1
|
Kabakci Z, Reichle HE, Lemke B, Rousova D, Gupta S, Weber J, Schleiffer A, Weir JR, Lehner CF. Homologous chromosomes are stably conjoined for Drosophila male meiosis I by SUM, a multimerized protein assembly with modules for DNA-binding and for separase-mediated dissociation co-opted from cohesin. PLoS Genet 2022; 18:e1010547. [PMID: 36480577 PMCID: PMC9767379 DOI: 10.1371/journal.pgen.1010547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
For meiosis I, homologous chromosomes must be paired into bivalents. Maintenance of homolog conjunction in bivalents until anaphase I depends on crossovers in canonical meiosis. However, instead of crossovers, an alternative system achieves homolog conjunction during the achiasmate male meiosis of Drosophila melanogaster. The proteins SNM, UNO and MNM are likely constituents of a physical linkage that conjoins homologs in D. melanogaster spermatocytes. Here, we report that SNM binds tightly to the C-terminal region of UNO. This interaction is homologous to that of the cohesin subunits stromalin/Scc3/STAG and α-kleisin, as revealed by sequence similarities, structure modeling and cross-link mass spectrometry. Importantly, purified SU_C, the heterodimeric complex of SNM and the C-terminal region of UNO, displayed DNA-binding in vitro. DNA-binding was severely impaired by mutational elimination of positively charged residues from the C-terminal helix of UNO. Phenotypic analyses in flies fully confirmed the physiological relevance of this basic helix for chromosome-binding and homolog conjunction during male meiosis. Beyond DNA, SU_C also bound MNM, one of many isoforms expressed from the complex mod(mdg4) locus. This binding of MNM to SU_C was mediated by the MNM-specific C-terminal region, while the purified N-terminal part common to all Mod(mdg4) isoforms multimerized into hexamers in vitro. Similarly, the UNO N-terminal domain formed tetramers in vitro. Thus, we suggest that multimerization confers to SUM, the assemblies composed of SNM, UNO and MNM, the capacity to conjoin homologous chromosomes stably by the resultant multivalent DNA-binding. Moreover, to permit homolog separation during anaphase I, SUM is dissociated by separase, since UNO, the α-kleisin-related protein, includes a separase cleavage site. In support of this proposal, we demonstrate that UNO cleavage by tobacco etch virus protease is sufficient to release homolog conjunction in vivo after mutational exchange of the separase cleavage site with that of the bio-orthogonal protease.
Collapse
Affiliation(s)
- Zeynep Kabakci
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Heidi E. Reichle
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Bianca Lemke
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Dorota Rousova
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Samir Gupta
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Joe Weber
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - John R. Weir
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Christian F. Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Gramates LS, Agapite J, Attrill H, Calvi BR, Crosby MA, dos Santos G, Goodman JL, Goutte-Gattat D, Jenkins VK, Kaufman T, Larkin A, Matthews BB, Millburn G, Strelets VB. FlyBase: a guided tour of highlighted features. Genetics 2022; 220:iyac035. [PMID: 35266522 PMCID: PMC8982030 DOI: 10.1093/genetics/iyac035] [Citation(s) in RCA: 340] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
FlyBase provides a centralized resource for the genetic and genomic data of Drosophila melanogaster. As FlyBase enters our fourth decade of service to the research community, we reflect on our unique aspects and look forward to our continued collaboration with the larger research and model organism communities. In this study, we emphasize the dedicated reports and tools we have constructed to meet the specialized needs of fly researchers but also to facilitate use by other research communities. We also highlight ways that we support the fly community, including an external resources page, help resources, and multiple avenues by which researchers can interact with FlyBase.
Collapse
Affiliation(s)
- L Sian Gramates
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Julie Agapite
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Helen Attrill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Madeline A Crosby
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gilberto dos Santos
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joshua L Goodman
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Damien Goutte-Gattat
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Victoria K Jenkins
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas Kaufman
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Aoife Larkin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Beverley B Matthews
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gillian Millburn
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Victor B Strelets
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Epiney DG, Salameh C, Cassidy D, Zhou LT, Kruithof J, Milutinović R, Andreani TS, Schirmer AE, Bolterstein E. Characterization of Stress Responses in a Drosophila Model of Werner Syndrome. Biomolecules 2021; 11:1868. [PMID: 34944512 PMCID: PMC8699552 DOI: 10.3390/biom11121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
As organisms age, their resistance to stress decreases while their risk of disease increases. This can be shown in patients with Werner syndrome (WS), which is a genetic disease characterized by accelerated aging along with increased risk of cancer and metabolic disease. WS is caused by mutations in WRN, a gene involved in DNA replication and repair. Recent research has shown that WRN mutations contribute to multiple hallmarks of aging including genomic instability, telomere attrition, and mitochondrial dysfunction. However, questions remain regarding the onset and effect of stress on early aging. We used a fly model of WS (WRNexoΔ) to investigate stress response during different life stages and found that stress sensitivity varies according to age and stressor. While larvae and young WRNexoΔ adults are not sensitive to exogenous oxidative stress, high antioxidant activity suggests high levels of endogenous oxidative stress. WRNexoΔ adults are sensitive to stress caused by elevated temperature and starvation suggesting abnormalities in energy storage and a possible link to metabolic dysfunction in WS patients. We also observed higher levels of sleep in aged WRNexoΔ adults suggesting an additional adaptive mechanism to protect against age-related stress. We suggest that stress response in WRNexoΔ is multifaceted and evokes a systemic physiological response to protect against cellular damage. These data further validate WRNexoΔ flies as a WS model with which to study mechanisms of early aging and provide a foundation for development of treatments for WS and similar diseases.
Collapse
Affiliation(s)
- Derek G. Epiney
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Charlotte Salameh
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Deirdre Cassidy
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Luhan T. Zhou
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Joshua Kruithof
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Rolan Milutinović
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Tomas S. Andreani
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA;
| | - Aaron E. Schirmer
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Elyse Bolterstein
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| |
Collapse
|
4
|
Mukhtar-Un-Nisar Andrabi S, Tamanna S, Rahul, Naz F, Siddique YH. Toxic potential of sodium hypochlorite in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1955711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Sadaf Tamanna
- Department of Conservative Dentistry & Endodontics, Aligarh Muslim University, Aligarh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
5
|
Baldwin SR, Mohapatra P, Nagalla M, Sindvani R, Amaya D, Dickson HA, Menuz K. Identification and characterization of CYPs induced in the Drosophila antenna by exposure to a plant odorant. Sci Rep 2021; 11:20530. [PMID: 34654888 PMCID: PMC8521596 DOI: 10.1038/s41598-021-99910-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Members of the cytochrome p450 (CYP) enzyme family are abundantly expressed in insect olfactory tissues, where they are thought to act as Odorant Degrading Enzymes (ODEs). However, their contribution to olfactory signaling in vivo is poorly understood. This is due in part to the challenge of identifying which of the dozens of antennal-expressed CYPs might inactivate a given odorant. Here, we tested a high-throughput deorphanization strategy in Drosophila to identify CYPs that are transcriptionally induced by exposure to odorants. We discovered three CYPs selectively upregulated by geranyl acetate using transcriptional profiling. Although these CYPs are broadly expressed in the antenna in non-neuronal cells, electrophysiological recordings from CYP mutants did not reveal any changes in olfactory neuron responses to this odorant. Neurons were desensitized by pre-exposing flies to the odorant, but this effect was similar in CYP mutants. Together, our data suggest that the induction of a CYP gene by an odorant does not necessarily indicate a role for that CYP in neuronal responses to that odorant. We go on to show that some CYPs have highly restricted expression patterns in the antenna, and suggest that such CYPs may be useful candidates for further studies on olfactory CYP function.
Collapse
Affiliation(s)
- Shane R Baldwin
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
- MBF Bioscience, Williston, VT, 05495, USA
| | - Pratyajit Mohapatra
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Monica Nagalla
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rhea Sindvani
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
- School of Medicine, University of Connecticut, Farmington, CT, 06032, USA
| | - Desiree Amaya
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
- Biomedical Sciences Program, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hope A Dickson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Karen Menuz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
6
|
Vulpe A, Kim HS, Ballou S, Wu ST, Grabe V, Nava Gonzales C, Liang T, Sachse S, Jeanne JM, Su CY, Menuz K. An ammonium transporter is a non-canonical olfactory receptor for ammonia. Curr Biol 2021; 31:3382-3390.e7. [PMID: 34111404 PMCID: PMC8355169 DOI: 10.1016/j.cub.2021.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/18/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Numerous hematophagous insects are attracted to ammonia, a volatile released in human sweat and breath.1-3 Low levels of ammonia also attract non-biting insects such as the genetic model organism Drosophila melanogaster and several species of agricultural pests.4,5 Two families of ligand-gated ion channels function as olfactory receptors in insects,6-10 and studies have linked ammonia sensitivity to a particular olfactory receptor in Drosophila.5,11,12 Given the widespread importance of ammonia to insect behavior, it is surprising that the genomes of most insects lack an ortholog of this gene.6 Here, we show that canonical olfactory receptors are not necessary for responses to ammonia in Drosophila. Instead, we demonstrate that a member of the ancient electrogenic ammonium transporter family, Amt, is likely a new type of olfactory receptor. We report two hitherto unidentified olfactory neuron populations that mediate neuronal and behavioral responses to ammonia in Drosophila. Their endogenous ammonia responses are lost in Amt mutant flies, and ectopic expression of either Drosophila or Anopheles Amt confers ammonia sensitivity. These results suggest that Amt is the first transporter known to function as an olfactory receptor in animals and that its function may be conserved across insect species.
Collapse
Affiliation(s)
- Alina Vulpe
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Hyong S Kim
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Sydney Ballou
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Shiuan-Tze Wu
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Cesar Nava Gonzales
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tiffany Liang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - James M Jeanne
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen Menuz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA; Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
7
|
Lu J, Temp U, Müller-Hartmann A, Esser J, Grönke S, Partridge L. Sestrin is a key regulator of stem cell function and lifespan in response to dietary amino acids. ACTA ACUST UNITED AC 2020; 1:60-72. [PMID: 37117991 DOI: 10.1038/s43587-020-00001-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023]
Abstract
Dietary restriction (DR) promotes healthy aging in diverse species. Essential amino acids play a key role, but the molecular mechanisms are unknown. The evolutionarily conserved Sestrin protein, an inhibitor of activity of the target of rapamycin complex 1 (TORC1), has recently been discovered as a sensor of amino acids in vitro. Here, we show that Sestrin null mutant flies have a blunted response of lifespan to DR. A mutant Sestrin fly line, with blocked amino acid binding and TORC1 activation, showed delayed development, reduced fecundity, extended lifespan and protection against lifespan-shortening, high-protein diets. Sestrin mediated reduced intestinal stem cell activity and gut cell turnover from DR, and stem cell proliferation in response to dietary amino acids, by regulating the TOR pathway and autophagy. Sestrin expression in intestinal stem cells was sufficient to maintain gut homeostasis and extend lifespan. Sestrin is thus a molecular link between dietary amino acids, stem cell function and longevity.
Collapse
|
8
|
Wu C, Boisclair Lachance JF, Ludwig MZ, Rebay I. A context-dependent bifurcation in the Pointed transcriptional effector network contributes specificity and robustness to retinal cell fate acquisition. PLoS Genet 2020; 16:e1009216. [PMID: 33253156 PMCID: PMC7728396 DOI: 10.1371/journal.pgen.1009216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/10/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022] Open
Abstract
Spatiotemporally precise and robust cell fate transitions, which depend on specific signaling cues, are fundamental to the development of appropriately patterned tissues. The fidelity and precision with which photoreceptor fates are recruited in the Drosophila eye exemplifies these principles. The fly eye consists of a highly ordered array of ~750 ommatidia, each of which contains eight distinct photoreceptors, R1-R8, specified sequentially in a precise spatial pattern. Recruitment of R1-R7 fates requires reiterative receptor tyrosine kinase / mitogen activated protein kinase (MAPK) signaling mediated by the transcriptional effector Pointed (Pnt). However the overall signaling levels experienced by R2-R5 cells are distinct from those experienced by R1, R6 and R7. A relay mechanism between two Pnt isoforms initiated by MAPK activation directs the universal transcriptional response. Here we ask how the generic Pnt response is tailored to these two rounds of photoreceptor fate transitions. We find that during R2-R5 specification PntP2 is coexpressed with a closely related but previously uncharacterized isoform, PntP3. Using CRISPR/Cas9-generated isoform specific null alleles we show that under otherwise wild type conditions, R2-R5 fate specification is robust to loss of either PntP2 or PntP3, and that the two activate pntP1 redundantly; however under conditions of reduced MAPK activity, both are required. Mechanistically, our data suggest that intrinsic activity differences between PntP2 and PntP3, combined with positive and unexpected negative transcriptional auto- and cross-regulation, buffer first-round fates against conditions of compromised RTK signaling. In contrast, in a mechanism that may be adaptive to the stronger signaling environment used to specify R1, R6 and R7 fates, the Pnt network resets to a simpler topology in which PntP2 uniquely activates pntP1 and auto-activates its own transcription. We propose that differences in expression patterns, transcriptional activities and regulatory interactions between Pnt isoforms together facilitate context-appropriate cell fate specification in different signaling environments.
Collapse
Affiliation(s)
- Chudong Wu
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | | | - Michael Z. Ludwig
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Ilaria Rebay
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
9
|
Titlow J, Robertson F, Järvelin A, Ish-Horowicz D, Smith C, Gratton E, Davis I. Syncrip/hnRNP Q is required for activity-induced Msp300/Nesprin-1 expression and new synapse formation. J Cell Biol 2020; 219:133707. [PMID: 32040548 PMCID: PMC7055005 DOI: 10.1083/jcb.201903135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/21/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023] Open
Abstract
Memory and learning involve activity-driven expression of proteins and cytoskeletal reorganization at new synapses, requiring posttranscriptional regulation of localized mRNA a long distance from corresponding nuclei. A key factor expressed early in synapse formation is Msp300/Nesprin-1, which organizes actin filaments around the new synapse. How Msp300 expression is regulated during synaptic plasticity is poorly understood. Here, we show that activity-dependent accumulation of Msp300 in the postsynaptic compartment of the Drosophila larval neuromuscular junction is regulated by the conserved RNA binding protein Syncrip/hnRNP Q. Syncrip (Syp) binds to msp300 transcripts and is essential for plasticity. Single-molecule imaging shows that msp300 is associated with Syp in vivo and forms ribosome-rich granules that contain the translation factor eIF4E. Elevated neural activity alters the dynamics of Syp and the number of msp300:Syp:eIF4E RNP granules at the synapse, suggesting that these particles facilitate translation. These results introduce Syp as an important early acting activity-dependent regulator of a plasticity gene that is strongly associated with human ataxias.
Collapse
Affiliation(s)
- Joshua Titlow
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Aino Järvelin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - David Ish-Horowicz
- Department of Biochemistry, University of Oxford, Oxford, UK.,Medical Research Council Lab for Molecular Cell Biology, University College London, London, UK
| | - Carlas Smith
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, University of California Irvine, Irvine, CA
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Cheatle Jarvela AM, Trelstad CS, Pick L. Regulatory gene function handoff allows essential gene loss in mosquitoes. Commun Biol 2020; 3:540. [PMID: 32999445 PMCID: PMC7528073 DOI: 10.1038/s42003-020-01203-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/02/2020] [Indexed: 11/09/2022] Open
Abstract
Regulatory genes are often multifunctional and constrained, which results in evolutionary conservation. It is difficult to understand how a regulatory gene could be lost from one species’ genome when it is essential for viability in closely related species. The gene paired is a classic Drosophila pair-rule gene, required for formation of alternate body segments in diverse insect species. Surprisingly, paired was lost in mosquitoes without disrupting body patterning. Here, we demonstrate that a paired family member, gooseberry, has acquired paired-like expression in the malaria mosquito Anopheles stephensi. Anopheles-gooseberry CRISPR-Cas9 knock-out mutants display pair-rule phenotypes and alteration of target gene expression similar to what is seen in Drosophila and beetle paired mutants. Thus, paired was functionally replaced by the related gene, gooseberry, in mosquitoes. Our findings document a rare example of a functional replacement of an essential regulatory gene and provide a mechanistic explanation of how such loss can occur. Cheatle Jarvela et al. demonstrate in the mosquito Anopheles stephensi that the paired gene was functionally replaced by the gene gooseberry, even though paired is essential in other insects such as fruit flies and beetles. This study contributes to the understanding of how essential genes are lost despite their importance during development.
Collapse
Affiliation(s)
| | | | - Leslie Pick
- Department of Entomology, University of Maryland, Collage Park, MD, USA.
| |
Collapse
|
11
|
Königsmann T, Parfentev I, Urlaub H, Riedel D, Schuh R. The bicistronic gene würmchen encodes two essential components for epithelial development in Drosophila. Dev Biol 2020; 463:53-62. [PMID: 32361005 DOI: 10.1016/j.ydbio.2020.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/17/2020] [Accepted: 04/07/2020] [Indexed: 11/24/2022]
Abstract
Epithelial tissues are fundamental for the establishment and maintenance of different body compartments in multicellular animals. To achieve this specific task epithelial sheets secrete an apical extracellular matrix for tissue strength and protection and they organize a transepithelial barrier function, which is mediated by tight junctions in vertebrates or septate junctions in invertebrates. Here, we show that the bicistronic gene würmchen is functionally expressed in epithelial tissues. CRISPR/Cas9-mediated mutations in both coding sequences reveal two essential polypeptides, Würmchen1 and Würmchen2, which are both necessary for normal epithelial tissue development. Würmchen1 represents a genuine septate junction core component. It is required during embryogenesis for septate junction organization, the establishment of a transepithelial barrier function, distinct cellular transport processes and tracheal system morphogenesis. Würmchen2 is localized in the apical membrane region of epithelial tissues and in a central core of the tracheal lumen during embryogenesis. It is essential during the later larval development.
Collapse
Affiliation(s)
- Tatiana Königsmann
- Research Group Molecular Organogenesis, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, D-37077, Göttingen, Germany
| | - Iwan Parfentev
- Research Group Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, D-37077, Göttingen, Germany
| | - Henning Urlaub
- Research Group Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, D-37077, Göttingen, Germany; Bioanalytics, Institute for Clinical Chemistry, University Medical Center, Robert-Koch-Strasse 420, 37075 Göttingen, Germany
| | - Dietmar Riedel
- Electron Microscopy Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, D-37077, Göttingen, Germany
| | - Reinhard Schuh
- Research Group Molecular Organogenesis, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, D-37077, Göttingen, Germany.
| |
Collapse
|
12
|
Drosophila Middle-Term Memory: Amnesiac is Required for PKA Activation in the Mushroom Bodies, a Function Modulated by Neprilysin 1. J Neurosci 2020; 40:4219-4229. [PMID: 32303647 DOI: 10.1523/jneurosci.2311-19.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 11/21/2022] Open
Abstract
In Drosophila, the mushroom bodies (MB) constitute the central brain structure for olfactory associative memory. As in mammals, the cAMP/PKA pathway plays a key role in memory formation. In the MB, Rutabaga (Rut) adenylate cyclase acts as a coincidence detector during associative conditioning to integrate calcium influx resulting from acetylcholine stimulation and G-protein activation resulting from dopaminergic stimulation. Amnesiac encodes a secreted neuropeptide required in the MB for two phases of aversive olfactory memory. Previous sequence analysis has revealed strong homology with the mammalian pituitary adenylate cyclase-activating peptide (PACAP). Here, we examined whether amnesiac is involved in cAMP/PKA dynamics in response to dopamine and acetylcholine co-stimulation in living flies. Experiments were conducted with both sexes, or with either sex. Our data show that amnesiac is necessary for the PKA activation process that results from coincidence detection in the MB. Since PACAP peptide is cleaved by the human membrane neprilysin hNEP, we searched for an interaction between Amnesiac and Neprilysin 1 (Nep1), a fly neprilysin involved in memory. We show that when Nep1 expression is acutely knocked down in adult MB, memory deficits displayed by amn hypomorphic mutants are rescued. Consistently, Nep1 inhibition also restores normal PKA activation in amn mutant flies. Taken together, the results suggest that Nep1 targets Amnesiac degradation to terminate its signaling function. Our work thus highlights a key role for Amnesiac in establishing within the MB the PKA dynamics that sustain middle-term memory (MTM) formation, a function modulated by Nep1.SIGNIFICANCE STATEMENT The Drosophila amnesiac gene encodes a secreted neuropeptide whose expression is required for specific memory phases in the mushroom bodies (MB), the olfactory memory center. Here, we show that Amnesiac is required for PKA activation resulting from coincidence detection, a mechanism by which the MB integrate two spatially distinct stimuli to encode associative memory. Furthermore, our results uncover a functional relationship between Amnesiac and Neprilysin 1 (Nep1), a membrane peptidase involved in memory and expressed in the MB. These results suggest that Nep1 modulates Amnesiac levels. We propose that on conditioning, Amnesiac release from the MB allows, via an autocrine process, the sustaining of PKA activation-mediating memory, which subsequently is inactivated by Nep1 degradation.
Collapse
|
13
|
Wei P, Xue W, Zhao Y, Ning G, Wang J. CRISPR-based modular assembly of a UAS-cDNA/ORF plasmid library for more than 5500 Drosophila genes conserved in humans. Genome Res 2019; 30:95-106. [PMID: 31722958 PMCID: PMC6961578 DOI: 10.1101/gr.250811.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 11/08/2019] [Indexed: 11/30/2022]
Abstract
Construction of a genome-wide transgenic UAS-cDNA/ORF library in Drosophila based on the binary GAL4/UAS system has been severely hampered by technical difficulties, although genome-wide cDNA or ORF resources of Drosophila, human, and mouse have been publicly available for more than a decade. Here, we developed a new method named CRISPR-based modular assembly (CRISPRmass) for the high-throughput construction of a genome-wide UAS-cDNA/ORF library from publicly available cDNA/ORF resources. Through cleavage of shared vector sequences of cDNA/ORF plasmids by CRISPR/Cas9 and subsequent insertion of UAS modules by Gibson assembly, the procedure of construction of such a library by CRISPRmass is standardized as massively parallel two-step test tube reactions before bacterial transformation. Using CRISPRmass, we generated 5551 UAS-cDNA/ORF constructs covering 83% of the Drosophila genes conserved in humans in the Drosophila Genomics Resource Center (DGRC) Gold Collection, and among them, 5518 were generated within 3 mo by three people. Our results show that CRISPRmass allows modulization, simplicity, efficiency, and adaptability in the generation of a genome-wide UAS-cDNA/ORF plasmid library by using publicly available cDNA/ORF resources. CRISPRmass can be applied to editing various genome-wide libraries in general and is an alternative to Gateway technology in high-throughput plasmid library editing. Furthermore, the more than 5500 UAS-cDNA/ORF plasmids of Drosophila genes serve as a powerful resource for gain-of-function (GOF) screening in cultured cells and for generation of a transgenic UAS-cDNA/ORF library in Drosophila.
Collapse
Affiliation(s)
- Ping Wei
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wen Xue
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China.,Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai 200025, China
| | - Yun Zhao
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Guang Ning
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiwu Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai 200025, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
14
|
Cassidy D, Epiney DG, Salameh C, Zhou LT, Salomon RN, Schirmer AE, McVey M, Bolterstein E. Evidence for premature aging in a Drosophila model of Werner syndrome. Exp Gerontol 2019; 127:110733. [PMID: 31518666 PMCID: PMC6935377 DOI: 10.1016/j.exger.2019.110733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
Abstract
Werner syndrome (WS) is an autosomal recessive progeroid disease characterized by patients' early onset of aging, increased risk of cancer and other age-related pathologies. WS is caused by mutations in WRN, a RecQ helicase that has essential roles responding to DNA damage and preventing genomic instability. While human WRN has both an exonuclease and helicase domain, Drosophila WRNexo has high genetic and functional homology to only the exonuclease domain of WRN. Like WRN-deficient human cells, Drosophila WRNexo null mutants (WRNexoΔ) are sensitive to replication stress, demonstrating mechanistic similarities between these two models. Compared to age-matched wild-type controls, WRNexoΔ flies exhibit increased physiological signs of aging, such as shorter lifespans, higher tumor incidence, muscle degeneration, reduced climbing ability, altered behavior, and reduced locomotor activity. Interestingly, these effects are more pronounced in females suggesting sex-specific differences in the role of WRNexo in aging. This and future mechanistic studies will contribute to our knowledge in linking faulty DNA repair mechanisms with the process of aging.
Collapse
Affiliation(s)
- Deirdre Cassidy
- Department of Biology, Northeastern Illinois University, 5500 N. Saint Louis Ave, Chicago, IL 60625, United States of America
| | - Derek G Epiney
- Department of Biology, Northeastern Illinois University, 5500 N. Saint Louis Ave, Chicago, IL 60625, United States of America
| | - Charlotte Salameh
- Department of Biology, Northeastern Illinois University, 5500 N. Saint Louis Ave, Chicago, IL 60625, United States of America
| | - Luhan T Zhou
- Department of Biology, Northeastern Illinois University, 5500 N. Saint Louis Ave, Chicago, IL 60625, United States of America
| | - Robert N Salomon
- Department of Pathology, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 20111, United States of America
| | - Aaron E Schirmer
- Department of Biology, Northeastern Illinois University, 5500 N. Saint Louis Ave, Chicago, IL 60625, United States of America.
| | - Mitch McVey
- Department of Biology, Tufts University, 200 Boston Ave, Ste. 4741, Medford, MA 20155, United States of America.
| | - Elyse Bolterstein
- Department of Biology, Northeastern Illinois University, 5500 N. Saint Louis Ave, Chicago, IL 60625, United States of America.
| |
Collapse
|
15
|
Gyoergy A, Roblek M, Ratheesh A, Valoskova K, Belyaeva V, Wachner S, Matsubayashi Y, Sánchez-Sánchez BJ, Stramer B, Siekhaus DE. Tools Allowing Independent Visualization and Genetic Manipulation of Drosophila melanogaster Macrophages and Surrounding Tissues. G3 (BETHESDA, MD.) 2018; 8:845-857. [PMID: 29321168 PMCID: PMC5844306 DOI: 10.1534/g3.117.300452] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 12/31/2017] [Indexed: 12/19/2022]
Abstract
Drosophila melanogaster plasmatocytes, the phagocytic cells among hemocytes, are essential for immune responses, but also play key roles from early development to death through their interactions with other cell types. They regulate homeostasis and signaling during development, stem cell proliferation, metabolism, cancer, wound responses, and aging, displaying intriguing molecular and functional conservation with vertebrate macrophages. Given the relative ease of genetics in Drosophila compared to vertebrates, tools permitting visualization and genetic manipulation of plasmatocytes and surrounding tissues independently at all stages would greatly aid a fuller understanding of these processes, but are lacking. Here, we describe a comprehensive set of transgenic lines that allow this. These include extremely brightly fluorescing mCherry-based lines that allow GAL4-independent visualization of plasmatocyte nuclei, the cytoplasm, or the actin cytoskeleton from embryonic stage 8 through adulthood in both live and fixed samples even as heterozygotes, greatly facilitating screening. These lines allow live visualization and tracking of embryonic plasmatocytes, as well as larval plasmatocytes residing at the body wall or flowing with the surrounding hemolymph. With confocal imaging, interactions of plasmatocytes and inner tissues can be seen in live or fixed embryos, larvae, and adults. They permit efficient GAL4-independent Fluorescence-Activated Cell Sorting (FACS) analysis/sorting of plasmatocytes throughout life. To facilitate genetic studies of reciprocal signaling, we have also made a plasmatocyte-expressing QF2 line that, in combination with extant GAL4 drivers, allows independent genetic manipulation of both plasmatocytes and surrounding tissues, and GAL80 lines that block GAL4 drivers from affecting plasmatocytes, all of which function from the early embryo to the adult.
Collapse
Affiliation(s)
- Attila Gyoergy
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Marko Roblek
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Aparna Ratheesh
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Katarina Valoskova
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Vera Belyaeva
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Stephanie Wachner
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Yutaka Matsubayashi
- Randall Division of Cell and Molecular Biophysics, King's College London, SE1 1UL, United Kingdom
| | - Besaiz J Sánchez-Sánchez
- Randall Division of Cell and Molecular Biophysics, King's College London, SE1 1UL, United Kingdom
| | - Brian Stramer
- Randall Division of Cell and Molecular Biophysics, King's College London, SE1 1UL, United Kingdom
| | - Daria E Siekhaus
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
16
|
Sanfilippo P, Wen J, Lai EC. Landscape and evolution of tissue-specific alternative polyadenylation across Drosophila species. Genome Biol 2017; 18:229. [PMID: 29191225 PMCID: PMC5707805 DOI: 10.1186/s13059-017-1358-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3'-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control. RESULTS Here, we generate deep 3'-sequencing data from 23 developmental stages, tissues, and cell lines of D. melanogaster, yielding a comprehensive atlas of ~ 62,000 polyadenylated ends. These data broadly extend the annotated transcriptome, identify ~ 40,000 novel 3' termini, and reveal that two-thirds of Drosophila genes are subject to APA. Furthermore, we dramatically expand the numbers of genes known to be subject to tissue-specific APA, such as 3' untranslated region (UTR) lengthening in head and 3' UTR shortening in testis, and characterize new tissue and developmental 3' UTR patterns. Our thorough 3' UTR annotations permit reassessment of post-transcriptional regulatory networks, via conserved miRNA and RNA binding protein sites. To evaluate the evolutionary conservation and divergence of APA patterns, we generate developmental and tissue-specific 3'-seq libraries from Drosophila yakuba and Drosophila virilis. We document broadly analogous tissue-specific APA trends in these species, but also observe significant alterations in 3' end usage across orthologs. We exploit the population of functionally evolving poly(A) sites to gain clear evidence that evolutionary divergence in core polyadenylation signal (PAS) and downstream sequence element (DSE) motifs drive broad alterations in 3' UTR isoform expression across the Drosophila phylogeny. CONCLUSIONS These data provide a critical resource for the Drosophila community and offer many insights into the complex control of alternative tissue-specific 3' UTR formation and its consequences for post-transcriptional regulatory networks.
Collapse
Affiliation(s)
- Piero Sanfilippo
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York, 10065, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Jiayu Wen
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York, 10065, USA
- Present address: Biochemistry and Biomedical Sciences, Research School of Biology, ANU College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York, 10065, USA.
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.
| |
Collapse
|
17
|
Cooperative Control of Ecdysone Biosynthesis in Drosophila by Transcription Factors Séance, Ouija Board, and Molting Defective. Genetics 2017; 208:605-622. [PMID: 29187506 PMCID: PMC5788525 DOI: 10.1534/genetics.117.300268] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ecdysteroids are steroid hormones that control many aspects of development and physiology. During larval development, ecdysone is synthesized in an endocrine organ called the prothoracic gland through a series of ecdysteroidogenic enzymes encoded by the Halloween genes. The expression of the Halloween genes is highly restricted and dynamic, indicating that their spatiotemporal regulation is mediated by their tight transcriptional control. In this study, we report that three zinc finger-associated domain (ZAD)-C2H2 zinc finger transcription factors—Séance (Séan), Ouija board (Ouib), and Molting defective (Mld)—cooperatively control ecdysone biosynthesis in the fruit fly Drosophila melanogaster. Séan and Ouib act in cooperation with Mld to positively regulate the transcription of neverland and spookier, respectively, two Halloween genes. Remarkably, loss-of-function mutations in séan, ouib, or mld can be rescued by the expression of neverland, spookier, or both, respectively. These results suggest that the three transcription factors have distinct roles in coordinating the expression of just two genes in Drosophila. Given that neverland and spookier are located in constitutive heterochromatin, Séan, Ouib, and Mld represent the first example of a transcription factor subset that regulates genes located in constitutive heterochromatin.
Collapse
|
18
|
Kanca O, Bellen HJ, Schnorrer F. Gene Tagging Strategies To Assess Protein Expression, Localization, and Function in Drosophila. Genetics 2017; 207:389-412. [PMID: 28978772 PMCID: PMC5629313 DOI: 10.1534/genetics.117.199968] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/13/2017] [Indexed: 01/15/2023] Open
Abstract
Analysis of gene function in complex organisms relies extensively on tools to detect the cellular and subcellular localization of gene products, especially proteins. Typically, immunostaining with antibodies provides these data. However, due to cost, time, and labor limitations, generating specific antibodies against all proteins of a complex organism is not feasible. Furthermore, antibodies do not enable live imaging studies of protein dynamics. Hence, tagging genes with standardized immunoepitopes or fluorescent tags that permit live imaging has become popular. Importantly, tagging genes present in large genomic clones or at their endogenous locus often reports proper expression, subcellular localization, and dynamics of the encoded protein. Moreover, these tagging approaches allow the generation of elegant protein removal strategies, standardization of visualization protocols, and permit protein interaction studies using mass spectrometry. Here, we summarize available genomic resources and techniques to tag genes and discuss relevant applications that are rarely, if at all, possible with antibodies.
Collapse
Affiliation(s)
- Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Howard Hughes Medical Institute, Houston, Texas 77030
| | - Frank Schnorrer
- Developmental Biology Institute of Marseille (IBDM), UMR 7288, CNRS, Aix-Marseille Université, 13288, France
| |
Collapse
|
19
|
Shank Modulates Postsynaptic Wnt Signaling to Regulate Synaptic Development. J Neurosci 2017; 36:5820-32. [PMID: 27225771 DOI: 10.1523/jneurosci.4279-15.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/25/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Prosap/Shank scaffolding proteins regulate the formation, organization, and plasticity of excitatory synapses. Mutations in SHANK family genes are implicated in autism spectrum disorder and other neuropsychiatric conditions. However, the molecular mechanisms underlying Shank function are not fully understood, and no study to date has examined the consequences of complete loss of all Shank proteins in vivo Here we characterize the single Drosophila Prosap/Shank family homolog. Shank is enriched at the postsynaptic membrane of glutamatergic neuromuscular junctions and controls multiple parameters of synapse biology in a dose-dependent manner. Both loss and overexpression of Shank result in defects in synaptic bouton number and maturation. We find that Shank regulates a noncanonical Wnt signaling pathway in the postsynaptic cell by modulating the internalization of the Wnt receptor Fz2. This study identifies Shank as a key component of synaptic Wnt signaling, defining a novel mechanism for how Shank contributes to synapse maturation during neuronal development. SIGNIFICANCE STATEMENT Haploinsufficiency for SHANK3 is one of the most prevalent monogenic causes of autism spectrum disorder, making it imperative to understand how the Shank family regulates neurodevelopment and synapse function. We created the first animal model lacking all Shank proteins and used the Drosophila neuromuscular junction, a model glutamatergic synapse, to characterize the role of Shank at synapses. We identified a novel function of Shank in synapse maturation via regulation of Wnt signaling in the postsynaptic cell.
Collapse
|
20
|
Maternal Torso-Like Coordinates Tissue Folding During Drosophila Gastrulation. Genetics 2017; 206:1459-1468. [PMID: 28495958 DOI: 10.1534/genetics.117.200576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022] Open
Abstract
The rapid and orderly folding of epithelial tissue during developmental processes such as gastrulation requires the precise coordination of changes in cell shape. Here, we report that the perforin-like protein Torso-like (Tsl), the key extracellular determinant for Drosophila embryonic terminal patterning, also functions to control epithelial morphogenesis. We find that tsl null mutants display a ventral cuticular hole phenotype that is independent of the loss of terminal structures, and arises as a consequence of mesoderm invagination defects. We show that the holes are caused by uncoordinated constriction of ventral cell apices, resulting in the formation of an incomplete ventral furrow. Consistent with these data, we find that loss of tsl is sensitive to gene dosage of RhoGEF2, a critical mediator of Rho1-dependent ventral cell shape changes during furrow formation, suggesting that Tsl may act in this pathway. In addition, loss of tsl strongly suppressed the effects of ectopic expression of Folded Gastrulation (Fog), a secreted protein that promotes apical constriction. Taken together, our data suggest that Tsl controls Rho1-mediated apical constriction via Fog. Therefore, we propose that Tsl regulates extracellular Fog activity to synchronize cell shape changes and coordinate ventral morphogenesis in Drosophila Identifying the Tsl-mediated event that is common to both terminal patterning and morphogenesis will be valuable for our understanding of the extracellular control of developmental signaling by perforin-like proteins.
Collapse
|
21
|
Zn2+-Inducible Expression Platform for Synechococcus sp. Strain PCC 7002 Based on the smtA Promoter/Operator and smtB Repressor. Appl Environ Microbiol 2017; 83:AEM.02491-16. [PMID: 27836841 DOI: 10.1128/aem.02491-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
Synechococcus sp. strain PCC 7002 has been gaining significance as both a model system for photosynthesis research and for industrial applications. Until recently, the genetic toolbox for this model cyanobacterium was rather limited and relied primarily on tools that only allowed constitutive gene expression. This work describes a two-plasmid, Zn2+-inducible expression platform that is coupled with a zurA mutation, providing enhanced Zn2+ uptake. The control elements are based on the metal homeostasis system of a class II metallothionein gene (smtA7942) and its cognate SmtB7942 repressor from Synechococcus elongatus strain PCC 7942. Under optimal induction conditions, yellow fluorescent protein (YFP) levels were about half of those obtained with the strong, constitutive phycocyanin (cpcBA6803) promoter of Synechocystis sp. strain PCC 6803. This metal-inducible expression system in Synechococcus sp. strain PCC 7002 allowed the titratable gene expression of YFP that was up to 19-fold greater than the background level. This system was utilized successfully to control the expression of the Drosophila melanogaster β-carotene 15,15'-dioxygenase, NinaB, which is toxic when constitutively expressed from a strong promoter in Synechococcus sp. strain PCC 7002. Together, these properties establish this metal-inducible system as an additional useful tool that is capable of controlling gene expression for applications ranging from basic research to synthetic biology in Synechococcus sp. strain PCC 7002. IMPORTANCE This is the first metal-responsive expression system in cyanobacteria, to our knowledge, that does not exhibit low sensitivity for induction, which is one of the major hurdles for utilizing this class of genetic tools. In addition, high levels of expression can be generated that approximate those of established constitutive systems, with the added advantage of titratable control. Together, these properties establish this Zn2+-inducible system, which is based on the smtA7942 operator/promoter and smtB7942 repressor, as a versatile gene expression platform that expands the genetic toolbox of Synechococcus sp. strain PCC 7002.
Collapse
|
22
|
Mechanical Control of Whole Body Shape by a Single Cuticular Protein Obstructor-E in Drosophila melanogaster. PLoS Genet 2017; 13:e1006548. [PMID: 28076349 PMCID: PMC5226733 DOI: 10.1371/journal.pgen.1006548] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022] Open
Abstract
Body shapes are much more variable than body plans. One way to alter body shapes independently of body plans would be to mechanically deform bodies. To what extent body shapes are regulated physically, or molecules involved in physical control of morphogenesis, remain elusive. During fly metamorphosis, the cuticle (exoskeleton) covering the larval body contracts longitudinally and expands laterally to become the ellipsoidal pupal case (puparium). Here we show that Drosophila melanogaster Obstructor-E (Obst-E) is a protein constituent of the larval cuticle that confers the oriented contractility/expandability. In the absence of obst-E function, the larval cuticle fails to undergo metamorphic shape change and finally becomes a twiggy puparium. We present results indicating that Obst-E regulates the arrangement of chitin, a long-chain polysaccharide and a central component of the insect cuticle, and directs the formation of supracellular ridges on the larval cuticle. We further show that Obst-E is locally required for the oriented shape change of the cuticle during metamorphosis, which is associated with changes in the morphology of those ridges. Thus, Obst-E dramatically affects the body shape in a direct, physical manner by controlling the mechanical property of the exoskeleton. Shapes of objects, living or not, should depend on their material properties and forces acting on them. Mechanical processes that create whole body shapes of multicellular organisms, or genes that regulate such processes, are largely unknown. Insect bodies are coated by cuticle, a matrix composed of proteins and the polysaccharide chitin. We show that, during metamorphosis of the fruit fly Drosophila melanogaster, the cuticle covering the long and thin larva (maggot) undergoes longitudinal contraction and lateral expansion to become the short and stout puparium covering the pupa. Furthermore, we identify a single protein component of the larval cuticle that confers the oriented contractility/expandability, thereby determining the pupal body shape in a mechanical manner.
Collapse
|
23
|
Deb BK, Pathak T, Hasan G. Store-independent modulation of Ca(2+) entry through Orai by Septin 7. Nat Commun 2016; 7:11751. [PMID: 27225060 PMCID: PMC4894974 DOI: 10.1038/ncomms11751] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/26/2016] [Indexed: 01/07/2023] Open
Abstract
Orai channels are required for store-operated Ca2+ entry (SOCE) in multiple cell types. Septins are a class of GTP-binding proteins that function as diffusion barriers in cells. Here we show that Septin 7 acts as a ‘molecular brake’ on activation of Orai channels in Drosophila neurons. Lowering Septin 7 levels results in dOrai-mediated Ca2+ entry and higher cytosolic Ca2+ in resting neurons. This Ca2+ entry is independent of depletion of endoplasmic reticulum Ca2+ stores and Ca2+ release through the inositol-1,4,5-trisphosphate receptor. Importantly, store-independent Ca2+ entry through Orai compensates for reduced SOCE in the Drosophila flight circuit. Moreover, overexpression of Septin 7 reduces both SOCE and flight duration, supporting its role as a negative regulator of Orai channel function in vivo. Septin 7 levels in neurons can, therefore, alter neural circuit function by modulating Orai function and Ca2+ homeostasis. Orai channels are well known to mediate store-operated calcium entry. Here authors show that in neurons of the Drosophila flight circuit, Septin 7 acts as a negative regulator of Orai channels, surprisingly, by modulating store-independent calcium entry through Orai.
Collapse
Affiliation(s)
- Bipan Kumar Deb
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Trayambak Pathak
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India.,Manipal University, Manipal, Karnataka 576104, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| |
Collapse
|
24
|
Beller M, Blanke S, Brentrup D, Jäckle H. Identification and expression of Ima, a novel Ral-interacting Drosophila protein. Mech Dev 2016; 119 Suppl 1:S253-60. [PMID: 14516694 DOI: 10.1016/s0925-4773(03)00125-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the identification of Ima, a novel Drosophila MAGUK-like protein, which contains two WW and four PDZ protein interaction domains and interacts with the small GTPase dRal in the yeast two-hybrid system and pull-down assays. The gene is expressed in distinct spatiotemporal patterns throughout embryonic development. Overexpression of Ima interferes with normal Drosophila development, indicating that the gene functions in a tissue specific manner.
Collapse
Affiliation(s)
- Mathias Beller
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
25
|
Prefractionation methods for individual adult fruit fly hemolymph proteomic analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1015-1016:74-81. [DOI: 10.1016/j.jchromb.2016.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 11/23/2022]
|
26
|
The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 2015; 525:56-61. [PMID: 26308891 DOI: 10.1038/nature14973] [Citation(s) in RCA: 776] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.
Collapse
|
27
|
Class I myosins have overlapping and specialized functions in left-right asymmetric development in Drosophila. Genetics 2015; 199:1183-99. [PMID: 25659376 DOI: 10.1534/genetics.115.174698] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 02/04/2015] [Indexed: 11/18/2022] Open
Abstract
The class I myosin genes are conserved in diverse organisms, and their gene products are involved in actin dynamics, endocytosis, and signal transduction. Drosophila melanogaster has three class I myosin genes, Myosin 31DF (Myo31DF), Myosin 61F (Myo61F), and Myosin 95E (Myo95E). Myo31DF, Myo61F, and Myo95E belong to the Myosin ID, Myosin IC, and Myosin IB families, respectively. Previous loss-of-function analyses of Myo31DF and Myo61F revealed important roles in left-right (LR) asymmetric development and enterocyte maintenance, respectively. However, it was difficult to elucidate their roles in vivo, because of potential redundant activities. Here we generated class I myosin double and triple mutants to address this issue. We found that the triple mutant was viable and fertile, indicating that all three class I myosins were dispensable for survival. A loss-of-function analysis revealed further that Myo31DF and Myo61F, but not Myo95E, had redundant functions in promoting the dextral LR asymmetric development of the male genitalia. Myo61F overexpression is known to antagonize the dextral activity of Myo31DF in various Drosophila organs. Thus, the LR-reversing activity of overexpressed Myo61F may not reflect its physiological function. The endogenous activity of Myo61F in promoting dextral LR asymmetric development was observed in the male genitalia, but not the embryonic gut, another LR asymmetric organ. Thus, Myo61F and Myo31DF, but not Myo95E, play tissue-specific, redundant roles in LR asymmetric development. Our studies also revealed differential colocalization of the class I myosins with filamentous (F)-actin in the brush border of intestinal enterocytes.
Collapse
|
28
|
Venter G, Polling S, Pluk H, Venselaar H, Wijers M, Willemse M, Fransen JAM, Wieringa B. Submembranous recruitment of creatine kinase B supports formation of dynamic actin-based protrusions of macrophages and relies on its C-terminal flexible loop. Eur J Cell Biol 2014; 94:114-27. [PMID: 25538032 DOI: 10.1016/j.ejcb.2014.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 12/20/2022] Open
Abstract
Subcellular partitioning of creatine kinase contributes to the formation of patterns in intracellular ATP distribution and the fuelling of cellular processes with a high and sudden energy demand. We have previously shown that brain-type creatine kinase (CK-B) accumulates at the phagocytic cup in macrophages where it is involved in the compartmentalized generation of ATP for actin remodeling. Here, we report that CK-B catalytic activity also helps in the formation of protrusive ruffle structures which are actin-dependent and abundant on the surface of both unstimulated and LPS-activated macrophages. Recruitment of CK-B to these structures occurred transiently and inhibition of the enzyme's catalytic activity with cyclocreatine led to a general smoothening of surface morphology as visualized by scanning electron microscopy. Comparison of the dynamics of distribution of YFP-tagged CK-mutants and isoforms by live imaging revealed that amino acid residues in the C-terminal segment (aa positions 323-330) that forms one of the protein's two mobile loops are involved in partitioning over inner regions of the cytosol and nearby sites where membrane protrusions occur during induction of phagocytic cup formation. Although wt CK-B, muscle-type CK (CK-M), and a catalytically dead CK-B-E232Q mutant with intact loop region were normally recruited from the cytosolic pool, no dynamic transition to the phagocytic cup area was seen for the CK-homologue arginine kinase and a CK-B-D326A mutant protein. Bioinformatics analysis helped us to predict that conformational flexibility of the C-terminal loop, independent of conformational changes induced by substrate binding or catalytic activity, is likely involved in exposing the enzyme for binding at or near the sites of membrane protrusion formation.
Collapse
Affiliation(s)
- Gerda Venter
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Saskia Polling
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Helma Pluk
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Mietske Wijers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marieke Willemse
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jack A M Fransen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
29
|
Wang SJH, Tsai A, Wang M, Yoo S, Kim HY, Yoo B, Chui V, Kisiel M, Stewart B, Parkhouse W, Harden N, Krieger C. Phospho-regulated Drosophila adducin is a determinant of synaptic plasticity in a complex with Dlg and PIP2 at the larval neuromuscular junction. Biol Open 2014; 3:1196-206. [PMID: 25416060 PMCID: PMC4265757 DOI: 10.1242/bio.20148342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 10/15/2014] [Indexed: 12/12/2022] Open
Abstract
Adducin is a ubiquitously expressed actin- and spectrin-binding protein involved in cytoskeleton organization, and is regulated through phosphorylation of the myristoylated alanine-rich C-terminal kinase (MARCKS)-homology domain by protein kinase C (PKC). We have previously shown that the Drosophila adducin, Hu-li tai shao (Hts), plays a role in larval neuromuscular junction (NMJ) growth. Here, we find that the predominant isoforms of Hts at the NMJ contain the MARCKS-homology domain, which is important for interactions with Discs large (Dlg) and phosphatidylinositol 4,5-bisphosphate (PIP2). Through the use of Proximity Ligation Assay (PLA), we show that the adducin-like Hts isoforms are in complexes with Dlg and PIP2 at the NMJ. We provide evidence that Hts promotes the phosphorylation and delocalization of Dlg at the NMJ through regulation of the transcript distribution of the PAR-1 and CaMKII kinases in the muscle. We also show that Hts interactions with Dlg and PIP2 are impeded through phosphorylation of the MARCKS-homology domain. These results are further evidence that Hts is a signaling-responsive regulator of synaptic plasticity in Drosophila.
Collapse
Affiliation(s)
- Simon Ji Hau Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Amy Tsai
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Mannan Wang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - SooHyun Yoo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Hae-Yoon Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Byoungjoo Yoo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Vincent Chui
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Marta Kisiel
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Bryan Stewart
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Wade Parkhouse
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
30
|
Singh DK, Calviño M, Brauer EK, Fernandez-Pozo N, Strickler S, Yalamanchili R, Suzuki H, Aoki K, Shibata D, Stratmann JW, Popescu GV, Mueller LA, Popescu SC. The tomato kinome and the tomato kinase library ORFeome: novel resources for the study of kinases and signal transduction in tomato and solanaceae species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:7-17. [PMID: 24047240 DOI: 10.1094/mpmi-08-13-0218-ta] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein kinase-driven phosphorylation constitutes the core of cellular signaling. Kinase components of signal transduction pathways are often targeted for inactivation by pathogens. The study of kinases and immune signal transduction in the model crop tomato (Solanum lycopersicum) would benefit from the availability of community-wide resources for large scale and systems-level experimentation. Here, we defined the tomato kinome and performed a comprehensive comparative analysis of the tomato kinome and 15 other plant species. We constructed a tomato kinase library (TOKN 1.0) of over 300 full-length open reading frames (ORF) cloned into a recombination-based vector. We developed a high-throughput pipeline to isolate and transform tomato protoplasts. A subset of the TOKN 1.0 library kinases were expressed in planta, were purified, and were used to generate a functional tomato protein microarray. All resources created were utilized to test known and novel associations between tomato kinases and Pseudomonas syringae DC3000 effectors in a large-scale format. Bsk7 was identified as a component of the plant immune response and a candidate effector target. These resources will enable comprehensive investigations of signaling pathways and host-pathogen interactions in tomato and other Solanaceae spp.
Collapse
|
31
|
Dotu I, Lozano G, Clote P, Martinez-Salas E. Using RNA inverse folding to identify IRES-like structural subdomains. RNA Biol 2013; 10:1842-52. [PMID: 24253111 DOI: 10.4161/rna.26994] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Internal ribosome entry site (IRES) elements govern protein synthesis of mRNAs that bypass cap-dependent translation inhibition under stress conditions. Picornavirus IRES are cis-acting elements, organized in modular domains that recruit the ribosome to internal mRNA sites. The aim of this study was to retrieve short RNA sequences with the capacity to adopt RNA folding patterns conserved with IRES structural subdomains, likely corresponding to RNA modules. We have applied a new program, RNAiFold, an inverse folding algorithm that determines all sequences whose minimum free energy structure is identical to that of the structural domains of interest. Sequences differing by more than 1 nt were clustered. Then, BLASTing one randomly chosen sequence from each cluster of the RNAiFold output, we retrieved viral and cellular sequences among output hits. As a proof of principle, we present the data corresponding to a coding region of Drosophila melanogaster TAF6, a transcription factor-associated protein that contains a structural motif within its coding region potentially folding into an IRES-like subdomain. This RNA region shows a biased codon usage, as predicted from structural constraints at the RNA level, it harbors conserved IRES structural motifs in loops, and interestingly, it has the capacity to confer internal initiation of translation in tissue culture cells.
Collapse
Affiliation(s)
- Ivan Dotu
- Biology Department; Boston College; Chestnut Hill, MA USA
| | - Gloria Lozano
- Centro de Biologia Molecular Severo Ochoa; Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid; Madrid, Spain
| | - Peter Clote
- Biology Department; Boston College; Chestnut Hill, MA USA
| | - Encarnacion Martinez-Salas
- Centro de Biologia Molecular Severo Ochoa; Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid; Madrid, Spain
| |
Collapse
|
32
|
Zhang K, Li Z, Jaiswal M, Bayat V, Xiong B, Sandoval H, Charng WL, David G, Haueter C, Yamamoto S, Graham BH, Bellen HJ. The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit. J Cell Biol 2013; 200:807-820. [PMID: 23509070 PMCID: PMC3601355 DOI: 10.1083/jcb.201208033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 02/19/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial complex I (CI) is an essential component in energy production through oxidative phosphorylation. Most CI subunits are encoded by nuclear genes, translated in the cytoplasm, and imported into mitochondria. Upon entry, they are embedded into the mitochondrial inner membrane. How these membrane-associated proteins cope with the hydrophilic cytoplasmic environment before import is unknown. In a forward genetic screen to identify genes that cause neurodegeneration, we identified sicily, the Drosophila melanogaster homologue of human C8ORF38, the loss of which causes Leigh syndrome. We show that in the cytoplasm, Sicily preprotein interacts with cytosolic Hsp90 to chaperone the CI subunit, ND42, before mitochondrial import. Loss of Sicily leads to loss of CI proteins and preproteins in both mitochondria and cytoplasm, respectively, and causes a CI deficiency and neurodegeneration. Our data indicate that cytosolic chaperones are required for the subcellular transport of ND42.
Collapse
Affiliation(s)
- Ke Zhang
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Zhihong Li
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Manish Jaiswal
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Vafa Bayat
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Bo Xiong
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Hector Sandoval
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Wu-Lin Charng
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Gabriela David
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Claire Haueter
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Shinya Yamamoto
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Brett H. Graham
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Hugo J. Bellen
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
33
|
Werzner A, Pavlidis P, Ometto L, Stephan W, Laurent S. Selective sweep in the Flotillin-2 region of European Drosophila melanogaster. PLoS One 2013; 8:e56629. [PMID: 23437190 PMCID: PMC3578937 DOI: 10.1371/journal.pone.0056629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/11/2013] [Indexed: 11/18/2022] Open
Abstract
Localizing genes that are subject to recent positive selection is a major goal of evolutionary biology. In the model organism Drosophila melanogaster many attempts have been made in recent years to identify such genes by conducting so-called genome scans of selection. These analyses consisted in typing a large number of genetic markers along the genomes of a sample of individuals and then identifying those loci that harbor patterns of genetic variation, which are compatible with the ones generated by a selective sweep. In this study we conduct an in-depth analysis of a genomic region located on the X chromosome of D. melanogaster that was identified as a potential target of recent positive selection by a previous genome scan of selection. To this end we re-sequenced 20 kilobases around the Flotillin-2 gene (Flo-2) and conducted a detailed analysis of the allele frequencies and linkage disequilibria observed in this new dataset. The results of this analysis reveal eight genetic novelties that are specific to temperate populations of D. melanogaster and that may have arisen during the expansion of the species outside its ancestral sub-Saharan habitat since about 16,000 years ago.
Collapse
Affiliation(s)
- Annegret Werzner
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| | - Pavlos Pavlidis
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| | - Lino Ometto
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| | - Stefan Laurent
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
- * E-mail:
| |
Collapse
|
34
|
Legendre F, Cody N, Iampietro C, Bergalet J, Lefebvre FA, Moquin-Beaudry G, Zhang O, Wang X, Lécuyer E. Whole mount RNA fluorescent in situ hybridization of Drosophila embryos. J Vis Exp 2013:e50057. [PMID: 23407302 DOI: 10.3791/50057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Assessing the expression pattern of a gene, as well as the subcellular localization properties of its transcribed RNA, are key features for understanding its biological function during development. RNA in situ hybridization (RNA-ISH) is a powerful method used for visualizing RNA distribution properties, be it at the organismal, cellular or subcellular levels. RNA-ISH is based on the hybridization of a labeled nucleic acid probe (e.g. antisense RNA, oligonucleotides) complementary to the sequence of an mRNA or a non-coding RNA target of interest. As the procedure requires primary sequence information alone to generate sequence-specific probes, it can be universally applied to a broad range of organisms and tissue specimens. Indeed, a number of large-scale ISH studies have been implemented to document gene expression and RNA localization dynamics in various model organisms, which has led to the establishment of important community resources. While a variety of probe labeling and detection strategies have been developed over the years, the combined usage of fluorescently-labeled detection reagents and enzymatic signal amplification steps offer significant enhancements in the sensitivity and resolution of the procedure. Here, we describe an optimized fluorescent in situ hybridization method (FISH) employing tyramide signal amplification (TSA) to visualize RNA expression and localization dynamics in staged Drosophila embryos. The procedure is carried out in 96-well PCR plate format, which greatly facilitates the simultaneous processing of large numbers of samples.
Collapse
|
35
|
Teixeira L. Whole-genome expression profile analysis of Drosophila melanogaster immune responses. Brief Funct Genomics 2012; 11:375-86. [DOI: 10.1093/bfgp/els043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Regulation of Fasciclin II and synaptic terminal development by the splicing factor beag. J Neurosci 2012; 32:7058-73. [PMID: 22593074 DOI: 10.1523/jneurosci.3717-11.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pre-mRNA alternative splicing is an important mechanism for the generation of synaptic protein diversity, but few factors governing this process have been identified. From a screen for Drosophila mutants with aberrant synaptic development, we identified beag, a mutant with fewer synaptic boutons and decreased neurotransmitter release. Beag encodes a spliceosomal protein similar to splicing factors in humans and Caenorhabditis elegans. We find that both beag mutants and mutants of an interacting gene dsmu1 have changes in the synaptic levels of specific splice isoforms of Fasciclin II (FasII), the Drosophila ortholog of neural cell adhesion molecule. We show that restoration of one splice isoform of FasII can rescue synaptic morphology in beag mutants while expression of other isoforms cannot. We further demonstrate that this FasII isoform has unique functions in synaptic development independent of transsynaptic adhesion. beag and dsmu1 mutants demonstrate an essential role for these previously uncharacterized splicing factors in the regulation of synapse development and function.
Collapse
|
37
|
Divergent functions through alternative splicing: the Drosophila CRMP gene in pyrimidine metabolism, brain, and behavior. Genetics 2012; 191:1227-38. [PMID: 22649077 DOI: 10.1534/genetics.112.141101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DHP and CRMP proteins comprise a family of structurally similar proteins that perform divergent functions, DHP in pyrimidine catabolism in most organisms and CRMP in neuronal dynamics in animals. In vertebrates, one DHP and five CRMP proteins are products of six genes; however, Drosophila melanogaster has a single CRMP gene that encodes one DHP and one CRMP protein through tissue-specific, alternative splicing of a pair of paralogous exons. The proteins derived from the fly gene are identical over 90% of their lengths, suggesting that unique, novel functions of these proteins derive from the segment corresponding to the paralogous exons. Functional homologies of the Drosophila and mammalian CRMP proteins are revealed by several types of evidence. Loss-of-function CRMP mutation modifies both Ras and Rac misexpression phenotypes during fly eye development in a manner that is consistent with the roles of CRMP in Ras and Rac signaling pathways in mammalian neurons. In both mice and flies, CRMP mutation impairs learning and memory. CRMP mutant flies are defective in circadian activity rhythm. Thus, DHP and CRMP proteins are derived by different processes in flies (tissue-specific, alternative splicing of paralogous exons of a single gene) and vertebrates (tissue-specific expression of different genes), indicating that diverse genetic mechanisms have mediated the evolution of this protein family in animals.
Collapse
|
38
|
Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. Proc Natl Acad Sci U S A 2011; 108:21164-9. [PMID: 22160707 DOI: 10.1073/pnas.1107892109] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposon control is a critical process during reproduction. The PIWI family proteins can play a key role, using a piRNA-mediated slicing mechanism to suppress transposon activity posttranscriptionally. In Drosophila melanogaster, Piwi is predominantly localized in the nucleus and has been implicated in heterochromatin formation. Here, we use female germ-line-specific depletion to study Piwi function. This depletion of Piwi leads to infertility and to axis specification defects in the developing egg chambers; correspondingly, widespread loss of transposon silencing is observed. Germ-line Piwi does not appear to be required for piRNA production. Instead, Piwi requires Aubergine (and presumably secondary piRNA) for proper localization. A subset of transposons that show significant overexpression in germ-line Piwi-depleted ovaries exhibit a corresponding loss of HP1a and H3K9me2. Germ-line HP1a depletion also leads to a loss of transposon silencing, demonstrating the functional requirement for HP1a enrichment at these loci. Considering our results and those of others, we infer that germ-line Piwi functions downstream of piRNA production to promote silencing of some transposons via recruitment of HP1a. Thus, in addition to its better-known function in posttranscriptional silencing, piRNA also appears to function in a targeting mechanism for heterochromatin formation mediated by Piwi.
Collapse
|
39
|
Sinsimer KS, Jain RA, Chatterjee S, Gavis ER. A late phase of germ plasm accumulation during Drosophila oogenesis requires lost and rumpelstiltskin. Development 2011; 138:3431-40. [PMID: 21752933 DOI: 10.1242/dev.065029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Asymmetric mRNA localization is an effective mechanism for establishing cellular and developmental polarity. Posterior localization of oskar in the Drosophila oocyte targets the synthesis of Oskar to the posterior, where Oskar initiates the assembly of the germ plasm. In addition to harboring germline determinants, the germ plasm is required for localization and translation of the abdominal determinant nanos. Consequently, failure of oskar localization during oogenesis results in embryos lacking germ cells and abdominal segments. oskar accumulates at the oocyte posterior during mid-oogenesis through a well-studied process involving kinesin-mediated transport. Through live imaging of oskar mRNA, we have uncovered a second, mechanistically distinct phase of oskar localization that occurs during late oogenesis and results in amplification of the germ plasm. Analysis of two newly identified oskar localization factors, Rumpelstiltskin and Lost, that are required specifically for this late phase of oskar localization shows that germ plasm amplification ensures robust abdomen and germ cell formation during embryogenesis. In addition, our results indicate the importance of mechanisms for adapting mRNAs to utilize multiple localization pathways as necessitated by the dramatic changes in ovarian physiology that occur during oogenesis.
Collapse
Affiliation(s)
- Kristina S Sinsimer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
40
|
A link between impaired purine nucleotide synthesis and apoptosis in Drosophila melanogaster. Genetics 2011; 188:359-67. [PMID: 21441212 DOI: 10.1534/genetics.110.124222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The biosynthetic pathways and multiple functions of purine nucleotides are well known. However, the pathways that respond to alterations in purine nucleotide synthesis in vivo in an animal model organism have not been identified. We examined the effects of inhibiting purine de novo synthesis in vivo and in cultured cells of Drosophila melanogaster. The purine de novo synthesis gene ade2 encodes phosphoribosylformylglycinamidine synthase (EC 6.3.5.3). An ade2 deletion, generated by P-element transposon excision, causes lethality in early pupal development, with darkening, or necrosis, of leg and wing imaginal disc tissue upon disc eversion. Together with analysis of a previously isolated weaker allele, ade2(4), and an allele of the Prat gene, which encodes an enzyme for the first step in the pathway, we determined that the lethal arrest and imaginal disc phenotypes involve apoptosis. A transgene expressing the baculovirus caspase inhibitor p35, which suppresses apoptosis caused by other stresses such as DNA damage, suppresses both the imaginal disc tissue darkening and the pupal lethality of all three purine de novo synthesis mutants. Furthermore, we showed the presence of apoptosis at the cellular level in both ade2 and Prat mutants by detecting TUNEL-positive nuclei in wing imaginal discs. Purine de novo synthesis inhibition was also examined in tissue culture by ade2 RNA interference followed by analysis of genome-wide changes in transcript levels. Among the upregulated genes was HtrA2, which encodes an apoptosis effector and is thus a candidate for initiating apoptosis in response to purine depletion.
Collapse
|
41
|
Panhuis TM, Broitman-Maduro G, Uhrig J, Maduro M, Reznick DN. Analysis of expressed sequence tags from the placenta of the live-bearing fish Poeciliopsis (Poeciliidae). ACTA ACUST UNITED AC 2011; 102:352-61. [PMID: 21339338 DOI: 10.1093/jhered/esr002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Matrotrophic fish in the genus Poeciliopsis (Poeciliidae) have a placenta-like structure used in postfertilization maternal provisioning of the developing embryo. To understand better the structure and function of the Poeciliopsis placenta, we derived cDNA libraries from the maternal follicular placenta of 2 matrotrophic Poeciliopsis sister species, P. turneri and P. presidionis. These species inherited their placenta from a common ancestor and represent one of 3 independent origins of placentas in Poeciliopsis. Expressed sequence tags (ESTs) were generated and putative function was determined using BLASTX homology searches and Gene Ontology (GO) annotation. Reverse transcription-polymerase chain reaction was used to verify placenta tissue expression of a putative candidate gene, alpha-2 macroglobulin. In total, 1956 (71.5% of the total submitted ESTs) and 924 (71.0% of the total submitted ESTs) unique transcripts were identified for the P. turneri and P. presidionis placenta, respectively. Homology search and GO annotation revealed putative genes whose products may be involved in specific transport functions of the maternal follicle. These putative genes are excellent candidates for future research on the evolution of the placenta. We discuss our results in light of the parent-offspring conflict theory of placental evolution and in terms of the Poeciliid placenta structure and function.
Collapse
Affiliation(s)
- Tami M Panhuis
- Department of Zoology, Ohio Wesleyan University, Delaware, OH 43015, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
We describe a method for high-throughput production of protein expression-ready clones. Open-reading frames (ORFs) are amplified by PCR from sequence-verified cDNA clones and subcloned into an appropriate loxP-containing donor vector. Each ORF is represented by two types of clones, one containing the native stop codon for expression of the native protein or amino-terminal fusion constructs and the other made without the stop codon to allow for carboxy-terminal fusion constructs. The expression-ready clone is sequenced to verify that no PCR errors have been introduced. We have made over 11,000 clones ranging in size from 78-6,699 bp with a median of 1,056 bp. This is the largest set of fully sequence-verified-"movable ORFs" of any model organism genome project. The donor clone facilitates rapid and simple transfer of the ORF into any expression vector of choice. Vectors are available for expressing these ORFs in bacteria, cell lines, or transgenic animals. The flexibility of this ORF clone collection makes possible a variety of proteomic applications, including protein interaction mapping, high-throughput cell-based expression screens, and functional studies. We have transferred 5,800 ORFs to a vector that allows production of a FLAG-HA tagged protein in Drosophila tissue culture cells with a metallothionein-inducible promoter. These clones are being used to produce a protein complex map of Drosophila from Schneider cells.
Collapse
|
43
|
Abstract
Tissue-specific gene expression is a major determinant in the elaboration of cells with distinctive phenotypes and functions, which is crucial for the development and homeostasis of multicellular organisms. Fluorescent in situ hybridization (FISH) is a powerful method for assessing the expression and localization properties of RNA at subcellular resolution in whole mount organism and tissue specimens. This chapter describes a high-resolution FISH protocol for the detection of RNA expression and localization dynamics in embryos and tissues of the fruit fly, Drosophila melanogaster. The approach utilizes tyramide signal amplification (TSA) for enhanced sensitivity and resolution in the detection of coding and noncoding RNAs, for the codetection of different RNA species or of RNA and a protein marker of interest. Furthermore, the protocol outlines details for conducting FISH in microtiter plates, which greatly enhances the throughput, practicality, and economy of the procedure.
Collapse
|
44
|
Hoskins RA, Landolin JM, Brown JB, Sandler JE, Takahashi H, Lassmann T, Yu C, Booth BW, Zhang D, Wan KH, Yang L, Boley N, Andrews J, Kaufman TC, Graveley BR, Bickel PJ, Carninci P, Carlson JW, Celniker SE. Genome-wide analysis of promoter architecture in Drosophila melanogaster. Genome Res 2010; 21:182-92. [PMID: 21177961 DOI: 10.1101/gr.112466.110] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals.
Collapse
Affiliation(s)
- Roger A Hoskins
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 97420, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Prazak L, Fujioka M, Gergen JP. Non-additive interactions involving two distinct elements mediate sloppy-paired regulation by pair-rule transcription factors. Dev Biol 2010; 344:1048-59. [PMID: 20435028 PMCID: PMC2914134 DOI: 10.1016/j.ydbio.2010.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/08/2010] [Accepted: 04/23/2010] [Indexed: 11/18/2022]
Abstract
The relatively simple combinatorial rules responsible for establishing the initial metameric expression of sloppy-paired-1 (slp1) in the Drosophila blastoderm embryo make this system an attractive model for investigating the mechanism of regulation by pair-rule transcription factors. This investigation of slp1 cis-regulatory architecture identifies two distinct elements, a proximal early stripe element (PESE) and a distal early stripe element (DESE) located from -3.1kb to -2.5kb and from -8.1kb to -7.1kb upstream of the slp1 promoter, respectively, that mediate this early regulation. The proximal element expresses only even-numbered stripes and mediates repression by Even-skipped (Eve) as well as by the combination of Runt and Fushi-tarazu (Ftz). A 272 basepair sub-element of PESE retains an Eve-dependent repression, but is expressed throughout the even-numbered parasegments due to the loss of repression by Runt and Ftz. In contrast, the distal element expresses both odd and even-numbered stripes and also drives inappropriate expression in the anterior half of the odd-numbered parasegments due to an inability to respond to repression by Eve. Importantly, a composite reporter gene containing both early stripe elements recapitulates pair-rule gene-dependent regulation in a manner beyond what is expected from combining their individual patterns. These results indicate that interactions involving distinct cis-elements contribute to the proper integration of pair-rule regulatory information. A model fully accounting for these results proposes that metameric slp1 expression is achieved through the Runt-dependent regulation of interactions between these two pair-rule response elements and the slp1 promoter.
Collapse
Affiliation(s)
- Lisa Prazak
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - J. Peter Gergen
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215
| |
Collapse
|
46
|
Contrasting patterns of transposable element insertions in Drosophila heat-shock promoters. PLoS One 2009; 4:e8486. [PMID: 20041194 PMCID: PMC2793543 DOI: 10.1371/journal.pone.0008486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 11/22/2009] [Indexed: 01/22/2023] Open
Abstract
The proximal promoter regions of heat-shock genes harbor a remarkable number of P transposable element (TE) insertions relative to both positive and negative control proximal promoter regions in natural populations of Drosophila melanogaster. We have screened the sequenced genomes of 12 species of Drosophila to test whether this pattern is unique to these populations. In the 12 species' genomes, transposable element insertions are no more abundant in promoter regions of single-copy heat-shock genes than in promoters with similar or dissimilar architecture. Also, insertions appear randomly distributed across the promoter region, whereas insertions clustered near the transcription start site in promoters of single-copy heat-shock genes in D. melanogaster natural populations. Hsp70 promoters exhibit more TE insertions per promoter than all other genesets in the 12 species, similarly to in natural populations of D. melanogaster. Insertions in the Hsp70 promoter region, however, cluster away from the transcription start site in the 12 species, but near it in natural populations of D. melanogaster. These results suggest that D. melanogaster heat-shock promoters are unique in terms of their interaction with transposable elements, and confirm that Hsp70 promoters are distinctive in TE insertions across Drosophila.
Collapse
|
47
|
Nieratschker V, Schubert A, Jauch M, Bock N, Bucher D, Dippacher S, Krohne G, Asan E, Buchner S, Buchner E. Bruchpilot in ribbon-like axonal agglomerates, behavioral defects, and early death in SRPK79D kinase mutants of Drosophila. PLoS Genet 2009; 5:e1000700. [PMID: 19851455 PMCID: PMC2759580 DOI: 10.1371/journal.pgen.1000700] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 09/23/2009] [Indexed: 12/18/2022] Open
Abstract
Defining the molecular structure and function of synapses is a central theme in brain research. In Drosophila the Bruchpilot (BRP) protein is associated with T-shaped ribbons ("T-bars") at presynaptic active zones (AZs). BRP is required for intact AZ structure and normal evoked neurotransmitter release. By screening for mutations that affect the tissue distribution of Bruchpilot, we have identified a P-transposon insertion in gene CG11489 (location 79D) which shows high homology to mammalian genes for SR protein kinases (SRPKs). SRPKs phosphorylate serine-arginine rich splicing factors (SR proteins). Since proteins expressed from CG11489 cDNAs phosphorylate a peptide from a human SR protein in vitro, we name CG11489 the Drosophila Srpk79D gene. We have characterized Srpk79D transcripts and generated a null mutant. Mutation of the Srpk79D gene causes conspicuous accumulations of BRP in larval and adult nerves. At the ultrastructural level, these correspond to extensive axonal agglomerates of electron-dense ribbons surrounded by clear vesicles. Basic synaptic structure and function at larval neuromuscular junctions appears normal, whereas life expectancy and locomotor behavior of adult mutants are significantly impaired. All phenotypes of the mutant can be largely or completely rescued by panneural expression of SRPK79D isoforms. Isoform-specific antibodies recognize panneurally overexpressed GFP-tagged SRPK79D-PC isoform co-localized with BRP at presynaptic active zones while the tagged -PB isoform is found in spots within neuronal perikarya. SRPK79D concentrations in wild type apparently are too low to be revealed by these antisera. We propose that the Drosophila Srpk79D gene characterized here may be expressed at low levels throughout the nervous system to prevent the assembly of BRP containing agglomerates in axons and maintain intact brain function. The discovery of an SR protein kinase required for normal BRP distribution calls for the identification of its substrate and the detailed analysis of SRPK function for the maintenance of nervous system integrity.
Collapse
Affiliation(s)
- Vanessa Nieratschker
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
| | - Alice Schubert
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
| | - Mandy Jauch
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
| | - Nicole Bock
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
| | - Daniel Bucher
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
| | - Sonja Dippacher
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Würzburg, Germany
| | - Georg Krohne
- Department of Electron Microscopy, Julius-Maximilians-University, Würzburg, Germany
| | - Esther Asan
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Würzburg, Germany
| | - Sigrid Buchner
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
| | - Erich Buchner
- Department of Genetics and Neurobiology, Julius-Maximilians-University, Würzburg, Germany
| |
Collapse
|
48
|
Colombelli J, Besser A, Kress H, Reynaud EG, Girard P, Caussinus E, Haselmann U, Small JV, Schwarz US, Stelzer EHK. Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J Cell Sci 2009; 122:1665-79. [DOI: 10.1242/jcs.042986] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanics of the actin cytoskeleton have a central role in the regulation of cells and tissues, but the details of how molecular sensors recognize deformations and forces are elusive. By performing cytoskeleton laser nanosurgery in cultured epithelial cells and fibroblasts, we show that the retraction of stress fibers (SFs) is restricted to the proximity of the cut and that new adhesions form at the retracting end. This suggests that SFs are attached to the substrate. A new computational model for SFs confirms this hypothesis and predicts the distribution and propagation of contractile forces along the SF. We then analyzed the dynamics of zyxin, a focal adhesion protein present in SFs. Fluorescent redistribution after laser nanosurgery and drug treatment shows a high correlation between the experimentally measured localization of zyxin and the computed localization of forces along SFs. Correlative electron microscopy reveals that zyxin is recruited very fast to intermediate substrate anchor points that are highly tensed upon SF release. A similar acute localization response is found if SFs are mechanically perturbed with the cantilever of an atomic force microscope. If actin bundles are cut by nanosurgery in living Drosophila egg chambers, we also find that zyxin redistribution dynamics correlate to force propagation and that zyxin relocates at tensed SF anchor points, demonstrating that these processes also occur in living organisms. In summary, our quantitative analysis shows that force and protein localization are closely correlated in stress fibers, suggesting a very direct force-sensing mechanism along actin bundles.
Collapse
Affiliation(s)
- Julien Colombelli
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Achim Besser
- University of Heidelberg, Bioquant, BQ0013 BIOMS Schwarz, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany
| | - Holger Kress
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
- Department of Mechanical Engineering, Yale University, New Haven, CT 06511, USA
| | - Emmanuel G. Reynaud
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Philippe Girard
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | - Uta Haselmann
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - John V. Small
- Institute of Molecular Biotechnology Austrian Academy of Sciences (IMBA), Dr Bohrgasse 7, A-1030, Vienna, Austria
| | - Ulrich S. Schwarz
- University of Heidelberg, Bioquant, BQ0013 BIOMS Schwarz, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany
| | - Ernst H. K. Stelzer
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| |
Collapse
|
49
|
Yamaguchi S, Katagiri S, Sekimizu K, Natori S, Homma KJ. Involvement of EDTP, an egg-derived tyrosine phosphatase, in the early development of Drosophila melanogaster. J Biochem 2009; 138:721-8. [PMID: 16428301 DOI: 10.1093/jb/mvi176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previously, we purified a novel protein tyrosine phosphatase from eggs of the flesh fly, Sarcophaga peregrina. This protein tyrosine phosphatase, named egg-derived tyrosine phosphatase (EDTP), is expressed during oogenesis and early embryogenesis but is rapidly degraded in middle embryogenesis by lysosomal cathepsin L. Here, we demonstrate the requirement of EDTP in the development of the fruit fly, Drosophila melanogaster. Deletion of the Drosophila EDTP gene using transposase-catalyzed imprecise excision resulted in homozygous lethals during embryogenesis. Additionally, germline clones generated using the FLP-FRT-ovo(D) system showed severe defects in ovarian development during oogenesis. These results indicate that the Drosophila EDTP gene is crucial in oogenesis and embryogenesis.
Collapse
Affiliation(s)
- Shinji Yamaguchi
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033.
| | | | | | | | | |
Collapse
|
50
|
Weiszmann R, Hammonds AS, Celniker SE. Determination of gene expression patterns using high-throughput RNA in situ hybridization to whole-mount Drosophila embryos. Nat Protoc 2009; 4:605-18. [PMID: 19360017 PMCID: PMC2780369 DOI: 10.1038/nprot.2009.55] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4 degrees C for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.
Collapse
Affiliation(s)
- Richard Weiszmann
- Berkeley Drosophila Genome Project, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | |
Collapse
|