1
|
Basheer A, Jamal SB, Alzahrani B, Faheem M. Development of a tetravalent subunit vaccine against dengue virus through a vaccinomics approach. Front Immunol 2023; 14:1273838. [PMID: 38045699 PMCID: PMC10690774 DOI: 10.3389/fimmu.2023.1273838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
Dengue virus infection (DVI) is a mosquito-borne disease that can lead to serious morbidity and mortality. Dengue fever (DF) is a major public health concern that affects approximately 3.9 billion people each year globally. However, there is no vaccine or drug available to deal with DVI. Dengue virus consists of four distinct serotypes (DENV1-4), each raising a different immunological response. In the present study, we designed a tetravalent subunit multi-epitope vaccine, targeting proteins including the structural protein envelope domain III (EDIII), precursor membrane proteins (prM), and a non-structural protein (NS1) from each serotype by employing an immunoinformatic approach. Only conserved sequences obtained through a multiple sequence alignment were used for epitope mapping to ensure efficacy against all serotypes. The epitopes were shortlisted based on an IC50 value <50, antigenicity, allergenicity, and a toxicity analysis. In the final vaccine construct, overall, 11 B-cell epitopes, 10 HTL epitopes, and 10 CTL epitopes from EDIII, prM, and NS1 proteins targeting all serotypes were selected and joined via KK, AAY, and GGGS linkers, respectively. We incorporated a 45-amino-acid-long B-defensins adjuvant in the final vaccine construct for a better immunogenic response. The vaccine construct has an antigenic score of 0.79 via VaxiJen and is non-toxic and non-allergenic. Our refined vaccine structure has a Ramachandran score of 96.4%. The vaccine has shown stable interaction with TLR3, which has been validated by 50 ns of molecular dynamics (MD) simulation. Our findings propose that a designed multi-epitope vaccine has substantial potential to elicit a strong immune response against all dengue serotypes without causing any adverse effects. Furthermore, the proposed vaccine can be experimentally validated as a probable vaccine, suggesting it may serve as an effective preventative measure against dengue virus infection.
Collapse
Affiliation(s)
- Amina Basheer
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
2
|
Klockgether J, Pust MM, Davenport CF, Bunk B, Spröer C, Overmann J, Tümmler B. Structural genome variants of Pseudomonas aeruginosa clone C and PA14 strains. Front Microbiol 2023; 14:1095928. [PMID: 36992927 PMCID: PMC10040652 DOI: 10.3389/fmicb.2023.1095928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Plasticity of Pseudomonas aeruginosa chromosomes is mainly driven by an extended accessory genome that is shaped by insertion and deletion events. Further modification of the genome composition can be induced by chromosomal inversion events which lead to relocation of genes in the affected genomic DNA segments, modify the otherwise highly conserved core genome synteny and could even alter the location of the replication terminus. Although the genome of the first sequenced strain, PAO1, displayed such a large genomic inversion, knowledge on such recombination events in the P. aeruginosa population is limited. Several large inversions had been discovered in the late 1990s in cystic fibrosis isolates of the major clonal lineage C by physical genome mapping, and subsequent work on these examples led to the characterization of the DNA at the recombination breakpoints and a presumed recombination mechanism. Since then, the topic was barely addressed in spite of the compilation of thousands of P. aeruginosa genome sequences that are deposited in databases. Due to the use of second-generation sequencing, genome contig assembly had usually followed synteny blueprints provided by the existing reference genome sequences. Inversion detection was not feasible by these approaches, as the respective read lengths did not allow reliable resolution of sequence repeats that are typically found at the borders of inverted segments. In this study, we applied PacBio and MinION long-read sequencing to isolates of the mentioned clone C collection. Confirmation of inversions predicted from the physical mapping data demonstrated that unbiased sequence assembly of such read datasets allows the detection of genomic inversions and the resolution of the recombination breakpoint regions. Additional long-read sequencing of representatives of the other major clonal lineage, PA14, revealed large inversions in several isolates, from cystic fibrosis origin as well as from other sources. These findings indicated that inversion events are not restricted to strains from chronic infection background, but could be widespread in the P. aeruginosa population and contribute to genome plasticity. Moreover, the monitored examples emphasized the role of small mobile DNA units, such as IS elements or transposons, and accessory DNA elements in the inversion-related recombination processes.
Collapse
Affiliation(s)
- Jens Klockgether
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany
- *Correspondence: Jens Klockgether,
| | - Marie-Madlen Pust
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany
| | - Colin F. Davenport
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hanover, Germany
| |
Collapse
|
3
|
Arwansyah A, Arif AR, Kade A, Taiyeb M, Ramli I, Santoso T, Ningsih P, Natsir H, Tahril T, Uday Kumar K. Molecular modelling on multiepitope-based vaccine against SARS-CoV-2 using immunoinformatics, molecular docking, and molecular dynamics simulation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:649-675. [PMID: 36083166 DOI: 10.1080/1062936x.2022.2117846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The pandemic of COVID-19 caused by SARS-CoV-2 has made a worldwide health emergency. Despite the fact that current vaccines are readily available, several SARSCoV-2 variants affecting the existing vaccine are to be less effective due to the mutations in the structural proteins. Furthermore, the appearance of the new variants cannot be easily predicted in the future. Therefore, the attempts to construct new vaccines or to modify the current vaccines are still pivotal works for preventing the spread of the virus. In the present investigation, the computational analysis through immunoinformatics, molecular docking, and molecular dynamics (MD) simulation is employed to construct an effective vaccine against SARS-CoV2. The structural proteins of SARS-CoV2 are utilized to create a multiepitope-based vaccine (MEV). According to our findings presented by systematic procedures in the current investigation, the MEV construct may be able to trigger a strong immunological response against the virus. Therefore, the designed MEV could be a potential vaccine candidate against SARS-CoV-2, and also it is expected to be effective for other variants.
Collapse
Affiliation(s)
- A Arwansyah
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - A R Arif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - A Kade
- Department of Physics Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - M Taiyeb
- Department of Biology, Faculty of Mathematics and Natural Sciences, Makassar State University, Makassar, Indonesia
| | - I Ramli
- Department of Physics, Faculty of Science, Universitas Cokroaminoto Palopo, Palopo, Indonesia
| | - T Santoso
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - P Ningsih
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - H Natsir
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - T Tahril
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - K Uday Kumar
- Department of Radiology, Toxicology and Population Protection, Faculty of Health and Social Studies, University of South Bohemia Cesk´e Budˇejovice, Czech Republic
| |
Collapse
|
4
|
Naqvi STQ, Yasmeen M, Ismail M, Muhammad SA, Nawazish-i-Husain S, Ali A, Munir F, Zhang Q. Designing of Potential Polyvalent Vaccine Model for Respiratory Syncytial Virus by System Level Immunoinformatics Approaches. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9940010. [PMID: 34136576 PMCID: PMC8177976 DOI: 10.1155/2021/9940010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/18/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is a public health epidemic, leading to around 3 million hospitalization and about 66,000 deaths each year. It is a life-threatening condition exclusive to children with no effective treatment. METHODS In this study, we used system-level and vaccinomics approaches to design a polyvalent vaccine for RSV, which could stimulate the immune components of the host to manage this infection. Our framework involves data accession, antigenicity and subcellular localization analysis, T cell epitope prediction, proteasomal and conservancy evaluation, host-pathogen-protein interactions, pathway studies, and in silico binding affinity analysis. RESULTS We found glycoprotein (G), fusion protein (F), and small hydrophobic protein (SH) of RSV as potential vaccine candidates. Of these proteins (G, F, and SH), we found 9 epitopes for multiple alleles of MHC classes I and II bear significant binding affinity. These potential epitopes were linked to form a polyvalent construct using AAY, GPGPG linkers, and cholera toxin B adjuvant at N-terminal with a 23.9 kDa molecular weight of 224 amino acid residues. The final construct was a stable, immunogenic, and nonallergenic protein containing cleavage sites, TAP transport efficiency, posttranslation shifts, and CTL epitopes. The molecular docking indicated the optimum binding affinity of RSV polyvalent construct with MHC molecules (-12.49 and -10.48 kcal/mol for MHC classes I and II, respectively). This interaction showed that a polyvalent construct could manage and control this disease. CONCLUSION Our vaccinomics and system-level investigation could be appropriate to trigger the host immune system to prevent RSV infection.
Collapse
Affiliation(s)
| | - Mamoona Yasmeen
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Pakistan
| | - Mehreen Ismail
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Pakistan
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Pakistan
| | | | - Amjad Ali
- ASAB, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, China
- Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - QiYu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, China
| |
Collapse
|
5
|
Tahir ul Qamar M, Rehman A, Tusleem K, Ashfaq UA, Qasim M, Zhu X, Fatima I, Shahid F, Chen LL. Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: Immunoinformatics and in silico approaches. PLoS One 2020; 15:e0244176. [PMID: 33351863 PMCID: PMC7755200 DOI: 10.1371/journal.pone.0244176] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/04/2020] [Indexed: 01/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory coronavirus 2 (SARS-COV-2) is a significant threat to global health security. Till date, no completely effective drug or vaccine is available to cure COVID-19. Therefore, an effective vaccine against SARS-COV-2 is crucially needed. This study was conducted to design an effective multiepitope based vaccine (MEV) against SARS-COV-2. Seven highly antigenic proteins of SARS-COV-2 were selected as targets and different epitopes (B-cell and T-cell) were predicted. Highly antigenic and overlapping epitopes were shortlisted. Selected epitopes indicated significant interactions with the HLA-binding alleles and 99.93% coverage of the world's population. Hence, 505 amino acids long MEV was designed by connecting 16 MHC class I and eleven MHC class II epitopes with suitable linkers and adjuvant. MEV construct was non-allergenic, antigenic, stable and flexible. Furthermore, molecular docking followed by molecular dynamics (MD) simulation analyses, demonstrated a stable and strong binding affinity of MEV with human pathogenic toll-like receptors (TLR), TLR3 and TLR8. Finally, MEV codons were optimized for its in silico cloning into Escherichia coli K-12 system, to ensure its increased expression. Designed MEV in present study could be a potential candidate for further vaccine production process against COVID-19. However, to ensure its safety and immunogenic profile, the proposed MEV needs to be experimentally validated.
Collapse
Affiliation(s)
| | - Abdur Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Xitong Zhu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Israr Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ling-Ling Chen
- College of Life Science and Technology, Guangxi University, Nanning, P. R. China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
6
|
Tahir Ul Qamar M, Shahid F, Aslam S, Ashfaq UA, Aslam S, Fatima I, Fareed MM, Zohaib A, Chen LL. Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2. Infect Dis Poverty 2020; 9:132. [PMID: 32938504 PMCID: PMC7492789 DOI: 10.1186/s40249-020-00752-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) linked with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause severe illness and life-threatening pneumonia in humans. The current COVID-19 pandemic demands an effective vaccine to acquire protection against the infection. Therefore, the present study was aimed to design a multiepitope-based subunit vaccine (MESV) against COVID-19. METHODS Structural proteins (Surface glycoprotein, Envelope protein, and Membrane glycoprotein) of SARS-CoV-2 are responsible for its prime functions. Sequences of proteins were downloaded from GenBank and several immunoinformatics coupled with computational approaches were employed to forecast B- and T- cell epitopes from the SARS-CoV-2 highly antigenic structural proteins to design an effective MESV. RESULTS Predicted epitopes suggested high antigenicity, conserveness, substantial interactions with the human leukocyte antigen (HLA) binding alleles, and collective global population coverage of 88.40%. Taken together, 276 amino acids long MESV was designed by connecting 3 cytotoxic T lymphocytes (CTL), 6 helper T lymphocyte (HTL) and 4 B-cell epitopes with suitable adjuvant and linkers. The MESV construct was non-allergenic, stable, and highly antigenic. Molecular docking showed a stable and high binding affinity of MESV with human pathogenic toll-like receptors-3 (TLR3). Furthermore, in silico immune simulation revealed significant immunogenic response of MESV. Finally, MEV codons were optimized for its in silico cloning into the Escherichia coli K-12 system, to ensure its increased expression. CONCLUSION The MESV developed in this study is capable of generating immune response against COVID-19. Therefore, if designed MESV further investigated experimentally, it would be an effective vaccine candidate against SARS-CoV-2 to control and prevent COVID-19.
Collapse
MESH Headings
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Humans
- Immunogenicity, Vaccine/immunology
- Molecular Docking Simulation
- Pandemics/prevention & control
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- SARS-CoV-2
- Sequence Analysis, Protein
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Toll-Like Receptor 3/chemistry
- Toll-Like Receptor 3/genetics
- Toll-Like Receptor 3/immunology
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccinology/methods
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | | | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan.
| | - Sidra Aslam
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Israr Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Mazhar Fareed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Ali Zohaib
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ling-Ling Chen
- College of Life Science and Technology, Guangxi University, Nanning, P. R. China.
| |
Collapse
|
7
|
Tahir ul Qamar M, Shokat Z, Muneer I, Ashfaq UA, Javed H, Anwar F, Bari A, Zahid B, Saari N. Multiepitope-Based Subunit Vaccine Design and Evaluation against Respiratory Syncytial Virus Using Reverse Vaccinology Approach. Vaccines (Basel) 2020; 8:E288. [PMID: 32521680 PMCID: PMC7350008 DOI: 10.3390/vaccines8020288] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is primarily associated with respiratory disorders globally. Despite the availability of information, there is still no competitive vaccine available for RSV. Therefore, the present study has been designed to develop a multiepitope-based subunit vaccine (MEV) using a reverse vaccinology approach to curb RSV infections. Briefly, two highly antigenic and conserved proteins of RSV (glycoprotein and fusion protein) were selected and potential epitopes of different categories (B-cell and T-cell) were identified from them. Eminently antigenic and overlapping epitopes, which demonstrated strong associations with their respective human leukocyte antigen (HLA) alleles and depicted collective ~70% coverage of the world's populace, were shortlisted. Finally, 282 amino acids long MEV construct was established by connecting 13 major histocompatibility complex (MHC) class-I with two MHC class-II epitopes with appropriate adjuvant and linkers. Adjuvant and linkers were added to increase the immunogenic stimulation of the MEV. Developed MEV was stable, soluble, non-allergenic, non-toxic, flexible and highly antigenic. Furthermore, molecular docking and molecular dynamics (MD) simulations analyses were carried out. Results have shown a firm and robust binding affinity of MEV with human pathogenic toll-like receptor three (TLR3). The computationally mediated immune response of MEV demonstrated increased interferon-γ production, a significant abundance of immunoglobulin and activation of macrophages which are essential for immune-response against RSV. Moreover, MEV codons were optimized and in silico cloning was performed, to ensure its increased expression. These outcomes proposed that the MEV developed in this study will be a significant candidate against RSV to control and prevent RSV-related disorders if further investigated experimentally.
Collapse
Affiliation(s)
| | - Zeeshan Shokat
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Iqra Muneer
- School of Life Sciences, University of Science and Technology of China, Hefei 230052, China;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Hamna Javed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Farooq Anwar
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan;
| | - Amna Bari
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Barira Zahid
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China;
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
8
|
Kreft B, Walek T, Ziebuhr W, Rob PM, Trautmann M. Exit-Site Colonization and Subsequent Peritonitis by Pseudomonas Aeruginosa in a Patient on Capd. Perit Dial Int 2020. [DOI: 10.1177/089686089601600218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Burkhard Kreft
- Klinik fur Innere Medizin Medizinische Universität zu Lübeck, Lübeck
| | - Tilmann Walek
- Klinik fur Innere Medizin Medizinische Universität zu Lübeck, Lübeck
| | - Wilma Ziebuhr
- Institut für Medizinische Mikrobiologie Universität Jena, Jena
| | - Peter Maria Rob
- Klinik fur Innere Medizin Medizinische Universität zu Lübeck, Lübeck
| | | |
Collapse
|
9
|
Fischer S, Römling U, Tümmler B. A unique methylation pattern by a type I HsdM methyltransferase prepares for DpnI rare cutting sites in the Pseudomonas aeruginosa PAO1 genome. FEMS Microbiol Lett 2019; 366:5379282. [DOI: 10.1093/femsle/fnz053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Sebastian Fischer
- Clinical research Group ‘Pseudomonas Genomics’, OE 6710, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Lower Saxony, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, S-171 77 Stockholm, Sweden
| | - Burkhard Tümmler
- Clinical research Group ‘Pseudomonas Genomics’, OE 6710, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Lower Saxony, Germany
| |
Collapse
|
10
|
Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SAE, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:1-64. [PMID: 30652105 PMCID: PMC6334234 DOI: 10.15698/mic2019.01.664] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L. Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Giedrė Bačinskaja
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jun Che
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Devon M. Fitzgerald
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Belén Gómez-González
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Léa Marie
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Qian Mei
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Judith Miné-Hattab
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France
- Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France
| | - Alicja Piotrowska
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | | | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | | | - Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jun Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Andrés Aguilera
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA USA
- Program in Genetics, Tufts University, Boston, MA, USA
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC USA
| | | | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah AE Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Sang Eun Lee
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Kyle M. Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Zawadzki
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
11
|
Salina EA, Nesterov MA, Frenkel Z, Kiseleva AA, Timonova EM, Magni F, Vrána J, Šafář J, Šimková H, Doležel J, Korol A, Sergeeva EM. Features of the organization of bread wheat chromosome 5BS based on physical mapping. BMC Genomics 2018; 19:80. [PMID: 29504906 PMCID: PMC5836826 DOI: 10.1186/s12864-018-4470-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The IWGSC strategy for construction of the reference sequence of the bread wheat genome is based on first obtaining physical maps of the individual chromosomes. Our aim is to develop and use the physical map for analysis of the organization of the short arm of wheat chromosome 5B (5BS) which bears a number of agronomically important genes, including genes conferring resistance to fungal diseases. RESULTS A physical map of the 5BS arm (290 Mbp) was constructed using restriction fingerprinting and LTC software for contig assembly of 43,776 BAC clones. The resulting physical map covered ~ 99% of the 5BS chromosome arm (111 scaffolds, N50 = 3.078 Mb). SSR, ISBP and zipper markers were employed for anchoring the BAC clones, and from these 722 novel markers were developed based on previously obtained data from partial sequencing of 5BS. The markers were mapped using a set of Chinese Spring (CS) deletion lines, and F2 and RICL populations from a cross of CS and CS-5B dicoccoides. Three approaches have been used for anchoring BAC contigs on the 5BS chromosome, including clone-by-clone screening of BACs, GenomeZipper analysis, and comparison of BAC-fingerprints with in silico fingerprinting of 5B pseudomolecules of T. dicoccoides. These approaches allowed us to reach a high level of BAC contig anchoring: 96% of 5BS BAC contigs were located on 5BS. An interesting pattern was revealed in the distribution of contigs along the chromosome. Short contigs (200-999 kb) containing markers for the regions interrupted by tandem repeats, were mainly localized to the 5BS subtelomeric block; whereas the distribution of larger 1000-3500 kb contigs along the chromosome better correlated with the distribution of the regions syntenic to rice, Brachypodium, and sorghum, as detected by the Zipper approach. CONCLUSION The high fingerprinting quality, LTC software and large number of BAC clones selected by the informative markers in screening of the 43,776 clones allowed us to significantly increase the BAC scaffold length when compared with the published physical maps for other wheat chromosomes. The genetic and bioinformatics resources developed in this study provide new possibilities for exploring chromosome organization and for breeding applications.
Collapse
Affiliation(s)
- Elena A Salina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.
| | - Mikhail A Nesterov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Antonina A Kiseleva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina M Timonova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Ekaterina M Sergeeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
12
|
Performance and mechanism analysis of succinate production under different transporters in Escherichia coli. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0086-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Mulligan ME, Arbeit RD. Epidemiologic and Clinical Utility of Typing Systems for Differentiating Among Strains of Methicillin-Resistant Staphylococcus aureus. Infect Control Hosp Epidemiol 2016. [DOI: 10.2307/30147085] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractTyping systems for differentiating among strains of methicillin-resistant Staphylococcus aureus (MRSA) can be valuable tools for the epidemiologist and the clinician. Specific criteria for evaluating such systems are typeability, reproducibility, and discriminatory power. An ideal typing system also would be rapid, inexpensive, technically simple, and readily available. Systems based on the detection of phenotypic variations include antimicrobial susceptibility testing, bacteriophage typing, multilocus enzyme electrophoresis, and electrophoretic methods such as protein eletrophoresis and immunoblotting. Systems that directly detect genotypic variations include plasmid profile analysis, restriction enzyme analysis of plasmid DNA, restriction enzyme analysis of chromosomal DNA, Southern blot analysis of specific restriction fragment length polymorphisms, and pulse field gel electrophoresis. in general, the more widely available typing systems based on phenotypic assays and plasmid analysis have limitations in typeability and/or discriminatory power.The chromosomal DNA-based techniques, although promising, are unproven approaches still under active investigation.
Collapse
|
14
|
Ma NJ, Moonan DW, Isaacs FJ. Precise manipulation of bacterial chromosomes by conjugative assembly genome engineering. Nat Protoc 2014; 9:2285-300. [PMID: 25188631 PMCID: PMC5568562 DOI: 10.1038/nprot.2014.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Conjugative assembly genome engineering (CAGE) is a precise method of genome assembly using conjugation to hierarchically combine distinct genotypes from multiple Escherichia coli strains into a single chimeric genome. CAGE permits large-scale transfer of specified genomic regions between strains without constraints imposed by in vitro manipulations. Strains are assembled in a pairwise manner by establishing a donor strain that harbors conjugation machinery and a recipient strain that receives DNA from the donor. Within strain pairs, targeted placement of a conjugal origin of transfer and selectable markers in donor and recipient genomes enables the controlled transfer and selection of desired donor-recipient chimeric genomes. By design, selectable markers act as genomic anchor points, and they are recycled in subsequent rounds of hierarchical genome transfer. A single round of CAGE can be completed in a week, thus enabling four rounds (hierarchical assembly of 16 strains) of CAGE to be completed in roughly 1 month.
Collapse
Affiliation(s)
- Natalie J Ma
- 1] Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA. [2] Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Daniel W Moonan
- 1] Systems Biology Institute, Yale University, West Haven, Connecticut, USA. [2] Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Farren J Isaacs
- 1] Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA. [2] Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| |
Collapse
|
15
|
Khan SR, Kuzminov A. Trapping and breaking of in vivo nicked DNA during pulsed field gel electrophoresis. Anal Biochem 2013; 443:269-81. [PMID: 23770235 DOI: 10.1016/j.ab.2013.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 01/06/2023]
Abstract
Pulsed field gel electrophoresis (PFGE) offers a high-resolution approach to quantify chromosomal fragmentation in bacteria, measured as percentage of chromosomal DNA entering the gel. The degree of separation in pulsed field gel (PFG) depends on the size of DNA as well as various conditions of electrophoresis such as electric field strength, time of electrophoresis, switch time, and buffer composition. Here we describe a new parameter, the structural integrity of the sample DNA itself, that influences its migration through PFGs. We show that subchromosomal fragments containing both spontaneous and DNA damage-induced nicks are prone to breakage during PFGE. Such breakage at single-strand interruptions results in artifactual decrease in molecular weight of linear DNA making accurate determination of the number of double-strand breaks difficult. Although breakage of nicked subchromosomal fragments is field strength independent, some high-molecular-weight subchromosomal fragments are also trapped within wells under the standard PFGE conditions. This trapping can be minimized by lowering the field strength and increasing the time of electrophoresis. We discuss how breakage of nicked DNA may be mechanistically linked to trapping. Our results suggest how to optimize conditions for PFGE when quantifying chromosomal fragmentation induced by DNA damage.
Collapse
Affiliation(s)
- Sharik R Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
16
|
León K, Riverón AM, Arencibia O, Santamaría Y, López-Cánovas L. Two-Dimensional Pulsed Field Minigel Electrophoresis with High Throughput Sample Format. J Food Saf 2013. [DOI: 10.1111/jfs.12042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Karen León
- Molecular Biology Department; Cuban Neurosciences Center; Ave. 25 y 158 No. 15202, Cubanacan, Playa Havana 11600 Cuba
| | - Ana María Riverón
- Molecular Biology Department; Cuban Neurosciences Center; Ave. 25 y 158 No. 15202, Cubanacan, Playa Havana 11600 Cuba
| | - Oscar Arencibia
- Molecular Biology Department; Cuban Neurosciences Center; Ave. 25 y 158 No. 15202, Cubanacan, Playa Havana 11600 Cuba
| | - Yenis Santamaría
- Molecular Biology Department; Cuban Neurosciences Center; Ave. 25 y 158 No. 15202, Cubanacan, Playa Havana 11600 Cuba
| | - Lilia López-Cánovas
- Molecular Biology Department; Cuban Neurosciences Center; Ave. 25 y 158 No. 15202, Cubanacan, Playa Havana 11600 Cuba
| |
Collapse
|
17
|
|
18
|
Brenig B, Beck J, Schütz E. Shotgun metagenomics of biological stains using ultra-deep DNA sequencing. Forensic Sci Int Genet 2009; 4:228-31. [PMID: 20457050 DOI: 10.1016/j.fsigen.2009.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 09/30/2009] [Accepted: 10/02/2009] [Indexed: 01/06/2023]
Abstract
A detailed molecular analysis of blood or other biological stains at a crime scene is often hampered by the low quantity and quality of the extractable DNA. However, the determination of the origin and composition of a stain is in most cases a prerequisite for the final elucidation of a criminal case. Standard methodologies, e.g. amplification of DNA followed by microsatellite typing or mitochondrial DNA sequencing, are often not sensitive enough to result in sufficient and conclusive data. We have applied ultra-deep DNA sequencing using the 454 pyrosequencing technology on a whole genome amplified (WGA) environmental biological stain, which was analysed unsuccessfully with standard methodologies following WGA. With the combination of WGA and 454 pyrosequencing, however, we were able to generate 7242 single sequences with an average length of 195bp. A total of 1,441,971bp DNA sequences were generated and compared with public DNA sequence databases. Using RepeatMasker and basic logical alignment search tool (BLAST) searches against known microbial and mammalian genomes it was possible to determine the metagenomic composition of the stain, i.e. 4.2% bacterial DNA, 0.3% viral DNA, 2.7% fungal DNA, 10.3% mammalian repetitive DNA, 0.9% porcine DNA, 0.13% human DNA and 81.5% DNA of unknown origin. Our data demonstrate that 454 pyrosequencing has the potential to become a powerful tool not only in basic research but also in the metagenomic analysis of biological trace materials for forensic genetics.
Collapse
Affiliation(s)
- B Brenig
- Institute of Veterinary Medicine, University of Göttingen, Burckhardtweg 2, Göttingen, Germany.
| | | | | |
Collapse
|
19
|
Nassonova ES. Pulsed field gel electrophoresis: Theory, instruments and application. ACTA ACUST UNITED AC 2008. [DOI: 10.1134/s1990519x08060011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Phylogenetic characterization of two novel commensal bacteria involved with innate immune homeostasis in Drosophila melanogaster. Appl Environ Microbiol 2008; 74:6171-7. [PMID: 18723651 DOI: 10.1128/aem.00301-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
During a previous study on the molecular interaction between commensal bacteria and host gut immunity, two novel bacterial strains, A911(T) and G707(T), were isolated from the gut of Drosophila melanogaster. In this study, these strains were characterized in a polyphasic taxonomic study using phenotypic, genetic, and chemotaxonomic analyses. We show that the strains represent novel species in the family Acetobacteraceae. Strain G707(T), a highly pathogenic organism, represents a new species in the genus Gluconobacter, "Gluconobacter morbifer" sp. nov. (type strain G707 = KCTC 22116(T) = JCM 15512(T)). Strain A911(T), dominantly present in the normal Drosphila gut community, represents a novel genus and species, designated "Commensalibacter intestini" gen. nov., sp. nov. (type strain A911 = KCTC 22117(T) = JCM 15511(T)).
Collapse
|
21
|
Mathewson CA, Schein JE, Marra MA. Large-scale BAC clone restriction digest fingerprinting. ACTA ACUST UNITED AC 2008; Chapter 5:Unit 5.19. [PMID: 18428413 DOI: 10.1002/0471142905.hg0519s53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Restriction digest fingerprinting is a common method for characterizing large insert genomic clones, e.g., bacterial artificial chromosome (BAC), P1 artificial chromosome (PAC) and Fosmid clones. This clone fingerprinting method has been widely applied in the construction of clone-based physical maps, which have been used as positional cloning resources as well as to support directed and genome-wide sequencing efforts. This unit describes a robust, large-scale procedure for generation of agarose gel-based clone fingerprints from BAC clones.
Collapse
Affiliation(s)
- Carrie A Mathewson
- Canada's Michael Smith Genome Sciences Center Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
22
|
Elias DA, Monroe ME, Smith RD, Fredrickson JK, Lipton MS. Confirmation of the expression of a large set of conserved hypothetical proteins in Shewanella oneidensis MR-1. J Microbiol Methods 2006; 66:223-33. [PMID: 16417935 DOI: 10.1016/j.mimet.2005.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 11/15/2005] [Accepted: 11/15/2005] [Indexed: 10/25/2022]
Abstract
High-throughput "omic" technologies have allowed for a relatively rapid, yet comprehensive analysis of the global expression patterns within an organism in response to perturbations. In the current study, 9503 different tryptic peptides were identified with high confidence from capillary liquid chromatography-mass spectrometry analysis of 26 chemostat cultures of Shewanella oneidensis MR-1 under various conditions. Using at least one distinctive and a total of two total peptide identifications per protein, we detected the expression of 758 conserved hypothetical proteins. This included 359 such proteins previously described [Kolker, E., Picone, A.F., Galperin, M.Y., Romine, M.F., Higdon, R., Makarova, K.S., Kolker, N., Anderson, G.A., Qiu, X., Auberry, K.J., Babnigg, G., Beliaev, A.S., Edlefsen, P., Elias, D.A., Gorby, Y.A., Holzman, T., Klappenbach, J.A., Konstantinidis, K.T., Land, M.L., Lipton, M.S., McCue, L.A., Monroe, M., Pasa-Tolic, L., Pinchuk, G., Purvine, S., Serres, M.H., Tsapin, S., Zakrajsek, B.A., Zhu, W., Zhou, J., Larimer, F.W., Lawrence, C.E., Riley, M., Collart, F.R., Yates, J.R., III, Smith, R.D., Giometti, C.S., Nealson, K.H., Fredrickson, J.K., Tiedje, J.M., 2005. Global profiling of Shewanella oneidensis MR-1: expression of hypothetical genes and improved functional annotations. Proc Natl Acad Sci U S A 102, 2099-2104] with an additional 399 reported herein for the first time. The latter 399 proteins ranged from 5.3 to 208.3 kDa, with 44 being of 100 amino acid residues or less. Using a combination of information including peptide detection in cells grown under specific culture conditions and predictive algorithms such as PSORT and PSORT-B, possible/plausible functions are proposed for some conserved hypothetical proteins. Such proteins were found not only to be expressed, but 19 were only expressed under certain culturing conditions, thereby providing insight into potential functions. These findings also impact the genomic annotation for S. oneidensis MR-1 by confirming that these genes code for expressed proteins. Our results indicate that 399 proteins can now be upgraded from "conserved hypothetical protein" to "expressed protein in Shewanella," 19 of which appeared to be expressed under specific culture conditions.
Collapse
Affiliation(s)
- Dwayne A Elias
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | |
Collapse
|
23
|
Liu GR, Liu WQ, Johnston RN, Sanderson KE, Li SX, Liu SL. Genome plasticity and ori-ter rebalancing in Salmonella typhi. Mol Biol Evol 2005; 23:365-71. [PMID: 16237205 DOI: 10.1093/molbev/msj042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genome plasticity resulting from frequent rearrangement of the bacterial genome is a fascinating but poorly understood phenomenon. First reported in Salmonella typhi, it has been observed only in a small number of Salmonella serovars, although the over 2,500 known Salmonella serovars are all very closely related. To gain insights into this phenomenon and elucidate its roles in bacterial evolution, especially those involved in the formation of particular pathogens, we systematically analyzed the genomes of 127 wild-type S. typhi strains isolated from many places of the world and compared them with the two sequenced strains, Ty2 and CT18, attempting to find possible associations between genome rearrangement and other significant genomic features. Like other host-adapted Salmonella serovars, S. typhi contained large genome insertions, including the 134 kb Salmonella pathogenicity island, SPI7. Our analyses showed that SPI7 disrupted the physical balance of the bacterial genome between the replication origin (ori) and terminus (ter) when this DNA segment was inserted into the genome, and rearrangement in individual strains further changed the genome balance status, with a general tendency toward a better balanced genome structure. In a given S. typhi strain, genome diversification occurred and resulted in different structures among cells in the culture. Under a stressed condition, bacterial cells with better balanced genome structures were selected to greatly increase in proportion; in such cases, bacteria with better balanced genomes formed larger colonies and grew with shorter generation times. Our results support the hypothesis that genome plasticity as a result of frequent rearrangement provides the opportunity for the bacterial genome to adopt a better balanced structure and thus eventually stabilizes the genome during evolution.
Collapse
Affiliation(s)
- Gui-Rong Liu
- Department of Microbiology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | |
Collapse
|
24
|
Elias DA, Monroe ME, Marshall MJ, Romine MF, Belieav AS, Fredrickson JK, Anderson GA, Smith RD, Lipton MS. Global detection and characterization of hypothetical proteins inShewanella oneidensis MR-1 using LC-MS based proteomics. Proteomics 2005; 5:3120-30. [PMID: 16038018 DOI: 10.1002/pmic.200401140] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The availability of whole genome sequences has enabled the application of powerful tools for assaying global expression patterns in environmentally relevant bacteria such as Shewanella oneidensis MR-1. A large number of genes in prokaryote genomes, including MR-1, have been annotated as hypothetical, indicating that no similar protein has yet been identified in other organisms. Using high-sensitivity MS coupled with accurate mass and time (AMT) tag methodology, 1078 tryptic peptides were collectively detected in MR-1 cultures, 671 of which were unique to their parent protein. Using only these unique tryptic peptides and a minimum of two peptides per protein, we identified, with high confidence, the expression of 258 hypothetical proteins. These proteins ranged from 3.5 to 139 kDa, with 47 being 100 amino acid residues or less. Using a combination of information including detection in cells grown under specific culture conditions, presence within a specific cell fraction, and predictive algorithms such as PSORT and PSORT-B, possible/plausible functions are proposed for some hypothetical proteins. Further, by applying this approach a number of proteins were found not only to be expressed, but only expressed under certain culturing conditions, thereby suggesting function while at the same time isolating several proteins to distinct locales of the cell. These results demonstrate the utility of the AMT tag methodology for comprehensive profiling of the microbial proteome while confirming the expression of a large number of hypothetical genes.
Collapse
Affiliation(s)
- Dwayne A Elias
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wagenlehner FME, Lehn N, Witte W, Naber KG. In vitro Activity of Daptomycin versus Linezolid and Vancomycin against Gram-Positive Uropathogens and Ampicillin against Enterococci, Causing Complicated Urinary Tract Infections. Chemotherapy 2005; 51:64-9. [PMID: 15870498 DOI: 10.1159/000085611] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Accepted: 10/12/2004] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The existing therapeutic options for complicated urinary tract infections (UTI) caused by gram-positive uropathogens are not always optimal. Therefore, newer antimicrobials have to be assessed. METHODS The antimicrobial activity of daptomycin was tested versus linezolid, vancomycin, and ampicillin (enterococci on ly), against pathogens from three different collections: (1) Uropathogens from hospitalized urological patients with complicated and/or hospital-acquired UTIs of the Urologic Clinic, Hospital St. Elisabeth, Straubing. (2) Uropathogens from a multicenter study comprising 37 urological centers throughout Germany. (3) Methicillin-resistant Staphylococcus aureus (MRSA) isolates of patients and staff within the Hospital St. Elisabeth, Straubing. Genotyping of the latter isolates was performed by pulsed-field gel electrophoresis. The minimal inhibitory concentrations (MIC) of daptomycin, linezolid, vancomycin, and ampicillin (only tested against enterococci) were determined by an agar dilution method using a multipointer with an inoculum of 10(4) CFU per point. RESULTS For all methicillin-susceptible Staphylococcus aureus (n = 25), MRSA (n = 49), methicillin-susceptible coagulase-negative staphylococci (n = 129), methicillin-resistant coagulase-negative staphylococci (n = 33), for Enterococcus faecalis (n = 289), and for Enterococcus faecium (n = 4) the MICs ranged up to 2 mg/l (daptomycin, linezolid), up to 4 mg/l (vancomycin), and up to 8 mg/l (ampicillin, enterococci only) indicating that all strains were susceptible to the antibiotics tested. CONCLUSIONS According to the in vitro activity daptomycin may be considered a promising antibacterial agent for the treatment of complicated UTI caused by gram-positive uropathogens. Thus, daptomycin should be evaluated in a clinical study.
Collapse
|
26
|
Abstract
The chromosome structure of lactic acid bacteria has been investigated only recently. The development of pulsed-field gel electrophoresis (PFGE) combined with other DNA-based techniques enables whole-genome analysis of any bacterium, and has allowed rapid progress to be made in the knowledge of the lactic acid bacteria genome. Lactic acid bacteria possess one of the smallest eubacterial chromosomes. Depending on the species, the genome sizes range from 1.1 to 2.6 Mb. Combined physical and genetic maps of several species are already available or close to being achieved. Knowledge of the genomic structure of these organisms will serve as a basis for future genetic studies. Macrorestriction fingerprinting by PFGE is already one of the major tools for strain differentiation, identification of individual strains, and the detection of strain lineages. The genome data resulting from these studies will be of general application strain improvement.
Collapse
Affiliation(s)
- P Le Bourgeois
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, Toulouse, France
| | | | | |
Collapse
|
27
|
Wagenlehner FME, MacKenzie FM, Forbes KJ, Gould IM. Molecular epidemiology and antibiotic resistance of Enterobacter spp. from three distinct populations in Grampian, UK. Int J Antimicrob Agents 2002; 20:419-25. [PMID: 12458135 DOI: 10.1016/s0924-8579(02)00179-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The distribution of Enterobacter spp. within the population of Aberdeen Royal Infirmary was compared with the outpatient population with regard to molecular epidemiology and antibiotic resistance. Enterobacter spp. from 60 patients and one environmental site were characterised as ITU, non ITU and outpatients' isolates. Thirty-five percent were blood culture isolates. Cefotaxime resistant strains in the hospital were frequent. Cefotaxime (64%) sensitive isolates were inducible for hyperproduction of Bush group 1 beta-lactamase. Isolates were further investigated by PFGE. Isolates (27%) were clonally related and typed in four clusters. Consecutive isolates were studied in selected patients showing minor genomic changes. One environmental isolate from a deep sink at ITU was related to a patient's isolate.
Collapse
Affiliation(s)
- F M E Wagenlehner
- Department of Medical Microbiology, Aberdeen Royal Infirmary, Aberdeen, UK.
| | | | | | | |
Collapse
|
28
|
Friedrich U, Prior K, Altendorf K, Lipski A. High bacterial diversity of a waste gas-degrading community in an industrial biofilter as shown by a 16S rDNA clone library. Environ Microbiol 2002; 4:721-34. [PMID: 12460280 DOI: 10.1046/j.1462-2920.2002.00349.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bacterial diversity of an industrial biofilter used for waste gas abatement in an animal-rendering plant was investigated. A 16S rDNA clone library was generated and 444 clones were screened using computer-aided amplified ribosomal DNA restriction analysis (ARDRA). Of the screened clones, 60.8% showed unique ARDRA patterns and the remaining 174 clones were clustered into 65 groups. Almost full-length 16S rDNA sequences of 106 clones were determined and 90.5% of the clones were affiliated with the two phyla Proteobacteria and Bacteroidetes. Alpha-, Beta-, and Gammaproteobacteria accounted for 22.1, 17.6 and 18.6% respectively. Minor portions were affiliated with the Actinobacteria (2.0%), Firmicutes and Verrucomicrobia (both 1.0%), and the Deltaproteobacteria and Thermomicrobia (each 0.5%). Only six out of the 106 16S rDNA sequences exhibited similarities of more than 97% to classified bacterial species indicating that a substantial fraction of the clone sequences were derived from unknown taxa. It was also evaluated whether a database containing 281 computer-simulated bacterial rDNA fragment patterns generated from published reference sequences can be used for identification purposes. The data analysis demonstrated that this was possible only for a small number of clones, which were closely related to described bacterial strains. Rarefaction analysis of ARDRA clusters demonstrated that the 444 clones screened are insufficient to describe the entire diversity of the clone library.
Collapse
Affiliation(s)
- Udo Friedrich
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany.
| | | | | | | |
Collapse
|
29
|
Wagenlehner FME, Krcmery S, Held C, Klare I, Witte W, Bauernfeind A, Schneider I, Naber KG. Epidemiological analysis of the spread of pathogens from a urological ward using genotypic, phenotypic and clinical parameters. Int J Antimicrob Agents 2002; 19:583-91. [PMID: 12135852 DOI: 10.1016/s0924-8579(02)00093-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surveillance studies using molecular typing methods help clinicians assess the rate of potential spread of pathogens. The rate of cross transmission of uropathogens among patients on a urological ward was investigated. Urine samples were collected from 144 patients with urinary catheters and a significant bacteriuria. In a subgroup of 54 of these patients, cultures from a rectal swab were also made. Typing by PFGE, RAPD or bacteriocins showed that 41% of uropathogens were related and represented by 38 typing patterns. Endogenous infection was present in 30% and exogenous infection in 38% of isolates. Altogether, there was a high rate of clonal relationship amongst uropathogens in our urological ward and we conclude that hygienic means and measures are far from being optimal.
Collapse
Affiliation(s)
- F M E Wagenlehner
- Urologic Clinic, St. Elisabeth Hospital, St. Elisabeth Strasse 23, D-94315 Straubing, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Brunetti R, Prosseda G, Beghetto E, Colonna B, Micheli G. The looped domain organization of the nucleoid in histone-like protein defective Escherichia coli strains. Biochimie 2001; 83:873-82. [PMID: 11698109 DOI: 10.1016/s0300-9084(01)01331-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have investigated the major Escherichia coli histone-like proteins (H-NS, HU, FIS, and IHF) as putative factors involved in the maintenance of the overall DNA looped arrangement of the bacterial nucleoid. The long-range architecture of the chromosome has been studied by means of an assay based on in vivo genomic fragmentation mediated by endogenous DNA gyrase in the presence of oxolinic acid. The fragmentation products were analysed by CHEF electrophoresis. The results indicate that in vivo a large fraction of the bacterial chromatin constitutes an adequate substrate for the enzyme. DNA fragments released upon oxo-treatment span a size range from about 1000 kb to a limit-size of about 50 kb. The latter value is in excellent agreement with the average size reported for bacterial chromosomal domains. The DNA gyrase-mediated fragmentation does not appear to be significantly altered in strains depleted in histone-like proteins as compared to an E. coli wild type strain. This suggests that these proteins may not represent critical determinants for the maintenance of the supercoiled loop organisation of the E. coli chromosome.
Collapse
Affiliation(s)
- R Brunetti
- Centro Acidi Nucleici C.N.R., Università La Sapienza, P. le A. Moro 5, Rome 00185, Italy
| | | | | | | | | |
Collapse
|
31
|
Onda H, Wagenlehner FM, Lehn N, Naber KG. In vitro activity of linezolid against Gram-positive uropathogens of hospitalized patients with complicated urinary tract infections. Int J Antimicrob Agents 2001; 18:263-6. [PMID: 11673040 DOI: 10.1016/s0924-8579(01)00374-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The antimicrobial activity of linezolid, a recently developed antibiotic agent active against Gram-positive bacteria, was tested against pathogens from three different collections. (1) Uropathogens from hospitalized urological patients (1990/1991) with complicated and/or hospital-acquired UTIs; Urologic Clinic, Hospital St. Elisabeth, Straubing. (2) Uropathogens from a multi-centre study (1995/1996) comprising 37 urological centres throughout Germany. (3) MRSA isolates of patients and staff (1999/2000) within the Hospital St. Elisabeth, Straubing. Genotyping of the latter isolates was performed by pulsed-field-electrophoresis. The minimal inhibitory concentrations (MIC) of linezolid determined by an agar (Isosensitest) dilution method using a multipoint inoculator and an inoculum of 10(4) cfu per point ranged for methicillin susceptible Staphylococcus aureus (MSSA) (n=27) between 2 and 4 mg/l, for methicillin resistant S. aureus (MRSA) (n=35) between 1 and 2 mg/l, for methicillin susceptible coagulase-negative staphylococci (CNS) (MSSE) (n=67) between 0.5 and 4 mg/l, for methicillin resistant CNS (MRSE) (n=19) between 0.25 and 2 mg/l, for Enterococcus. faecalis (n=184) between 0.5 and 4 mg/l, for E. faecium (n=3) 2 mg/l and for Streptococcus spp. (n=4) between 0.25 and 1 mg/l, indicating that all strains were susceptible. According to the in vitro activity, linezolid may be considered a promising antibacterial agent for the treatment of complicated UTI caused by Gram-positive uropathogens. Thus, linezolid should be evaluated in a clinical study.
Collapse
Affiliation(s)
- H Onda
- Urologic Clinic, St. Elisabeth Hospital, Teaching Hospital of the Technical University of Munich, St. Elisabeth Strasse 23, 94315 Straubing, Germany
| | | | | | | |
Collapse
|
32
|
Biochemical Genetics. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Nath K, Chen X, Ahn KS, Chen S. Characterization of the 16S rRNA gene V2 region and the rrn operons of Gardnerella vaginalis. Res Microbiol 2000; 151:747-54. [PMID: 11130865 DOI: 10.1016/s0923-2508(00)01140-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribosomal RNA (rRNA) gene polymorphism was apparent when Gardnerella vaginalis DNA restriction profiles were hybridized with nonradioactively labeled total rRNA isolated from this bacterium. In contrast, use of a polymerase chain reaction (PCR)-based 16S rRNA gene V2 region resulted in a 118-bp V2-PCR amplicon that was specific and common in all 30 tested G. vaginalis isolates. In addition to providing a G. vaginalis-specific fingerprint, when the V2-PCR amplicon along with total rRNA were utilized as probes, a partial rRNA gene restriction map could be constructed. G. vaginalis contains two rrn operons with an EcoRI fragment of 1.6 kb common to both.
Collapse
Affiliation(s)
- K Nath
- Long Island University, Department of Biology, Brookville, NY 11548-1300, USA.
| | | | | | | |
Collapse
|
34
|
Abstract
Molecular typing methods based on the analysis of the genetic structure of bacteria, are used to address many different problems such as the study of genomic organisation and evolution, the identification of patterns of infection, the identification of sources of transmission, the epidemiological surveillance of infectious diseases and for investigations into outbreaks. Of particular interest is the application of these techniques for acquiring information on the spread of micro-organisms that have become resistant to many clinically important antibiotics. The emergence of antibiotic resistance is one of the most dangerous phenomena of the last 20 years and knowledge of the mechanisms of resistant-gene exchange means fully understanding their spread into all environments. Studies on the molecular epidemiology of antibiotic-resistance in micro-organisms should make it easier to distinguish clonality with respect to horizontal transfer of the determinants of resistance.
Collapse
Affiliation(s)
- S Stefani
- Section of Microbiology of the Department of Microbiological and Gynaecological Sciences, Catania (I), Italy.
| | | |
Collapse
|
35
|
Mayumi T, Takezawa J, Takahashi H, Yamaguchi H, Nishimura H, Enomoto A, Ichiyama S, Yoshikai Y. IL-15 is elevated in the patients of postoperative enterocolitis. Cytokine 1999; 11:888-93. [PMID: 10547278 DOI: 10.1006/cyto.1999.0494] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serum interleukin 15 (IL-15) levels were measured in 77 patients who were consecutively admitted to our intensive care unit. Postoperative enterocolitis occurred in four patients and Methicillin-resistant Staphylococcus aureus (MRSA), but not Clostridium difficile, was identified in the faecal specimens from these patients. The IL-15 levels in the patients with MRSA enterocolitis were significantly elevated compared with those of other MRSA infections without enterocolitis including pneumonia (n=6) and cholangitis (n=1), and other MRSA non-colonized patients (n=66) (21.2+/-5.2 pg/ml vs 4.3+/-0.2, 4.3+/-0.5). Notably, an increase in serum IL-15 was observed just before clinical manifestation of severe diarrhoea. Our findings suggest that IL-15 may be associated in the pathogenesis of postoperative enterocolitis and its serum level may be a severity indicator of the disease.
Collapse
Affiliation(s)
- T Mayumi
- Laboratory of Host Defense and Germfree Life, Research Institute for Disease Mechanism and Control, Nagoya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Vellai T, Kovacs AL, Kovacs G, Ortutay C, Vida G. Genome economization and a new approach to the species concept in bacteria. Proc Biol Sci 1999. [DOI: 10.1098/rspb.1999.0872] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- T. Vellai
- Collegium Budapest, Institute for Advanced Study, Budapest, H-1014, SZenthdromsdg u. 2, Hungary
| | - A. L. Kovacs
- Department of General Zoology, Eotvos Lordnd University, Budapest,H-1088, Hungary
| | - G. Kovacs
- Department of Microbiology, Eotvos Lordnd University, Budapest,H-1088, Hungary
| | - C. Ortutay
- Department of Genetics, Eotvos Lordnd University, Budapest,H-1088, Hungary
| | - G. Vida
- Department of Genetics, Eotvos Lordnd University, Budapest,H-1088, Hungary
| |
Collapse
|
37
|
Lin J, Qi R, Aston C, Jing J, Anantharaman TS, Mishra B, White O, Daly MJ, Minton KW, Venter JC, Schwartz DC. Whole-genome shotgun optical mapping of Deinococcus radiodurans. Science 1999; 285:1558-62. [PMID: 10477518 DOI: 10.1126/science.285.5433.1558] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A whole-genome restriction map of Deinococcus radiodurans, a radiation-resistant bacterium able to survive up to 15,000 grays of ionizing radiation, was constructed without using DNA libraries, the polymerase chain reaction, or electrophoresis. Very large, randomly sheared, genomic DNA fragments were used to construct maps from individual DNA molecules that were assembled into two circular overlapping maps (2.6 and 0.415 megabases), without gaps. A third smaller chromosome (176 kilobases) was identified and characterized. Aberrant nonlinear DNA structures that may define chromosome structure and organization, as well as intermediates in DNA repair, were directly visualized by optical mapping techniques after gamma irradiation.
Collapse
Affiliation(s)
- J Lin
- W. M. Keck Laboratory for Biomolecular Imaging, Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fujiwara S, Takagi M, Imanaka T. Archaeon Pyrococcus kodakaraensis KOD1: application and evolution. BIOTECHNOLOGY ANNUAL REVIEW 1999; 4:259-84. [PMID: 9890143 DOI: 10.1016/s1387-2656(08)70073-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Archaea is the third domain which is phylogenetically differentiated from the other two domains, bacteria and eucarya. Hyperthermophile within the archaea domain has evolved most slowly retaining many ancestral features of higher eukaryotes. Pyrococcus kodakaraensis KOD1, which grows at 95 degrees C optimally, is a newly isolated hyperthermophilc archaeon. The KOD1 strain possesses a circular genome, whose size is estimated to be approximately 2,036 kb. KOD1 enzymes involved in the genetic information processing system, such as DNA polymerase, Rec protein, aspartyl tRNA synthetase and molecular chaperonin, share features of eukaryotic enzymes. Rapid and accurate PCR method by KOD1 DNA polymerase and enzyme stabilization system by KOD1 chaperonin are also introduced in this article.
Collapse
Affiliation(s)
- S Fujiwara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | | | | |
Collapse
|
39
|
Lin CL, Lee JC, Chen SS, Wood HA, Li ML, Li CF, Chao YC. Persistent Hz-1 virus infection in insect cells: evidence for insertion of viral DNA into host chromosomes and viral infection in a latent status. J Virol 1999; 73:128-39. [PMID: 9847315 PMCID: PMC103816 DOI: 10.1128/jvi.73.1.128-139.1999] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Persistent/latent viral infections of insect cells are a prominent though poorly understood phenomenon. In this study, the long-term association between the Hz-1 virus and insect host cells, conventionally referred to as persistent viral infection, is described. With the aid of a newly developed fluorescent cell-labeling system, we found that productive viral replication occurs by spontaneous viral reactivation in fewer than 0.2% of persistently infected cell lines over a 5-day period. Once viral reactivation takes place, the host cell dies. The persistently infected cells contain various amounts of viral DNA, and, in an extreme case, up to 16% of the total DNA isolated from infected cells could be of viral origin. Both pulsed-field gel electrophoresis and in situ hybridization experiments showed that some of these viral DNA molecules are inserted into the host chromosomes but that the rest of viral DNA copies are free from host chromosomes. Thus, Hz-1 virus is the first nonretroviral insect virus known to insert its genome into the host chromosome during the infection process. These data also suggest that the previously described persistent infection of Hz-1 virus in insect cells should be more accurately referred to as latent viral infection.
Collapse
Affiliation(s)
- C L Lin
- Department of Biology, National Taiwan Normal University, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
40
|
Mahillon J, Kirkpatrick HA, Kijenski HL, Bloch CA, Rode CK, Mayhew GF, Rose DJ, Plunkett G, Burland V, Blattner FR. Subdivision of the Escherichia coli K-12 genome for sequencing: manipulation and DNA sequence of transposable elements introducing unique restriction sites. Gene 1998; 223:47-54. [PMID: 9858680 DOI: 10.1016/s0378-1119(98)00365-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A transposon-based method of introducing unique restriction sites was used for subdivision of the Escherichia coli genome into a contiguous series of large non-overlapping segments spanning 2.5Mb. The segments, sizes ranging from 150 to 250kb, were isolated from the chromosome using the inserted restriction sites and shotgun cloned into an M13 vector for DNA sequencing. These shotgun sizes proved easily manageable, allowing the genomic sequence of E. coli to be completed more efficiently and rapidly than was possible by previously available methods. The 9bp duplication generated during transposition was used as a tag for accurate splicing of the segments; no further sequence redundancy at the junction sites was needed. The system is applicable to larger genomes even if they are not already well-characterized. We present the technology for segment sequencing, results of applying this method to E. coli, and the sequences of the transposon cassettes.
Collapse
Affiliation(s)
- J Mahillon
- Laboratoire de Génétique Microbienne, Université Catholique de Louvain, Place Croix du Sud, 5/12, B-1348, Louvaine-la-Neuve, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Umelo E, Trust TJ. Physical map of the chromosome of Aeromonas salmonicida and genomic comparisons between Aeromonas strains. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2141-2149. [PMID: 9720035 DOI: 10.1099/00221287-144-8-2141] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
I-Ceul and Pmel physical maps of the Aeromonas salmonicida A449 chromosome were constructed using PFGE. The circular chromosome of A. salmonicida A449 was estimated to be 4658 +/- 30 kb. The approximate location of several genes, including those encoding proteins implicated in virulence, were identified. The map showed that the known virulence-factor-encoding genes were not clustered. The I-Ceul genomic digestion fingerprints of several typical and atypical strains of A. salmonicida were compared. The results confirmed the homogeneity of typical strains, which provided further support for the clonality of the population structure of this group. Extensive diversity was observed in the I-Ceul digestion fingerprint of atypical strains, although a clonality was observed in the strains isolated from diseased goldfish. The results suggest that comparison of I-Ceul digestion fingerprints could be used as a powerful taxonomic tool to subdivide the atypical strains and also help clarify some of the current confusion associated with the taxonomy of the genus Aeromonas.
Collapse
Affiliation(s)
- Elizabeth Umelo
- Department of Biochemistry and Microbiology and Canadian Bacterial Diseases Network, University of VictoriaVictoria, BC, V8W 3P6 Canada
| | - Trevor J Trust
- Department of Biochemistry and Microbiology and Canadian Bacterial Diseases Network, University of VictoriaVictoria, BC, V8W 3P6 Canada
| |
Collapse
|
42
|
Takahashi Y, Akase K, Hirano H, Fukunaga M. Physical and genetic maps of the Leptospira interrogans serovar icterohaemorrhagiae strain Ictero no.1 chromosome and sequencing of a 19-kb region of the genome containing the 5S rRNA gene. Gene X 1998; 215:37-45. [PMID: 9666070 DOI: 10.1016/s0378-1119(98)00277-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We report the construction of physical and genetic maps of the chromosome of Leptospira interrogans serovar icterohaemorrhagiae strain Ictero No.1 using pulsed-field gel electrophoresis of DNA fragments generated by digestion with enzymes SrfI, AscI, FseI, and NotI and using reciprocal hybridization. We also sequenced the 19-kilobase (kb) DNA segment including the one gene for 5S rRNA (rrf) of pathogenic Leptospira. The size of the chromosome of the strain Ictero No.1 was estimated to be 4673kb and was found to be similar to those of the chromosomes of the leptospira strains Verdun (serovar icterohaemorrhagiae) and RZ11 (serovar pomona). The strains Verdun and RZ11 carry a small 350-kb replicon (minichromosome), and the strain Ictero No.1 also contained the same kind of molecule together with the chromosome. The physical maps of the strains Ictero No.1 and Verdun were almost identical, as were the locations of the selected genes, except for the location of one of the 16S rRNA genes. Overall, the genetic organization appeared to be conserved within the serovar icterohaemorrhagiae strains. In the sequenced region, we identified 10 putative ORFs and one rrf sequence, and the transcription orientations were all the same. A homology search for the products deduced from the sequenced data revealed that the orf H exhibited high similarity to malic acid enzyme of Haemophilus influenzae and fumarate hydratase of Escherichia coli (orf J). The rest of the putative products encoded by ORFs in the sequenced region showed little similarity with the proteins contained in the databases and were considered to be unknown proteins.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Chromosome Mapping
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/genetics
- Cloning, Molecular
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Electrophoresis, Gel, Pulsed-Field
- Genes, Bacterial/genetics
- Genome, Bacterial
- Leptospira interrogans/genetics
- Molecular Sequence Data
- Open Reading Frames/genetics
- RNA, Ribosomal, 5S/genetics
- Restriction Mapping
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Y Takahashi
- Laboratory of Molecular Microbiology, Faculty of Pharmacy, Pharmaceutical Sciences, Fukuyama University, Gakuencho 1, Fukuyama, Hiroshima 729-0292, Japan
| | | | | | | |
Collapse
|
43
|
Chen CH, Landgraf R, Walts AD, Chan L, Schlonk PM, Terwilliger TC, Sigman DS. Scission of DNA at a preselected sequence using a single-strand-specific chemical nuclease. CHEMISTRY & BIOLOGY 1998; 5:283-92. [PMID: 9578634 DOI: 10.1016/s1074-5521(98)90621-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND We were interested in developing a protocol for cleaving large DNAs specifically. Previous attempts to develop such methods have failed to work because of high levels of nonspecific background scission. RESULTS R-loop formation was chosen for sequence-specific targeting, a method of hybridization whereby an RNA displaces a DNA strand of identical sequence in 70% formamide using Watson-Crick base-pairing, leading to a three-stranded structure. R-loops are stabilized in aqueous solution by modifying the bases with chemical reagents. The R-loop was cleaved using a novel nuclease prepared from the Thr48-->Cys mutant of the single-strand-specific M-13 gene V protein (GVP), which was alkylated with 5-(iodoacetamido-beta-alanyl)1,10-phenanthroline. The cleavage products of the pGEM plasmid were cloned in to the pCR 2.1-TOPO vector. Adenovirus 2 DNA (35.8 kb; tenfold larger than the pGEM plasmid) was also cleaved quantitatively at a preselected sequence. CONCLUSIONS A new method for cleaving duplex DNA at any preselected sequence was developed. The cleavage method relies on the chemical conversion of M-13 GVP into a nuclease, reflecting GVP's specificity for single-stranded DNA. The GVP chimera is the first example of a semisynthetic secondary structure specific nuclease. The chemical nuclease activity of 1,10-phenanthroline-copper is uniquely suited to this technique because it oxidizes the deoxyribose moiety without generating diffusible intermediates, providing clonable DNA fragments. The protocol could be useful in generating large DNA fragments for mapping the contiguity of probes or defining the exon-intron structure of transcription units.
Collapse
Affiliation(s)
- C H Chen
- Molecular Biology Institute, University of California, Los Angeles 90095-1570, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Fonstein M, Nikolskaya T, Kogan Y, Haselkorn R. Genome encyclopedias and their use for comparative analysis of Rhodobacter capsulatus strains. Electrophoresis 1998; 19:469-77. [PMID: 9588789 DOI: 10.1002/elps.1150190403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper consists of two components: the use of gene encyclopedias in genomic studies and Rhodobacter capsulatus genome project. A survey of vectors used for encyclopedia construction includes a brief discussion of their relative advantages and limitations. Projects employing various methods of encyclopedia assembly including the comparison of restriction patterns, restriction maps, linking by hybridization, oligonucleotide fingerprinting, sequence tagged site (STS) fingerprinting and encyclopedias derived from genetic maps are listed and briefly described. The R. capsulatus SB 1003 genome project started with the construction of its cosmid encyclopedia, which comprises 192 cosmids covering the chromosome and the 134 kbp plasmid in strain SB 1003, with the exact map coordinates of each cosmid. In a pilot sequencing study, several cosmids were individually subcloned using the vector M13mp18 and merged into one 189 kbp contig. About 160 open reading frames (ORFs) identified by the CodonUse program were subjected to similarity searches. The biological functions of eighty ORFs could be assigned reliably using the WIT (what is there) genome investigation environment. Eighty percent of these recognizable ORFs were organized in functional clusters, which simplified assignment decisions and increased the strength of the predictions. A set of 26 genes for cobalamin biosynthesis, genes for polyhydroxyalkanoic acid metabolism, DNA replication and recombination, and DNA gyrase were among those identified. Recently, another 1.2 Mbp genome fragment of the Rhodobacter genome was sequenced using a slightly modified approach. These results together with some genome investigation tools, have been placed at our web site (http://capsulapedia.uchicago.edu). The sequence of R. capsulatus is expected to be completed by summer 1998. A project to construct a systematic set of deletion strains of R. capsulatus in order to assign functions to unknown ORFs has been started. Preliminary data demonstrate the extreme convenience of the unique gene transfer agent (GTA) system to perform such work.
Collapse
Affiliation(s)
- M Fonstein
- Department of Molecular Genetics and Cell Biology, The University of Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
45
|
Stapleton RD, Ripp S, Jimenez L, Cheol-Koh S, Fleming JT, Gregory IR, Sayler GS. Nucleic acid analytical approaches in bioremediation: site assessment and characterization. J Microbiol Methods 1998. [DOI: 10.1016/s0167-7012(98)00021-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Abstract
Early genetic studies showed conservation of gene order in the enteric bacteria. Two recent methods using pulsed field gel electrophoresis (PFGE) to determine the physical map of the genome are: (i) partial digestion with the endonuclease I-CeuI, which digests the DNA of bacteria in the rrn operon for rRNA (ribosomal RNA), thus establishing the "rrn genomic skeleton" (the size in kbp of the intervals between rRNA operons); (ii) analysis of XbaI and B1nI sites within Tn10 insertions in the chromosome. The order of I-CeuI fragments, which is ABCDEFG in S. typhimurium LT2 and E. coli K-12, was found to be conserved in most Salmonella species, most of which grow in many hosts (host-generalists). However, in S. typhi, S. paratyphi C, S. gallinarum, and S. pullorum, species which are host-specialized, these fragments are rearranged, due to homologous recombination between the rrn operons, resulting in translocations and inversions. Inversions and translocations not involving the rrn operons are seldom detected except for inversions over the TER (termination of replication) region. Additive genetic changes (due to lateral transfer resulting in insertion of nonhomologous DNA) have resulted in "loops" containing blocks of DNA which provide new genes to specific strains, thus driving rapid evolution of new traits.
Collapse
Affiliation(s)
- K E Sanderson
- Salmonella Genetic Stock Centre, Department of Biological Sciences, University of Calgary, Alberta, Canada.
| | | |
Collapse
|
47
|
De Ita ME, Marsch-Moreno R, Guzmán P, Alvarez-Morales A. Physical map of the chromosome of the phytopathogenic bacterium Pseudomonas syringae pv. phaseolicola. Microbiology (Reading) 1998; 144:493-501. [DOI: 10.1099/00221287-144-2-493] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas syringae pv. phaseolicola (P.s. phaseolicola) is one of about 45 recognized pathovars within the P. syringae group and is the causal agent of halo-blight disease of beans. DNA from this bacterium digested to completion with two different restriction enzymes, PacI and PmeI, yielded 15 and 16 fragments, respectively. These were separated using PFGE and sized by comparison to known molecular mass markers. The P.s. phaseolicola chromosome was determined to be approximately 5.64 Mb in size. To link the different fragments obtained into a circular chromosome map for both enzymes, 150 random Tn5 mutants of P.s. phaseolicola were used as a source of DNA and the identification of the band carrying the transposon ‘tag’ in each mutant was done after PFGE and Southern hybridization of a complete chromosomal digestion using a Tn5 probe. Partial digestions of DNA from different Tn5 mutants ‘tagging’ specific bands were then generated and the complete and partial products of the digestion separated by PFGE and identified with a Tn5 probe. By calculating the size of the partial products, it was then possible to link different bands into a physical map. This is the first report on the construction of a physical map of a member of the P. syringae group and should be invaluable for molecular genetic analysis in this species and in evolutionary or taxonomic studies when compared to similar data obtained for any of the other recognized pathovars.
Collapse
Affiliation(s)
- M. Esther De Ita
- CINVESTAV, IPN, Unidad Irapuato, Department of Plant Genetic Engineering, Apdo. Postal 629, Irapuato, GTO 36500, Mexico
| | - Rodolfo Marsch-Moreno
- CINVESTAV, IPN, Unidad Irapuato, Department of Plant Genetic Engineering, Apdo. Postal 629, Irapuato, GTO 36500, Mexico
| | - Plinio Guzmán
- CINVESTAV, IPN, Unidad Irapuato, Department of Plant Genetic Engineering, Apdo. Postal 629, Irapuato, GTO 36500, Mexico
| | - Ariel Alvarez-Morales
- CINVESTAV, IPN, Unidad Irapuato, Department of Plant Genetic Engineering, Apdo. Postal 629, Irapuato, GTO 36500, Mexico
| |
Collapse
|
48
|
7.4 Physical Analysis of the Salmonella Typhimurium Genome. METHODS IN MICROBIOLOGY 1998. [DOI: 10.1016/s0580-9517(08)70298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
49
|
Delver EP, Belogurov AA. Organization of the leading region of IncN plasmid pKM101 (R46): a regulation controlled by CUP sequence elements. J Mol Biol 1997; 271:13-30. [PMID: 9300052 DOI: 10.1006/jmbi.1997.1124] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Analysis of the nucleotide sequence of the 13.8 kb leading region of the IncN plasmid pKM101 (a deletion derivative of R46) revealed eight copies of highly conserved repetitive elements, CUP (Conserved UPstream), and at least nine novel open reading frames (ORFs). Appropriate protein products were identified for eight ORFs and the analysis of their deduced amino acid sequences revealed similarities with some well-known proteins (KorA of RK2/RP4, RecX and PsiB) that may play a role in the adaptation of promiscuous plasmids to the new host. Comparison of CUP elements revealed that the CUP core is 417 nucleotides long and consists of two portions that markedly differ in GC content. The larger portion (307 nucleotides) of the core is about 74% GC and contains at least one NotI site, while the other (110 nucleotides) is only about 40% GC. The remarkable features of CUP elements is that five of them are oriented in the same direction and fused in a similar mode to the open reading frames (ORFs) that are able to encode unrelated proteins. The spacings between the right boundary of the CUP core and the potential ATG start codons of these ORFs are slightly different in length (16 to 18 bp), highly divergent in sequence but in all cases contain the conserved hexamer 5'-AGGAGT-3' at the position that is typical for the ribosome binding site of Escherichia coli. The A+T-rich portion of the CUP sequences contains the strong negatively regulated promoter and appears to function as a genetic switch that coordinately controls the expression of CUP-fused genes during the conjugal transfer. These findings suggest that seven plasmid genes fused to the CUP elements including repA and two ard genes encoding positively acting replication protein and antirestriction proteins, respectively, may be members of one regulatory network based on the CUP elements and two plasmid-encoded regulatory proteins ArdK and ArdR. At least, the ArdK protein may act as a typical repressor by binding to the promoter region of the CUP sequence. Most of the structural and functional features of organization of the CUP-controlled regulatory network are associated with the idea that the CUP elements may be involved in the natural genetic engineering process of organizing various functionally related genes in one regulon.
Collapse
Affiliation(s)
- E P Delver
- Department of Genetic Engineering, Cardiology Research Center, Moscow, Russia
| | | |
Collapse
|
50
|
|