1
|
Osterhage D, MacIntosh H, Althaus F, Ross A. Multiple observations of Bigfin Squid (Magnapinna sp.) in the Great Australian Bight reveal distribution patterns, morphological characteristics, and rarely seen behaviour. PLoS One 2020; 15:e0241066. [PMID: 33175888 PMCID: PMC7657483 DOI: 10.1371/journal.pone.0241066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022] Open
Abstract
One of the most remarkable groups of deep-sea squids is the Magnapinnidae, known for their large fins and strikingly long arm and tentacle filaments. Little is known of their biology and ecology as most specimens are damaged and juvenile, and in-situ sightings are sparse, numbering around a dozen globally. As part of a recent large-scale research programme in the Great Australian Bight, Remotely Operated Vehicles and a towed camera system were deployed in depths of 946–3258 m resulting in five Magnapinna sp. sightings. These represent the first records of Bigfin Squid in Australian waters, and more than double the known records from the southern hemisphere, bolstering a hypothesis of cosmopolitan distribution. As most previous observations have been of single Magnapinna squid these multiple sightings have been quite revealing, being found in close spatial and temporal proximity of each other. Morphological differences indicate each sighting is of an individual rather than multiple sightings of the same squid. In terms of morphology, previous in-situ measurements have been roughly based on nearby objects of known size, but this study used paired lasers visible on the body of a Magnapinna squid, providing a more accurate scaling of size. Squid of a juvenile size were also recorded and are confirmed to possess the long distal filaments which have thus far been mostly missing from specimens due to damage. We have described fine-scale habitat, in-situ colouration, and behavioural components including a horizontal example of the ‘elbow’ pose, and coiling of distal filaments: a behaviour not previously seen in squid. These sightings add to our knowledge of this elusive and intriguing genus, and reinforce the value of imagery as a tool in deep-sea squid research.
Collapse
Affiliation(s)
- Deborah Osterhage
- CSIRO Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, Australia
- * E-mail:
| | | | - Franziska Althaus
- CSIRO Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, Australia
| | - Andrew Ross
- CSIRO Energy, Commonwealth Scientific and Industrial Research Organisation, Australian Resources Research Centre, Kensington, Western Australia, Australia
| |
Collapse
|
2
|
Bartol IK, Krueger PS, York CA, Thompson JT. New approaches for assessing squid fin motions: coupling proper orthogonal decomposition with volumetric particle tracking velocimetry. J Exp Biol 2018; 221:jeb.176750. [PMID: 29789404 DOI: 10.1242/jeb.176750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/14/2018] [Indexed: 11/20/2022]
Abstract
Squid, which swim using a coupled fin/jet system powered by muscular hydrostats, pose unique challenges for the study of locomotion. The high flexibility of the fins and complex flow fields generated by distinct propulsion systems require innovative techniques for locomotive assessment. For this study, we used proper orthogonal decomposition (POD) to decouple components of the fin motions and defocusing digital particle tracking velocimetry (DDPTV) to quantify the resultant 3D flow fields. Kinematic footage and DDPTV data were collected from brief squid, Lolliguncula brevis [3.1-6.5 cm dorsal mantle length (DML)], swimming freely in a water tunnel at speeds of 0.39-7.20 DML s-1 Both flap and wave components were present in all fin motions, but the relative importance of the wave components was higher for arms-first swimming than for tail-first swimming and for slower versus higher speed swimming. When prominent wave components were present, more complex interconnected vortex ring wakes were observed, while fin movements dominated by flapping resulted in more spatially separated vortex ring patterns. Although the jet often produced the majority of the thrust for steady rectilinear swimming, our results demonstrated that the fins can contribute more thrust than the jet at times, consistently produce comparable levels of lift to the jet during arms-first swimming, and can boost overall propulsive efficiency. By producing significant drag signatures, the fins can also aid in stabilization and maneuvering. Clearly, fins play multiple roles in squid locomotion, and when coupled with the jet, allow squid to perform a range of swimming behaviors integral to their ecological success.
Collapse
Affiliation(s)
- Ian K Bartol
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Paul S Krueger
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA
| | - Carly A York
- Department of Biology, Lenoir-Rhyne University, Hickory, NC 28601, USA
| | - Joseph T Thompson
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17603, USA
| |
Collapse
|
3
|
Guerrero-Kommritz J, Cantera J, Puentes V, Leon J. First observations of the bigfin squid Magnapinna sp. in the Colombian Southern Caribbean. Biodivers Data J 2018:e24170. [PMID: 29765263 PMCID: PMC5948231 DOI: 10.3897/bdj.6.e24170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/25/2018] [Indexed: 12/04/2022] Open
Abstract
Herein, first observations are reported of Magnapinna squids in the Colombian Southern Caribbean. Two specimens were observed by Remote Operated Vehicles (ROV) during exploratory drilling surveys for hydrocarbons at 1,883 and 2,294 m depth. These are the first observations of specimens of Magnapinna in the Southern Caribbean. Resumen La primera observación del calamar Magnapinna sp. en el caribe sur colombiano. Dos especímenes de calamares de aleta grande fueron observados con submarino de operación remota (ROV) durante un proyecto de perforación exploratoria de hidrocaburos a profundidades de 1,883 y de 2,294 m, respectivamente. Estas son las primeras observaciones de especímenes de Magnapinna en el Caribe Sur.
Collapse
|
4
|
Villanueva R, Perricone V, Fiorito G. Cephalopods as Predators: A Short Journey among Behavioral Flexibilities, Adaptions, and Feeding Habits. Front Physiol 2017; 8:598. [PMID: 28861006 PMCID: PMC5563153 DOI: 10.3389/fphys.2017.00598] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
The diversity of cephalopod species and the differences in morphology and the habitats in which they live, illustrates the ability of this class of molluscs to adapt to all marine environments, demonstrating a wide spectrum of patterns to search, detect, select, capture, handle, and kill prey. Photo-, mechano-, and chemoreceptors provide tools for the acquisition of information about their potential preys. The use of vision to detect prey and high attack speed seem to be a predominant pattern in cephalopod species distributed in the photic zone, whereas in the deep-sea, the development of mechanoreceptor structures and the presence of long and filamentous arms are more abundant. Ambushing, luring, stalking and pursuit, speculative hunting and hunting in disguise, among others are known modes of hunting in cephalopods. Cannibalism and scavenger behavior is also known for some species and the development of current culture techniques offer evidence of their ability to feed on inert and artificial foods. Feeding requirements and prey choice change throughout development and in some species, strong ontogenetic changes in body form seem associated with changes in their diet and feeding strategies, although this is poorly understood in planktonic and larval stages. Feeding behavior is altered during senescence and particularly in brooding octopus females. Cephalopods are able to feed from a variety of food sources, from detritus to birds. Their particular requirements of lipids and copper may help to explain why marine crustaceans, rich in these components, are common prey in all cephalopod diets. The expected variation in climate change and ocean acidification and their effects on chemoreception and prey detection capacities in cephalopods are unknown and needs future research.
Collapse
Affiliation(s)
- Roger Villanueva
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC)Barcelona, Spain
| | | | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNapoli, Italy
| |
Collapse
|
5
|
Hoving HJT, Perez JAA, Bolstad KSR, Braid HE, Evans AB, Fuchs D, Judkins H, Kelly JT, Marian JEAR, Nakajima R, Piatkowski U, Reid A, Vecchione M, Xavier JCC. The study of deep-sea cephalopods. ADVANCES IN MARINE BIOLOGY 2014; 67:235-359. [PMID: 24880796 DOI: 10.1016/b978-0-12-800287-2.00003-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
"Deep-sea" cephalopods are here defined as cephalopods that spend a significant part of their life cycles outside the euphotic zone. In this chapter, the state of knowledge in several aspects of deep-sea cephalopod research are summarized, including information sources for these animals, diversity and general biogeography and life cycles, including reproduction. Recommendations are made for addressing some of the remaining knowledge deficiencies using a variety of traditional and more recently developed methods. The types of oceanic gear that are suitable for collecting cephalopod specimens and images are reviewed. Many groups of deep-sea cephalopods require taxonomic reviews, ideally based on both morphological and molecular characters. Museum collections play a vital role in these revisions, and novel (molecular) techniques may facilitate new use of old museum specimens. Fundamental life-cycle parameters remain unknown for many species; techniques developed for neritic species that could potentially be applied to deep-sea cephalopods are discussed. Reproductive tactics and strategies in deep-sea cephalopods are very diverse and call for comparative evolutionary and experimental studies, but even in the twenty-first century, mature individuals are still unknown for many species. New insights into diet and trophic position have begun to reveal a more diverse range of feeding strategies than the typically voracious predatory lifestyle known for many cephalopods. Regular standardized deep-sea cephalopod surveys are necessary to provide insight into temporal changes in oceanic cephalopod populations and to forecast, verify and monitor the impacts of global marine changes and human impacts on these populations.
Collapse
Affiliation(s)
| | - Jose Angel A Perez
- Centro de Ciências Tecnológicas da Terra e do Mar Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Kathrin S R Bolstad
- Institute for Applied Ecology New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Heather E Braid
- Institute for Applied Ecology New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Aaron B Evans
- Institute for Applied Ecology New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Dirk Fuchs
- Freie Universität Berlin, Institute of Geological Sciences, Branch Paleontology, Berlin, Germany
| | - Heather Judkins
- Department of Biological Sciences, University of South Florida St. Petersburg, St. Petersburg, Florida, USA
| | - Jesse T Kelly
- Institute for Applied Ecology New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - José E A R Marian
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | - Ryuta Nakajima
- Department of Art and Design, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Uwe Piatkowski
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Amanda Reid
- Australian Museum Research Institute, Sydney, New South Wales, Australia
| | - Michael Vecchione
- NMFS National Systematics Laboratory, National Museum of Natural History, Washington, DC, USA
| | - José C C Xavier
- Institute of Marine Research, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; British Antarctic Survey, NERC, Cambridge, United Kingdom
| |
Collapse
|
6
|
Robin JP, Roberts M, Zeidberg L, Bloor I, Rodriguez A, Briceño F, Downey N, Mascaró M, Navarro M, Guerra A, Hofmeister J, Barcellos DD, Lourenço SAP, Roper CFE, Moltschaniwskyj NA, Green CP, Mather J. Transitions during cephalopod life history: the role of habitat, environment, functional morphology and behaviour. ADVANCES IN MARINE BIOLOGY 2014; 67:361-437. [PMID: 24880797 DOI: 10.1016/b978-0-12-800287-2.00004-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cephalopod life cycles generally share a set of stages that take place in different habitats and are adapted to specific, though variable, environmental conditions. Throughout the lifespan, individuals undertake a series of brief transitions from one stage to the next. Four transitions were identified: fertilisation of eggs to their release from the female (1), from eggs to paralarvae (2), from paralarvae to subadults (3) and from subadults to adults (4). An analysis of each transition identified that the changes can be radical (i.e. involving a range of morphological, physiological and behavioural phenomena and shifts in habitats) and critical (i.e. depending on environmental conditions essential for cohort survival). This analysis underlines that transitions from eggs to paralarvae (2) and from paralarvae to subadults (3) present major risk of mortality, while changes in the other transitions can have evolutionary significance. This synthesis suggests that more accurate evaluation of the sensitivity of cephalopod populations to environmental variation could be achieved by taking into account the ontogeny of the organisms. The comparison of most described species advocates for studies linking development and ecology in this particular group.
Collapse
Affiliation(s)
- Jean-Paul Robin
- Université de Caen Basse-Normandie, UMR BOREA: Biologie des ORganismes et des Ecosystèmes Aquatiques, Esplanade de la paix, CS 14032, 14032 Caen, France; UMR BOREA, UMR CNRS7208, IRD207, UPMC, MNHN, UCBN, 14032 Caen, France.
| | - Michael Roberts
- Rhodes University, Grahamstown, South Africa; Oceans & Coasts Research, Victoria & Alfred Waterfront, Cape Town, South Africa
| | - Lou Zeidberg
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Isobel Bloor
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, United Kingdom
| | - Almendra Rodriguez
- El Colegio de la Frontera Sur, Colonia Casasano, Cuautla, Morelos, Mexico
| | - Felipe Briceño
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania, Australia
| | - Nicola Downey
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa; Bayworld Centre for Research & Education, Constantia, Cape Town, South Africa
| | - Maite Mascaró
- Unidad Multidisciplinaria de Docencia e Investigación, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Mike Navarro
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA; Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Angel Guerra
- Instituto de Investigaciones Marinas (CSIC), Vigo, Spain
| | - Jennifer Hofmeister
- Caldwell Laboratory, Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Diogo D Barcellos
- Laboratório de Ecossistemas Pesqueiros (LabPesq), Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, Butantã, São Paulo, SP, Brazil
| | | | - Clyde F E Roper
- Smithsonian Institution, National Museum of Natural History, Washington, District of Columbia, USA
| | - Natalie A Moltschaniwskyj
- School of Environmental & Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia
| | - Corey P Green
- Department of Environment and Primary Industries, Fisheries Victoria, Queenscliff, Victoria, Australia
| | - Jennifer Mather
- Psychology Department, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
7
|
Kawashima Y, Nishihara H, Akasaki T, Nikaido M, Tsuchiya K, Segawa S, Okada N. The complete mitochondrial genomes of deep-sea squid (Bathyteuthis abyssicola), bob-tail squid (Semirossia patagonica) and four giant cuttlefish (Sepia apama, S. latimanus, S. lycidas and S. pharaonis), and their application to the phylogenetic analysis of Decapodiformes. Mol Phylogenet Evol 2013; 69:980-93. [PMID: 23811434 DOI: 10.1016/j.ympev.2013.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/01/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022]
Abstract
We determined the complete mitochondrial (mt) genomes of the deep-sea squid (Bathyteuthis abyssicola; supperfamily Bathyteuthoidea), the bob-tail squid (Semirossia patagonica; order Sepiolida) and four giant cuttlefish (Sepia apama, S. latimanus, S. lycidas and S. pharaonis; order Sepiida). The unique structures of the mt genomes of Bathyteuthis and Semirossia provide new information about the evolution of decapodiform mt genomes. We show that the mt genome of B. abyssicola, like those of other oegopsids studied so far, has two long duplicated regions that include seven genes (COX1-3, ATP6 and ATP8, tRNA(Asn), and either ND2 or ND3) and that one of the duplicated COX3 genes has lost its function. The mt genome of S. patagonica is unlike any other decapodiforms and, like Nautilus, its ATP6 and ATP8 genes are not adjacent to each other. The four giant cuttlefish have identical mt gene order to other cuttlefish determined to date. Molecular phylogenetic analyses using maximum likelihood and Bayesian methods suggest that traditional order Sepioidea (Sepiolida+Sepiida) is paraphyletic and Sepia (cuttlefish) has the sister-relationship with all other decapodiforms. Taking both the phylogenetic analyses and the mt gene order analyses into account, it is likely that the octopus-type mt genome is an ancestral state and that it had maintained from at least the Cephalopoda ancestor to the common ancestor of Oegopsida, Myopsida and Sepiolida.
Collapse
Affiliation(s)
- Yuumi Kawashima
- Central Customs Laboratory, 6-3-5, Kashiwanoha, Kashiwa-shi, Chiba 277-0082, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Hoving HJT, Vecchione M. Mating behavior of a deep-sea squid revealed by in situ videography and the study of archived specimens. THE BIOLOGICAL BULLETIN 2012; 223:263-267. [PMID: 23264472 DOI: 10.1086/bblv223n3p263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The mating behavior of deep-sea squids is shrouded in mystery. The squids for which mating has been observed use a hectocotylus, a modified arm, for the transfer of sperm packets called spermatophores. However, many deep-sea squid species lack a hectocotylus. We present the first in situ observations of mating behavior in a deep-sea squid that has no hectocotylus but instead uses an elongated terminal organ for the transfer of spermatangia, which are released from the spermatophores and burrow deeply into the female tissue. With remotely operated vehicles (ROVs), we observed two mating pairs of the deep-sea squid Pholidoteuthis adami in the Gulf of Mexico. The male adopted a peculiar position during mating, with its ventral side up and its posterior mantle above the female’s head. While the male held the female in what looked like a firm grip, we observed the long terminal organ extending through the funnel of the male, contacting the female dorsal mantle. Examinations of museum specimens show that spermatangia burrow from the outer dorsal mantle into the inner dorsal mantle. This combination of serendipitous in situ observations and archived specimens can be a powerful tool for understanding the behavior of deep-sea animals.
Collapse
Affiliation(s)
- H J T Hoving
- Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA.
| | | |
Collapse
|
9
|
Osborn KJ, Madin LP, Rouse GW. The remarkable squidworm is an example of discoveries that await in deep-pelagic habitats. Biol Lett 2011; 7:449-53. [PMID: 21106571 DOI: 10.1098/rsbl.2010.0923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An intriguing new annelid, Teuthidodrilus samae (Annelida, Cirratuliformia) gen. and sp. nov., was observed and collected during deep-water column exploration of the western Celebes Sea. The Celebes Sea is a deep pocket basin, effectively isolated from surrounding deep water, and is part of the Coral Triangle, a focal area for conservation because of its high diversity and unique geological history. Collected specimens reached 94 mm in length and possessed 10 anterior appendages that were as long or longer than the body. Two characters distinguish T. samae from other polychaetes: notochaetae forming broad, concavo-convex paddles and six pairs of free-standing, oppositely branched nuchal organs. Phylogenetic analysis of five genes and a 29-character morphological matrix showed that T. samae is an acrocirrid (primarily benthic polychaetes) belonging to the morphologically diverse swimming clade. Pelagic animals within primarily benthic clades are of particular interest in evolutionary biology, because their adaptations to life in the water column inform us of the evolutionary possibilities and constraints within the clade and indirectly of the selective pressures at work in this unfamiliar habitat. This new genus illustrates how much we have to learn about even the large, abundant inhabitants of deep-pelagic communities.
Collapse
Affiliation(s)
- Karen J Osborn
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA.
| | | | | |
Collapse
|
10
|
Stewart WJ, Bartol IK, Krueger PS. Hydrodynamic fin function of brief squid, Lolliguncula brevis. J Exp Biol 2010; 213:2009-24. [DOI: 10.1242/jeb.039057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SUMMARY
Although the pulsed jet is often considered the foundation of a squid's locomotive system, the lateral fins also probably play an important role in swimming, potentially providing thrust, lift and dynamic stability as needed. Fin morphology and movement vary greatly among squid species, but the locomotive role of the fins is not well understood. To begin to elucidate the locomotive role of the fins in squids, fin hydrodynamics were studied in the brief squid Lolliguncula brevis, a species that exhibits a wide range of fin movements depending on swimming speed. Individual squid were trained to swim in both the arms-first and tail-first orientations against currents in a water tunnel seeded with light-reflective particles. Particle-laden water around the fins was illuminated with lasers and videotaped so that flow dynamics around the fins could be analyzed using digital particle image velocimetry (DPIV). Time-averaged forces generated by the fin were quantified from vorticity fields of the fin wake. During the low swimming speeds considered in this study [<2.5 dorsal mantle lengths (DML) per second], L. brevis exhibited four unique fin wake patterns, each with distinctive vortical structures: (1) fin mode I, in which one vortex is shed with each downstroke, generally occurring at low speeds; (2) fin mode II, an undulatory mode in which a continuous linked chain of vortices is produced; (3) fin mode III, in which one vortex is shed with each downstroke and upstroke, and; (4) fin mode IV, in which a discontinuous chain of linked double vortex structures is produced. All modes were detected during tail-first swimming but only fin modes II and III were observed during arms-first swimming. The fins produced horizontal and vertical forces of varying degrees depending on stroke phase, swimming speed, and swimming orientation. During tail-first swimming, the fins functioned primarily as stabilizers at low speeds before shifting to propulsors as speed increased, all while generating net lift. During arms-first swimming, the fins primarily provided lift with thrust production playing a reduced role. These results demonstrate the lateral fins are an integral component of the complex locomotive system of L. brevis, producing lift and thrust forces through different locomotive modes.
Collapse
|
11
|
Bartol IK, Krueger PS, Stewart WJ, Thompson JT. Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet `modes' and their implications for propulsive efficiency. J Exp Biol 2009; 212:1889-903. [DOI: 10.1242/jeb.027771] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The dynamics of pulsed jetting in squids throughout ontogeny is not well understood, especially with regard to the development of vortex rings, which are common features of mechanically generated jet pulses (also known as starting jets). Studies of mechanically generated starting jets have revealed a limiting principle for vortex ring formation characterized in terms of a`formation number' (F), which delineates the transition between the formation of isolated vortex rings and vortex rings that have `pinched off'from the generating jet. Near F, there exists an optimum in pulse-averaged thrust with (potentially) low energetic cost, raising the question: do squids produce vortex rings and if so, do they fall near F, where propulsive benefits presumably occur? To better understand vortex ring dynamics and propulsive jet efficiency throughout ontogeny, brief squid Lolliguncula brevis ranging from 3.3 to 9.1 cm dorsal mantle length (DML) and swimming at speeds of 2.43–22.2 cms–1 (0.54–3.50 DMLs–1) were studied using digital particle image velocimetry (DPIV). A range of jet structures were observed but most structures could be classified as variations of two principal jet modes: (1) jet mode I, where the ejected fluid rolled up into an isolated vortex ring; and (2) jet mode II, where the ejected fluid developed into a leading vortex ring that separated or `pinched off' from a long trailing jet. The ratio of jet length [based on the vorticity extent(Lω)] to jet diameter [based on peak vorticity locations (Dω)] was <3.0 for jet mode I and>3.0 for jet mode II, placing the transition between modes in rough agreement with F determined in mechanical jet studies. Jet mode II produced greater time-averaged thrust and lift forces and was the jet mode most heavily used whereas jet mode I had higher propulsive efficiency, lower slip, shorter jet periods and a higher frequency of fin activity associated with it. No relationship between Lω/Dω and speed was detected and there was no apparent speed preference for the jet modes within the speed range considered in this study; however, propulsive efficiency did increase with speed partly because of a reduction in slip and jet angle with speed. Trends in higher slip, lower propulsive efficiency and higher relative lift production were observed for squid <5.0 cm DML compared with squid ≥5.0 cm DML. While these trends were observed when jet mode I and II were equally represented among the size classes, there was also greater relative dependence on jet mode I than jet mode II for squid <5.0 cm DML when all of the available jet sequences were examined. Collectively, these results indicate that ∼5.0 cm DML is an important ontogenetic transition for the hydrodynamics of pulsed jetting in squids. The significance of our findings is that from early juvenile through to adult life stages, L. brevis is capable of producing a diversity of vortex ring-based jet structures, ranging from efficient short pulses to high-force longer duration pulses. Given that some of these structures had Lω/Dωs near F,and F represented the delineation between the two primary jet modes observed, fluid dynamics probably played an integral role in the evolution of squid locomotive systems. When this flexibility in jet dynamics is coupled with the highly versatile fins, which are capable of producing multiple hydrodynamic modes as well, it is clear that squid have a locomotive repertoire far more complex than originally thought.
Collapse
Affiliation(s)
- Ian K. Bartol
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529,USA
| | - Paul S. Krueger
- Department of Mechanical Engineering, Southern Methodist University, Dallas,TX 75275, USA
| | - William J. Stewart
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529,USA
| | - Joseph T. Thompson
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604,USA
| |
Collapse
|
12
|
Glaubrecht M, Salcedo-Vargas MA. The Humboldt squid Dosidicus gigas (Orbigny, 1835): History of the Berlin specimen, with a reappraisal of other (bathy-)pelagic “gigantic” cephalopods (Mollusca, Ommastrephidae, Architeuthidae). ZOOSYST EVOL 2008. [DOI: 10.1002/mmnz.20040800105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
13
|
Bartol IK, Krueger PS, Thompson JT, Stewart WJ. Swimming dynamics and propulsive efficiency of squids throughout ontogeny. Integr Comp Biol 2008; 48:720-33. [DOI: 10.1093/icb/icn043] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Vecchione M, Young RE. The squid family Magnapinnidae (Mollusca: Cephalopoda) in the Atlantic Ocean, with a description of a new species. P BIOL SOC WASH 2006. [DOI: 10.2988/0006-324x(2006)119[365:tsfmmc]2.0.co;2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
15
|
The Humboldt squidDosidicus gigas (Orbigny, 1835): History of the Berlin specimen, with a reappraisal of other (bathy-)pelagic “gigantic” cephalopods (Mollusca, Ommastrephidae, Architeuthidae). ZOOSYST EVOL 2004. [DOI: 10.1002/mmnz.4850800105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
16
|
|
17
|
Whitfield J. New squid on the block. Nature 2001. [DOI: 10.1038/news011227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|