1
|
Ruß AK, Schreiber S, Lieb W, Vehreschild JJ, Heuschmann PU, Illig T, Appel KS, Vehreschild MJGT, Krefting D, Reinke L, Viebke A, Poick S, Störk S, Reese JP, Zoller T, Krist L, Ellinghaus D, Foesel BU, Gieger C, Lorenz-Depiereux B, Witzenrath M, Anton G, Krawczak M, Heyckendorf J, Bahmer T. Genome-wide association study of post COVID-19 syndrome in a population-based cohort in Germany. Sci Rep 2025; 15:15791. [PMID: 40328884 PMCID: PMC12056214 DOI: 10.1038/s41598-025-00945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 05/02/2025] [Indexed: 05/08/2025] Open
Abstract
If health impairments due to coronavirus disease 2019 (COVID-19) persist for 12 weeks or longer, patients are diagnosed with Post-COVID Syndrome (PCS), or Long-COVID. Although the COVID-19 pandemic has largely subsided in 2024, PCS is still a major health burden worldwide, and identifying potential genetic modifiers of PCS remains of great clinical and scientific interest. We therefore performed a case-control type genome-wide association study (GWAS) of three recently developed PCS (severity) scores in 2,247 participants of COVIDOM, a prospective, multi-centre, population-based cohort study of SARS-CoV-2-infected individuals in Germany. Each PCS score originally represented the weighted sum of the binary indicators of all, or a subset, of 12 PCS symptom complexes, assessed six months or later after the PCR test-confirmed SARS-CoV-2 infection of a participant. For various methodical reasons, however, the PCS scores were dichotomized along their respective median values in the present study, prior to the GWAS. Of the 6,383,167 single nucleotide polymorphisms included, various variants were found to be associated with at least one of the PCS scores, although not at the stringent genome-wide statistical significance level of 5 × 10- 8. With p = 6.6 × 10- 8, however, the genotype-phenotype association of SNP rs9792535 at position chr9:127,166,653 narrowly missed this threshold. The SNP is located in a region including the NEK6, PSMB7 and ADGRD2 genes which, however, does not immediately suggest an etiological connection to PCS. As regards functional plausibility, variants of a possible effect mapped to the olfactory receptor gene region (lead SNP rs10893121 at position chr11:123,854,744; p = 2.5 × 10- 6). Impairment of smell and taste is a pathognomonic feature of both, acute COVID-19 and PCS, and our results suggest that this connection may have a genetic basis. Three other genotype-phenotype associations pointed towards a possible etiological role in PCS of cellular virus repression (CHD6 gene region), activation of macrophages (SLC7A2) and the release of virus particles from infected cells (ARHGAP44). All other gene regions highlighted by our GWAS did not relate to pathophysiological processes currently discussed for PCS. Therefore, and because the genotype-phenotype associations observed in our GWAS were generally not very strong, the complexity of the genetic background of PCS appears to be as high as that of most other multifactorial traits in humans.
Collapse
Affiliation(s)
- Anne-Kathrin Ruß
- Institute of Medical Informatics and Statistics, University Medical Center Schleswig-Holstein, Kiel University, Brunswiker Straße 10, 24113, Kiel, Germany
- Institute of Epidemiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - J Janne Vehreschild
- Institute of Digital Medicine and Clinical Data Science, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Department I of Internal Medicine, Faculty of Medicine, University Hospital CologneUniversity of Cologne, Cologne, Germany
| | - Peter U Heuschmann
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
- Institute of Medical Data Science, University Hospital Würzburg, Würzburg, Germany
- Clinical Trial Center, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Katharina S Appel
- Institute of Digital Medicine and Clinical Data Science, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Maria J G T Vehreschild
- Medical Department 2, Center for Internal Medicine, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Dagmar Krefting
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
- Campus Institute Data Sciences, Göttingen, Germany
| | - Lennart Reinke
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Alin Viebke
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Susanne Poick
- Institute of Epidemiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stefan Störk
- Department of Clinical Research and Epidemiology, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Jens-Peter Reese
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
- Institute of Medical Data Science, University Hospital Würzburg, Würzburg, Germany
- Faculty of Health Sciences, THM University of Applied Sciences, Gießen, Germany
| | - Thomas Zoller
- Department of Infectious Diseases, Respiratory and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lilian Krist
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Bärbel U Foesel
- Institute of Epidemiology, Research Unit of Molecular Epidemiology, Helmholtz Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Gieger
- Institute of Epidemiology, Research Unit of Molecular Epidemiology, Helmholtz Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Bettina Lorenz-Depiereux
- Institute of Epidemiology, Research Unit of Molecular Epidemiology, Helmholtz Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- CAPNETZ Stiftung, Hannover, Germany
| | - Gabriele Anton
- Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, University Medical Center Schleswig-Holstein, Kiel University, Brunswiker Straße 10, 24113, Kiel, Germany.
| | - Jan Heyckendorf
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany
- Leibniz Lung Clinic, Kiel, Germany
| | - Thomas Bahmer
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany
| |
Collapse
|
2
|
Wu R, Liang H, Hu N, Lu J, Li C, Tang D. Chemical, Sensory Variations in Black Teas from Six Tea Cultivars in Jingshan, China. Foods 2025; 14:1558. [PMID: 40361640 PMCID: PMC12071611 DOI: 10.3390/foods14091558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The development of black tea quality is the outcome of the synergistic interaction between tea cultivars and the ecological environment of the production area, including factors such as climate, soil, and cultivation practices. Nevertheless, within a specific geographical region, systematic analysis of the environmental regulation mechanisms governing processing adaptability and quality formation among different cultivars remains insufficient. This study evaluated six Camellia sinensis cultivars from the Jingshan region of Hangzhou, China, integrating non-targeted metabolomics, sensory profiling, bioassays, and molecular docking to elucidate cultivar-specific quality attributes. Non-volatile metabolomics identified 84 metabolites linked to color and taste, including amino acids, catechins, flavonoid glycosides, and phenolic acids. Sensory and metabolite correlations revealed that amino acids enhanced brightness and imparted fresh-sweet flavors, while catechins contributed to bitterness and astringency. Specific metabolites, such as 4-hydroxybenzoyl glucose and feruloyl quinic acid, modulated color luminance. Volatile analysis identified 13 aroma-active compounds (OAV ≥ 1), with 1-octen-3-ol, phenylacetaldehyde, and linalool endowing JK with distinct floral-fruity notes. Molecular docking further demonstrated interactions between these volatiles and olfactory receptors (e.g., OR1A1 and OR2J2), providing mechanistic insights into aroma perception. These findings establish a robust link between cultivar-driven metabolic profiles in black tea, offering actionable criteria for cultivar selection and quality optimization in regional tea production.
Collapse
Affiliation(s)
| | | | | | | | | | - Desong Tang
- College of Tea Science and Tea Culture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (R.W.); (H.L.); (N.H.); (J.L.); (C.L.)
| |
Collapse
|
3
|
Shao H, Liu W, Hong H, Guo K, Chen J, Li Q, Su M, Huang X, Hu J. Evidence for Bxy-npr-21 on controlling juveniles' growth and modulating male sexual arousal: from molecules to behaviors. PEST MANAGEMENT SCIENCE 2025; 81:2312-2322. [PMID: 39822134 DOI: 10.1002/ps.8633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Bursaphelenchus xylophilus is considered a quarantine plant nematode species, that causes major damage to pine ecosystems globally. However, there are few reports on the identification and function of the sex pheromone receptors involved in mating. The function of Bxy-npr-21 as a potential sex pheromone receptor gene was verified from molecules to behaviors in this study. RESULTS Here, we firstly report that Bxy-npr-21 is a receptor gene involved in sexual attraction. The bioinformatic analysis indicated that the Bxy-npr-21 gene in B. xylophilus encodes a GPCR. The expression characterization for Bxy-npr-21 showed that it is widely expressed in whole body of larvae and sex organs of adults. The RNAi results suggested that the Bxy-npr-21 gene was involved mainly in movement, feeding, and mating. Sexual arousal experiments further validated that the Bxy-npr-21 gene was involved in the activation of males by female chemical signaling. CONCLUSIONS Our results strongly suggest that the Bxy-npr-21 gene is a key gene that regulates nematode growth, development and reproduction. The results of this study lay the foundation for revealing the molecular mechanisms of growth and reproduction of B. xylophilus. It can also provide an important basis for further control of B. xylophilus. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hudie Shao
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Wenyi Liu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Huan Hong
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Kai Guo
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Jing Chen
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Quan Li
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Miao Su
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Xiaofang Huang
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Jiafu Hu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| |
Collapse
|
4
|
Zhu J, Liu X, Sun Z, Shen T, Wang Z, Yang E, Niu Y, Xiao Z. Reviewing the Mechanisms of the Interaction of Characteristic Aroma Compounds of Longjing Tea with S-curve, Molecular Docking, and Molecular Dynamics Simulation: With a Focus on (+)-(1 R,2 S)-Methyl Epijasmonate and β-Ionone as Examples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3645-3656. [PMID: 39899846 DOI: 10.1021/acs.jafc.4c08754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
The S-curve method, molecular docking, and molecular dynamics simulation (MDS) were used to explore the interaction between the aroma compounds of Longjing tea and receptors. The ratio of experimental and theoretical threshold (D) values for (+)-(1R,2S)-methyl epijasmonate and β-ionone was 0.46, indicating a synergistic effect between them. Similarly, synergistic interactions occurred between (R)-(+)-γ-nonanolactone and (R)-(+)-γ-decalactone (D = 0.42), 3-methylbutanal and 2-ethyl-3,5-dimethylpyrazine (D = 0.43). Molecular docking indicates significant changes in the affinity and stability between the binary system and individual compounds with receptors (OR52D1 and OR1A1). Through MDS analysis, it was found that the hydrophobic residues in OR52D1-β-ionone changed from Leu203, Val205, Ala206, Ala258, and Met210 to Tyr111, Ala112, Met210, Ala209, and Ala206 after addition of (+)-(1R,2S)-methyl epijasmonate. Hydrophobic interactions play an integral and important role in the formation of a stable ternary architecture between (+)-(1R,2S)-methyl epijasmonate-β-ionone and OR52D1. By calculating the binding energy of MMGBSA, it was found that the addition of (+)-(1R,2S)-methyl epijasmonate reduced the energy of the binary system from -53.58 to -58.48 kcal/mol, indicating better stability of the new system. The molecular mechanisms of interactions between the characteristic compounds of Longjing tea were revealed, thus providing theoretical support for improving the flavor of Longjing tea.
Collapse
Affiliation(s)
- JianCai Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - XiaoJie Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - ZhenChun Sun
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - TianYin Shen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - ZhaoGai Wang
- Agricultural Products Processing Center, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - EnQing Yang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - YunWei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - ZuoBing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
- Agricultural Products Processing Center, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Hatamifar Y, Shojaeifard Z, Hemmateenejad B. Discrimination of bottled mineral water from tap water using a Dip-Type colorimetric paper-based sensor array and chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124719. [PMID: 38959690 DOI: 10.1016/j.saa.2024.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Mineral water is a natural water that originated from an underground water table, a well, or a natural spring which is considered microbiologically intact. The revenue from the bottled mineral water industry will be USD 342.40 billion in 2023, and it is expected to grow at a compound annual growth rate (CAGR) of 5.24 %. Consequently, the discrimination of original bottled mineral water from tap water is an important issue that requires designing sensors for simple and portable identification of these two types of water. In this work, we have developed a Dip-Type colorimetric paper-based sensor array with three organic dyes (Bromothymol Blue, Bromophenol Blue, and Methyl Red) followed by chemometrics' pattern recognition methods (PCA and LDA) for discrimination of original bottled mineral waters from tap waters based on differences in ion variety and ion quantity. Forty brands of mineral water and twenty-six Tap water samples from different regions of Shiraz and other Iranian cities were analyzed by this sensor array. Moreover, these experiments were performed in two consecutive years to check the versatility of the sensor with seasonal changes in waters. This sensor array was able to discriminate these two water types from each other with an accuracy of > 95 % based on the analysis of 85 water samples.
Collapse
|
6
|
Qi H, Yu J, Shen Q, Cai M, Gao Q, Tang Q, Yi S. Identification and characterization of olfactory gene families in Macrobrachium rosenbergii based on full-length transcripts and genome sequences. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101299. [PMID: 39068906 DOI: 10.1016/j.cbd.2024.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The olfactory gene families include odorant binding proteins (OBPs), chemosensory proteins (CSPs), olfactory receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs). To investigate the molecular function of olfactory perception in Macrobrachium rosenbergii, we integrated the full-length transcripts and whole-genome sequences to identify the olfactory gene families. In this study, a total of 38,955 full-length transcripts with an N50 length of 3383 bp were obtained through PacBio SMRT sequencing. Through the annotation of full-length transcripts and whole-genome sequences, several olfactory gene families were identified, including 18 MrORs, 16 MrIRs, 151 MrIGluRs (ionotropic glutamate receptors), 2 MrVIGluRs (variant ionotropic glutamate receptors) and 3 MrCRs (chemosensory receptors). Notably, the CRs were first identified in prawns and shrimps. Additionally, the olfactory gene families in M. nipponense were identified, comprising 4 MnORs, 21 MnIRs, 79 MnIGluRs, 5 MnVIGluRs, 1 MnGR and 1 MnOBP, using the available whole-genome sequences. Meanwhile, the external morphology of the chemical sensory organs of M. rosenbergii was explored, and the presence of plumose setae (PS), hard thorn setae (HTS), bamboo shoot setae (BSS), soft thorn setae (STS) and aesthetascs (AE) on the antennules, HTS and BSS on the second antennae, and PS on the pereiopods were observed by scanning electron microscope. This study provides valuable insights for future functional studies into the olfactory perception of crustaceans and establishes a theoretical basis for molecular design breeding in M. rosenbergii.
Collapse
Affiliation(s)
- Hangyu Qi
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Jiongying Yu
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Qi Shen
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Miuying Cai
- Jiangsu Shufeng Prawn Breeding Co. LTD, Gaoyou 225654, China
| | - Quanxin Gao
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Qiongying Tang
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Shaokui Yi
- School of Life Sciences, Huzhou University, Huzhou 313000, China.
| |
Collapse
|
7
|
Baril T, Galbraith J, Hayward A. Earl Grey: A Fully Automated User-Friendly Transposable Element Annotation and Analysis Pipeline. Mol Biol Evol 2024; 41:msae068. [PMID: 38577785 PMCID: PMC11003543 DOI: 10.1093/molbev/msae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes and are implicated in a range of evolutionary processes. Yet, TE annotation and characterization remain challenging, particularly for nonspecialists, since existing pipelines are typically complicated to install, run, and extract data from. Current methods of automated TE annotation are also subject to issues that reduce overall quality, particularly (i) fragmented and overlapping TE annotations, leading to erroneous estimates of TE count and coverage, and (ii) repeat models represented by short sections of total TE length, with poor capture of 5' and 3' ends. To address these issues, we present Earl Grey, a fully automated TE annotation pipeline designed for user-friendly curation and annotation of TEs in eukaryotic genome assemblies. Using nine simulated genomes and an annotation of Drosophila melanogaster, we show that Earl Grey outperforms current widely used TE annotation methodologies in ameliorating the issues mentioned above while scoring highly in benchmarking for TE annotation and classification and being robust across genomic contexts. Earl Grey provides a comprehensive and fully automated TE annotation toolkit that provides researchers with paper-ready summary figures and outputs in standard formats compatible with other bioinformatics tools. Earl Grey has a modular format, with great scope for the inclusion of additional modules focused on further quality control and tailored analyses in future releases.
Collapse
Affiliation(s)
- Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - James Galbraith
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alex Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| |
Collapse
|
8
|
Du HT, Lu JQ, Ji K, Wang CC, Yao ZC, Liu F, Li Y. Comparative Transcriptomic Assessment of Chemosensory Genes in Adult and Larval Olfactory Organs of Cnaphalocrocis medinalis. Genes (Basel) 2023; 14:2165. [PMID: 38136987 PMCID: PMC10742765 DOI: 10.3390/genes14122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a notorious pest of rice in Asia. The larvae and adults of C. medinalis utilize specialized chemosensory systems to adapt to different environmental odors and physiological behaviors. However, the differences in chemosensory genes between the olfactory organs of these two different developmental stages remain unclear. Here, we conducted a transcriptome analysis of larvae heads, male antennae, and female antennae in C. medinalis and identified 131 putative chemosensory genes, including 32 OBPs (8 novel OBPs), 23 CSPs (2 novel CSPs), 55 ORs (17 novel ORs), 19 IRs (5 novel IRs) and 2 SNMPs. Comparisons between larvae and adults of C. medinalis by transcriptome and RT-qPCR analysis revealed that the number and expression of chemosensory genes in larval heads were less than that of adult antennae. Only 17 chemosensory genes (7 OBPs and 10 CSPs) were specifically or preferentially expressed in the larval heads, while a total of 101 chemosensory genes (21 OBPs, 9 CSPs, 51 ORs, 18 IRs, and 2 SNMPs) were specifically or preferentially expressed in adult antennae. Our study found differences in chemosensory gene expression between larvae and adults, suggesting their specialized functions at different developmental stages of C. medinalis. These results provide a theoretical basis for screening chemosensory genes as potential molecular targets and developing novel management strategies to control C. medinalis.
Collapse
Affiliation(s)
- Hai-Tao Du
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Jia-Qi Lu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Kun Ji
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Chu-Chu Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Zhi-Chao Yao
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Fang Liu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yao Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| |
Collapse
|
9
|
Gunder N, Dörig P, Witt M, Welge-Lüssen A, Menzel S, Hummel T. Future therapeutic strategies for olfactory disorders: electrical stimulation, stem cell therapy, and transplantation of olfactory epithelium-an overview. HNO 2023; 71:35-43. [PMID: 36734997 PMCID: PMC9897160 DOI: 10.1007/s00106-022-01249-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 02/04/2023]
Abstract
Olfactory disorders may be temporary or permanent and can have various causes. Currently, many COVID-19 patients report a reduced or complete loss of olfactory function. A wide range of treatment options have been investigated in the past, such as olfactory training, acupuncture, medical therapy, transcranial magnetic stimulation, or surgical excision of olfactory epithelium, e.g., in severe qualitative smell disorders. The development of a bioelectric nose, e.g., in connection with direct electrical stimulation or transplantation of olfactory epithelium or stem cells, represent treatment options of the future. The basis of these developments and the state of knowledge is discussed in the following work.
Collapse
Affiliation(s)
- N Gunder
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - P Dörig
- Universitäts-HNO Klinik Basel, Basel, Switzerland
| | - M Witt
- Institut für Anatomie, Universitätsmedizin Rostock, Rostock, Germany
| | | | - S Menzel
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - T Hummel
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
10
|
Jaffar-Bandjee M, Figon F, Clémençon P, Renard JB, Casas J. Aerosol Alteration of Behavioral Response to Pheromone in Bombyx mori. J Chem Ecol 2023; 49:353-362. [PMID: 37120695 DOI: 10.1007/s10886-023-01431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
Because of the complexity to study them, aerosols have been neglected in nearly all studies on olfaction, especially studies dealing with odor capture. However, aerosols are present in large quantities in the atmosphere and have the physico-chemical ability to interact with odor molecules, in particular the many pheromones with low volatility. We submitted male moths of Bombyx mori to bombykol puffs, the main fatty alcohol component of its sex pheromone, depending on whether the air is free of aerosols, charged with ambient concentration aerosols or supplemented with aqueous aerosols and recorded their arousal behavior. Aerosols and pheromone do interact consistently over all experiments and moths react better in low aerosol-concentration conditions. We propose four hypotheses for explaining this impediment, the two most likely resorting to competition between odor molecules and aerosols for the olfactory pores and postulate a reversal to a positive impact of aerosols on communication, depending on the particular physico-chemical properties of the multiphasic interaction. Studying the partitioning between gas and particulate phases in the transport and reception of odors is key for advancing the chemico-physical understanding of olfaction.
Collapse
Affiliation(s)
- Mourad Jaffar-Bandjee
- Insect Biology Research Institute, University of Tours - CNRS, Tours, France.
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | - Florent Figon
- Insect Biology Research Institute, University of Tours - CNRS, Tours, France
- Laboratoire d'Ecologie Alpine, Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Paul Clémençon
- Insect Biology Research Institute, University of Tours - CNRS, Tours, France
| | - Jean-Baptiste Renard
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, CNRS - University of Orléans, Orléans, France
| | - Jérôme Casas
- Insect Biology Research Institute, University of Tours - CNRS, Tours, France
| |
Collapse
|
11
|
Ye M, Lin X, Zhang Y, Huang Y, Li G, Tian C. Genome-Wide Identification and Characterization of Olfactory Receptor Genes in Silver Sillago (Sillago sihama). Animals (Basel) 2023; 13:ani13071232. [PMID: 37048487 PMCID: PMC10093537 DOI: 10.3390/ani13071232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Olfactory receptor (OR) genes are essential in the specific recognition of diverse stimuli in fish. In this study, a total of 141 OR genes were identified in silver sillago (Sillago sihama), a marine fish sensitive to environmental stimuli, including 112 intact genes, 26 truncated genes, and three pseudogenes. A phylogenetic tree analysis elucidated that the OR genes of S. sihama were classified into six groups, of which β, γ, δ, ε, and ζ groups belonged to type I, and the η group belonged to type II. The type I OR genes contained almost all conserved motifs (n = 62), while type II OR genes mainly retained conserved motifs 7(3), 1, 10, 4, and 2 (n = 39). OR genes were mainly distributed on LG1, LG9, LG11, and LG12. Of all OR genes, 36.23% (50 genes) showed significant expansion in S. sihama. Ka/Ks analysis demonstrated that 227 sites were under purifying selection, while 12 sites were under positive selection, including eight genes in the OR2A12 gene subfamily. Sixty-one genes (44.20%) displayed differential expression under hypoxic stress. The identified OR genes explored the mechanism of environmental stress and ecological adaptation of S. sihama, and provided valuable genomic resources for further research on the olfaction of teleosts.
Collapse
Affiliation(s)
- Minghui Ye
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinghua Lin
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yulei Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Yang Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| |
Collapse
|
12
|
De Novo Assembly and Characterization of the Transcriptome of an Omnivorous Camel Cricket ( Tachycines meditationis). Int J Mol Sci 2023; 24:ijms24044005. [PMID: 36835417 PMCID: PMC9966759 DOI: 10.3390/ijms24044005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
Tachycines meditationis (Orthoptera: Rhaphidophoridae: Tachycines) is a widely distributed insect in eastern Asia. This species is common in urban environments, and its unique omnivorous diet may contribute to its success in various habitats. However, molecular studies on the species are scarce. Here, we obtained the first transcriptome sequence of T. meditationis and performed preliminary analyses to test whether the evolution of coding sequences fits the expectations based on the species' ecology. We retrieved 476,495 effective transcripts and annotated 46,593 coding sequences (CDS). We analysed the codon usage and found that directional mutation pressure was the leading cause of codon usage bias in this species. This genome-wide relaxed codon usage pattern in T. meditationis is surprising, given the potentially large population size of this species. Moreover, despite the omnivorous diet, the chemosensory genes of this species do not exhibit codon usage deviating significantly from the genome-level pattern. They also do not seem to experience more gene family expansion than other cave cricket species do. A thorough search for rapidly evolved genes using the dN/dS value showed that genes associated with substance synthesis and metabolic pathways, such as retinol metabolism, aminoacyl-tRNA biosynthesis, and fatty acid metabolism, underwent species-specific positive selection. While some results seem to contradict the species ecology, our transcriptome assembly provides a valuable molecular resource for future studies on camel cricket evolution and molecular genetics for feeding ecology in insects, in general.
Collapse
|
13
|
Kundu A, Jaiswal N, Rao U, Somvanshi VS. Stringent in-silico identification of putative G-protein-coupled receptors (GPCRs) of the entomopathogenic nematode Heterorhabditis bacteriophora. J Nematol 2023; 55:20230038. [PMID: 38026552 PMCID: PMC10670001 DOI: 10.2478/jofnem-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 12/01/2023] Open
Abstract
The infective juveniles (IJs) of entomopathogenic nematode (EPN) Heterorhabditis bacteriophora find and infect their host insects in heterogeneous soil ecosystems by sensing a universal host cue (CO2) or insect/plant-derived odorants, which bind to various sensory receptors, including G protein-coupled receptors (GPCRs). Nematode chemosensory GPCRs (NemChRs) bind to a diverse set of ligands, including odor molecules. However, there is a lack of information on the NemChRs in EPNs. Here we identified 21 GPCRs in the H. bacteriophora genome sequence in a triphasic manner, combining various transmembrane detectors and GPCR predictors based on different algorithms, and considering inherent properties of GPCRs. The pipeline was validated by reciprocal BLAST, InterProscan, GPCR-CA, and NCBI CDD search. Functional classification of predicted GPCRs using Pfam revealed the presence of four NemChRs. Additionally, GPCRs were classified into various families based on the reciprocal BLAST approach into a frizzled type, a secretin type, and 19 rhodopsin types of GPCRs. Gi/o is the most abundant kind of G-protein, having a coupling specificity to all the fetched GPCRs. As the 21 GPCRs identified are expected to play a crucial role in the host-seeking behavior, these might be targeted to develop novel insect-pest management strategies by tweaking EPN IJ behavior, or to design novel anthelminthic drugs. Our new and stringent GPCR detection pipeline may also be used to identify GPCRs from the genome sequence of other organisms.
Collapse
Affiliation(s)
- Artha Kundu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi-12, India
| | - Nisha Jaiswal
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi-12, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi-12, India
| | - Vishal Singh Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi-12, India
| |
Collapse
|
14
|
Ning X, Huang C, Dong C, Jin J, Qiao X, Guo J, Qian W, Cao F, Wan F. RNAi verifications on olfactory defects of an essential biocontrol agent Agasicles hygrophila (Coleoptera: Chrysomelidae) regarding mating and host allocation. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1104962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Alligator weed Alternanthera philoxeroides is a perennial, worldwide pernicious weed. The beetle Agasicles hygrophila is considered to be a classical biological agent used to control A. philoxeroides. In the insect peripheral olfactory system, the odorant receptor co-receptor (ORco) plays an important function in the perception of odors in insects. However, the function of ORco in the mating and host-finding behaviors of A. hygrophila remains unclear. In this study, we characterized the odorant receptor co-receptor of A. hygrophila (AhygOrco). Real-time quantitative PCR (qRT–PCR) showed that AhygOrco was predominantly expressed in the antennae of both male and female adults, and the difference between male and female antennae was not significant. The RNA interference (RNAi) results showed that compared to the control, the injection of AhygOrco dsRNA strongly reduced the expression of AhygOrco by 90% in male beetles and 89% in female beetles. The mate-seeking and feeding behavior of AhygOrco-silenced beetles were significantly inhibited. Male adults were significantly less successful in finding a mate compared to the control group. Furthermore, host allocation abilities toward A. philoxeroides of both adults were significantly repressed. These results indicated that AhygOrco is associated with A. hygrophila feeding and mate-seeking and that inhibition of AhygOrco expression is one of the causes of reduced host and mate recognition in A. hygrophila. Meanwhile, the study provides support for exploring gene functions based on RNAi.
Collapse
|
15
|
Boronat-Garcia A, Iben J, Dominguez-Martin E, Stopfer M. Identification and analysis of odorant receptors expressed in the two main olfactory organs, antennae and palps, of Schistocerca americana. Sci Rep 2022; 12:22628. [PMID: 36587060 PMCID: PMC9805433 DOI: 10.1038/s41598-022-27199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Locusts depend upon their sense of smell and provide useful models for understanding olfaction. Extending this understanding requires knowledge of the molecular and structural organization of the olfactory system. Odor sensing begins with olfactory receptor neurons (ORNs), which express odorant receptors (ORs). In insects, ORNs are housed, in varying numbers, in olfactory sensilla. Because the organization of ORs within sensilla affects their function, it is essential to identify the ORs they contain. Here, using RNA sequencing, we identified 179 putative ORs in the transcriptomes of the two main olfactory organs, antenna and palp, of the locust Schistocerca americana. Quantitative expression analysis showed most putative ORs (140) are expressed in antennae while only 31 are in the palps. Further, our analysis identified one OR detected only in the palps and seven ORs that are expressed differentially by sex. An in situ analysis of OR expression suggested ORs are organized in non-random combinations within antennal sensilla. A phylogenetic comparison of OR predicted protein sequences revealed homologous relationships among two other Acrididae species. Our results provide a foundation for understanding the organization of the first stage of the olfactory system in S. americana, a well-studied model for olfactory processing.
Collapse
Affiliation(s)
- Alejandra Boronat-Garcia
- grid.420089.70000 0000 9635 8082Section on Sensory Coding and Neural Ensembles, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child and Human Development, Bethesda, MD USA
| | - James Iben
- grid.420089.70000 0000 9635 8082Molecular and Genomics Core, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child and Human Development, Bethesda, MD USA
| | - Eunice Dominguez-Martin
- grid.416870.c0000 0001 2177 357XBiochemistry Section, National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD USA
| | - Mark Stopfer
- grid.420089.70000 0000 9635 8082Section on Sensory Coding and Neural Ensembles, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child and Human Development, Bethesda, MD USA
| |
Collapse
|
16
|
Abstract
Among the many wonders of nature, the sense of smell of the fly Drosophila melanogaster might seem, at first glance, of esoteric interest. Nevertheless, for over a century, the 'nose' of this insect has been an extraordinary system to explore questions in animal behaviour, ecology and evolution, neuroscience, physiology and molecular genetics. The insights gained are relevant for our understanding of the sensory biology of vertebrates, including humans, and other insect species, encompassing those detrimental to human health. Here, I present an overview of our current knowledge of D. melanogaster olfaction, from molecules to behaviours, with an emphasis on the historical motivations of studies and illustration of how technical innovations have enabled advances. I also highlight some of the pressing and long-term questions.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Zhao Z, Ge Y, Xu L, Sun X, Zuo J, Wang Z, Liu H, Jiang X, Wang D. Bio-inspired polymer array vapor sensor with dual signals of fluorescence intensity and wavelength shift. Front Bioeng Biotechnol 2022; 10:1058404. [DOI: 10.3389/fbioe.2022.1058404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Organic vapor sensors based on polymer owing to their tunable molecular structures and designable functions have attracted considerable research interest. However, detecting multiple organic vapors with high accuracy and a low detection limit is still challenging. Herein, inspired by the mammalian olfactory recognition system, organic vapor sensors based on one-dimensional microfilament array structures with a wide range of sensing gases are demonstrated. By introducing aggregation-induced emission (AIE) molecules, sensors possess dual-optical sensing mechanisms of variation in fluorescence intensity and wavelength. By virtue of the synergistic effects of dual signals, superb accuracy and incredibly low detection limit are achieved for identifying analytes. In particular, the polymer/AIE microfilament array can detect acetone vapor down to 0.03% of saturated vapor pressure. In the saturated vapor of acetone, the fluorescence intensity of the sensor arrays was reduced by 53.7%, while the fluorescence wavelength was red-shifted by 21 nm. Combined with the principal component analysis (PCA) algorithm, the polymer/AIE molecular sensor arrays accomplished the classification and identification of acetone, ethanol, methylene chloride, toluene, and benzene. This bioinspired approach with dual sensing signals may broaden practical applications to high-performance gas sensors for precise molecular detection.
Collapse
|
18
|
Abbas G, Tang S, Noble J, Lane RP. Olfactory receptor coding sequences cause silencing of episomal constructs in multiple cell lines. Mol Cell Neurosci 2021; 117:103681. [PMID: 34742908 PMCID: PMC8669572 DOI: 10.1016/j.mcn.2021.103681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022] Open
Abstract
The mammalian olfactory system consists of sensory neurons with specialized odorant-binding capability accomplished by mutually exclusive odorant receptor (OR) expression. Mutually exclusive OR expression is a complex multi-step process regulated by a number of cis and trans factors, including pan-silencing of all OR genes preceding the robust and stable expression of the one OR selected in each sensory neuron. We transfected two olfactory-placode-derived cell lines modeling immature odorant sensory neurons, as well as the GD25 fibroblast cell line, with episomes containing CMV-driven GFP and TK-driven hygromycin reporter genes. We inserted various coding sequences, along with an IRES, immediately upstream of the GFP gene to produce bicistronic mRNAs driven from the local CMV promoter. We found that the presence of several OR coding sequences resulted in significantly diminished episomal expression of GFP in all three cell lines. These findings suggest that OR coding sequences have intrinsic self-silencing capability that might facilitate mutually exclusive OR expression in olfactory sensory neurons by making it less likely that multiple ORs acquire an above-threshold level of expression at once.
Collapse
Affiliation(s)
- Ghazia Abbas
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Spencer Tang
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Joyce Noble
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Robert P Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA.
| |
Collapse
|
19
|
Sharma A, Saha BK, Kumar R, Varadwaj PK. OlfactionBase: a repository to explore odors, odorants, olfactory receptors and odorant-receptor interactions. Nucleic Acids Res 2021; 50:D678-D686. [PMID: 34469532 PMCID: PMC8728123 DOI: 10.1093/nar/gkab763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 12/04/2022] Open
Abstract
Olfaction is a multi-stage process that initiates with the odorants entering the nose and terminates with the brain recognizing the odor associated with the odorant. In a very intricate way, the process incorporates various components functioning together and in synchronization. OlfactionBase is a free, open-access web server that aims to bring together knowledge about many aspects of the olfaction mechanism in one place. OlfactionBase contains detailed information of components like odors, odorants, and odorless compounds with physicochemical and ADMET properties, olfactory receptors (ORs), odorant- and pheromone binding proteins, OR-odorant interactions in Human and Mus musculus. The dynamic, user-friendly interface of the resource facilitates exploration of different entities: finding chemical compounds having desired odor, finding odorants associated with OR, associating chemical features with odor and OR, finding sequence information of ORs and related proteins. Finally, the data in OlfactionBase on odors, odorants, olfactory receptors, human and mouse OR-odorant pairs, and other associated proteins could aid in the inference and improved understanding of odor perception, which might provide new insights into the mechanism underlying olfaction. The OlfactionBase is available at https://bioserver.iiita.ac.in/olfactionbase/.
Collapse
Affiliation(s)
- Anju Sharma
- Department of Applied Science, Indian Institute of Information Technology, Allahabad, Uttar Pradesh 211015, India
| | | | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh 226028, India
| | - Pritish Kumar Varadwaj
- Department of Applied Science, Indian Institute of Information Technology, Allahabad, Uttar Pradesh 211015, India
| |
Collapse
|
20
|
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol 2021; 19:174. [PMID: 34452614 PMCID: PMC8394594 DOI: 10.1186/s12915-021-01116-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
In the olfactory system, odorant receptors (ORs) expressed at the cell membrane of olfactory sensory neurons detect odorants and direct sensory axons toward precise target locations in the brain, reflected in the presence of olfactory sensory maps. This dual role of ORs is corroborated by their subcellular expression both in cilia, where they bind odorants, and at axon terminals, a location suitable for axon guidance cues. Here, we provide an overview and discuss previous work on the role of ORs in establishing the topographic organization of the olfactory system and recent findings on the mechanisms of activation and function of axonal ORs.
Collapse
Affiliation(s)
- Simona Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy. .,Neuroscience Institute CNR, Via Orus 2, 35129, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padova Neuroscience Center, Padua, Italy.
| |
Collapse
|
21
|
Liu H, Chen C, Lv M, Liu N, Hu Y, Zhang H, Enbody ED, Gao Z, Andersson L, Wang W. A chromosome-level assembly of blunt snout bream (Megalobrama amblycephala) reveals an expansion of olfactory receptor genes in freshwater fish. Mol Biol Evol 2021; 38:4238-4251. [PMID: 34003267 PMCID: PMC8476165 DOI: 10.1093/molbev/msab152] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The number of olfactory receptor genes (ORs), which are responsible for detecting diverse odor molecules varies extensively among mammals as a result of frequent gene gains and losses that contribute to olfactory specialization. However, how OR expansions/contractions in fish are influenced by habitat and feeding habit and which OR subfamilies are important in each ecological niche is unknown. Here, we report a major OR expansion in a freshwater herbivorous fish, Megalobrama amblycephala, using a highly contiguous, chromosome-level assembly. We evaluate the possible contribution of OR expansion to habitat and feeding specialization by comparing the OR repertoire in 28 phylogenetically and ecologically diverse teleosts. In total, we analyzed > 4,000 ORs including 3,253 intact, 122 truncated, and 913 pseudogenes. The number of intact ORs is highly variable ranging from 20 to 279. We estimate that the most recent common ancestor of Osteichthyes had 62 intact ORs, which declined in most lineages except the freshwater Otophysa clade that has a substantial expansion in subfamily β and ε ORs. Across teleosts, we found a strong association between duplications of β and ε ORs and freshwater habitat. Nearly, all ORs were expressed in the olfactory epithelium (OE) in three tested fish species. Specifically, all the expanded β and ε ORs were highly expressed in OE of M. amblycephala. Together, we provide molecular and functional evidence for how OR repertoires in fish have undergone gain and loss with respect to ecological factors and highlight the role of β and ε OR in freshwater adaptation.
Collapse
Affiliation(s)
- Han Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.,Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China
| | - Chunhai Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Maolin Lv
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ning Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yafei Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hailin Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Erik D Enbody
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE75237, Sweden
| | - Zexia Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.,Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE75237, Sweden.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Weimin Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
22
|
Dörig P, Gunder N, Witt M, Welge-Lüssen A, Hummel T. [Future therapeutic strategies for olfactory disorders: electrical stimulation, stem cell therapy, and transplantation of olfactory epithelium-an overview]. HNO 2021; 69:623-632. [PMID: 33988723 PMCID: PMC8120256 DOI: 10.1007/s00106-021-01060-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 11/08/2022]
Abstract
Passagere oder permanente Riechstörungen können verschiedene Ursachen haben. Ganz aktuell berichtet eine Vielzahl von Patienten im Rahmen von COVID-19-Infektionen über ein fehlendes oder vermindertes Riechvermögen. In der Vergangenheit wurden vielfältige Therapieoptionen untersucht, diese variieren vom Riechtraining über Akupunktur und medikamentöse Therapien bis hin zur transkraniellen Magnetstimulation oder, z. B. bei ausgeprägten qualitativen Riechstörungen, der chirurgischen Resektion der Riechschleimhaut. Die Entwicklung einer bioelektrischen Nase, z. B. in Verbindung mit direkter elektrischer Stimulation des Bulbus olfactorius, oder die Transplantation von Riechschleimhaut oder von Stammzellen stellen Behandlungsmöglichkeiten der Zukunft dar. Die Grundlagen für diese Entwicklungen sowie der Stand des Wissens werden in der vorliegenden Arbeit erläutert.
Collapse
Affiliation(s)
- P Dörig
- Universitäts-HNO Klinik Basel, Petersgraben 4, 4031, Basel, Schweiz.
| | - N Gunder
- Universitäts-HNO Klinik Dresden, Dresden, Deutschland
| | - M Witt
- Institut für Anatomie, Universitätsmedizin Rostock, Rostock, Deutschland
| | - A Welge-Lüssen
- Universitäts-HNO Klinik Basel, Petersgraben 4, 4031, Basel, Schweiz
| | - T Hummel
- Universitäts-HNO Klinik Dresden, Dresden, Deutschland
| |
Collapse
|
23
|
Shepherd GM, Rowe TB, Greer CA. An Evolutionary Microcircuit Approach to the Neural Basis of High Dimensional Sensory Processing in Olfaction. Front Cell Neurosci 2021; 15:658480. [PMID: 33994949 PMCID: PMC8120314 DOI: 10.3389/fncel.2021.658480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Odor stimuli consist of thousands of possible molecules, each molecule with many different properties, each property a dimension of the stimulus. Processing these high dimensional stimuli would appear to require many stages in the brain to reach odor perception, yet, in mammals, after the sensory receptors this is accomplished through only two regions, the olfactory bulb and olfactory cortex. We take a first step toward a fundamental understanding by identifying the sequence of local operations carried out by microcircuits in the pathway. Parallel research provided strong evidence that processed odor information is spatial representations of odor molecules that constitute odor images in the olfactory bulb and odor objects in olfactory cortex. Paleontology provides a unique advantage with evolutionary insights providing evidence that the basic architecture of the olfactory pathway almost from the start ∼330 million years ago (mya) has included an overwhelming input from olfactory sensory neurons combined with a large olfactory bulb and olfactory cortex to process that input, driven by olfactory receptor gene duplications. We identify a sequence of over 20 microcircuits that are involved, and expand on results of research on several microcircuits that give the best insights thus far into the nature of the high dimensional processing.
Collapse
Affiliation(s)
- Gordon M. Shepherd
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Timothy B. Rowe
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States
| | - Charles A. Greer
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
24
|
Egger V, Kuner T. Olfactory bulb granule cells: specialized to link coactive glomerular columns for percept generation and discrimination of odors. Cell Tissue Res 2021; 383:495-506. [PMID: 33404844 PMCID: PMC7873091 DOI: 10.1007/s00441-020-03402-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
The role of granule cells in olfactory processing is surrounded by several enigmatic observations, such as the purpose of reciprocal spines and the mechanisms for GABA release, the apparently low firing activity and recurrent inhibitory drive of granule cells, the missing proof for functional reciprocal connectivity, and the apparently negligible contribution to lateral inhibition. Here, we summarize recent results with regard to both the mechanisms of GABA release and the behavioral relevance of granule cell activity during odor discrimination. We outline a novel hypothesis that has the potential to resolve most of these enigmas and allows further predictions on the function of granule cells in odor processing. Briefly, recent findings imply that GABA release from the reciprocal spine requires a local spine action potential and the cooperative action of NMDA receptors and high voltage-activated Ca2+ channels. Thus, lateral inhibition is conditional on activity in the principal neurons connected to a granule cell and tightly intertwined with recurrent inhibition. This notion allows us to infer that lateral inhibition between principal neurons occurs "on demand," i.e., selectively on coactive mitral and tufted cells, and thus can provide directed, dynamically switched lateral inhibition in a sensory system with 1000 input channels organized in glomerular columns. The mechanistic underpinnings of this hypothesis concur with findings from odor discrimination behavior in mice with synaptic proteins deleted in granule cells. In summary, our hypothesis explains the unusual microcircuit of the granule cell reciprocal spine as a means of olfactory combinatorial coding.
Collapse
Affiliation(s)
- Veronica Egger
- Institute of Zoology, Regensburg University, Universitätsstr. 30, 93040, Regensburg, Germany.
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| |
Collapse
|
25
|
Duan D, Zhang H, Yue X, Fan Y, Xue Y, Shao J, Ding G, Chen D, Li S, Cheng H, Zhang X, Zou W, Liu J, Zhao J, Wang L, Zhao B, Wang Z, Xu S, Wen Q, Liu J, Duan S, Kang L. Sensory Glia Detect Repulsive Odorants and Drive Olfactory Adaptation. Neuron 2020; 108:707-721.e8. [PMID: 32970991 DOI: 10.1016/j.neuron.2020.08.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/25/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
Glia are typically considered as supporting cells for neural development and synaptic transmission. Here, we report an active role of a glia in olfactory transduction. As a polymodal sensory neuron in C. elegans, the ASH neuron is previously known to detect multiple aversive odorants. We reveal that the AMsh glia, a sheath for multiple sensory neurons including ASH, cell-autonomously respond to aversive odorants via G-protein-coupled receptors (GPCRs) distinct from those in ASH. Upon activation, the AMsh glia suppress aversive odorant-triggered avoidance and promote olfactory adaptation by inhibiting the ASH neuron via GABA signaling. Thus, we propose a novel two-receptor model where the glia and sensory neuron jointly mediate adaptive olfaction. Our study reveals a non-canonical function of glial cells in olfactory transduction, which may provide new insights into the glia-like supporting cells in mammalian sensory procession.
Collapse
Affiliation(s)
- Duo Duan
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China; Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Hu Zhang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Xiaomin Yue
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Yuedan Fan
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Yadan Xue
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Jiajie Shao
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Gang Ding
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Du Chen
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Shitian Li
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Hankui Cheng
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Xiaoyan Zhang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Wenjuan Zou
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Jia Liu
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Jian Zhao
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Linmei Wang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Bingzhen Zhao
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiping Wang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Quan Wen
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Liu
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shumin Duan
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China; Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China.
| | - Lijun Kang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
26
|
Choudhary M, Malek G. The Aryl Hydrocarbon Receptor: A Mediator and Potential Therapeutic Target for Ocular and Non-Ocular Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21186777. [PMID: 32947781 PMCID: PMC7555571 DOI: 10.3390/ijms21186777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which senses environmental, dietary or metabolic signals to mount a transcriptional response, vital in health and disease. As environmental stimuli and metabolic products have been shown to impact the central nervous system (CNS), a burgeoning area of research has been on the role of the AHR in ocular and non-ocular neurodegenerative diseases. Herein, we summarize our current knowledge, of AHR-controlled cellular processes and their impact on regulating pathobiology of select ocular and neurodegenerative diseases. We catalogue animal models generated to study the role of the AHR in tissue homeostasis and disease pathogenesis. Finally, we discuss the potential of targeting the AHR pathway as a therapeutic strategy, in the context of the maladies of the eye and brain.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| |
Collapse
|
27
|
Cali K, Persaud KC. Modification of an Anopheles gambiae odorant binding protein to create an array of chemical sensors for detection of drugs. Sci Rep 2020; 10:3890. [PMID: 32127578 PMCID: PMC7054253 DOI: 10.1038/s41598-020-60824-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/07/2020] [Indexed: 11/26/2022] Open
Abstract
The binding pockets of odorant binding proteins from Anopheles gambiae (OBP1 and OBP47) were analysed using in silico modelling. The feasibility of creating mutant proteins to achieve a protein array capable of detecting drugs of abuse in solution or in vapour phase was investigated. OBP1 was found to be easily adapted and several mutant proteins were expressed and characterised. AgamOBP1_S82P was found to have high affinities to cannabinol, 3,4-methylenedioxy methamphetamine (MDMA/Ecstasy) and cocaine hydrochloride. When these proteins were immobilised on a quartz crystal microbalance, saturated cocaine hydrochloride vapour could be detected. The sensors were stable over a period of at least 10 months in air. The approach taken allows flexible design of new biosensors based on inherently stable protein scaffolds taking advantage of the tertiary structure of odorant binding proteins.
Collapse
Affiliation(s)
- Khasim Cali
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, UK
| | - Krishna C Persaud
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
28
|
Weiss L, Jungblut LD, Pozzi AG, Zielinski BS, O'Connell LA, Hassenklöver T, Manzini I. Multi-glomerular projection of single olfactory receptor neurons is conserved among amphibians. J Comp Neurol 2020; 528:2239-2253. [PMID: 32080843 DOI: 10.1002/cne.24887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 11/07/2022]
Abstract
Individual receptor neurons in the peripheral olfactory organ extend long axons into the olfactory bulb forming synapses with projection neurons in spherical neuropil regions, called glomeruli. Generally, odor map formation and odor processing in all vertebrates is based on the assumption that receptor neuron axons exclusively connect to a single glomerulus without any axonal branching. We comparatively tested this hypothesis in multiple fish and amphibian species (both sexes) by applying sparse cell electroporation to trace single olfactory receptor neuron axons. Sea lamprey (jawless fish) and zebrafish (bony fish) support the unbranched axon concept, with 94% of axons terminating in single glomeruli. Contrastingly, axonal projections of the axolotl (salamander) branch extensively before entering up to six distinct glomeruli. Receptor neuron axons labeled in frog species (Pipidae, Bufonidae, Hylidae, and Dendrobatidae) predominantly bifurcate before entering a glomerulus and 59 and 50% connect to multiple glomeruli in larval and postmetamorphotic animals, respectively. Independent of developmental stage, lifestyle, and adaptations to specific habitats, it seems to be a common feature of amphibian olfactory receptor neuron axons to frequently bifurcate and connect to multiple glomeruli. Our study challenges the unbranched axon concept as a universal vertebrate feature and it is conceivable that also later diverging vertebrates deviate from it. We propose that this unusual wiring logic evolved around the divergence of the terrestrial tetrapod lineage from its aquatic ancestors and could be the basis of an alternative way of odor processing.
Collapse
Affiliation(s)
- Lukas Weiss
- Department of Animal Physiology and Molecular Biomedicine, University of Giessen, Giessen, Germany
| | - Lucas D Jungblut
- Departamento de Biodiversidad y Biología Experimental, IBBEA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea G Pozzi
- Departamento de Biodiversidad y Biología Experimental, IBBEA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Barbara S Zielinski
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | | | - Thomas Hassenklöver
- Department of Animal Physiology and Molecular Biomedicine, University of Giessen, Giessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, University of Giessen, Giessen, Germany
| |
Collapse
|
29
|
Marquet N, Cardoso JCR, Louro B, Fernandes SA, Silva SC, Canário AVM. Holothurians have a reduced GPCR and odorant receptor-like repertoire compared to other echinoderms. Sci Rep 2020; 10:3348. [PMID: 32098989 PMCID: PMC7042368 DOI: 10.1038/s41598-020-60167-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/05/2020] [Indexed: 01/13/2023] Open
Abstract
Sea cucumbers lack vision and rely on chemical sensing to reproduce and survive. However, how they recognize and respond to environmental cues remains unknown. Possible candidates are the odorant receptors (ORs), a diverse family of G protein-coupled receptors (GPCRs) involved in olfaction. The present study aimed at characterizing the chemosensory GPCRs in sea cucumbers. At least 246 distinct GPCRs, of which ca. 20% putative ORs, were found in a transcriptome assembly of putative chemosensory (tentacles, oral cavity, calcareous ring, and papillae/tegument) and reproductive (ovary and testis) tissues from Holothuria arguinensis (57 ORs) and in the Apostichopus japonicus genome (79 ORs). The sea cucumber ORs clustered with those of sea urchin and starfish into four main clades of gene expansions sharing a common ancestor and evolving under purifying selection. However, the sea cucumber ORs repertoire was the smallest among the echinoderms and the olfactory receptor signature motif LxxPxYxxxxxLxxxDxxxxxxxxP was better conserved in cluster OR-l1 which also had more members. ORs were expressed in tentacles, oral cavity, calcareous ring, and papillae/tegument, supporting their potential role in chemosensing. This study is the first comprehensive survey of chemosensory GPCRs in sea cucumbers, and provides the molecular basis to understand how they communicate.
Collapse
Affiliation(s)
- Nathalie Marquet
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - João C R Cardoso
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bruno Louro
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Stefan A Fernandes
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Sandra C Silva
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Adelino V M Canário
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
30
|
Koyama S, Heinbockel T. The Effects of Essential Oils and Terpenes in Relation to Their Routes of Intake and Application. Int J Mol Sci 2020; 21:E1558. [PMID: 32106479 PMCID: PMC7084246 DOI: 10.3390/ijms21051558] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Essential oils have been used in multiple ways, i.e., inhaling, topically applying on the skin, and drinking. Thus, there are three major routes of intake or application involved: the olfactory system, the skin, and the gastro-intestinal system. Understanding these routes is important for clarifying the mechanisms of action of essential oils. Here we summarize the three systems involved, and the effects of essential oils and their constituents at the cellular and systems level. Many factors affect the rate of uptake of each chemical constituent included in essential oils. It is important to determine how much of each constituent is included in an essential oil and to use single chemical compounds to precisely test their effects. Studies have shown synergistic influences of the constituents, which affect the mechanisms of action of the essential oil constituents. For the skin and digestive system, the chemical components of essential oils can directly activate gamma aminobutyric acid (GABA) receptors and transient receptor potential channels (TRP) channels, whereas in the olfactory system, chemical components activate olfactory receptors. Here, GABA receptors and TRP channels could play a role, mostly when the signals are transferred to the olfactory bulb and the brain.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
31
|
Sturluson A, Sousa R, Zhang Y, Huynh MT, Laird C, York AHP, Silsby C, Chang CH, Simon CM. Curating Metal-Organic Frameworks To Compose Robust Gas Sensor Arrays in Dilute Conditions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6546-6564. [PMID: 31918544 DOI: 10.1021/acsami.9b16561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs), tunable, nanoporous materials, are alluring recognition elements for gas sensing. Mimicking human olfaction, an array of cross-sensitive, MOF-based sensors could enable analyte detection in complex, variable gas mixtures containing confounding gas species. Herein, we address the question: given a set of MOF candidates and their adsorption properties, how do we select the optimal subset to compose a sensor array that accurately and robustly predicts the gas composition via monitoring the adsorbed mass in each MOF? We first mathematically formulate the MOF-based sensor array problem under dilute conditions. Instructively, the sensor array can be viewed as a linear map from gas composition space to sensor array response space defined by the matrix H of Henry coefficients of the gases in the MOFs. Characterizing this mapping, the singular value decomposition of H is a useful tool for evaluating MOF subsets for sensor arrays, as it determines the sensitivity of the predicted gas composition to measurement error, quantifies the magnitude of the response to changes in composition, and recovers which direction in gas composition space elicits the largest/smallest response. To illustrate, on the basis of experimental adsorption data, we curate MOFs for a sensor array with the objective of determining the concentration of CO2 and SO2 in the gas phase.
Collapse
Affiliation(s)
- Arni Sturluson
- School of Chemical, Biological, and Environmental Engineering , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Rachel Sousa
- School of Chemical, Biological, and Environmental Engineering , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Yujing Zhang
- School of Chemical, Biological, and Environmental Engineering , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Melanie T Huynh
- School of Chemical, Biological, and Environmental Engineering , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Caleb Laird
- School of Chemical, Biological, and Environmental Engineering , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Arthur H P York
- School of Chemical, Biological, and Environmental Engineering , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Carson Silsby
- School of Chemical, Biological, and Environmental Engineering , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Chih-Hung Chang
- School of Chemical, Biological, and Environmental Engineering , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Cory M Simon
- School of Chemical, Biological, and Environmental Engineering , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
32
|
Caballero-Vidal G, Bouysset C, Grunig H, Fiorucci S, Montagné N, Golebiowski J, Jacquin-Joly E. Machine learning decodes chemical features to identify novel agonists of a moth odorant receptor. Sci Rep 2020; 10:1655. [PMID: 32015393 PMCID: PMC6997167 DOI: 10.1038/s41598-020-58564-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/09/2020] [Indexed: 11/24/2022] Open
Abstract
Odorant receptors expressed at the peripheral olfactory organs are key proteins for animal volatile sensing. Although they determine the odor space of a given species, their functional characterization is a long process and remains limited. To date, machine learning virtual screening has been used to predict new ligands for such receptors in both mammals and insects, using chemical features of known ligands. In insects, such approach is yet limited to Diptera, whereas insect odorant receptors are known to be highly divergent between orders. Here, we extend this strategy to a Lepidoptera receptor, SlitOR25, involved in the recognition of attractive odorants in the crop pest Spodoptera littoralis larvae. Virtual screening of 3 million molecules predicted 32 purchasable ones whose function has been systematically tested on SlitOR25, revealing 11 novel agonists with a success rate of 28%. Our results show that Support Vector Machine optimizes the discovery of novel agonists and expands the chemical space of a Lepidoptera OR. More, it opens up structure-function relationship analyses through a comparison of the agonist chemical structures. This proof-of-concept in a crop pest could ultimately enable the identification of OR agonists or antagonists, capable of modifying olfactory behaviors in a context of biocontrol.
Collapse
Affiliation(s)
- Gabriela Caballero-Vidal
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris, Versailles, France
| | - Cédric Bouysset
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France
| | - Hubert Grunig
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France
| | - Sébastien Fiorucci
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris, Versailles, France.
| | - Jérôme Golebiowski
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France. .,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, South Korea.
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris, Versailles, France.
| |
Collapse
|
33
|
Li Y, Hu J, Xiang Y, Zhang Y, Chen D, Liu F. Identification and comparative expression profiles of chemosensory genes in major chemoreception organs of a notorious pests, Laodelphax striatellus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100646. [PMID: 31869635 DOI: 10.1016/j.cbd.2019.100646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023]
Abstract
The small brown planthopper, Laodelphax striatellus (Stål) (SBPH), is a notorious rice pest in East Asia and damages the host by feeding on the phloem and transmitting virus particles. Although SBPH relies on chemosensory perception for seeking the host, courtship, selecting oviposition sites and spreading virus particles, a systematic study of chemosensory genes in SBPH is lacking. In this study, we identified multi-gene chemosensory families from the transcriptome of SBPH olfactory organs and analyzed their expression patterns in male and female tissues. Among the chemosensory genes, 14 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 7 sensory neuron membrane proteins (SNMPs) and 95 odorant receptors (ORs) were identified and annotated in SBPH olfactory organs. Based on expression profile and phylogenetic analysis, LstrOBP1, 2, 5, 6, 7, 10, LstrSNMP1, and most LstrORs showed an antennae-enriched expression pattern, which suggests an olfactory role for these genes. Relative expression of LstrOBPs was validated by quantitative real-time PCR. Our findings provide the genetic information for disrupting the feeding behavior of SBPH, which is essential for developing eco-friendly pest management technologies.
Collapse
Affiliation(s)
- Yao Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia Hu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yin Xiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yunye Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Danyu Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.
| |
Collapse
|
34
|
Bu P, Jian Z, Koshy J, Shen Y, Yue B, Fan Z. The olfactory subgenome and specific odor recognition in forest musk deer. Anim Genet 2019; 50:358-366. [DOI: 10.1111/age.12796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2019] [Indexed: 12/27/2022]
Affiliation(s)
- P. Bu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Z. Jian
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife College of Life Sciences Sichuan University Chengdu 610064 China
| | - J. Koshy
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Y. Shen
- Sichuan Engineering Research Center for Medicinal Animals Xichang 615000 China
| | - B. Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Z. Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| |
Collapse
|
35
|
Cseke LJ, Kaufman PB, Kirakosyan A. The Biology of Essential Oils in the Pollination of Flowers. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0700201225] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pollination is an essential biological process in higher plant reproduction that involves the transfer of pollen to the female sexual organs of flowers or cones. It plays a critical role in the reproductive success and evolution of most plant species by allowing plants to share genetic material from other members of the same or closely-related species, thus increasing genetic diversity. In many cases, non-plant organisms are involved in carrying out this cross-pollination, including insects, bats, mammals, and birds. In order to attract such pollinators, plants have evolved the ability to produce a mind-boggling array of volatile compounds that have also found abundant use for humans when collected as essential oils. In this review, we focus on the role of essential oil compounds that are produced by flowers as chemical attractants used to draw in their often highly-specific pollinators. We examine in some detail various questions behind the biology of floral scent, including how these compounds are produced in flowers, how they are detected by potential pollinators, and how biotechnology can be used to alter their activity.
Collapse
Affiliation(s)
- Leland J. Cseke
- Department of Biological Science, The University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Peter B. Kaufman
- Department of Cardiac Surgery, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Ara Kirakosyan
- Department of Cardiac Surgery, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
36
|
Biomimetic Membranes with Transmembrane Proteins: State-of-the-Art in Transmembrane Protein Applications. Int J Mol Sci 2019; 20:ijms20061437. [PMID: 30901910 PMCID: PMC6472214 DOI: 10.3390/ijms20061437] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022] Open
Abstract
In biological cells, membrane proteins are the most crucial component for the maintenance of cell physiology and processes, including ion transportation, cell signaling, cell adhesion, and recognition of signal molecules. Therefore, researchers have proposed a number of membrane platforms to mimic the biological cell environment for transmembrane protein incorporation. The performance and selectivity of these transmembrane proteins based biomimetic platforms are far superior to those of traditional material platforms, but their lack of stability and scalability rule out their commercial presence. This review highlights the development of transmembrane protein-based biomimetic platforms for four major applications, which are biosensors, molecular interaction studies, energy harvesting, and water purification. We summarize the fundamental principles and recent progress in transmembrane protein biomimetic platforms for each application, discuss their limitations, and present future outlooks for industrial implementation.
Collapse
|
37
|
Xu Q, Lu D, Pang G. Study on Bombykol Receptor Self-Assembly and Universality of G Protein Cellular Signal Amplification System. ACS Sens 2019; 4:257-264. [PMID: 30618240 DOI: 10.1021/acssensors.8b01446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The G protein cascade amplification system couples with several receptors to sense/amplify the cellular signal, implying universal application. In order to explore whether GPCRs can trigger G protein signal amplification in tissues/cells from different species, bombykol receptor was isolated and purified from antennas of male Bombyx mori, which subsequently self-assembled on the cell membrane in rat taste buds/rat vomeronasa/catfish tentacles/taste bud tissues of rabbits/pig/cattle in those lacking endogenous bombykol receptor, followed by immobilization between two sheets of nucleopore membranes fixed by sodium alginate-starch gel, forming the sandwich-type sensing membrane, which in turn was immobilized on the glass-carbon electrode. Thus, bombykol receptor sensors were established with different tissues. The response current of bombykol receptor sensor toward bombykol was measured with an electrochemical workstation. Every bombykol receptor sensor could sense bombykol based on enzyme-substrate kinetics. The double reciprocal plot and the activation constant values of bombykol receptor sensors assembled with rat taste buds, rat vomeronasa, catfish tentacles, rabbit taste buds, pig taste buds, and cattle taste buds were calculated. Approximately 2-3 receptors could trigger the G protein cascade amplification system and achieve the maximum signal output. Moreover, the detection lower limit indicated that the bombykol receptor self-assembled on the cell membranes of different tissues that transmitted and amplified the bombykol signal with hypersensitivity. Also, cattle taste bud tissues served as an ideal system for heterogeneous GPCRs self-assembly and signal sensing/amplification. This sensing technique and method had promising potential in studies of biological pest control, sex pheromone detection, and receptor structure and function.
Collapse
Affiliation(s)
- Qiuda Xu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Tianjin Key Laboratory of Food Biotechnology, Tianjin 300134, China
| | - Dingqiang Lu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Tianjin Key Laboratory of Food Biotechnology, Tianjin 300134, China
- College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Guangchang Pang
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Tianjin Key Laboratory of Food Biotechnology, Tianjin 300134, China
| |
Collapse
|
38
|
Feng G, Zhou W. Nostril-specific and structure-based olfactory learning of chiral discrimination in human adults. eLife 2019; 8:41296. [PMID: 30652684 PMCID: PMC6336403 DOI: 10.7554/elife.41296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/23/2018] [Indexed: 12/23/2022] Open
Abstract
Practice makes perfect. In human olfaction, such plasticity is generally assumed to occur at the level of cortical synthetic processing that shares information from both nostrils. Here we present findings that challenge this view. In two experiments, we trained human adults unirhinally for the discrimination between odor enantiomers over a course of about 10 to 11 days. Results showed that training-induced perceptual gain was restricted to the trained nostril yet partially generalized to untrained odor enantiomers in a structure- rather than quality- based manner. In other words, learning enhanced the differentiation of chirality (molecular configuration) as opposed to overall odor quality (odor object) per se. These findings argue that, unlike earlier beliefs, one nostril does not readily know what the other learns. Moreover, the initial analytical processing of the structural features of uninarial olfactory input remains plastic in human adults. Although we may only become consciously aware of our sense of smell when we encounter something pungent, it can greatly influence our quality of life. Smells are processed by our olfactory system, a collection of receptors and nerve cells in the nose and brain. Odor molecules activate the olfactory system when they bind to receptors in the nostrils. These molecules can have a wide range of chemical and physical properties. However, some odor molecules are mirror images of each other. These variants are known as enantiomers. Some people can naturally smell the difference between enantiomers; others can be taught how to tell them apart. Studying this training process could help us to understand how the olfactory system adapts to new circumstances. Feng and Zhou trained volunteers to distinguish between odor enantiomers – but only using one nostril. After training, the volunteers were better able to tell the difference between different enantiomers – even for certain scents they had not been trained to discriminate – when sniffing through the trained nostril. However, they got no better at distinguishing between enantiomers when they sniffed them using the other nostril. Overall, the results reported by Feng and Zhou confirm that human adults can learn how to process the structural features of odorants. However, in contrast to earlier beliefs, they also suggest that one nostril does not readily know what the other learns. This new understanding of how the olfactory system adapts could ultimately help us to develop therapies to restore a lost sense of smell.
Collapse
Affiliation(s)
- Guo Feng
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Psychological Research and Counseling Center, Southwest Jiaotong University, Chengdu, China
| | - Wen Zhou
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Sharma A, Kumar R, Aier I, Semwal R, Tyagi P, Varadwaj P. Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research. Curr Neuropharmacol 2019; 17:891-911. [PMID: 30520376 PMCID: PMC7052838 DOI: 10.2174/1570159x17666181206095626] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Olfaction, the sense of smell detects and discriminate odors as well as social cues which influence our innate responses. The olfactory system in human beings is found to be weak as compared to other animals; however, it seems to be very precise. It can detect and discriminate millions of chemical moieties (odorants) even in minuscule quantities. The process initiates with the binding of odorants to specialized olfactory receptors, encoded by a large family of Olfactory Receptor (OR) genes belonging to the G-protein-coupled receptor superfamily. Stimulation of ORs converts the chemical information encoded in the odorants, into respective neuronal action-potentials which causes depolarization of olfactory sensory neurons. The olfactory bulb relays this signal to different parts of the brain for processing. Odors are encrypted using a combinatorial approach to detect a variety of chemicals and encode their unique identity. The discovery of functional OR genes and proteins provided an important information to decipher the genomic, structural and functional basis of olfaction. ORs constitute 17 gene families, out of which 4 families were reported to contain more than hundred members each. The olfactory machinery is not limited to GPCRs; a number of non- GPCRs is also employed to detect chemosensory stimuli. The article provides detailed information about such olfaction machinery, structures, transduction mechanism, theories of odor perception, and challenges in the olfaction research. It covers the structural, functional and computational studies carried out in the olfaction research in the recent past.
Collapse
Affiliation(s)
| | | | | | | | | | - Pritish Varadwaj
- Address correspondence to this author at the Department of Applied Science, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India; E-mail:
| |
Collapse
|
40
|
Moindi AO, Tare C, Ochieng PJ, Wamunyokoli F, Nyanjom SRG. Expression of odorant co-receptor Orco in tissues and development stages of Glossina morsitans morsitans, Glossina fuscipies fuscipies and Glossina pallidipies. SCIENTIFIC AFRICAN 2018. [DOI: 10.1016/j.sciaf.2018.e00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
41
|
Transcriptome characterization and gene expression analysis related to chemoreception in Trichogramma chilonis, an egg parasitoid. Gene 2018; 678:288-301. [DOI: 10.1016/j.gene.2018.07.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 01/22/2023]
|
42
|
Shamchuk AL, Blunt BJ, Lyons DD, Wang MQ, Gasheva A, Lewis CR, Tomlin K, Hazard ES, Hardiman G, Tierney KB. Nucleobase-containing compounds evoke behavioural, olfactory, and transcriptional responses in model fishes. Facets (Ott) 2018. [DOI: 10.1139/facets-2017-0101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sensory system of animals detects a massive and unknown array of chemical cues that evoke a diversity of physiological and behavioural responses. One group of nitrogen-containing carbon ring chemicals—nucleobases—are thought to be involved in numerous behaviours yet have received little attention. We took a top-down approach to examine responses evoked by nucleobases at behavioural, tissue, and gene expression levels. Fish generally avoided nucleobases, and this behaviour, when observed, was driven by purines but not pyrimidines. At the tissue level, olfactory neuron generator potential responses tended to be concentration specific and robust at concentrations lower than amino acid detection ranges. In terms of gene expression, more than 2000 genes were significantly upregulated following nucleobase exposure, some of which were expected (e.g., genes involved in purine binding) and some of which were not (e.g., tubulin-related genes). Humanized RNA pathway analysis showed that we had exposed the animal to a nucleobase. Our data indicate that responses to nucleobase-containing compounds may be highly structure based and are evident from changes in behaviour to mRNA expression. Many of these responses were surprising, and all provide numerous routes for further research endeavour.
Collapse
Affiliation(s)
- Angela L. Shamchuk
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Brian J. Blunt
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Danielle D. Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Mo Qi Wang
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Anastasia Gasheva
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Carlie R. Lewis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Kirsten Tomlin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - E. Starr Hazard
- Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Library Science and Informatics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gary Hardiman
- Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Medicine and Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Keith B. Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- School of Public Health, University of Alberta, Edmonton, AB T6G 1C9, Canada
| |
Collapse
|
43
|
Li Z, Askim JR, Suslick KS. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem Rev 2018; 119:231-292. [DOI: 10.1021/acs.chemrev.8b00226] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jon R. Askim
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kenneth S. Suslick
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
44
|
Pluskal T, Weng JK. Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chem Soc Rev 2018; 47:1592-1637. [PMID: 28933478 DOI: 10.1039/c7cs00411g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Humans perceive physical information about the surrounding environment through their senses. This physical information is registered by a collection of highly evolved and finely tuned molecular sensory receptors. A multitude of bioactive, structurally diverse ligands have evolved in nature that bind these molecular receptors. The complex, dynamic interactions between the ligands and the receptors lead to changes in our sensory perception or mood. Here, we review our current knowledge of natural products and their derived analogues that interact specifically with human G protein-coupled receptors, ion channels, and nuclear hormone receptors to modulate the sensations of taste, smell, temperature, pain, and itch, as well as mood and its associated behaviour. We discuss the molecular and structural mechanisms underlying such interactions and highlight cases where subtle differences in natural product chemistry produce drastic changes in functional outcome. We also discuss cases where a single compound triggers complex sensory or behavioural changes in humans through multiple mechanistic targets. Finally, we comment on the therapeutic potential of the reviewed area of research and draw attention to recent technological developments in genomics, metabolomics, and metabolic engineering that allow us to tap the medicinal properties of natural product chemistry without taxing nature.
Collapse
Affiliation(s)
- Tomáš Pluskal
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
| | | |
Collapse
|
45
|
Zhao P, Wu Y, Feng C, Wang L, Ding Y, Hu A. Conjugated Polymer Nanoparticles Based Fluorescent Electronic Nose for the Identification of Volatile Compounds. Anal Chem 2018. [PMID: 29526080 DOI: 10.1021/acs.analchem.8b00273] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A fluorescence sensing array (or fluorescent electronic nose) is designed on a disposable paper card using 36 sets of soluble conjugated polymeric nanoparticles (SCPNs) as sensors to easily identify wide ranges of volatile analytes, including explosives and toxic industrial chemicals (amines and pungent acids). A 108-dimensional vector obtained from the fluorescent color change in the sensing array is defined and directly treated as an index in a standard chemical library (30 kinds of volatile analytes and a control group). Hierarchical clustering analysis (HCA) and principal component analysis (PCA) indicated the diversity in electronic structures; saturated vapor pressure and miscibility of analytes are keys in differentiating the analytes, with electron-rich arenes and alkylamines enhancing fluorescence and electron-deficient analytes attenuating fluorescence. A support vector machine (SVM) works well to predict an unknown sample, reaching 99.5% accuracy. The excellent fluorescence stability (no fluorescence quenching after being exposed in air for one month) and high sensitivity (emission color changes within minutes when exposed to analytes) suggest that the fluorescent polymer-based electronic nose will play an important role in field detection and identification of a wide spreading of hazardous substances.
Collapse
Affiliation(s)
- Peng Zhao
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Yusen Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Chuying Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Lili Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
46
|
Kojima H, Araki S, Kaneda H, Takashio M. Application of a New Electronic Nose with Fingerprint Mass Spectrometry to Brewing. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-63-0151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hidetoshi Kojima
- Frontier Laboratories of Value Creation, Sapporo Breweries, Ltd., 10 Okatohme, Yaizu, Shizuoka, 425-0013 Japan
| | - Shigeki Araki
- Frontier Laboratories of Value Creation, Sapporo Breweries, Ltd., 10 Okatohme, Yaizu, Shizuoka, 425-0013 Japan
| | - Hirotaka Kaneda
- Frontier Laboratories of Value Creation, Sapporo Breweries, Ltd., 10 Okatohme, Yaizu, Shizuoka, 425-0013 Japan
| | - Masachika Takashio
- Frontier Laboratories of Value Creation, Sapporo Breweries, Ltd., 10 Okatohme, Yaizu, Shizuoka, 425-0013 Japan
| |
Collapse
|
47
|
Nanoscale hybrid systems based on carbon nanotubes for biological sensing and control. Biosci Rep 2017; 37:BSR20160330. [PMID: 28188158 PMCID: PMC5483890 DOI: 10.1042/bsr20160330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 11/17/2022] Open
Abstract
This paper provides a concise review on the recent development of nanoscale hybrid systems based on carbon nanotubes (CNTs) for biological sensing and control. CNT-based hybrid systems have been intensively studied for versatile applications of biological interfaces such as sensing, cell therapy and tissue regeneration. Recent advances in nanobiotechnology not only enable the fabrication of highly sensitive biosensors at nanoscale but also allow the applications in the controls of cell growth and differentiation. This review describes the fabrication methods of such CNT-based hybrid systems and their applications in biosensing and cell controls.
Collapse
|
48
|
Chelminski Y, Magnan C, Luquet SH, Everard A, Meunier N, Gurden H, Martin C. Odor-Induced Neuronal Rhythms in the Olfactory Bulb Are Profoundly Modified in ob/ob Obese Mice. Front Physiol 2017; 8:2. [PMID: 28154537 PMCID: PMC5244437 DOI: 10.3389/fphys.2017.00002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/03/2017] [Indexed: 01/03/2023] Open
Abstract
Leptin, the product of the Ob(Lep) gene, is a peptide hormone that plays a major role in maintaining the balance between food intake and energy expenditure. In the brain, leptin receptors are expressed by hypothalamic cells but also in the olfactory bulb, the first central structure coding for odors, suggesting a precise function of this hormone in odor-evoked activities. Although olfaction plays a key role in feeding behavior, the ability of the olfactory bulb to integrate the energy-related signal leptin is still missing. Therefore, we studied the fate of odor-induced activity in the olfactory bulb in the genetic context of leptin deficiency using the obese ob/ob mice. By means of an odor discrimination task with concomitant local field potential recordings, we showed that ob/ob mice perform better than wild-type (WT) mice in the early stage of the task. This behavioral gain of function was associated in parallel with profound changes in neuronal oscillations in the olfactory bulb. The distribution of the peaks in the gamma frequency range was shifted toward higher frequencies in ob/ob mice compared to WT mice before learning. More notably, beta oscillatory activity, which has been shown previously to be correlated with olfactory discrimination learning, was longer and stronger in expert ob/ob mice after learning. Since oscillations in the olfactory bulb emerge from mitral to granule cell interactions, our results suggest that cellular dynamics in the olfactory bulb are deeply modified in ob/ob mice in the context of olfactory learning.
Collapse
Affiliation(s)
- Yan Chelminski
- UMR 8165 Centre National de la Recherche Scientifique, IMNC, Paris Sud University, Paris Diderot University Orsay, France
| | - Christophe Magnan
- UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité University Paris, France
| | - Serge H Luquet
- UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité University Paris, France
| | - Amandine Everard
- UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité University Paris, France
| | - Nicolas Meunier
- INRA, UR1197 NeuroBiologie de l'OlfactionJouy-en-Josas, France; Université de Versailles St-Quentin en YvelinesVersailles, France
| | - Hirac Gurden
- UMR 8165 Centre National de la Recherche Scientifique, IMNC, Paris Sud University, Paris Diderot UniversityOrsay, France; UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité UniversityParis, France
| | - Claire Martin
- UMR 8165 Centre National de la Recherche Scientifique, IMNC, Paris Sud University, Paris Diderot UniversityOrsay, France; UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité UniversityParis, France
| |
Collapse
|
49
|
Milardi D, Colussi C, Grande G, Vincenzoni F, Pierconti F, Mancini F, Baroni S, Castagnola M, Marana R, Pontecorvi A. Olfactory Receptors in Semen and in the Male Tract: From Proteome to Proteins. Front Endocrinol (Lausanne) 2017; 8:379. [PMID: 29410650 PMCID: PMC5787142 DOI: 10.3389/fendo.2017.00379] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
The estimated number of testicular olfactory receptors (ORs) in mammals range between 20 and 66. Previous data reported the role of hOR17-4 and mOR23 in sperm-oocyte chemiotaxis. Proteomic analysis was performed to understand which are the ORs expressed in seminal plasma. Seminal samples by four fertile men were analyzed by an Ultimate 3000Nano/Micro-HPLC apparatus coupled with an LTQ-Orbitrap XL hybrid mass spectrometer. Western blot analysis confirmed the expression of three identified ORs. The expression of ORs in sperm cells, testis, and epididymis was evaluated by confocal microscopy analysis. In seminal plasma eight different ORs were identified by proteomics and three ORs have been confirmed by western blot. Confocal microscopy analysis revealed that OR4S1, OR4C13, and OR1I1 are expressed on the surface of sperm cells. In testicular tissue, OR4S1 and OR1I1 are expressed in spermatocytes and spermatids and OR4C13 is expressed throughout all the tubules. In patients with spermatocyte maturation arrest OR4S1 and OR1I1 expression was reduced and a weak positivity for OR4C13 was detected in the spermatogonia. OR4S1, OR4C13, and OR1I1 had intense and diffuse staining in the epididymis. This study initiated a new methodology for screening OR repertoire in sperms, testis and epididymis. Our results open new insights into OR involvement in sperm maturation and migration.
Collapse
Affiliation(s)
- Domenico Milardi
- Division of Endocrinology, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
- International Scientific Institute Paul VI, Catholic University, Rome, Italy
| | - Claudia Colussi
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, Italy
| | - Giuseppe Grande
- International Scientific Institute Paul VI, Catholic University, Rome, Italy
- *Correspondence: Giuseppe Grande,
| | - Federica Vincenzoni
- Institute of Chemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | | | - Francesca Mancini
- International Scientific Institute Paul VI, Catholic University, Rome, Italy
| | - Silvia Baroni
- Institute of Chemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Massimo Castagnola
- Institute of Chemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Riccardo Marana
- International Scientific Institute Paul VI, Catholic University, Rome, Italy
| | - Alfredo Pontecorvi
- Division of Endocrinology, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
- International Scientific Institute Paul VI, Catholic University, Rome, Italy
| |
Collapse
|
50
|
Ge X, Zhang T, Wang Z, He K, Bai S. Identification of putative chemosensory receptor genes from yellow peach moth Conogethes punctiferalis (Guenée) antennae transcriptome. Sci Rep 2016; 6:32636. [PMID: 27659493 PMCID: PMC5034240 DOI: 10.1038/srep32636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/11/2016] [Indexed: 12/26/2022] Open
Abstract
The yellow peach moth, Conogethes punctiferalis, is an extremely important polyphagous insect in Asia. The chemosensory systems of moth play an important role in detecting food, oviposition sites and mate attraction. Several antennal chemosensory receptors are involved in odor detection. Our study aims to identify chemosensory receptor genes for potential applications in behavioral responses of yellow peach moth. By transcriptomic analysis of male and female antennae, 83 candidate chemosensory receptors, including 62 odorant receptors, 11 ionotropic receptors and 10 gustatory receptors were identified. Through Blast and sequence alignment, the highly conserved co-receptor Orco was annotated, eight unigenes clustered into pheromone receptors, and two clustered as sugar receptor. Among the IRs, one unigenes was similar with co-receptors IR25a. Expression levels of 50 odorant receptors were further evaluated by quantitative real-time PCR in antennae. All the ORs tested were detected in antennae and some of which were associated with sex-biased expression. The chemosensory receptors identified in C. punctiferalis provide a foundational resource for further analysis on olfaction for behavior. The expression profiles of ORs in antennae indicated variant functions in olfactory recognition, and our results provided the possibility for the potential application of semiochemical to control this pest moth.
Collapse
Affiliation(s)
- Xing Ge
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Shuxiong Bai
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| |
Collapse
|