1
|
Liu S, Liu Y, Guo X, Itoh N, Chang G, Lin Z, Xue Q. Genome of Kumamoto Oyster Crassostrea sikamea Provides Insights Into Bivalve Evolution and Environmental Adaptation. Evol Appl 2025; 18:e70100. [PMID: 40290373 PMCID: PMC12021676 DOI: 10.1111/eva.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/07/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
The Kumamoto oyster, Crassostrea sikamea, is a marine bivalve naturally distributed along the coasts of southern China and southern Japan, with a hatchery population that has been under domestication in the United States since its introduction from Japan in the 1940s. To understand its evolutionary history and environmental adaptation, we produced a chromosome-level genome assembly of C. sikamea and conducted whole-genome resequencing of 141 individuals from the US hatchery population and six wild populations from China and Japan. The assembled genome of C. sikamea has a size of 616 Mb covering all 10 chromosomes with a contig N50 of 4.21 Mb and a scaffold N50 of 62.25 Mb. Phylogenetic analysis indicated that C. sikamea diverged from the Crassostrea angulata and Crassostrea gigas clade about 9.9 million years ago. Synteny analysis revealed significant chromosomal rearrangements during bivalve evolution leading to oysters, but remarkable conservation of all 10 oyster chromosomes over ~180 million years, a surprising disparity in chromosomal evolution. Phylogenetic analysis produced three distinct clusters for the US, Japanese, and Chinese populations, with the US population closer to the Japanese population, confirming its origin. No differentiation was detected among the five Chinese populations, indicating strong gene flow. Between the US and Japan populations, 402 genes exhibited selection signals, including three myosin heavy chain genes that were also differentiated in domesticated lines of the eastern oyster, suggesting changes in these genes may be important for domestic production. Among the 768 genes showing selection signals between natural populations of Japan and China, genes related to stress response are most enriched, suggesting responding to environmental stress is critical for local adaptation. These findings provide insights into bivalve evolution and environmental adaptation, as well as useful resources for comparative genomics and genetic improvement of cultured Kumamoto oyster stocks.
Collapse
Affiliation(s)
- Sheng Liu
- Institute of Mariculture Breeding and Seed IndustryZhejiang Wanli UniversityNinghaiZhejiangChina
- Zhejiang Key Laboratory of Aquatic Germplasm ResourceZhejiang Wanli UniversityNingboZhejiangChina
| | - Youli Liu
- Institute of Mariculture Breeding and Seed IndustryZhejiang Wanli UniversityNinghaiZhejiangChina
- Zhejiang Key Laboratory of Aquatic Germplasm ResourceZhejiang Wanli UniversityNingboZhejiangChina
| | - Ximing Guo
- Haskin Shellfish Research LaboratoryRutgers UniversityPort NorrisNew JerseyUSA
| | - Naoki Itoh
- Laboratory of Fish Diseases, Graduate School of Agricultural and Life SciencesThe University of TokyoBunkyoTokyoJapan
| | - Guangqiu Chang
- Zhejiang Key Laboratory of Aquatic Germplasm ResourceZhejiang Wanli UniversityNingboZhejiangChina
| | - Zhihua Lin
- Institute of Mariculture Breeding and Seed IndustryZhejiang Wanli UniversityNinghaiZhejiangChina
- Zhejiang Key Laboratory of Aquatic Germplasm ResourceZhejiang Wanli UniversityNingboZhejiangChina
| | - Qinggang Xue
- Institute of Mariculture Breeding and Seed IndustryZhejiang Wanli UniversityNinghaiZhejiangChina
- Zhejiang Key Laboratory of Aquatic Germplasm ResourceZhejiang Wanli UniversityNingboZhejiangChina
| |
Collapse
|
2
|
Moreira CN, Pricoli FG, Ferguson-Smith MA, Yonenaga-Yassuda Y, Ventura K. Karyotypic Reshuffling in the Genus Rhipidomys (Rodentia: Cricetidae: Sigmodontinae) Revealed by Zoo-FISH. Cytogenet Genome Res 2024; 164:110-120. [PMID: 38815552 DOI: 10.1159/000539476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
INTRODUCTION Rhipidomys is the second most specious and the most widespread genus of the tribe Thomasomyini. Chromosomal data have been an important tool in the taxonomy of the group that presents low variability of diploid number (2n) and highly variable fundamental numbers (FNs). Despite such diversity, the genus has been studied mainly by classical and banding cytogenetic techniques. METHODS This study performed a comparative study between R. emiliae (2n = 44, FN = 52), R. macrurus (2n = 44, FN = 49), R. nitela (2n = 50, FN = 71), and R. mastacalis (2n = 44, FN = 72) using chromosome painting probes of two Oryzomyini species. RESULTS Our analysis revealed pericentric inversion as the main rearrangement involved in the karyotype evolution of the group, although tandem fusions/fissions were also detected. In addition, we detected eight syntenic associations exclusive of the genus Rhipidomys, and three syntenic associations shared between species of the tribe Thomasomyini and Oryzomyini. CONCLUSION Comparative cytogenetic analysis by ZOO-FISH on genus Rhipidomys supports a pattern of chromosomal rearrangement already suggested by comparative G-banding. However, the results suggest that karyotype variability in the genus could also involve the occurrence of an evolutionary new centromere.
Collapse
Affiliation(s)
- Camila N Moreira
- Centro de Estudos e Células Tronco, Terapia Celular e Genética Toxicológica, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Fernanda G Pricoli
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Yatiyo Yonenaga-Yassuda
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Karen Ventura
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Karlen-Amarante M, Glovak ZT, Huff A, Oliveira LM, Ramirez JM. Postinspiratory and preBötzinger complexes contribute to respiratory-sympathetic coupling in mice before and after chronic intermittent hypoxia. Front Neurosci 2024; 18:1386737. [PMID: 38774786 PMCID: PMC11107097 DOI: 10.3389/fnins.2024.1386737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
The sympathetic nervous system modulates arterial blood pressure. Individuals with obstructive sleep apnea (OSA) experience numerous nightly hypoxic episodes and exhibit elevated sympathetic activity to the cardiovascular system leading to hypertension. This suggests that OSA disrupts normal respiratory-sympathetic coupling. This study investigates the role of the postinspiratory complex (PiCo) and preBötzinger complex (preBötC) in respiratory-sympathetic coupling under control conditions and following exposure to chronic intermittent hypoxia (CIH) for 21 days (5% O2-80 bouts/day). The surface of the ventral brainstem was exposed in urethane (1.5 g/kg) anesthetized, spontaneously breathing adult mice. Cholinergic (ChAT), glutamatergic (Vglut2), and neurons that co-express ChAT and Vglut2 at PiCo, as well as Dbx1 and Vglut2 neurons at preBötC, were optogenetically stimulated while recording activity from the diaphragm (DIA), vagus nerve (cVN), and cervical sympathetic nerve (cSN). Following CIH exposure, baseline cSN activity increased, breathing frequency increased, and expiratory time decreased. In control mice, stimulating PiCo specific cholinergic-glutamatergic neurons caused a sympathetic burst during all phases of the respiratory cycle, whereas optogenetic activation of cholinergic-glutamatergic PiCo neurons in CIH mice increased sympathetic activity only during postinspiration and late expiration. Stimulation of glutamatergic PiCo neurons increased cSN activity during the postinspiratory phase in control and CIH mice. Optogenetic stimulation of ChAT containing neurons in the PiCo area did not affect sympathetic activity under control or CIH conditions. Stimulating Dbx1 or Vglut2 neurons in preBötC evoked an inspiration and a concomitant cSN burst under control and CIH conditions. Taken together, these results suggest that PiCo and preBötC contribute to respiratory-sympathetic coupling, which is altered by CIH, and may contribute to the hypertension observed in patients with OSA.
Collapse
Affiliation(s)
- Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Zachary T. Glovak
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Luiz M. Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
OBrien SJ. Legacy of a magic gene- CCR5-∆32: From discovery to clinical benefit in a generation. Proc Natl Acad Sci U S A 2024; 121:e2321907121. [PMID: 38457490 PMCID: PMC10962972 DOI: 10.1073/pnas.2321907121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 03/10/2024] Open
Abstract
The discovery of the 32-bp deletion allele of the chemokine receptor gene CCR5 showed that homozygous carriers display near-complete resistance to HIV infection, irrespective of exposure. Algorithms of molecular evolutionary theory suggested that the CCR5-∆32 mutation occurred but once in the last millennium and rose by strong selective pressure relatively recently to a ~10% allele frequency in Europeans. Several lines of evidence support the hypothesis that CCR5-∆32 was selected due to its protective influence to resist Yersinia pestis, the agent of the Black Death/bubonic plague of the 14th century. Powerful anti-AIDS entry inhibitors targeting CCR5 were developed as a treatment for HIV patients, particularly those whose systems had developed resistance to powerful anti-retroviral therapies. Homozygous CCR5-∆32/∆32 stem cell transplant donors were used to produce HIV-cleared AIDS patients in at least five "cures" of HIV infection. CCR5 has also been implicated in regulating infection with Staphylococcus aureus, in recovery from stroke, and in ablation of the fatal graft versus host disease (GVHD) in cancer transplant patients. While homozygous CCR5-∆32/32 carriers block HIV infection, alternatively they display an increased risk for encephalomyelitis and death when infected with the West Nile virus.
Collapse
Affiliation(s)
- Stephen J. OBrien
- Guy Harvey Oceanographic Center, Halmos College of Arts and Sciences, Nova Southeastern University, Ft Lauderdale, FL33004
- Indiana University School of Public Health, Bloomington, IN47405
| |
Collapse
|
5
|
Patané JSL, Martins J, Setubal JC. A Guide to Phylogenomic Inference. Methods Mol Biol 2024; 2802:267-345. [PMID: 38819564 DOI: 10.1007/978-1-0716-3838-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Phylogenomics aims at reconstructing the evolutionary histories of organisms taking into account whole genomes or large fractions of genomes. Phylogenomics has significant applications in fields such as evolutionary biology, systematics, comparative genomics, and conservation genetics, providing valuable insights into the origins and relationships of species and contributing to our understanding of biological diversity and evolution. This chapter surveys phylogenetic concepts and methods aimed at both gene tree and species tree reconstruction while also addressing common pitfalls, providing references to relevant computer programs. A practical phylogenomic analysis example including bacterial genomes is presented at the end of the chapter.
Collapse
Affiliation(s)
- José S L Patané
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração/Heart Institute Hospital das Clínicas - Faculdade de Medicina da Universidade de São Paulo São Paulo, São Paulo, SP, Brazil
| | - Joaquim Martins
- Integrative Omics group, Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - João Carlos Setubal
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
do Nascimento Moreira C, Cardoso AL, Valeri MP, Ventura K, Ferguson-Smith MA, Yonenaga-Yassuda Y, Svartman M, Martins C. Characterization of repetitive DNA on the genome of the marsh rat Holochilus nanus (Cricetidae: Sigmodontinae). Mol Genet Genomics 2023:10.1007/s00438-023-02038-w. [PMID: 37233800 DOI: 10.1007/s00438-023-02038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Repetitive DNA are sequences repeated hundreds or thousands of times and an abundant part of eukaryotic genomes. SatDNA represents the majority of the repetitive sequences, followed by transposable elements. The species Holochilus nanus (HNA) belongs to the rodent tribe Oryzomyini, the most taxonomically diverse of Sigmodontinae subfamily. Cytogenetic studies on Oryzomyini reflect such diversity by revealing an exceptional range of karyotype variability. However, little is known about the repetitive DNA content and its involvement in chromosomal diversification of these species. In the search for a more detailed understanding about the composition of repetitive DNA on the genome of HNA and other species of Oryzomyini, we employed a combination of bioinformatic, cytogenetic and molecular techniques to characterize the repetitive DNA content of these species. RepeatExplorer analysis showed that almost half of repetitive content of HNA genome are composed by Long Terminal Repeats and a less significant portion are composed by Short Interspersed Nuclear Elements and Long Interspersed Nuclear Elements. RepeatMasker showed that more than 30% of HNA genome are composed by repetitive sequences, with two main waves of repetitive element insertion. It was also possible to identify a satellite DNA sequence present in the centromeric region of Oryzomyini species, and a repetitive sequence enriched on the long arm of HNA X chromosome. Also, comparative analysis between HNA genome with and without B chromosome did not evidence any repeat element enriched on the supernumerary, suggesting that B chromosome of HNA is composed by a fraction of repeats from all the genome.
Collapse
Affiliation(s)
- Camila do Nascimento Moreira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil.
| | - Adauto Lima Cardoso
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Mirela Pelizaro Valeri
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karen Ventura
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Yatiyo Yonenaga-Yassuda
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marta Svartman
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cesar Martins
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| |
Collapse
|
7
|
Zhao C, Hu B, Zhang Z, Luo Q, Nie Q, Zhang X, Li H. CD36 AFFECTS CHICKEN CARCASS, SKIN YELLOWNESS Detection of CD36 gene polymorphism associated with chicken carcass traits and skin yellowness. Poult Sci 2023; 102:102691. [PMID: 37120870 PMCID: PMC10173766 DOI: 10.1016/j.psj.2023.102691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Investigations into the association between chicken traits and genetic variations provide helpful breeding information to improve production performance and economic benefits in chickens. The single nucleotide polymorphism technique is an important method in agricultural molecular breeding. In this study, we detected 11 SNPs in the CD36 gene, 2 SNPs (g.-1974 A>G, g.-1888 T>C) located in the 5' flanking regions, 8 SNPs (g.23496 G>A, g.23643 C>T, g.23931 T>C, g.23937 G>A, g.31256 C>A, g.31258 C>T, g.31335 C>T, g.31534 A>C) located in the intron region, 1 SNPs (g.23743 G>T) located in the exon region and it belongs to synonymous mutation. In SNPs g.23743 G>T, the abdominal fat weight and abdominal fat weight rate of the GG genotype were lower than that of the TT genotype. In SNPs g.23931 T>C, the full-bore weight rate and half-bore weight rate of the TT genotype were higher compared with the CC genotype. And the SNPs g.-1888 T>C, g.23496 G>A, g.23643 C>T, g.31335 C>T and g.31534 A>C were significantly associated with skin yellowness traits, the cloacal skin yellowness before slaughter of the TT genotype was higher than that of the TC and CC genotype in SNPs g.-1888 T>C. Furthermore, 3 haplotypes of the above eleven SNPs were calculated and they correlated with heart weight, stomach weight, wing weight, leg skin yellowness and shin skin yellowness before slaughter. Finally, the CD36 expression profile displayed the expression pattern of CD36 mRNA variation in different tissues.
Collapse
|
8
|
Rangan AV, McGrouther CC, Bhadra N, Venn-Watson S, Jensen ED, Schork NJ. A time-series analysis of blood-based biomarkers within a 25-year longitudinal dolphin cohort. PLoS Comput Biol 2023; 19:e1010890. [PMID: 36802395 PMCID: PMC9983899 DOI: 10.1371/journal.pcbi.1010890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/03/2023] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Causal interactions and correlations between clinically-relevant biomarkers are important to understand, both for informing potential medical interventions as well as predicting the likely health trajectory of any individual as they age. These interactions and correlations can be hard to establish in humans, due to the difficulties of routine sampling and controlling for individual differences (e.g., diet, socio-economic status, medication). Because bottlenose dolphins are long-lived mammals that exhibit several age-related phenomena similar to humans, we analyzed data from a well controlled 25-year longitudinal cohort of 144 dolphins. The data from this study has been reported on earlier, and consists of 44 clinically relevant biomarkers. This time-series data exhibits three starkly different influences: (A) directed interactions between biomarkers, (B) sources of biological variation that can either correlate or decorrelate different biomarkers, and (C) random observation-noise which combines measurement error and very rapid fluctuations in the dolphin's biomarkers. Importantly, the sources of biological variation (type-B) are large in magnitude, often comparable to the observation errors (type-C) and larger than the effect of the directed interactions (type-A). Attempting to recover the type-A interactions without accounting for the type-B and type-C variation can result in an abundance of false-positives and false-negatives. Using a generalized regression which fits the longitudinal data with a linear model accounting for all three influences, we demonstrate that the dolphins exhibit many significant directed interactions (type-A), as well as strong correlated variation (type-B), between several pairs of biomarkers. Moreover, many of these interactions are associated with advanced age, suggesting that these interactions can be monitored and/or targeted to predict and potentially affect aging.
Collapse
Affiliation(s)
- Aaditya V. Rangan
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
| | - Caroline C. McGrouther
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
| | - Nivedita Bhadra
- Quantitative Medicine and Systems Biology, The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | | | - Eric D. Jensen
- US Navy Marine Mammal Program, Naval Information Warfare Center Pacific, San Diego, California, United States of America
| | - Nicholas J. Schork
- Quantitative Medicine and Systems Biology, The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
- Seraphina Therapeutics, Inc., San Diego, California, United States of America
| |
Collapse
|
9
|
Chipangura JK, Ntamo Y, Mohr B, Chellan N. A review of challenges and prospects of 3D cell-based culture models used for studying drug induced liver injury during early phases of drug development. Hum Exp Toxicol 2023; 42:9603271221147884. [PMID: 36879529 DOI: 10.1177/09603271221147884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Drug-induced liver injury (DILI) is the leading cause of compound attrition during drug development. Over the years, a battery of in-vitro cell culture toxicity tests is being conducted to evaluate the toxicity of compounds prior to testing in laboratory animals. Two-dimensional (2D) in-vitro cell culture models are commonly used and have provided a great deal of knowledge; however, these models often fall short in mimicking natural structures of tissues in-vivo. Testing in humans is the most logical method, but unfortunately there are ethical limitations associated with human tests. To overcome these limitations better human-relevant, predictive models are required. The past decade has witnessed significant efforts towards the development of three-dimensional (3D) in-vitro cell culture models better mimicking in-vivo physiology. 3D cell culture has advantages in being representative of the interactions of cells in-vivo and when validated can act as an interphase between 2D cell culture models and in-vivo animal models. The current review seeks to provide an overview of the challenges that make biomarkers used for detection of DILI not to be sensitive enough during drug development and explore how 3D cell culture models can be used to address the gap with the current models.
Collapse
Affiliation(s)
- John K Chipangura
- Faculty of Health Science, University of Cape Town Research Animal Facility, South Africa
| | - Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Bert Mohr
- Faculty of Health Science, University of Cape Town Research Animal Facility, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, South Africa
| |
Collapse
|
10
|
|
11
|
Bandi V, Gutwin C, Siri JN, Neufeld E, Sharpe A, Parkin I. Visualization Tools for Genomic Conservation. Methods Mol Biol 2022; 2443:285-308. [PMID: 35037213 DOI: 10.1007/978-1-0716-2067-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
SynVisio and Accusyn ( genomevis.usask.ca ) are freely available web-based tools for visualizing genomic conservation that provide easy-to-access visualizations for researchers to interact with their datasets and change parameters in real time to carry out synteny exploration and analysis through multiple coordinated visual representations. The tools use standard file formats and outputs from existing synteny detection systems such as MCScanX or DAGChainer, and provide several features that are valuable for large-scale genomic analysis: a range of visualization scales from full genomes down to single collinearity blocks; single-level and multiple-level plots that enable the analysis of more than two genomic regions; annotation tracks that can be loaded using standard BedGraph files; several techniques for reducing visual clutter in visualizations; the ability to download high-quality images of the visualizations; and a snapshot panel for storing configurations of the interface for later revisitation.
Collapse
Affiliation(s)
- Venkat Bandi
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Carl Gutwin
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Jorge Núñez Siri
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Eric Neufeld
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Sharpe
- Global Institute for Food Security, Saskatoon, SK, Canada
| | - Isobel Parkin
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| |
Collapse
|
12
|
A 25-y longitudinal dolphin cohort supports that long-lived individuals in same environment exhibit variation in aging rates. Proc Natl Acad Sci U S A 2020; 117:20950-20958. [PMID: 32778591 PMCID: PMC7456138 DOI: 10.1073/pnas.1918755117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aging is a degradative process that varies among individuals. Due to limitations in defining and differentiating aging rates in human populations, understanding why some people appear to age slower than others has proven difficult. We analyzed 44 blood-based indices of health as candidate aging rate biomarkers collected over a 25-y period on a relevant, long-lived population of dolphins. Evidence of subsets of dolphins exhibiting slow and accelerated aging rates were detected, despite sharing the same environment, diet, and health care. Furthermore, some dolphin subsets were more likely to develop clinically relevant conditions, including anemia and immunosenescence. Our results support the notion that aging rates in long-lived mammals may be defined and provide insight into novel interventions to delay aging. While it is believed that humans age at different rates, a lack of robust longitudinal human studies using consensus biomarkers meant to capture aging rates has hindered an understanding of the degree to which individuals vary in their rates of aging. Because bottlenose dolphins are long-lived mammals that develop comorbidities of aging similar to humans, we analyzed data from a well-controlled, 25-y longitudinal cohort of 144 US Navy dolphins housed in the same oceanic environment. Our analysis focused on 44 clinically relevant hematologic and clinical chemistry measures recorded during routine blood draws throughout the dolphins’ lifetimes. Using stepwise regression and general linear models that accommodate correlations between measures obtained on individual dolphins, we demonstrate that, in a manner similar to humans, dolphins exhibit independent and linear age-related declines in four of these measures: hemoglobin, alkaline phosphatase, platelets, and lymphocytes. Using linear regressions and analyses of covariance with post hoc Tukey–Kramer tests to compare slopes (i.e., linear age-related rates) of our four aging rate biomarkers among 34 individual dolphins aging from 10 y to up to 40 y old, we could identify slow and accelerated agers and differentiate subgroups that were more or less likely to develop anemia and lymphopenia. This study successfully documents aging rate differences over the lifetime of long-lived individuals in a controlled environment. Our study suggests that nonenvironmental factors influencing aging rate biomarkers, including declining hemoglobin and anemia, may be targeted to delay the effects of aging in a compelling model of human biology.
Collapse
|
13
|
Abstract
This narrative is a personal view of adventures in genetic science and society that have blessed my life and career across five decades. The advances I enjoyed and the lessons I learned derive from educational training, substantial collaboration, and growing up in the genomics age. I parse the stories into six research disciplines my students, fellows, and colleagues have entered and, in some cases, made an important difference. The first is comparative genetics, where evolutionary inference is applied to genome organization, from building gene maps in the 1970s to building whole genome sequences today. The second area tracks the progression of molecular evolutionary advances and applications to resolve the hierarchical relationship among living species in the silence of prehistory. The third endeavor outlines the birth and maturation of genetic studies and application to species conservation. The fourth theme discusses how emerging viruses studied in a genomic sense opened our eyes to host-pathogen interaction and interdependence. The fifth research emphasis outlines the population genetic-based search and discovery of human restriction genes that influence the epidemiological outcome of abrupt outbreaks, notably HIV-AIDS and several cancers. Finally, the last arena explored illustrates how genetic individualization in human and animals has improved forensic evidence in capital crimes. Each discipline has intuitive and technological overlaps, and each has benefitted from the contribution of genetic and genomic principles I learned so long ago from Drosophila. The journey continues.
Collapse
Affiliation(s)
- Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004; .,Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida 33004, USA
| |
Collapse
|
14
|
Fan H, Wu Q, Wei F, Yang F, Ng BL, Hu Y. Chromosome-level genome assembly for giant panda provides novel insights into Carnivora chromosome evolution. Genome Biol 2019; 20:267. [PMID: 31810476 PMCID: PMC6898958 DOI: 10.1186/s13059-019-1889-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult. RESULTS Here, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization. CONCLUSIONS We show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution.
Collapse
Affiliation(s)
- Huizhong Fan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Wu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Fengtang Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bee Ling Ng
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Yibo Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
15
|
Abstract
I abandoned my original career choice of high school teaching to pursue dentistry and soon abandoned that path for genetics. The latter decision was due to a challenge by a professor that led to me reading Nobel speeches by pioneer geneticists before I had formal exposure to the subject. Even then, I was 15 years into my career before my interest in rodent genomes gave way to mapping cattle genes. Events behind these twists and turns in my career path comprise the first part of this review. The remainder is a review of the development of the field of bovine genomics from my personal perspective. I have had the pleasure of working with outstanding graduate students, postdocs, and colleagues to contribute my small part to a discipline that has evolved from a few individuals mapping an orphan genome to a discipline underlying a revolution in animal breeding.
Collapse
Affiliation(s)
- James E. (Jim) Womack
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843–4467, USA
| |
Collapse
|
16
|
Hirpara A, Bloomfield M, Duesberg P. Speciation Theory of Carcinogenesis Explains Karyotypic Individuality and Long Latencies of Cancers. Genes (Basel) 2018; 9:genes9080402. [PMID: 30096943 PMCID: PMC6115917 DOI: 10.3390/genes9080402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/14/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
It has been known for over 100 years that cancers have individual karyotypes and arise only years to decades after initiating carcinogens. However, there is still no coherent theory to explain these definitive characteristics of cancer. The prevailing mutation theory holds that cancers are late because the primary cell must accumulate 3–8 causative mutations to become carcinogenic and that mutations, which induce chromosomal instability (CIN), generate the individual karyotypes of cancers. However, since there is still no proven set of mutations that transforms a normal to a cancer cell, we have recently advanced the theory that carcinogenesis is a form of speciation. This theory predicts carcinogens initiate cancer by inducing aneuploidy, which automatically unbalances thousands of genes and thus catalyzes chain-reactions of progressive aneuploidizations. Over time, these aneuploidizations have two endpoints, either non-viable karyotypes or very rarely karyotypes of new autonomous and immortal cancers. Cancer karyotypes are immortalized despite destabilizing congenital aneuploidy by clonal selections for autonomy—similar to those of conventional species. This theory predicts that the very low probability of converting the karyotype of a normal cell to that of a new autonomous cancer species by random aneuploidizations is the reason for the karyotypic individuality of new cancers and for the long latencies from carcinogens to cancers. In testing this theory, we observed: (1) Addition of mutagenic and non-mutagenic carcinogens to normal human and rat cells generated progressive aneuploidizations months before neoplastic transformation. (2) Sub-cloning of a neoplastic rat clone revealed heritable individual karyotypes, rather than the non-heritable karyotypes predicted by the CIN theory. (3) Analyses of neoplastic and preneoplastic karyotypes unexpectedly identified karyotypes with sets of 3–12 new marker chromosomes without detectable intermediates, consistent with single-step origins. We conclude that the speciation theory explains logically the long latencies from carcinogen exposure and the individuality of cancers. In addition, the theory supports the single-step origins of cancers, because karyotypic autonomy is all-or-nothing. Accordingly, we propose that preneoplastic aneuploidy and clonal neoplastic karyotypes provide more reliable therapeutic indications than current analyses of thousands of mutations.
Collapse
Affiliation(s)
- Ankit Hirpara
- Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Mathew Bloomfield
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94 901, USA.
| | - Peter Duesberg
- Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
17
|
Rando HM, Farré M, Robson MP, Won NB, Johnson JL, Buch R, Bastounes ER, Xiang X, Feng S, Liu S, Xiong Z, Kim J, Zhang G, Trut LN, Larkin DM, Kukekova AV. Construction of Red Fox Chromosomal Fragments from the Short-Read Genome Assembly. Genes (Basel) 2018; 9:E308. [PMID: 29925783 PMCID: PMC6027122 DOI: 10.3390/genes9060308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/19/2018] [Accepted: 06/04/2018] [Indexed: 01/08/2023] Open
Abstract
The genome of a red fox (Vulpes vulpes) was recently sequenced and assembled using next-generation sequencing (NGS). The assembly is of high quality, with 94X coverage and a scaffold N50 of 11.8 Mbp, but is split into 676,878 scaffolds, some of which are likely to contain assembly errors. Fragmentation and misassembly hinder accurate gene prediction and downstream analysis such as the identification of loci under selection. Therefore, assembly of the genome into chromosome-scale fragments was an important step towards developing this genomic model. Scaffolds from the assembly were aligned to the dog reference genome and compared to the alignment of an outgroup genome (cat) against the dog to identify syntenic sequences among species. The program Reference-Assisted Chromosome Assembly (RACA) then integrated the comparative alignment with the mapping of the raw sequencing reads generated during assembly against the fox scaffolds. The 128 sequence fragments RACA assembled were compared to the fox meiotic linkage map to guide the construction of 40 chromosomal fragments. This computational approach to assembly was facilitated by prior research in comparative mammalian genomics, and the continued improvement of the red fox genome can in turn offer insight into canid and carnivore chromosome evolution. This assembly is also necessary for advancing genetic research in foxes and other canids.
Collapse
Affiliation(s)
- Halie M Rando
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Animal Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Marta Farré
- Department of Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK.
| | - Michael P Robson
- Department of Computer Science, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Naomi B Won
- Department of Animal Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jennifer L Johnson
- Department of Animal Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Ronak Buch
- Department of Computer Science, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Estelle R Bastounes
- Department of Animal Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Xueyan Xiang
- China National Genebank, BGI -Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Shaohong Feng
- China National Genebank, BGI -Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Shiping Liu
- China National Genebank, BGI -Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Zijun Xiong
- China National Genebank, BGI -Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Jaebum Kim
- Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul 05029, Korea.
| | - Guojie Zhang
- China National Genebank, BGI -Shenzhen, Shenzhen 518083, Guangdong, China.
- Section for Ecology and Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Lyudmila N Trut
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Denis M Larkin
- Department of Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK.
| | - Anna V Kukekova
- Department of Animal Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
18
|
Bloomfield M, Duesberg P. Is cancer progression caused by gradual or simultaneous acquisitions of new chromosomes? Mol Cytogenet 2018; 11:4. [PMID: 29371887 PMCID: PMC5769399 DOI: 10.1186/s13039-017-0350-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/14/2017] [Indexed: 12/24/2022] Open
Abstract
Background Foulds defined, “Tumor progression (as a) permanent, irreversible qualitative change in one or more of its characters” (Cancer Res. 1954). Accordingly progressions, such as metastases and acquired drug-resistance, were since found to be subspecies of cancers with conserved and numerous new chromosomes. Here we ask whether cancers acquire numerous new chromosomes gradually or simultaneously in progressions. The currently prevailing theory of Nowell (Science, 1976) holds that unexplained “genetic instability” generates “variant sublines (with) changes in chromosome number” and that “clonal” progressions arise by “stepwise selection of more aggressive sublines”. The literature, however, contains many examples of “immediate” selections of progressions with numerous new chromosomes - notably experimentally initiated fusions between cancers and heterologous cells. Furthermore, the stepwise progression theory predicts intermediate sublines of cancers with multiple non-clonal additions of new chromosomes. However, the literature does not describe such intermediates. Results In view of these inconsistencies with stepwise progression we test here a saltational theory, in which the inherent variability of cancer-specific aneuploidy generates “immediate” progressions with individual clonal karyotypes, transcriptomes and phenotypes in single steps. Using cell fusion as an established controllable model of “immediate” progression, we generated seven immortal murine hybridomas by fusing immortal murine myeloma cells and normal antibody-producing B-cells with polyethylene glycol within a few minutes. These immortal hybridomas contained individual sets of 71 to 105 clonal chromosomes, compared to the 52 chromosomes of the parental myeloma. Thus the myeloma had gained 19 to 53 new clonal chromosomes in seven individual hybridomas in a single step. Furthermore, no stable intermediates were found, as would be predicted by a saltational process. Conclusions We conclude that random fusions between myelomas and normal B-cells generate clonal hybridomas with multiple, individual chromosomes in single steps. Similar single-step mechanisms may also generate the “late” clonal progressions of cancers with gains of numerous new chromosomes and thus explain the absence of intermediates. Latency would reflect the low probability of rare stochastic progressions. In conclusion, the karyotypic clonality of hybridomas and spontaneous progressions suggests karyotypic alterations as proximate causes of neoplastic progressions. Since cancer-specific aneuploidy catalyzes karyotypic variation, the degree of aneuploidy predicts the clinical risk of neoplastic progression, confirming classical predictions based on DNA content.
Collapse
Affiliation(s)
- Mathew Bloomfield
- 1Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA.,2Present address: Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA USA
| | - Peter Duesberg
- 1Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
19
|
Abstract
Phylogenomics aims at reconstructing the evolutionary histories of organisms taking into account whole genomes or large fractions of genomes. The abundance of genomic data for an enormous variety of organisms has enabled phylogenomic inference of many groups, and this has motivated the development of many computer programs implementing the associated methods. This chapter surveys phylogenetic concepts and methods aimed at both gene tree and species tree reconstruction while also addressing common pitfalls, providing references to relevant computer programs. A practical phylogenomic analysis example including bacterial genomes is presented at the end of the chapter.
Collapse
Affiliation(s)
- José S L Patané
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Joaquim Martins
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - João C Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
20
|
Microsatellite analysis of genetic diversity in the Tupaia belangeri yaoshanensis. Biomed Rep 2017; 7:349-352. [PMID: 29085630 DOI: 10.3892/br.2017.969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/04/2017] [Indexed: 11/05/2022] Open
Abstract
The Chinese tree shrew (Tupaia belangeri yaoshanensis) has long been proposed to serve as an animal model for studying human diseases. However, its overall genetic diversity and population structure remain largely unknown. In the present study, we investigated the genetic diversity of population microsatellite DNA in wild Tupaia belangeri yaoshanensis. Sixteen microsatellite loci were assessed in 76 wild Tupaia belangeri yaoshanensis. The target microsatellite DNA fragments were amplified from the peripheral blood DNA of the animals by polymerase chain reaction (PCR), and the PCR-amplified products were verified by DNA sequencing and used for the analysis of allele, effective allele, genetic heterozygosity, polymorphism and population structure. Our results showed that of the 16 microsatellite loci examined, 5 microsatellite loci were monomorphic and 11 microsatellite loci were polymorphic. We detected 61 alleles in the polymorphic loci and found 2-10 (with an average of 5.5455) alleles per locus. Our data also showed that the observed and expected heterozygosities ranged from 0.087 to 0.8947 and 0.1368 to 0.7892 with an average of 0.3968 and 0.4796, respectively. Taken together, the results revealed a considerably high heterozygosity and high genetic diversity at the molecular level in the population of wild Tupaia belangeri yaoshanensis. The identified markers from the present study may be useful for individual identification and parentage testing, as well as for the quantification of population heterogeneity in the Chinese tree shrew.
Collapse
|
21
|
Differential chromosomal organization between Saguinus midas and Saguinus bicolor with accumulation of differences the repetitive sequence DNA. Genetica 2017. [PMID: 28634866 DOI: 10.1007/s10709-017-9971-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Saguinus is the largest and most complex genus of the subfamily Callitrichinae, with 23 species distributed from the south of Central America to the north of South America with Saguinus midas having the largest geographical distribution while Saguinus bicolor has a very restricted one, affected by the population expansion in the state of Amazonas. Considering the phylogenetic proximity of the two species along with evidence on the existence of hybrids between them, as well as cytogenetic studies on Saguinus describing a conserved karyotypic macrostructure, we carried out a physical mapping of DNA repeated sequences in the mitotic chromosome of both species, since these sequences are less susceptible to evolutionary pressure and possibly perform an important function in speciation. Both species presented 2n = 46 chromosomes; in S. midas, chromosome Y is the smallest. Multiple ribosomal sites occur in both species, but chromosome pairs three and four may be regarded as markers that differ the species when subjected to G banding and distribution of retroelement LINE 1, suggesting that it may be cytogenetic marker in which it can contribute to identification of first generation hybrids in contact zone. Saguinus bicolor also presented differences in the LINE 1 distribution pattern for sexual chromosome X in individuals from different urban fragments, probably due to geographical isolation. In this context, cytogenetic analyses reveal a differential genomic organization pattern between species S. midas and S. bicolor, in addition to indicating that individuals from different urban fragments have been accumulating differences because of the isolation between them.
Collapse
|
22
|
|
23
|
|
24
|
Bloomfield M, Duesberg P. Inherent variability of cancer-specific aneuploidy generates metastases. Mol Cytogenet 2016; 9:90. [PMID: 28018487 PMCID: PMC5160004 DOI: 10.1186/s13039-016-0297-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022] Open
Abstract
Background The genetic basis of metastasis is still unclear because metastases carry individual karyotypes and phenotypes, rather than consistent mutations, and are rare compared to conventional mutation. There is however correlative evidence that metastasis depends on cancer-specific aneuploidy, and that metastases are karyotypically related to parental cancers. Accordingly we propose that metastasis is a speciation event. This theory holds that cancer-specific aneuploidy varies the clonal karyotypes of cancers automatically by unbalancing thousands of genes, and that rare variants form new autonomous subspecies with metastatic or other non-parental phenotypes like drug-resistance – similar to conventional subspeciation. Results To test this theory, we analyzed the karyotypic and morphological relationships between seven cancers and corresponding metastases. We found (1) that the cellular phenotypes of metastases were closely related to those of parental cancers, (2) that metastases shared 29 to 96% of their clonal karyotypic elements or aneusomies with the clonal karyotypes of parental cancers and (3) that, unexpectedly, the karyotypic complexity of metastases was very similar to that of the parental cancer. This suggests that metastases derive cancer-specific autonomy by conserving the overall complexity of the parental karyotype. We deduced from these results that cancers cause metastases by karyotypic variations and selection for rare metastatic subspecies. Further we asked whether metastases with multiple metastasis-specific aneusomies are assembled in one or multiple, sequential steps. Since (1) no stable karyotypic intermediates of metastases were observed in cancers here and previously by others, and (2) the karyotypic complexities of cancers are conserved in metastases, we concluded that metastases are generated from cancers in one step – like subspecies in conventional speciation. Conclusions We conclude that the risk of cancers to metastasize is proportional to the degree of cancer-specific aneuploidy, because aneuploidy catalyzes the generation of subspecies, including metastases, at aneuploidy-dependent rates. Since speciation by random chromosomal rearrangements and selection is unpredictable, the theory that metastases are karyotypic subspecies of cancers also explains Foulds’ rules, which hold that the origins of metastases are “abrupt” and that their phenotypes are “unpredictable.”
Collapse
Affiliation(s)
- Mathew Bloomfield
- Department of Molecular and Cell Biology; Donner Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA ; Present address: Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA USA
| | - Peter Duesberg
- Department of Molecular and Cell Biology; Donner Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
25
|
Tamazian G, Dobrynin P, Krasheninnikova K, Komissarov A, Koepfli KP, O’Brien SJ. Chromosomer: a reference-based genome arrangement tool for producing draft chromosome sequences. Gigascience 2016; 5:38. [PMID: 27549770 PMCID: PMC4994284 DOI: 10.1186/s13742-016-0141-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/31/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND As the number of sequenced genomes rapidly increases, chromosome assembly is becoming an even more crucial step of any genome study. Since de novo chromosome assemblies are confounded by repeat-mediated artifacts, reference-assisted assemblies that use comparative inference have become widely used, prompting the development of several reference-assisted assembly programs for prokaryotic and eukaryotic genomes. FINDINGS We developed Chromosomer - a reference-based genome arrangement tool, which rapidly builds chromosomes from genome contigs or scaffolds using their alignments to a reference genome of a closely related species. Chromosomer does not require mate-pair libraries and it offers a number of auxiliary tools that implement common operations accompanying the genome assembly process. CONCLUSIONS Despite implementing a straightforward alignment-based approach, Chromosomer is a useful tool for genomic analysis of species without chromosome maps. Putative chromosome assemblies by Chromosomer can be used in comparative genomic analysis, genomic variation assessment, potential linkage group inference and other kinds of analysis involving contig or scaffold mapping to a high-quality assembly.
Collapse
Affiliation(s)
- Gaik Tamazian
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Sredniy Prospekt 41A, St. Petersburg, 199004 Russia
| | - Pavel Dobrynin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Sredniy Prospekt 41A, St. Petersburg, 199004 Russia
| | - Ksenia Krasheninnikova
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Sredniy Prospekt 41A, St. Petersburg, 199004 Russia
| | - Aleksey Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Sredniy Prospekt 41A, St. Petersburg, 199004 Russia
| | - Klaus-Peter Koepfli
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Sredniy Prospekt 41A, St. Petersburg, 199004 Russia
- National Zoology Park, Smithsonian Conservation Biology Institute, 3001 Connecticut Avenue NW, Washington, 20008 D.C. USA
| | - Stephen J. O’Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Sredniy Prospekt 41A, St. Petersburg, 199004 Russia
- Oceanographic Center, Nova Southeastern University, 8000 N. Ocean Drive, Ft. Lauderdave, 33004 Florida USA
| |
Collapse
|
26
|
De A, Ferguson M, Sindi S, Durrett R. The equilibrium distribution for a generalized Sankoff-Ferretti model accurately predicts chromosome size distributions in a wide variety of species. J Appl Probab 2016. [DOI: 10.1239/jap/996986747] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sankoff and Ferretti (1996) introduced several models of the evolution of chromosome size by reciprocal translocations, where for simplicity they ignored the existence of centromeres. However, when they compared the models to data on six organisms they found that their short chromosomes were too short, and their long chromosomes were too long. Here, we consider a generalization of their proportional model with explicit chromosome centromeres and introduce fitness functions based on recombination probabilities and on the length of the longest chromosome arm. We find a simple formula for the stationary distribution for our model which fits the data on chromosome lengths in many, but not all, species.
Collapse
|
27
|
The equilibrium distribution for a generalized Sankoff-Ferretti model accurately predicts chromosome size distributions in a wide variety of species. J Appl Probab 2016. [DOI: 10.1017/s0021900200019884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sankoff and Ferretti (1996) introduced several models of the evolution of chromosome size by reciprocal translocations, where for simplicity they ignored the existence of centromeres. However, when they compared the models to data on six organisms they found that their short chromosomes were too short, and their long chromosomes were too long. Here, we consider a generalization of their proportional model with explicit chromosome centromeres and introduce fitness functions based on recombination probabilities and on the length of the longest chromosome arm. We find a simple formula for the stationary distribution for our model which fits the data on chromosome lengths in many, but not all, species.
Collapse
|
28
|
Acosta MC, Moscone EA, Cocucci AA. Using chromosomal data in the phylogenetic and molecular dating framework: karyotype evolution and diversification in Nierembergia (Solanaceae) influenced by historical changes in sea level. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:514-526. [PMID: 26718314 DOI: 10.1111/plb.12430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Karyotype data within a phylogenetic framework and molecular dating were used to examine chromosome evolution in Nierembergia and to infer how geological or climatic processes have influenced in the diversification of this solanaceous genus native to South America and Mexico. Despite the numerous studies comparing karyotype features across species, including the use of molecular phylogenies, to date relatively few studies have used formal comparative methods to elucidate chromosomal evolution, especially to reconstruct the whole ancestral karyotypes. Here, we mapped on the Nierembergia phylogeny one complete set of chromosomal data obtained by conventional staining, AgNOR-, C- and fluorescent chromosome banding, and fluorescent in situ hybridisation. In addition, we used a Bayesian molecular relaxed clock to estimate divergence times between species. Nierembergia showed two major divergent clades: a mountainous species group with symmetrical karyotypes, large chromosomes, only one nucleolar organising region (NOR) and without centromeric heterochromatin, and a lowland species group with asymmetrical karyotypes, small chromosomes, two chromosomes pairs with NORs and centromeric heterochromatin bands. Molecular dating on the DNA phylogeny revealed that both groups diverged during Late Miocene, when Atlantic marine ingressions, called the 'Paranense Sea', probably forced the ancestors of these species to find refuge in unflooded areas for about 2 Myr. This split agrees with an increased asymmetry and heterochromatin amount, and decrease in karyotype length and chromosome size. Thus, when the two Nierembergia ancestral lineages were isolated, major divergences occurred in chromosomal evolution, and then each lineage underwent speciation separately, with relatively minor changes in chromosomal characteristics.
Collapse
Affiliation(s)
- M C Acosta
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - E A Moscone
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - A A Cocucci
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
29
|
Gatesy J, Springer MS. Phylogenetic analysis at deep timescales: Unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Mol Phylogenet Evol 2014; 80:231-66. [DOI: 10.1016/j.ympev.2014.08.013] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/26/2014] [Accepted: 08/10/2014] [Indexed: 11/16/2022]
|
30
|
Tosti E, Katakowski JA, Schaetzlein S, Kim HS, Ryan CJ, Shales M, Roguev A, Krogan NJ, Palliser D, Keogh MC, Edelmann W. Evolutionarily conserved genetic interactions with budding and fission yeast MutS identify orthologous relationships in mismatch repair-deficient cancer cells. Genome Med 2014; 6:68. [PMID: 25302077 PMCID: PMC4189729 DOI: 10.1186/s13073-014-0068-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 08/28/2014] [Indexed: 12/13/2022] Open
Abstract
Background The evolutionarily conserved DNA mismatch repair (MMR) system corrects base-substitution and insertion-deletion mutations generated during erroneous replication. The mutation or inactivation of many MMR factors strongly predisposes to cancer, where the resulting tumors often display resistance to standard chemotherapeutics. A new direction to develop targeted therapies is the harnessing of synthetic genetic interactions, where the simultaneous loss of two otherwise non-essential factors leads to reduced cell fitness or death. High-throughput screening in human cells to directly identify such interactors for disease-relevant genes is now widespread, but often requires extensive case-by-case optimization. Here we asked if conserved genetic interactors (CGIs) with MMR genes from two evolutionary distant yeast species (Saccharomyces cerevisiae and Schizosaccharomyzes pombe) can predict orthologous genetic relationships in higher eukaryotes. Methods High-throughput screening was used to identify genetic interaction profiles for the MutSα and MutSβ heterodimer subunits (msh2Δ, msh3Δ, msh6Δ) of fission yeast. Selected negative interactors with MutSβ (msh2Δ/msh3Δ) were directly analyzed in budding yeast, and the CGI with SUMO-protease Ulp2 further examined after RNA interference/drug treatment in MSH2-deficient and -proficient human cells. Results This study identified distinct genetic profiles for MutSα and MutSβ, and supports a role for the latter in recombinatorial DNA repair. Approximately 28% of orthologous genetic interactions with msh2Δ/msh3Δ are conserved in both yeasts, a degree consistent with global trends across these species. Further, the CGI between budding/fission yeast msh2 and SUMO-protease Ulp2 is maintained in human cells (MSH2/SENP6), and enhanced by Olaparib, a PARP inhibitor that induces the accumulation of single-strand DNA breaks. This identifies SENP6 as a promising new target for the treatment of MMR-deficient cancers. Conclusion Our findings demonstrate the utility of employing evolutionary distance in tractable lower eukaryotes to predict orthologous genetic relationships in higher eukaryotes. Moreover, we provide novel insights into the genome maintenance functions of a critical DNA repair complex and propose a promising targeted treatment for MMR deficient tumors. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0068-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, USA
| | - Joseph A Katakowski
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, USA
| | - Sonja Schaetzlein
- Department of Cell Biology, Albert Einstein College of Medicine, New York, USA
| | - Hyun-Soo Kim
- Department of Cell Biology, Albert Einstein College of Medicine, New York, USA
| | - Colm J Ryan
- Department of Cellular & Molecular Pharmacology, UCSF, San Francisco, USA ; California Institute for Quantitative Biosciences, San Francisco, USA ; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Michael Shales
- Department of Cellular & Molecular Pharmacology, UCSF, San Francisco, USA
| | - Assen Roguev
- Department of Cellular & Molecular Pharmacology, UCSF, San Francisco, USA
| | - Nevan J Krogan
- Department of Cellular & Molecular Pharmacology, UCSF, San Francisco, USA ; California Institute for Quantitative Biosciences, San Francisco, USA ; J. David Gladstone Institutes, San Francisco, USA
| | - Deborah Palliser
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, USA
| | | | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
31
|
Song SL, Lim PE, Phang SM, Lee WW, Hong DD, Prathep A. Development of chloroplast simple sequence repeats (cpSSRs) for the intraspecific study of Gracilaria tenuistipitata (Gracilariales, Rhodophyta) from different populations. BMC Res Notes 2014; 7:77. [PMID: 24490797 PMCID: PMC3922622 DOI: 10.1186/1756-0500-7-77] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/14/2014] [Indexed: 11/26/2022] Open
Abstract
Background Gracilaria tenuistipitata is an agarophyte with substantial economic potential because of its high growth rate and tolerance to a wide range of environment factors. This red seaweed is intensively cultured in China for the production of agar and fodder for abalone. Microsatellite markers were developed from the chloroplast genome of G. tenuistipitata var. liui to differentiate G. tenuistipitata obtained from six different localities: four from Peninsular Malaysia, one from Thailand and one from Vietnam. Eighty G. tenuistipitata specimens were analyzed using eight simple sequence repeat (SSR) primer-pairs that we developed for polymerase chain reaction (PCR) amplification. Findings Five mononucleotide primer-pairs and one trinucleotide primer-pair exhibited monomorphic alleles, whereas the other two primer-pairs separated the G. tenuistipitata specimens into two main clades. G. tenuistipitata from Thailand and Vietnam were grouped into one clade, and the populations from Batu Laut, Middle Banks and Kuah (Malaysia) were grouped into another clade. The combined dataset of these two primer-pairs separated G. tenuistipitata obtained from Kelantan, Malaysia from that obtained from other localities. Conclusions Based on the variations in repeated nucleotides of microsatellite markers, our results suggested that the populations of G. tenuistipitata were distributed into two main geographical regions: (i) populations in the west coast of Peninsular Malaysia and (ii) populations facing the South China Sea. The correct identification of G. tenuistipitata strains with traits of high economic potential will be advantageous for the mass cultivation of seaweeds.
Collapse
Affiliation(s)
| | - Phaik-Eem Lim
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | | | | | |
Collapse
|
32
|
McCormack A, Fan JL, Duesberg M, Bloomfield M, Fiala C, Duesberg P. Individual karyotypes at the origins of cervical carcinomas. Mol Cytogenet 2013; 6:44. [PMID: 24134916 PMCID: PMC3879223 DOI: 10.1186/1755-8166-6-44] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 10/01/2013] [Indexed: 01/08/2023] Open
Abstract
Background In 1952 Papanicolaou et al. first diagnosed and graded cervical carcinomas based on individual “abnormal DNA contents” and cellular phenotypes. Surprisingly current papilloma virus and mutation theories of carcinomas do not mention these individualities. The viral theory holds that randomly integrated, defective genomes of papilloma viruses, which are often untranscribed, cause cervical carcinomas with unknown cofactors 20–50 years after infection. Virus-free carcinomas are attributed to mutations of a few tumor-suppressor genes, especially the p53 gene. But the paradox of how a few mutations or latent defective viral DNAs would generate carcinomas with endless individual DNA contents, degrees of malignancies and cellular phenotypes is unsolved. Since speciation predicts individuality, we test here the theory that cancers are autonomous species with individual clonal karyotypes and phenotypes. This theory postulates that carcinogens induce aneuploidy. By unbalancing mitosis genes aneuploidy catalyzes chain reactions of karyotypic evolutions. Most such evolutions end with non-viable karyotypes but a few become new cancer karyotypes. Despite congenitally unbalanced mitosis genes cancer karyotypes are stabilized by clonal selections for cancer-specific autonomy. Results To test the prediction of the speciation theory that individual carcinomas have individual clonal karyotypes and phenotypes, we have analyzed here the phenotypes and karyotypes of nine cervical carcinomas. Seven of these contained papilloma virus sequences and two did not. We determined phenotypic individuality and clonality based on the morphology and sociology of carcinoma cells in vitro. Karyotypic individuality and clonality were determined by comparing all chromosomes of 20 karyotypes of carcinomas in three-dimensional arrays. Such arrays list chromosome numbers on the x-axis, chromosome copy numbers on the y-axis and the number of karyotypes arrayed on the z-axis. We found (1) individual clonal karyotypes and phenotypes in all nine carcinomas, but no virus-specific markers, (2) 1-to-1 variations between carcinoma-specific karyotypes and phenotypes, e.g. drug-resistance and cell morphology, (3) proportionality between the copy numbers of chromosomes and the copy numbers of hundreds of over- and under-expressed mRNAs, (4) evidence that tobacco-carcinogens induce cervical carcinomas via aneuploidy, consistent with the speciation theory. Conclusions Since the individual clonal karyotypes of nine carcinomas correlated and co-varied 1-to-1 with complex individual transcriptomes and phenotypes, we have classical genetic and functional transcriptomic evidence to conclude that these karyotypes encode carcinomas - much like the clonal karyotypes that encode conventional species. These individual karyotypes explain the individual “DNA contents”, the endless grades of malignancies and the complex individual transcriptomes and phenotypes of carcinomas.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Duesberg
- Department of Molecular and Cell Biology; Donner Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
33
|
Lichter-Peled A, Polani S, Stanyon R, Rocchi M, Kahila Bar-Gal G. Role of KCNQ2 and KCNQ3 genes in juvenile idiopathic epilepsy in Arabian foals. Vet J 2013. [DOI: 10.1016/j.tvjl.2012.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Genomic signatures of selection at linked sites: unifying the disparity among species. Nat Rev Genet 2013; 14:262-74. [PMID: 23478346 DOI: 10.1038/nrg3425] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Population genetics theory supplies powerful predictions about how natural selection interacts with genetic linkage to sculpt the genomic landscape of nucleotide polymorphism. Both the spread of beneficial mutations and the removal of deleterious mutations act to depress polymorphism levels, especially in low-recombination regions. However, empiricists have documented extreme disparities among species. Here we characterize the dominant features that could drive differences in linked selection among species--including roles for selective sweeps being 'hard' or 'soft'--and the concealing effects of demography and confounding genomic variables. We advocate targeted studies of closely related species to unify our understanding of how selection and linkage interact to shape genome evolution.
Collapse
|
35
|
Duesberg P, McCormack A. Immortality of cancers: a consequence of inherent karyotypic variations and selections for autonomy. Cell Cycle 2013; 12:783-802. [PMID: 23388461 PMCID: PMC3610726 DOI: 10.4161/cc.23720] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immortality is a common characteristic of cancers, but its origin and purpose are still unclear. Here we advance a karyotypic theory of immortality based on the theory that carcinogenesis is a form of speciation. Accordingly, cancers are generated from normal cells by random karyotypic rearrangements and selection for cancer-specific reproductive autonomy. Since such rearrangements unbalance long-established mitosis genes, cancer karyotypes vary spontaneously but are stabilized perpetually by clonal selections for autonomy. To test this theory we have analyzed neoplastic clones, presumably immortalized by transfection with overexpressed telomerase or with SV40 tumor virus, for the predicted clonal yet flexible karyotypes. The following results were obtained: (1) All immortal tumorigenic lines from cells transfected with overexpressed telomerase had clonal and flexible karyotypes; (2) Searching for the origin of such karyotypes, we found spontaneously increasing, random aneuploidy in human fibroblasts early after transfection with overexpressed telomerase; (3) Late after transfection, new immortal tumorigenic clones with new clonal and flexible karyotypes were found; (4) Testing immortality of one clone during 848 unselected generations showed the chromosome number was stable, but the copy numbers of 36% of chromosomes drifted ± 1; (5) Independent immortal tumorigenic clones with individual, flexible karyotypes arose after individual latencies; (6) Immortal tumorigenic clones with new flexible karyotypes also arose late from cells of a telomerase-deficient mouse rendered aneuploid by SV40 virus. Because immortality and tumorigenicity: (1) correlated exactly with individual clonal but flexible karyotypes; (2) originated simultaneously with such karyotypes; and (3) arose in the absence of telomerase, we conclude that clonal and flexible karyotypes generate the immortality of cancers.
Collapse
Affiliation(s)
- Peter Duesberg
- Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| | | |
Collapse
|
36
|
Understanding the Dynamics of Gene Regulatory Systems; Characterisation and Clinical Relevance of cis-Regulatory Polymorphisms. BIOLOGY 2013; 2:64-84. [PMID: 24832652 PMCID: PMC4009875 DOI: 10.3390/biology2010064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/21/2012] [Accepted: 01/04/2013] [Indexed: 12/02/2022]
Abstract
Modern genetic analysis has shown that most polymorphisms associated with human disease are non-coding. Much of the functional information contained in the non-coding genome consists of cis-regulatory sequences (CRSs) that are required to respond to signal transduction cues that direct cell specific gene expression. It has been hypothesised that many diseases may be due to polymorphisms within CRSs that alter their responses to signal transduction cues. However, identification of CRSs, and the effects of allelic variation on their ability to respond to signal transduction cues, is still at an early stage. In the current review we describe the use of comparative genomics and experimental techniques that allow for the identification of CRSs building on recent advances by the ENCODE consortium. In addition we describe techniques that allow for the analysis of the effects of allelic variation and epigenetic modification on CRS responses to signal transduction cues. Using specific examples we show that the interactions driving these elements are highly complex and the effects of disease associated polymorphisms often subtle. It is clear that gaining an understanding of the functions of CRSs, and how they are affected by SNPs and epigenetic modification, is essential to understanding the genetic basis of human disease and stratification whilst providing novel directions for the development of personalised medicine.
Collapse
|
37
|
Luo H, Arndt W, Zhang Y, Shi G, Alekseyev M, Tang J, Hughes AL, Friedman R. Phylogenetic analysis of genome rearrangements among five mammalian orders. Mol Phylogenet Evol 2012; 65:871-82. [PMID: 22929217 PMCID: PMC4425404 DOI: 10.1016/j.ympev.2012.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/11/2012] [Accepted: 08/13/2012] [Indexed: 01/16/2023]
Abstract
Evolutionary relationships among placental mammalian orders have been controversial. Whole genome sequencing and new computational methods offer opportunities to resolve the relationships among 10 genomes belonging to the mammalian orders Primates, Rodentia, Carnivora, Perissodactyla and Artiodactyla. By application of the double cut and join distance metric, where gene order is the phylogenetic character, we computed genomic distances among the sampled mammalian genomes. With a marsupial outgroup, the gene order tree supported a topology in which Rodentia fell outside the cluster of Primates, Carnivora, Perissodactyla, and Artiodactyla. Results of breakpoint reuse rate and synteny block length analyses were consistent with the prediction of random breakage model, which provided a diagnostic test to support use of gene order as an appropriate phylogenetic character in this study. We discussed the influence of rate differences among lineages and other factors that may contribute to different resolutions of mammalian ordinal relationships by different methods of phylogenetic reconstruction.
Collapse
Affiliation(s)
- Haiwei Luo
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA
| | - William Arndt
- Department of Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Yiwei Zhang
- Department of Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Guanqun Shi
- Department of Computer Science, University of California, Riverside, 92521, USA
| | - Max Alekseyev
- Department of Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Jijun Tang
- Department of Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Austin L. Hughes
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA
| | - Robert Friedman
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA
| |
Collapse
|
38
|
Kim H, Lee T, Sung S, Lee C, Kim H. Reanalysis of Ohno's hypothesis on conservation of the size of the X chromosome in mammals. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2012.724709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
39
|
Characterization of the hamster genomic fragment cloned by TAR cloning technology with interspecific sequence information. Genes Genomics 2012. [DOI: 10.1007/s13258-012-0084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Munoz JL, Greco SJ, Patel SA, Sherman LS, Bhatt S, Bhatt RS, Shrensel JA, Guan YZ, Xie G, Ye JH, Rameshwar P, Siegel A. Feline bone marrow-derived mesenchymal stromal cells (MSCs) show similar phenotype and functions with regards to neuronal differentiation as human MSCs. Differentiation 2012; 84:214-22. [PMID: 22824626 DOI: 10.1016/j.diff.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/24/2012] [Accepted: 07/03/2012] [Indexed: 11/25/2022]
Abstract
Mesenchymal stromal cells (MSCs) show promise for treatment of a variety of neurological and other disorders. Cat has a high degree of linkage with the human genome and has been used as a model for analysis of neurological disorders such as stroke, Alzheimer's disease and motor disorders. The present study was designed to characterize bone marrow-derived MSCs from cats and to investigate the capacity to generate functional peptidergic neurons. MSCs were expanded with cells from the femurs of cats and then characterized by phenotype and function. Phenotypically, feline and human MSCs shared surface markers, and lacked hematopoietic markers, with similar morphology. As compared to a subset of human MSCs, feline MSCs showed no evidence of the major histocompatibility class II. Since the literature suggested Stro-1 as an indicator of pluripotency, we compared early and late passages feline MSCs and found its expression in >90% of the cells. However, the early passage cells showed two distinct populations of Stro-1-expressing cells. At passage 5, the MSCs were more homogeneous with regards to Stro-1 expression. The passage 5 MSCs differentiated to osteogenic and adipogenic cells, and generated neurons with electrophysiological properties. This correlated with the expression of mature neuronal markers with concomitant decrease in stem cell-associated genes. At day 12 induction, the cells were positive for MAP2, Neuronal Nuclei, tubulin βIII, Tau and synaptophysin. This correlated with electrophysiological maturity as presented by excitatory postsynaptic potentials (EPSPs). The findings indicate that the cat may constitute a promising biomedical model for evaluation of novel therapies such as stem cell therapy in such neurological disorders as Alzheimer's disease and stroke.
Collapse
Affiliation(s)
- Jessian L Munoz
- Department of Medicine-Hematology-Oncology University of Medicine and Dentistry, New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
A novel 4EHP-GIGYF2 translational repressor complex is essential for mammalian development. Mol Cell Biol 2012; 32:3585-93. [PMID: 22751931 DOI: 10.1128/mcb.00455-12] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding of the eukaryotic initiation factor 4E (eIF4E) to the mRNA 5' cap structure is a rate-limiting step in mRNA translation initiation. eIF4E promotes ribosome recruitment to the mRNA. In Drosophila, the eIF4E homologous protein (d4EHP) forms a complex with binding partners to suppress the translation of distinct mRNAs by competing with eIF4E for binding the 5' cap structure. This repression mechanism is essential for the asymmetric distribution of proteins and normal embryonic development in Drosophila. In contrast, the physiological role of the mammalian 4EHP (m4EHP) was not known. In this study, we have identified the Grb10-interacting GYF protein 2 (GIGYF2) and the zinc finger protein 598 (ZNF598) as components of the m4EHP complex. GIGYF2 directly interacts with m4EHP, and this interaction is required for stabilization of both proteins. Disruption of the m4EHP-GIGYF2 complex leads to increased translation and perinatal lethality in mice. We propose a model by which the m4EHP-GIGYF2 complex represses translation of a subset of mRNAs during embryonic development, as was previously reported for d4EHP.
Collapse
|
42
|
Nie W. Molecular cytogenetic studies in strepsirrhine primates, Dermoptera and Scandentia. Cytogenet Genome Res 2012; 137:246-58. [PMID: 22614467 DOI: 10.1159/000338727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Since the first chromosome painting study between human and strepsirrhine primates was performed in 1996, nearly 30 species in Strepsirrhini, Dermoptera and Scandentia have been analyzed by cross-species chromosome painting. Here, the contribution of chromosome painting data to our understanding of primate genome organization, chromosome evolution and the karyotype phylogenetic relationships within strepsirrhine primates, Dermoptera and Scandentia is reviewed. Twenty-six to 43 homologous chromosome segments have been revealed in different species with human chromosome-specific paint probes. Various landmark rearrangements characteristic for each different lineage have been identified, as cytogenetic signatures that potentially unite certain lineages within strepsirrhine primates, Dermoptera and Scandentia.
Collapse
Affiliation(s)
- W Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China.
| |
Collapse
|
43
|
Popa A, Samollow P, Gautier C, Mouchiroud D. The sex-specific impact of meiotic recombination on nucleotide composition. Genome Biol Evol 2012; 4:412-22. [PMID: 22417915 PMCID: PMC3318449 DOI: 10.1093/gbe/evs023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Meiotic recombination is an important evolutionary force shaping the nucleotide landscape of genomes. For most vertebrates, the frequency of recombination varies slightly or considerably between the sexes (heterochiasmy). In humans, male, rather than female, recombination rate has been found to be more highly correlated with the guanine and cytosine (GC) content across the genome. In the present study, we review the results in human and extend the examination of the evolutionary impact of heterochiasmy beyond primates to include four additional eutherian mammals (mouse, dog, pig, and sheep), a metatherian mammal (opossum), and a bird (chicken). Specifically, we compared sex-specific recombination rates (RRs) with nucleotide substitution patterns evaluated in transposable elements. Our results, based on a comparative approach, reveal a great diversity in the relationship between heterochiasmy and nucleotide composition. We find that the stronger male impact on this relationship is a conserved feature of human, mouse, dog, and sheep. In contrast, variation in genomic GC content in pig and opossum is more strongly correlated with female, rather than male, RR. Moreover, we show that the sex-differential impact of recombination is mainly driven by the chromosomal localization of recombination events. Independent of sex, the higher the RR in a genomic region and the longer this recombination activity is conserved in time, the stronger the bias in nucleotide substitution pattern, through such mechanisms as biased gene conversion. Over time, this bias will increase the local GC content of the region.
Collapse
|
44
|
Hallström BM, Schneider A, Zoller S, Janke A. A genomic approach to examine the complex evolution of laurasiatherian mammals. PLoS One 2011; 6:e28199. [PMID: 22164244 PMCID: PMC3229520 DOI: 10.1371/journal.pone.0028199] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/03/2011] [Indexed: 12/04/2022] Open
Abstract
Recent phylogenomic studies have failed to conclusively resolve certain branches of the placental mammalian tree, despite the evolutionary analysis of genomic data from 32 species. Previous analyses of single genes and retroposon insertion data yielded support for different phylogenetic scenarios for the most basal divergences. The results indicated that some mammalian divergences were best interpreted not as a single bifurcating tree, but as an evolutionary network. In these studies the relationships among some orders of the super-clade Laurasiatheria were poorly supported, albeit not studied in detail. Therefore, 4775 protein-coding genes (6,196,263 nucleotides) were collected and aligned in order to analyze the evolution of this clade. Additionally, over 200,000 introns were screened in silico, resulting in 32 phylogenetically informative long interspersed nuclear elements (LINE) insertion events. The present study shows that the genome evolution of Laurasiatheria may best be understood as an evolutionary network. Thus, contrary to the common expectation to resolve major evolutionary events as a bifurcating tree, genome analyses unveil complex speciation processes even in deep mammalian divergences. We exemplify this on a subset of 1159 suitable genes that have individual histories, most likely due to incomplete lineage sorting or introgression, processes that can make the genealogy of mammalian genomes complex. These unexpected results have major implications for the understanding of evolution in general, because the evolution of even some higher level taxa such as mammalian orders may sometimes not be interpreted as a simple bifurcating pattern.
Collapse
Affiliation(s)
- Björn M Hallström
- Biodiversity and Climate Research Centre (BiK-F) & Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
45
|
Proteomic analysis of the nucleus accumbens in rhesus monkeys of morphine dependence and withdrawal intervention. J Proteomics 2011; 75:1330-42. [PMID: 22123079 DOI: 10.1016/j.jprot.2011.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/31/2011] [Accepted: 11/06/2011] [Indexed: 02/05/2023]
Abstract
It has been known that the reinforcing effects and long-term consequences of morphine are closely associated with nucleus accumbens (NAc) in the brain, a key region of the mesolimbic dopamine pathway. However, the proteins involved in neuroadaptive processes and withdrawal symptom in primates of morphine dependence have not been well explored. In the present study, we performed proteomes in the NAc of rhesus monkeys of morphine dependence and withdrawal intervention with clonidine or methadone. Two-dimensional electrophoresis was used to compare changes in cytosolic protein abundance in the NAc. We found a total of 46 proteins differentially expressed, which were further identified by mass spectrometry analysis. The identified proteins can be classified into 6 classes: metabolism and mitochondrial function, synaptic transmission, cytoskeletal proteins, oxidative stress, signal transduction and protein synthesis and degradation. Importantly, we discovered 14 proteins were significantly but similarly altered after withdrawal therapy with clonidine or methadone, revealing potential pharmacological strategies or targets for the treatment of morphine addiction. Our study provides a comprehensive understanding of the neuropathophysiology associated with morphine addiction and withdrawal therapy in primate, which is helpful for the development of opiate withdrawal pharmacotherapies.
Collapse
|
46
|
Abstract
The assembly of prespliceosomes is responsible for selection of intron sites for splicing. U1 and U2 snRNPs recognize 5' splice sites and branch sites, respectively; although there is information regarding the composition of these complexes, little is known about interaction among the components or between the two snRNPs. Here we describe the protein network of interactions linking U1 and U2 snRNPs with the ATPase Prp5, important for branch site recognition and fidelity during the first steps of the reaction, using fission yeast Schizosaccharomyces pombe. The U1 snRNP core protein U1A binds to a novel SR-like protein, Rsd1, which has homologs implicated in transcription. Rsd1 also contacts S. pombe Prp5 (SpPrp5), mediated by SR-like domains in both proteins. SpPrp5 then contacts U2 snRNP through SF3b, mediated by a conserved DPLD motif in Prp5. We show that mutations in this motif have consequences not only in vitro (defects in prespliceosome formation) but also in vivo, yielding intron retention and exon skipping defects in fission yeast and altered intron recognition in budding yeast Saccharomyces cerevisiae, indicating that the U1-U2 network provides critical, evolutionarily conserved contacts during intron definition.
Collapse
|
47
|
McGraw LA, Davis JK, Young LJ, Thomas JW. A genetic linkage map and comparative mapping of the prairie vole (Microtus ochrogaster) genome. BMC Genet 2011; 12:60. [PMID: 21736755 PMCID: PMC3143096 DOI: 10.1186/1471-2156-12-60] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 07/07/2011] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The prairie vole (Microtus ochrogaster) is an emerging rodent model for investigating the genetics, evolution and molecular mechanisms of social behavior. Though a karyotype for the prairie vole has been reported and low-resolution comparative cytogenetic analyses have been done in this species, other basic genetic resources for this species, such as a genetic linkage map, are lacking. RESULTS Here we report the construction of a genome-wide linkage map of the prairie vole. The linkage map consists of 406 markers that are spaced on average every 7 Mb and span an estimated ~90% of the genome. The sex average length of the linkage map is 1707 cM, which, like other Muroid rodent linkage maps, is on the lower end of the length distribution of linkage maps reported to date for placental mammals. Linkage groups were assigned to 19 out of the 26 prairie vole autosomes as well as the X chromosome. Comparative analyses of the prairie vole linkage map based on the location of 387 Type I markers identified 61 large blocks of synteny with the mouse genome. In addition, the results of the comparative analyses revealed a potential elevated rate of inversions in the prairie vole lineage compared to the laboratory mouse and rat. CONCLUSIONS A genetic linkage map of the prairie vole has been constructed and represents the fourth genome-wide high-resolution linkage map reported for Muroid rodents and the first for a member of the Arvicolinae sub-family. This resource will advance studies designed to dissect the genetic basis of a variety of social behaviors and other traits in the prairie vole as well as our understanding of genome evolution in the genus Microtus.
Collapse
Affiliation(s)
- Lisa A McGraw
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
48
|
Hamilton CK, Revay T, Domander R, Favetta LA, King WA. A large expansion of the HSFY gene family in cattle shows dispersion across Yq and testis-specific expression. PLoS One 2011; 6:e17790. [PMID: 21408193 PMCID: PMC3049798 DOI: 10.1371/journal.pone.0017790] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 02/10/2011] [Indexed: 11/24/2022] Open
Abstract
Heat shock transcription factor, Y-linked (HSFY) is a member of the heat shock transcriptional factor (HSF) family that is found in multiple copies on the Y chromosome and conserved in a number of species. Its function still remains unknown but in humans it is thought to play a role in spermatogenesis. Through real time polymerase chain reaction (PCR) analyses we determined that the HSFY family is largely expanded in cattle (∼70 copies) compared with human (2 functional copies, 4 HSFY-similar copies). Unexpectedly, we found that it does not vary among individual bulls as a copy number variant (CNV). Using fluorescence in situ hybridization (FISH) we found that the copies are dispersed along the long arm of the Y chromosome (Yq). HSFY expression in cattle appears restricted to the testis and its mRNA correlates positively with mRNA markers of spermatogonial and spermatocyte cells (UCHL1 and TRPC2, respectively) which suggests that HSFY is expressed (at least in part) in early germ cells.
Collapse
Affiliation(s)
| | - Tamas Revay
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Robin Domander
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Laura A. Favetta
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - W. Allan King
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
49
|
Chung SJ, Armasu SM, Biernacka JM, Lesnick TG, Rider DN, Lincoln SJ, Ortolaza AI, Farrer MJ, Cunningham JM, Rocca WA, Maraganore DM. Common variants in PARK loci and related genes and Parkinson's disease. Mov Disord 2010; 26:280-8. [PMID: 21412835 DOI: 10.1002/mds.23376] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 06/08/2010] [Accepted: 07/05/2010] [Indexed: 01/06/2023] Open
Abstract
Rare mutations in PARK loci genes cause Parkinson's disease (PD) in some families and isolated populations. We investigated the association of common variants in PARK loci and related genes with PD susceptibility and age at onset in an outbred population. A total of 1,103 PD cases from the upper Midwest, USA, were individually matched to unaffected siblings (n = 654) or unrelated controls (n = 449) from the same region. Using a sequencing approach in 25 cases and 25 controls, single nucleotide polymorphisms (SNPs) in species-conserved regions of PARK loci and related genes were detected. We selected additional tag SNPs from the HapMap. We genotyped a total of 235 SNPs and two variable number tandem repeats in the ATP13A2, DJ1, LRRK1, LRRK2, MAPT, Omi/HtrA2, PARK2, PINK1, SNCA, SNCB, SNCG, SPR, and UCHL1 genes in all 2,206 subjects. Case-control analyses were performed to study association with PD susceptibility, while cases-only analyses were used to study association with age at onset. Only MAPT SNP rs2435200 was associated with PD susceptibility after correction for multiple testing (OR = 0.74, 95% CI = 0.64-0.86, uncorrected P < 0.0001, log additive model); however, 16 additional MAPT variants, seven SNCA variants, and one LRRK2, PARK2, and UCHL1 variants each had significant uncorrected P-values. There were no significant associations for age at onset after correction for multiple testing. Our results confirm the association of MAPT and SNCA genes with PD susceptibility but show limited association of other PARK loci and related genes with PD.
Collapse
Affiliation(s)
- Sun Ju Chung
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
O'Meara CC, Lazar J, Hoffman M, Moreno C, Jacob HJ. Refined mapping of the renal failure RF-3 quantitative trait locus. J Am Soc Nephrol 2010; 22:518-25. [PMID: 21127141 DOI: 10.1681/asn.2010060661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rf-3, a quantitative trait locus (QTL) on rat chromosome 3, affects the development of CKD in Fawn-Hooded Hypertensive (FHH) rats. This QTL spans 110 Mb and approximately 1400 genes; therefore, narrowing the position of this locus is necessary to elucidate potential candidate genes. Here, we used congenic models and comparative genomics to refine the Rf-3 candidate region. We generated congenic lines carrying smaller intervals (subcongenics) of the Rf-3 region and used these lines to reduce the Rf-3 candidate region by 94% (to 7.1 Mb). We used comparative genomics to identify QTL for both nephropathy and albuminuria in the syntenic region of this interval for both human and mouse. We also used the overlapping homologous regions to reduce the number of likely positional candidate genes to 13 known or predicted genes. By combining congenic models and cross-species studies, we narrowed the list of candidate genes to a level that we could sequence the whole interval to further identify the causative gene in future studies.
Collapse
Affiliation(s)
- Caitlin C O'Meara
- Human and Molecular Genetics Center, Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|