2009; 30:586-623. [PMID: 19752219 DOI: 10.1210/er.2008-0047] [Citation(s) in RCA: 742] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In mammals, the insulin receptor (IR) gene has acquired an additional exon, exon 11. This exon may be skipped in a developmental and tissue-specific manner. The IR, therefore, occurs in two isoforms (exon 11 minus IR-A and exon 11 plus IR-B). The most relevant functional difference between these two isoforms is the high affinity of IR-A for IGF-II. IR-A is predominantly expressed during prenatal life. It enhances the effects of IGF-II during embryogenesis and fetal development. It is also significantly expressed in adult tissues, especially in the brain. Conversely, IR-B is predominantly expressed in adult, well-differentiated tissues, including the liver, where it enhances the metabolic effects of insulin. Dysregulation of IR splicing in insulin target tissues may occur in patients with insulin resistance; however, its role in type 2 diabetes is unclear. IR-A is often aberrantly expressed in cancer cells, thus increasing their responsiveness to IGF-II and to insulin and explaining the cancer-promoting effect of hyperinsulinemia observed in obese and type 2 diabetic patients. Aberrant IR-A expression may favor cancer resistance to both conventional and targeted therapies by a variety of mechanisms. Finally, IR isoforms form heterodimers, IR-A/IR-B, and hybrid IR/IGF-IR receptors (HR-A and HR-B). The functional characteristics of such hybrid receptors and their role in physiology, in diabetes, and in malignant cells are not yet fully understood. These receptors seem to enhance cell responsiveness to IGFs.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Ospedale Garibaldi-Nesima, 95122 Catania, Italy.
| | | | | | | | | |
Collapse
|
43
|
Laska MJ, Lowe SW, Zender L, Hearn S, Vogel U, Jensen UB, Bric A, Nexø BA. Enforced expression of PPP1R13L increases tumorigenesis and invasion through p53-dependent and p53-independent mechanisms. Mol Carcinog 2009; 48:832-42. [PMID: 19263435 PMCID: PMC3328301 DOI: 10.1002/mc.20528] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PPP1R13L was initially identified as a protein that binds to the NF-kappaB subunit p65/RelA and inhibits its transcriptional activity. It also binds p53 and inhibits its action. One set of experimental findings based on overexpression of PPP1R13L indicates that PPP1R13L blocks apoptosis. Another set of experiments, based on endogenous production of PPP1R13L, suggests that the protein may sometimes be pro-apoptotic. We have used primary mouse embryonic fibroblasts (MEFs), dually transformed by HRAS and adenovirus E1A and differing in their p53 status, to explore the effects of PPP1R13L overexpression, thus examining the ability of PPP1R13L to act as an oncoprotein. We found that overexpression of PPP1R13L strongly accelerated tumor formation by RAS/E1A. PPP1R13L overexpressing cells were depleted for both p53 and active p65/RelA and we found that both p53-dependent and -independent apoptosis pathways were modulated by PPP1R13L. Finally, studies with the proteasome inhibitor MG132 revealed that overexpression of PPP1R13L causes faster p53 degradation, a likely explanation for the depletion of p53. Taken together, our results show that increased levels of PPP1R13L can increase tumorigenesis and furthermore suggest that PPP1R13L can influence metastasis.
Collapse
|
44
|
Heger P, Marin B, Schierenberg E. Loss of the insulator protein CTCF during nematode evolution. BMC Mol Biol 2009; 10:84. [PMID: 19712444 PMCID: PMC2749850 DOI: 10.1186/1471-2199-10-84] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 08/27/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The zinc finger (ZF) protein CTCF (CCCTC-binding factor) is highly conserved in Drosophila and vertebrates where it has been shown to mediate chromatin insulation at a genomewide level. A mode of genetic regulation that involves insulators and insulator binding proteins to establish independent transcriptional units is currently not known in nematodes including Caenorhabditis elegans. We therefore searched in nematodes for orthologs of proteins that are involved in chromatin insulation. RESULTS While orthologs for other insulator proteins were absent in all 35 analysed nematode species, we find orthologs of CTCF in a subset of nematodes. As an example for these we cloned the Trichinella spiralis CTCF-like gene and revealed a genomic structure very similar to the Drosophila counterpart. To investigate the pattern of CTCF occurrence in nematodes, we performed phylogenetic analysis with the ZF protein sets of completely sequenced nematodes. We show that three ZF proteins from three basal nematodes cluster together with known CTCF proteins whereas no zinc finger protein of C. elegans and other derived nematodes does so. CONCLUSION Our findings show that CTCF and possibly chromatin insulation are present in basal nematodes. We suggest that the insulator protein CTCF has been secondarily lost in derived nematodes like C. elegans. We propose a switch in the regulation of gene expression during nematode evolution, from the common vertebrate and insect type involving distantly acting regulatory elements and chromatin insulation to a so far poorly characterised mode present in more derived nematodes. Here, all or some of these components are missing. Instead operons, polycistronic transcriptional units common in derived nematodes, seemingly adopted their function.
Collapse
Affiliation(s)
- Peter Heger
- Zoological Institute, University of Cologne, Kerpener Strasse 15, 50937 Köln, Germany.
| | | | | |
Collapse
|
45
|
Farfán C, Shigeno S, Nödl MT, de Couet HG. Developmental expression of apterous/Lhx2/9 in the sepiolid squid Euprymna scolopes supports an ancestral role in neural development. Evol Dev 2009; 11:354-62. [PMID: 19601969 DOI: 10.1111/j.1525-142x.2009.00342.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transcription factors Apterous/Lhx2/9 play many pivotal roles in the development of protostomes and deuterostomes, most notably limb patterning, eye morphogenesis, and brain development. Full-length apterous/lhx2/9 homologs have been isolated from several invertebrate species, but hitherto not from a lophotrochozoan. Here, we report the isolation, characterization, and spatio-temporal expression of apterous in the sepiolid squid Euprymna scolopes. The isolated composite cDNA encodes a hypothetical protein of 448 amino acid residues with a typical LIM-homeodomain (LIM-HD) structure and the greatest overall sequence similarity to vertebrate Lhx2/9 proteins. The Euprymna scolopes apterous (Es-ap) expression patterns provided no indication of a role in the early dorso/ventral patterning or growth of the arm crown that showed expression only in two ventral cords running in parallel inside the arms and tentacles and at the base of the suckers, a region rich in nerve endings and chemosensory neurons. The Es-ap hybridization signal was also conspicuous in the eyes, olfactory organs, optic lobes, and in several lobes of the supraesophageal mass, among these the olfactory and vertical lobes, and paravertical bodies. The observed expression patterns suggest gene involvement in eye morphogenesis and neural wiring of sensory structures, including those for olfaction and vision.
Collapse
Affiliation(s)
- Claudia Farfán
- Department of Zoology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | | | |
Collapse
|
46
|
Alcalay NI, Vanden Heuvel GB. Regulation of cell proliferation and differentiation in the kidney. Front Biosci (Landmark Ed) 2009; 14:4978-91. [PMID: 19482600 DOI: 10.2741/3582] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mammalian cut proteins are a broadly expressed family of nuclear transcription factors related to the Drosophila protein cut. One member of the cut family, Cux1, has been shown to function as a cell cycle dependent transcription factor, regulating the expression of a number of cell cycle regulatory proteins. Cux1 expression is developmentally regulated in multiple tissues suggesting an important regulatory function. Cux1 exists as multiple isoforms that arise from proteolytic processing of a 200 kD protein or use of an alternate promoter. Several mouse models of Cux1 have been generated that suggest important roles for this gene in cell cycle regulation during hair growth, lung development and maturation, and genitourinary tract development. Moreover, the aberrant expression of Cux1 may contribute to diseases such as polycystic kidney disease and cancer. In this review, we will focus on the phenotypes observed in the five existing transgenic mouse models of Cux1, and discuss the role of Cux1 in kidney development and disease.
Collapse
Affiliation(s)
- Neal I Alcalay
- Department of Anatomy, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
47
|
A beta-catenin-dependent Wnt pathway mediates anteroposterior axon guidance in C. elegans motor neurons. PLoS One 2009; 4:e4690. [PMID: 19259273 PMCID: PMC2649571 DOI: 10.1371/journal.pone.0004690] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Accepted: 01/29/2009] [Indexed: 11/19/2022] Open
Abstract
Background Wnts are secreted glycoproteins that regulate diverse aspects of development, including cell proliferation, cell fate specification and differentiation. More recently, Wnts have been shown to direct axon guidance in vertebrates, flies and worms. However, little is known about the intracellular signaling pathways downstream of Wnts in axon guidance. Methodology/Principal Findings Here we show that the posterior C. elegans Wnt protein LIN-44 repels the axons of the adjacent D-type motor neurons by activating its receptor LIN-17/Frizzled on the neurons. Moreover, mutations in mig-5/Disheveled, gsk-3, pry-1/Axin, bar-1/β-catenin and pop-1/TCF, also cause disrupted D-type axon pathfinding. Reduced BAR-1/β-catenin activity in D-type axons leads to undergrowth of axons, while stabilization of BAR-1/β-catenin in a lin-23/SCFβ-TrCP mutant results in an overextension phenotype. Conclusions/Significance Together, our data provide evidence that Wnt-mediated axon guidance can be transduced through a β-catenin-dependent pathway.
Collapse
|
48
|
Chiori R, Jager M, Denker E, Wincker P, Da Silva C, Le Guyader H, Manuel M, Quéinnec E. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria). PLoS One 2009; 4:e4231. [PMID: 19156208 PMCID: PMC2626245 DOI: 10.1371/journal.pone.0004231] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/05/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a "Hox code" predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. CONCLUSIONS/SIGNIFICANCE Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations.
Collapse
Affiliation(s)
- Roxane Chiori
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Muriel Jager
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Elsa Denker
- Sars International Centre for Marine Molecular Biology, Bergen, Norway
| | | | | | - Hervé Le Guyader
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Michaël Manuel
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Eric Quéinnec
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| |
Collapse
|
49
|
Abstract
It is apparent that microRNAs (miRNAs) are important components in the regulation of genetic networks in many biological contexts. Based on computational analysis, typical miRNAs are inferred to have tens to hundreds of conserved targets. Many miRNA-target interactions have been validated by various means, including heterologous tests in cultured cells and gain-of-function approaches that can yield striking phenotypes in whole animals. However, these strategies do not report on the endogenous importance of such miRNA activities. Likewise, studies of miRNA pathway mutants can suggest an endogenous role for miRNAs in a given setting, but do not identify roles for specific miRNAs. Therefore, these approaches must be complemented with the analysis of miRNA mutant alleles. In this review, we describe some of the lessons learned from studying miRNA gene deletions in worms, flies and mice, and discuss their implications for the control of endogenous regulatory networks.
Collapse
Affiliation(s)
- Peter Smibert
- Department of Developmental Biology, Memorial Sloan-Kettering Institute, 521 Rockefeller Research Labs, New York, New York 10065, USA
| | | |
Collapse
|
50
|
Complex network of Wnt signaling regulates neuronal migrations during Caenorhabditis elegans development. Genetics 2008; 179:1357-71. [PMID: 18622031 DOI: 10.1534/genetics.108.090290] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Members of the Wnt family of secreted glycoproteins regulate many developmental processes, including cell migration. We and others have previously shown that the Wnts egl-20, cwn-1, and cwn-2 are required for cell migration and axon guidance. However, the roles in cell migration of all of the Caenorhabditis elegans Wnt genes and their candidate receptors have not been explored fully. We have extended our analysis to include all C. elegans Wnts and six candidate Wnt receptors: four Frizzleds, the sole Ryk family receptor LIN-18, and the Ror receptor tyrosine kinase CAM-1. We show that three of the Wnts, CWN-1, CWN-2, and EGL-20, play major roles in directing cell migrations and that all five Wnts direct specific cell migrations either by acting redundantly or by antagonizing each other's function. We report that all four Frizzleds function to direct Q-descendant cell migrations, but only a subset of the putative Wnt receptors function in directing migrations of other cells. Finally, we find striking differences between the phenotypes of the Wnt quintuple and Frizzled quadruple mutants.
Collapse
|