1
|
Dissecting the Contribution of Release Factor Interactions to Amber Stop Codon Reassignment Efficiencies of the Methanocaldococcus jannaschii Orthogonal Pair. Genes (Basel) 2018; 9:genes9110546. [PMID: 30424562 PMCID: PMC6266110 DOI: 10.3390/genes9110546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022] Open
Abstract
Non-canonical amino acids (ncAAs) are finding increasing use in basic biochemical studies and biomedical applications. The efficiency of ncAA incorporation is highly variable, as a result of competing system composition and codon context effects. The relative quantitative contribution of the multiple factors affecting incorporation efficiency are largely unknown. This manuscript describes the use of green fluorescent protein (GFP) reporters to quantify the efficiency of amber codon reassignment using the Methanocaldococcus jannaschii orthogonal pair system, commonly employed for ncAA incorporation, and quantify the contribution of release factor 1 (RF1) to the overall efficiency of amino acid incorporation. The efficiencies of amber codon reassignments were quantified at eight positions in GFP and evaluated in multiple combinations. The quantitative contribution of RF1 competition to reassignment efficiency was evaluated through comparisons of amber codon suppression efficiencies in normal and genomically recoded Escherichia coli strains. Measured amber stop codon reassignment efficiencies for eight single stop codon GFP variants ranged from 51 to 117% in E. coli DH10B and 76 to 104% in the RF1 deleted E. coli C321.ΔA.exp. Evaluation of efficiency changes in specific sequence contexts in the presence and absence of RF1 suggested that RF1 specifically interacts with +4 Cs and that the RF1 interactions contributed approximately half of the observed sequence context-dependent variation in measured reassignment efficiency. Evaluation of multisite suppression efficiencies suggests that increasing demand for translation system components limits multisite incorporation in cells with competing RF1.
Collapse
|
2
|
Pott M, Schmidt MJ, Summerer D. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids. ACS Chem Biol 2014; 9:2815-22. [PMID: 25299570 DOI: 10.1021/cb5006273] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expansion of the genetic code with noncanonical amino acids (ncAA) enables the function of proteins to be tailored with high molecular precision. In this approach, the ncAA is charged to an orthogonal nonsense suppressor tRNA by an aminoacyl-tRNA-synthetase (aaRS) and incorporated into the target protein in vivo by suppression of nonsense codons in the mRNA during ribosomal translation. Compared to sense codon translation, this process occurs with reduced efficiency. However, it is still poorly understood, how the local sequence context of the nonsense codon affects suppression efficiency. Here, we report sequence contexts for highly efficient suppression of the widely used amber codon in E. coli for the orthogonal Methanocaldococcus jannaschii tRNA(Tyr)/TyrRS and Methanosarcina mazei tRNA(Pyl)/PylRS pairs. In vivo selections of sequence context libraries consisting of each two random codons directly up- and downstream of an amber codon afforded contexts with strong preferences for particular mRNA nucleotides and/or amino acids that markedly differed from preferences of contexts obtained in control selections with sense codons. The contexts provided high amber suppression efficiencies with little ncAA-dependence that were transferrable between proteins and resulted in protein expression levels of 70-110% compared to levels of control proteins without amber codon. These sequence contexts represent stable tags for robust and highly efficient incorporation of ncAA into proteins in standard E. coli strains and provide general design rules for the engineering of amber codons into target genes.
Collapse
Affiliation(s)
- Moritz Pott
- Department
of Chemistry,
Zukunftskolleg and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78457, Germany
| | - Moritz Johannes Schmidt
- Department
of Chemistry,
Zukunftskolleg and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78457, Germany
| | - Daniel Summerer
- Department
of Chemistry,
Zukunftskolleg and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78457, Germany
| |
Collapse
|
3
|
The effects of codon context on in vivo translation speed. PLoS Genet 2014; 10:e1004392. [PMID: 24901308 PMCID: PMC4046918 DOI: 10.1371/journal.pgen.1004392] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/04/2014] [Indexed: 11/19/2022] Open
Abstract
We developed a bacterial genetic system based on translation of the his operon leader peptide gene to determine the relative speed at which the ribosome reads single or multiple codons in vivo. Low frequency effects of so-called "silent" codon changes and codon neighbor (context) effects could be measured using this assay. An advantage of this system is that translation speed is unaffected by the primary sequence of the His leader peptide. We show that the apparent speed at which ribosomes translate synonymous codons can vary substantially even for synonymous codons read by the same tRNA species. Assaying translation through codon pairs for the 5'- and 3'- side positioning of the 64 codons relative to a specific codon revealed that the codon-pair orientation significantly affected in vivo translation speed. Codon pairs with rare arginine codons and successive proline codons were among the slowest codon pairs translated in vivo. This system allowed us to determine the effects of different factors on in vivo translation speed including Shine-Dalgarno sequence, rate of dipeptide bond formation, codon context, and charged tRNA levels.
Collapse
|
4
|
Albayrak C, Swartz JR. Cell-free co-production of an orthogonal transfer RNA activates efficient site-specific non-natural amino acid incorporation. Nucleic Acids Res 2013; 41:5949-63. [PMID: 23589624 PMCID: PMC3675464 DOI: 10.1093/nar/gkt226] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We describe a new cell-free protein synthesis (CFPS) method for site-specific incorporation of non-natural amino acids (nnAAs) into proteins in which the orthogonal tRNA (o-tRNA) and the modified protein (i.e. the protein containing the nnAA) are produced simultaneously. Using this method, 0.9–1.7 mg/ml of modified soluble super-folder green fluorescent protein (sfGFP) containing either p-azido-l-phenylalanine (pAzF) or p-propargyloxy-l-phenylalanine (pPaF) accumulated in the CFPS solutions; these yields correspond to 50–88% suppression efficiency. The o-tRNA can be transcribed either from a linearized plasmid or from a crude PCR product. Comparison of two different o-tRNAs suggests that the new platform is not limited by Ef-Tu recognition of the acylated o-tRNA at sufficiently high o-tRNA template concentrations. Analysis of nnAA incorporation across 12 different sites in sfGFP suggests that modified protein yields and suppression efficiencies (i.e. the position effect) do not correlate with any of the reported trends. Sites that were ineffectively suppressed with the original o-tRNA were better suppressed with an optimized o-tRNA (o-tRNAopt) that was evolved to be better recognized by Ef-Tu. This new platform can also be used to screen scissile ribozymes for improved catalysis.
Collapse
Affiliation(s)
- Cem Albayrak
- Department of Chemical Engineering, Stanford University, 381 North-South Mall, Stanford, CA 94305, USA
| | | |
Collapse
|
5
|
Qu P, Yang X, Li X, Zhou X, Zhao XS. Direct measurement of the rates and barriers on forward and reverse diffusions of intramolecular collision in overhang oligonucleotides. J Phys Chem B 2010; 114:8235-43. [PMID: 20504003 DOI: 10.1021/jp101173y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dynamics of end-to-interior (Type I) and end-to-end (Type II) collisions in a dangling overhang anchored on a double-stranded DNA (dsDNA) was studied by monitoring the fluorescence quenching of tetramethylrhodamine (TMR) by guanosine residues through combining photoinduced electron transfer (PET) with fluorescence correlation spectroscopy (FCS) at different temperatures. TMR and guanosine residues are separated by a double helix with dangling bases ranging from 2 to 16. By analyzing the FCS data, we obtained the forward and reverse intrachain diffusion rate constants and respective barriers. For both Type I and Type II collisions, the intrachain diffusion rates followed the scaling law of the Gaussian chain model. Especially, the reverse intrachain diffusion rate was insensitive to the base length of separation. Both the activation enthalpy and activation entropy of the forward and reverse diffusions were length independent. The comparison between Type I and Type II collisions shows that the collision rate of end-to-interior is slower than that of end-to-end. The phenomenon is further checked in detail by a series of dangling DNA with the same separation length but different tail lengths (Type III).
Collapse
Affiliation(s)
- Peng Qu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
6
|
Yan Z, Rao Ramisetty S, Bolton PH, Baranger AM. Selective Recognition of RNA Helices Containing Dangling Ends by a Quinoline Derivative. Chembiochem 2007; 8:1658-61. [PMID: 17654628 DOI: 10.1002/cbic.200700261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhaohui Yan
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | | | | | | |
Collapse
|
7
|
|
8
|
Abstract
Although chemists can synthesize virtually any small organic molecule, our ability to rationally manipulate the structures of proteins is quite limited, despite their involvement in virtually every life process. For most proteins, modifications are largely restricted to substitutions among the common 20 amino acids. Herein we describe recent advances that make it possible to add new building blocks to the genetic codes of both prokaryotic and eukaryotic organisms. Over 30 novel amino acids have been genetically encoded in response to unique triplet and quadruplet codons including fluorescent, photoreactive, and redox-active amino acids, glycosylated amino acids, and amino acids with keto, azido, acetylenic, and heavy-atom-containing side chains. By removing the limitations imposed by the existing 20 amino acid code, it should be possible to generate proteins and perhaps entire organisms with new or enhanced properties.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
9
|
Gao X, Havecker ER, Baranov PV, Atkins JF, Voytas DF. Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA (NEW YORK, N.Y.) 2003; 9:1422-30. [PMID: 14623998 PMCID: PMC1370496 DOI: 10.1261/rna.5105503] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Because of their compact genomes, retroelements (including retrotransposons and retroviruses) employ a variety of translational recoding mechanisms to express Gag and Pol. To assess the diversity of recoding strategies, we surveyed gag/pol gene organization among retroelements from diverse host species, including elements exhaustively recovered from the genome sequences of Caenorhabditis elegans, Drosophila melanogaster, Schizosaccharomyces pombe, Candida albicans, and Arabidopsis thaliana. In contrast to the retroviruses, which typically encode pol in the -1 frame relative to gag, nearly half of the retroelements surveyed encode a single gag-pol open reading frame. This was particularly true for the Ty1/copia group retroelements. Most animal Ty3/gypsy retroelements, on the other hand, encode gag and pol in separate reading frames, and likely express Pol through +1 or -1 frameshifting. Conserved sequences conforming to slippery sites that specify viral ribosomal frameshifting were identified among retroelements with pol in the -1 frame. None of the plant retroelements encoded pol in the -1 frame relative to gag; however, two closely related plant Ty3/gypsy elements encode pol in the +1 frame. Interestingly, a group of plant Ty1/copia retroelements encode pol either in a +1 frame relative to gag or in two nonoverlapping reading frames. These retroelements have a conserved stem-loop at the end of gag, and likely express pol either by a novel means of internal ribosomal entry or by a bypass mechanism.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
10
|
Ohmichi T, Nakano SI, Miyoshi D, Sugimoto N. Long RNA dangling end has large energetic contribution to duplex stability. J Am Chem Soc 2002; 124:10367-72. [PMID: 12197739 DOI: 10.1021/ja0255406] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Long terminal unpaired nucleotides known as dangling ends play interesting roles in biological systems. Previous studies, however, only dealt with the energy contributions of single dangling bases. The energy contributions of long dangling ends on the stability of duplexes have not been systematically studied. We now report a quantitative increase in stability of RNA-RNA and DNA-DNA duplexes containing a long dangling end. We found a larger enhancement of the stability by the long RNA dangling end of the RNA-RNA duplex than has been observed for the DNA duplexes. It is also found that structural stabilizations by long dangling ends seem to originate from the single-stranded stacking interactions of nucleotides. These results indicate that RNA stability can be achieved by increasing the length of the dangling end. The thermodynamic parameters of the long dangling ends are useful for designing ribozymes and antisense oligonucleotides, and for the prediction of the RNA secondary structure like the pseudoknot.
Collapse
Affiliation(s)
- Tatsuo Ohmichi
- High Technology Research Center and Department of Chemistry, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | | | | | | |
Collapse
|
11
|
Harrell L, Melcher U, Atkins JF. Predominance of six different hexanucleotide recoding signals 3' of read-through stop codons. Nucleic Acids Res 2002; 30:2011-7. [PMID: 11972340 PMCID: PMC113845 DOI: 10.1093/nar/30.9.2011] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Redefinition of UAG, UAA and UGA to specify a standard amino acid occurs in response to recoding signals present in a minority of mRNAs. This 'read-through' is in competition with termination and is utilized for gene expression. One of the recoding signals known to stimulate read-through is a hexanucleotide sequence of the form CARYYA 3' adjacent to the stop codon. The present work finds that of the 91 unique viral sequences annotated as read-through, 90% had one of six of the 64 possible codons immediately 3' of the read-through stop codon. The relative efficiency of these read-through contexts in mammalian tissue culture cells has been determined using a dual luciferase fusion reporter. The relative importance of the identity of several individual nucleotides in the different hexanucleotides is complex.
Collapse
Affiliation(s)
- Lance Harrell
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
12
|
Magliery TJ, Anderson J, Schultz PG. Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of "shifty" four-base codons with a library approach in Escherichia coli. J Mol Biol 2001; 307:755-69. [PMID: 11273699 PMCID: PMC7125544 DOI: 10.1006/jmbi.2001.4518] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Naturally occurring tRNA mutants are known that suppress +1 frameshift mutations by means of an extended anticodon loop, and a few have been used in protein mutagenesis. In an effort to expand the number of possible ways to uniquely and efficiently encode unnatural amino acids, we have devised a general strategy to select tRNAs with the ability to suppress four-base codons from a library of tRNAs with randomized 8 or 9 nt anticodon loops. Our selectants included both known and novel suppressible four-base codons and resulted in a set of very efficient, non-cross-reactive tRNA/four-base codon pairs for AGGA, UAGA, CCCU and CUAG. The most efficient four-base codon suppressors had Watson-Crick complementary anticodons, and the sequences of the anticodon loops outside of the anticodons varied with the anticodon. Additionally, four-base codon reporter libraries were used to identify "shifty" sites at which +1 frameshifting is most favorable in the absence of suppressor tRNAs in Escherichia coli. We intend to use these tRNAs to explore the limits of unnatural polypeptide biosynthesis, both in vitro and eventually in vivo. In addition, this selection strategy is being extended to identify novel five- and six-base codon suppressors.
Collapse
MESH Headings
- Amino Acid Sequence
- Ampicillin/pharmacology
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Pairing
- Base Sequence
- Cephalosporins/metabolism
- Codon/chemistry
- Codon/genetics
- Codon/metabolism
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Frameshift Mutation/genetics
- Gene Expression Regulation, Bacterial/drug effects
- Gene Library
- Genes, Reporter/genetics
- Genetic Code/genetics
- Molecular Sequence Data
- Mutagenesis
- Protein Biosynthesis/drug effects
- Protein Biosynthesis/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- Serine/genetics
- Serine/metabolism
- Substrate Specificity
- Suppression, Genetic/genetics
- beta-Lactamases/biosynthesis
- beta-Lactamases/chemistry
- beta-Lactamases/genetics
Collapse
Affiliation(s)
- Thomas J Magliery
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - J.Christopher Anderson
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Peter G Schultz
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
- Corresponding author
| |
Collapse
|
13
|
Moore B, Persson BC, Nelson CC, Gesteland RF, Atkins JF. Quadruplet codons: implications for code expansion and the specification of translation step size. J Mol Biol 2000; 298:195-209. [PMID: 10764591 DOI: 10.1006/jmbi.2000.3658] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the requirements for engineering expansion of the genetic code is a unique codon which is available for specifying the new amino acid. The potential of the quadruplet UAGA in Escherichia coli to specify a single amino acid residue in the presence of a mutant tRNA(Leu) molecule containing the extra nucleotide, U, at position 33.5 of its anticodon loop has been examined. With this mRNA-tRNA combination and at least partial inactivation of release factor 1, the UAGA quadruplet specifies a leucine residue with an efficiency of 13 to 26 %. The decoding properties of tRNA(Leu) with U at position 33.5 of its eight-membered anticodon loop, and a counterpart with A at position 33.5, strongly suggest that in both cases their anticodon loop bases stack in alternative conformations. The identity of the codon immediately 5' of the UAGA quadruplet influences the efficiency of quadruplet translation via the properties of its cognate tRNA. When there is the potential for the anticodon of this tRNA to dissociate from pairing with its codon and to re-pair to mRNA at a nearby 3' closely matched codon, the efficiency of quadruplet translation at UAGA is reduced. Evidence is presented which suggests that when there is a purine base at position 32 of this 5' flanking tRNA, it influences decoding of the UAGA quadruplet.
Collapse
MESH Headings
- Amino Acid Sequence
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Sequence
- Codon/chemistry
- Codon/genetics
- Codon/metabolism
- Codon, Terminator/genetics
- Evolution, Molecular
- Frameshifting, Ribosomal/genetics
- Genes, Reporter/genetics
- Genetic Code/genetics
- Mass Spectrometry
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis/genetics
- Proteins/chemistry
- Proteins/genetics
- RNA Probes/chemistry
- RNA Probes/genetics
- RNA Probes/metabolism
- RNA, Transfer, Leu/chemistry
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Leu/metabolism
- Sequence Analysis, Protein
- Suppression, Genetic/genetics
Collapse
Affiliation(s)
- B Moore
- Department of Human Genetics, University of Utah, 15N 2030E Rm 7410, Salt Lake City, UT 84112-5330, USA
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Liu Z, Reches M, Engelberg-Kulka H. A sequence in the Escherichia coli fdhF "selenocysteine insertion Sequence" (SECIS) operates in the absence of selenium. J Mol Biol 1999; 294:1073-86. [PMID: 10600367 DOI: 10.1006/jmbi.1999.3307] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The UGA codon context of the Escherichia coli fdhF mRNA includes an element called the selenocysteine insertion sequence (SECIS) that is responsible for the UGA-directed incorporation of the amino acid selenocysteine into a protein. Here, we describe an extended fdhF SECIS that includes the information for an additional function: the prevention of UGA readthrough under conditions of selenium deficiency. This information is contained in a short mRNA region consisting of a single C residue adjacent to the UGA on its downstream side, and an additional segment consisting of the six nucleotides immediately upstream from it. These two regions act independently and additively, and probably through different mechanisms. The single C residue acts as itself; the upstream region acts at the level of the two amino acids, arginine and valine, for which it codes. These two codons at the 5' side of the UGA correspond to the ribosomal E and P sites. Here, we present a model for the E. coli fdhF SECIS as a multifunctional RNA structure containing three functional elements. Depending on the availability of selenium, the SECIS enables one of two alternatives for the translational machinery: either selenocysteine incorporation into a polypeptide or termination of the polypeptide chain.
Collapse
Affiliation(s)
- Z Liu
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | | | | |
Collapse
|
16
|
Sundararajan A, Michaud WA, Qian Q, Stahl G, Farabaugh PJ. Near-cognate peptidyl-tRNAs promote +1 programmed translational frameshifting in yeast. Mol Cell 1999; 4:1005-15. [PMID: 10635325 DOI: 10.1016/s1097-2765(00)80229-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Translational frameshifting is a ubiquitous, if rare, form of alternative decoding in which ribosomes spontaneously shift reading frames during translation elongation. In studying +1 frameshifting in Ty retrotransposons of the yeast S. cerevisiae, we previously showed that unusual P site tRNAs induce frameshifting. The frameshift-inducing tRNAs we show here are near-cognates for the P site codon. Their abnormal decoding induces frameshifting in either of two ways: weak codon-anticodon pairing allows the tRNA to disengage from the mRNA and slip +1, or an unusual codon-anticodon structure interferes with cognate in-frame decoding allowing out-of-frame decoding in the A site. We draw parallels between this mechanism and a proposed mechanism of frameshift suppression by mutant tRNAs.
Collapse
Affiliation(s)
- A Sundararajan
- Department of Biological Sciences, University of Maryland, Baltimore County 21250, USA
| | | | | | | | | |
Collapse
|
17
|
Cload ST, Liu DR, Froland WA, Schultz PG. Development of improved tRNAs for in vitro biosynthesis of proteins containing unnatural amino acids. CHEMISTRY & BIOLOGY 1996; 3:1033-8. [PMID: 9000011 DOI: 10.1016/s1074-5521(96)90169-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Chemically aminoacylated suppressor tRNAs have previously been used in vitro to generate mutant proteins in which unnatural amino acids are incorporated site-specifically. Although the existing methodology often provides adequate quantities of mutant proteins, the suppression efficiencies of some unnatural amino acids are not high enough to yield useful amounts of protein. In an effort to make this useful mutagenesis strategy more general, we report here the results of a search to find alternative tRNAs as a way of increasing suppression efficiencies. RESULTS Three suppressor tRNAs have been generated by runoff transcription and their ability to deliver unnatural amino acids site-specifically into proteins has been assessed in an E. coli-derived in vitro transcription/translation system. Analysis of their ability to insert both polar and nonpolar residues in response to an amber codon in two proteins suggests that an E. coli tRNAAsn-derived suppressor offers a significant improvement in suppression efficiency over other previously used tRNAs. CONCLUSIONS Use of an E. coli tRNAAsn-derived suppressor may provide substantially higher yields of proteins containing unnatural amino acids, in addition to offering a broader tolerance for polar amino acids. A comparison of suppressor tRNAs derived from tRNAAsn, tRNAGln or tRNAAsp with that derived from tRNAPhe supports emerging evidence that the identity of an amino acid may be important in message recognition.
Collapse
Affiliation(s)
- S T Cload
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
18
|
Curran JF, Poole ES, Tate WP, Gross BL. Selection of aminoacyl-tRNAs at sense codons: the size of the tRNA variable loop determines whether the immediate 3' nucleotide to the codon has a context effect. Nucleic Acids Res 1995; 23:4104-8. [PMID: 7479072 PMCID: PMC307350 DOI: 10.1093/nar/23.20.4104] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Codon context can affect translational efficiency by several molecular mechanisms. The base stacking interactions between a codon-anticodon complex and the neighboring nucleotide immediately 3' can facilitate translation by amber suppressors and the tRNA structure is also known to modulate the sensitivity to context. In this study the relative rates of aminoacyl-tRNA selection were measured at four sense codons (UGG, CUC, UUC and UCA), in all four 3' nucleotide contexts, through direct competition with a programmed frameshift at a site derived from the release factor 2 gene. Two codons (UGG and UUC) are read by tRNAs with small variable regions and their rates of aminoacyl-tRNA selection correlated with the potential base stacking strength of the 3' neighboring nucleotide. The other two codons (CUC and UCA) are read by tRNAs with large variable regions and the rate of selection of the aminoacyl-tRNAs in these cases varied little among the four contexts. Re-examination of published data on amber suppression also revealed an inverse correlation between context sensitivity and the size of the variable region. Collectively the data suggest that a large variable loop in a tRNA decreases the influence of the 3' context on tRNA selection, probably by strengthening tRNA-ribosomal interactions.
Collapse
Affiliation(s)
- J F Curran
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | | | | |
Collapse
|
19
|
Cornish VW, Mendel D, Schultz PG. Untersuchungen von Struktur und Funktion von Proteinen mit einem erweiterten genetischen Code. Angew Chem Int Ed Engl 1995. [DOI: 10.1002/ange.19951070604] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Farabaugh PJ, Zhao H, Vimaladithan A. A novel programed frameshift expresses the POL3 gene of retrotransposon Ty3 of yeast: frameshifting without tRNA slippage. Cell 1993; 74:93-103. [PMID: 8267715 PMCID: PMC7172889 DOI: 10.1016/0092-8674(93)90297-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Most retroviruses and retrotransposons express their pol gene as a translational fusion to the upstream gag gene, often involving translational frameshifting. We describe here an unusual translational frameshift event occurring between the GAG3 and POL3 genes of the retrotransposon Ty3 of yeast. A +1 frameshift occurs within the sequence GCG AGU U (shown as codons of GAG3), encoding alanine-valine (GCG A GUU). Unlike other programed translational frameshifts described, this event does not require tRNA slippage between cognate or near-cognate codons in the mRNA. Two features distal to the GCG codon stimulate frameshifting. The low availability of the tRNA specific for the "hungry" serine codon, AGU, induces a translational pause required for frameshifting. A sequence of 12 nt distal to the AGU codon (termed the Ty3 "context") also stimulates the event.
Collapse
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland, Baltimore 21228
| | | | | |
Collapse
|
21
|
Zerfass K, Beier H. Pseudouridine in the anticodon G psi A of plant cytoplasmic tRNA(Tyr) is required for UAG and UAA suppression in the TMV-specific context. Nucleic Acids Res 1992; 20:5911-8. [PMID: 1461724 PMCID: PMC334454 DOI: 10.1093/nar/20.22.5911] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have previously isolated and sequenced Nicotiana cytoplasmic tRNA(Tyr) with G psi A anticodon which promotes readthrough over the leaky UAG termination codon at the end of the 126 K cistron of tobacco mosaic virus RNA and we have demonstrated that tRNA(Tyr) with Q psi A anticodon is no UAG suppressor. Here we show that the nucleotide in the middle of the anticodon (i.e., psi 35) also contributes to the suppressor efficiency displayed by cytoplasmic tRNA(Tyr). A tRNA(Tyr) with GUA anticodon was synthesized in vitro using T7 RNA polymerase transcription. This tRNA(Tyr) was unable to suppress the UAG codon, indicating that nucleotide modifications in the anticodon of tRNA(Tyr) have either stimulating (i.e., psi 35) or inhibitory (i.e., Q34) effects on suppressor activity. Furthermore, we have shown that the UAA but not the UGA stop codon is also efficiently recognized by tobacco tRNA(G psi ATyr), if placed in the TMV context. Hence this is the first naturally occurring tRNA for which UAA suppressor activity has been demonstrated. In order to study the influence of neighbouring nucleotides on the readthrough capacity of tRNA(Tyr), we have established a system, in which part of the sequence around the leaky UAG codon of TMV RNA was inserted into a zein pseudogene which naturally harbours an UAG codon in the middle of the gene. The construct was cloned into the vector pSP65 and in vitro transcripts, generated by SP6 RNA polymerase, were translated in a wheat germ extract depleted of endogenous mRNAs and tRNAs. A number of mutations in the codons flanking the UAG were introduced by site-directed mutagenesis. It was found that changes at specific positions of the two downstream codons completely abolished the readthrough over the UAG by Nicotiana tRNA(Tyr), indicating that this tRNA needs a very specific codon context for its suppressor activity.
Collapse
Affiliation(s)
- K Zerfass
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | |
Collapse
|
22
|
Kopelowitz J, Hampe C, Goldman R, Reches M, Engelberg-Kulka H. Influence of codon context on UGA suppression and readthrough. J Mol Biol 1992; 225:261-9. [PMID: 1375653 DOI: 10.1016/0022-2836(92)90920-f] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We studied the influence of the codon context on UGA suppression by a suppressor tRNA and on UGA readthrough by a normal tRNA in Escherichia coli. This was done by a series of constructs where only the immediate context of the TGA codon was varied by only one nucleotide at a time. For both UGA suppression and UGA readthrough the codon context had a similar influence according to the following rules. (1) The nature of the nucleotide immediately adjacent to the 3' side of the UGA is an important determinant; at that position the level of UGA translation is influenced by the nucleotides in the order A greater than G greater than C greater than U. (2) At extremely high or low levels of UGA translation this influence of the adjacent 3' nucleotide is not seen. (3) In all cases, the nature of both the nucleotide immediately adjacent to the 5' side of the codon and that following the base adjacent to the 3' side of the codon have little effect, if any, on UGA translation. The varying influence of the codon context effect on UGA translation is discussed in relation to its role in gene expression.
Collapse
Affiliation(s)
- J Kopelowitz
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
23
|
Mutational analysis of conserved positions potentially important for initiator tRNA function in Saccharomyces cerevisiae. Mol Cell Biol 1992. [PMID: 1549105 DOI: 10.1128/mcb.12.4.1432] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conserved positions of the eukaryotic cytoplasmic initiator tRNA have been suggested to be important for the initiation of protein synthesis. However, the role of these positions is not known. We describe in this report a functional analysis of the yeast initiator methionine tRNA (tRNA(iMet)), using a novel in vivo assay system which is not dependent on suppressor tRNAs. Strains of Saccharomyces cerevisiae with null alleles of the four initiator methionine tRNA (IMT) genes were constructed. Consequently, growth of these strains was dependent on tRNA(iMet) encoded from a plasmid-derived gene. We used these strains to investigate the significance of the conserved nucleosides of yeast tRNA(iMet) in vivo. Nucleotide substitutions corresponding to the nucleosides of the yeast elongator methionine tRNA (tRNA(MMet)) have been made at all conserved positions to identify the positions that are important for tRNA(iMet) to function in the initiation process. Surprisingly, nucleoside changes in base pairs 3-70, 12-23, 31-39, and 29-41, as well as expanding loop I by inserting an A at position 17 (A17) had no effect on the tester strain. Nucleotide substitutions in positions 54 and 60 to cytidines and guanosines (C54, G54, C60, and G60) did not prevent cell growth. In contrast, the double mutation U/rT54C60 blocked cell growth, and changing the A-U base pair 1-72 to a G-C base pair was deleterious to the cell, although these tRNAs were synthesized and accepted methionine in vitro. From our data, we suggest that an A-U base pair in position 1-72 is important for tRNA(iMet) function, that the hypothetical requirement for adenosines at positions 54 and 60 is invalid, and that a U/rT at position 54 is an antideterminant distinguishing an elongator from an initiator tRNA in the initiation of translation.
Collapse
|
24
|
von Pawel-Rammingen U, Aström S, Byström AS. Mutational analysis of conserved positions potentially important for initiator tRNA function in Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:1432-42. [PMID: 1549105 PMCID: PMC369584 DOI: 10.1128/mcb.12.4.1432-1442.1992] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The conserved positions of the eukaryotic cytoplasmic initiator tRNA have been suggested to be important for the initiation of protein synthesis. However, the role of these positions is not known. We describe in this report a functional analysis of the yeast initiator methionine tRNA (tRNA(iMet)), using a novel in vivo assay system which is not dependent on suppressor tRNAs. Strains of Saccharomyces cerevisiae with null alleles of the four initiator methionine tRNA (IMT) genes were constructed. Consequently, growth of these strains was dependent on tRNA(iMet) encoded from a plasmid-derived gene. We used these strains to investigate the significance of the conserved nucleosides of yeast tRNA(iMet) in vivo. Nucleotide substitutions corresponding to the nucleosides of the yeast elongator methionine tRNA (tRNA(MMet)) have been made at all conserved positions to identify the positions that are important for tRNA(iMet) to function in the initiation process. Surprisingly, nucleoside changes in base pairs 3-70, 12-23, 31-39, and 29-41, as well as expanding loop I by inserting an A at position 17 (A17) had no effect on the tester strain. Nucleotide substitutions in positions 54 and 60 to cytidines and guanosines (C54, G54, C60, and G60) did not prevent cell growth. In contrast, the double mutation U/rT54C60 blocked cell growth, and changing the A-U base pair 1-72 to a G-C base pair was deleterious to the cell, although these tRNAs were synthesized and accepted methionine in vitro. From our data, we suggest that an A-U base pair in position 1-72 is important for tRNA(iMet) function, that the hypothetical requirement for adenosines at positions 54 and 60 is invalid, and that a U/rT at position 54 is an antideterminant distinguishing an elongator from an initiator tRNA in the initiation of translation.
Collapse
|
25
|
Sugimoto N, Matsumura A, Hasegawa K, Sasaki M. Effect of Unpaired Terminal Nucleotides of Substrate RNAs on the RNA Ligation with T4 RNA Ligase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1991. [DOI: 10.1246/bcsj.64.2978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Sugimoto N, Hasegawa K, Matsumura A, Sasaki M. Effect of Dangling Ends on the Double-Helix Melting of Ribooligonucleotides at Different Na+Concentrations. CHEM LETT 1991. [DOI: 10.1246/cl.1991.1291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Pedersen WT, Curran JF. Effects of the nucleotide 3' to an amber codon on ribosomal selection rates of suppressor tRNA and release factor-1. J Mol Biol 1991; 219:231-41. [PMID: 2038055 DOI: 10.1016/0022-2836(91)90564-m] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rates of ribosomal selection of both release factor 1 (RF1) and a suppressor tRNA (Su7C33) were studied at an amber codon at which the 3' neighbor was permuted. Rates of RF1 selection vary 2.6-fold among contexts. The 3' neighbor-dependent variation of RF1 action correlates very strongly with the non-random frequencies of 3' neighbors at UAG terminators (r = 0.97), which argues that the rate of RF1 selection is an important determinant 3' neighbor choice at termination codons. The data are consistent with a model for RF1 selection in which RF1 makes a specific contact(s) to the 3' neighbor and that this interaction is most favorable to uridylic acid. Measured rates of Su7C33 selection vary fivefold among 3' contexts. We also develop a method to calculate rates of selection for other suppressors, based on the assumption that rates of RF1 selection at each 3' context can be generalized to other sites that have the same 3' neighbor. Rates for various suppressors appear to vary from two- to fivefold depending on the 3' neighbor. Generally, the rate of selection of suppressors at different contexts correlates with the stacking strength of the 3' neighbor as measured in vitro. The two- to fivefold range of 3' neighbor effects on rate of aminoacyl-tRNA selection is greater than that previously observed within sets of codons read by the same tRNA. It is suggested that the choice of codons to achieve favorable contexts may be more important than the choice of a common codon at some message sites.
Collapse
Affiliation(s)
- W T Pedersen
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109
| | | |
Collapse
|
28
|
Lawrence JG, Hartl DL. Unusual codon bias occurring within insertion sequences in Escherichia coli. Genetica 1991; 84:23-9. [PMID: 1651881 DOI: 10.1007/bf00123981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The large open reading frames of insertion sequences from Escherichia coli were examined for their spatial pattern of codon usage bias and distribution of rarely used codons. There is a bias in codon usage that is generally lower toward the terminal ends of the coding regions, which is reflected in the occurrence of an excess of nonpreferred codons in the 3' portions of the coding regions as compared with the 5' portions. In contrast, typical chromosomal genes have a lower codon usage bias toward the 5' ends of the coding regions. These results imply that the selective forces reflected in codon usage bias may differ according to position within the coding sequence. In addition, these constraints apparently differ in important ways between genes contained in insertion sequences and those in the chromosome.
Collapse
Affiliation(s)
- J G Lawrence
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|
29
|
Ericson JU, Björk GR. tRNA anticodons with the modified nucleoside 2-methylthio-N6-(4-hydroxyisopentenyl)adenosine distinguish between bases 3' of the codon. J Mol Biol 1991; 218:509-16. [PMID: 2016742 DOI: 10.1016/0022-2836(91)90697-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The modified nucleoside 2-methylthio-N6-(4-hydroxyisopentenyl)adenosine (ms2io6A) is present immediately to the 3' side of the anticodon (position 37) in tRNAs that read codons starting with uridine and hence include amber (UAG) suppressor tRNAs. We have used strains of Salmonella typhimurium that differ only in their ability to synthesize ms2io6A in order to determine specifically how this modified nucleoside influences the efficiency of amber suppression in two codon contexts differing by only which base is 3' of the codon. The results show that the presence of the modified nucleoside ms2io6A not only improves the efficiency of the suppressor tRNAs but also allows them to distinguish between at least two bases 3' of the codon. Thus, the presence of ms2io6A reduces the intrinsic codon context sensitivity of the tRNA and specifically counteracts an unfavourable nucleotide on the 3' side of the codon. The possible codon-anticodon interactions responsible for this effect are discussed.
Collapse
Affiliation(s)
- J U Ericson
- Department of Microbiology, University of Umeå, Sweden
| | | |
Collapse
|
30
|
Hatfield DL, Smith DW, Lee BJ, Worland PJ, Oroszlan S. Structure and function of suppressor tRNAs in higher eukaryotes. Crit Rev Biochem Mol Biol 1990; 25:71-96. [PMID: 2183969 DOI: 10.3109/10409239009090606] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- D L Hatfield
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Ticher A, Graur D. Nucleic acid composition, codon usage, and the rate of synonymous substitution in protein-coding genes. J Mol Evol 1989; 28:286-98. [PMID: 2499685 DOI: 10.1007/bf02103424] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Based on the rates of synonymous substitution in 42 protein-coding gene pairs from rat and human, a correlation is shown to exist between the frequency of the nucleotides in all positions of the codon and the synonymous substitution rate. The correlation coefficients were positive for A and T and negative for C and G. This means that AT-rich genes accumulate more synonymous substitutions than GC-rich genes. Biased patterns of mutation could not account for this phenomenon. Thus, the variation in synonymous substitution rates and the resulting unequal codon usage must be the consequence of selection against A and T in synonymous positions. Most of the variation in rates of synonymous substitution can be explained by the nucleotide composition in synonymous positions. Codon-anticodon interactions, dinucleotide frequencies, and contextual factors influence neither the rates of synonymous substitution nor codon usage. Interestingly, the nucleotide in the second position of codons (always a nonsynonymous position) was found to affect the rate of synonymous substitution. This finding links the rate of nonsynonymous substitution with the synonymous rate. Consequently, highly conservative proteins are expected to be encoded by genes that evolve slowly in terms of synonymous substitutions, and are consequently highly biased in their codon usage.
Collapse
Affiliation(s)
- A Ticher
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
33
|
Luce MC, Bunn CL. Decreased accuracy of protein synthesis in extracts from aging human diploid fibroblasts. Exp Gerontol 1989; 24:113-25. [PMID: 2721600 DOI: 10.1016/0531-5565(89)90022-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The accuracy of protein synthesis has been measured in extracts from human diploid fibroblasts of different ages. Extracts were supplied with purified mRNA for the coat protein of the cowpea variant of tobacco mosaic virus (CcTMV), which lacks codons for cysteine and methionine. The presence of 35S-cysteine in CcTMV coat protein synthesized during translation reactions therefore represents translational error. Translation reactions were performed with extracts from young fibroblasts (less than 50% of life span completed) and old fibroblasts (more than 90% of life span completed), and the translation products were purified by immunoprecipitation and analyzed by polyacrylamide gel electrophoresis. The error frequency increased from 4.2 x 10(-5) cysteines/amino acid in young cell extracts to 2.9 x 10(-4) cysteines/amino acid in old cell extracts. Cysteine incorporation was not due to nonspecific binding, and could be increased approximately sixfold by the addition of the misreading antibiotic, paromomycin. It is concluded that translational accuracy is not stable during aging in vitro, and it is proposed that this decrease in the fidelity of information transfer could be responsible for the variety of changes observed in aging cultured human cells.
Collapse
Affiliation(s)
- M C Luce
- Department of Biology, University of South Carolina, Columbia 29208
| | | |
Collapse
|
34
|
Eggertsson G, Söll D. Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli. Microbiol Rev 1988; 52:354-74. [PMID: 3054467 PMCID: PMC373150 DOI: 10.1128/mr.52.3.354-374.1988] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Martin R, Hearn M, Jenny P, Gallant J. Release factor competition is equivalent at strong and weakly suppressed nonsense codons. MOLECULAR & GENERAL GENETICS : MGG 1988; 213:144-9. [PMID: 3065609 DOI: 10.1007/bf00333411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have compared the competition between strong or weak suppressor tRNAs and translational release factors (RF) at nonsense codons in the lacI gene of Escherichia coli. Using the F'lacIZ fusions developed by Miller and coworkers, UAG, UAA, and UGA codons at positions 189 and 220 were efficiently suppressed by plasmid-borne tRNA(trp) suppressors cognate to each nonsense triplet. Introduction of a compatible RF 1 plasmid competed at UAG and UAA but not UGA codons. An RF2 expressing plasmid competed at UAA and UGA but had little effect at UAG. Release factor competition against weak suppressors was measured using combinations of noncognate suppressors and nonsense codons. In each case, release factor plasmids behaved identically towards poorly suppressed codons as they did when the same codons were efficiently suppressed. The implications for these studies on the role of release factors in nonsense suppression context effects are discussed.
Collapse
Affiliation(s)
- R Martin
- Department of Genetics, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
36
|
Abstract
Messenger RNA's are translated in successive three-nucleotide steps (a reading frame), therefore decoding must proceed in only one of three possible frames. A molecular model for correct propagation of the frame is presented based on (i) the measured translational properties of transfer RNA's (tRNA's) that contain an extra nucleotide in the anticodon loop and (ii) a straightforward concept about anticodon loop structure. The model explains the high accuracy of reading frame maintenance by normal tRNA's, as well as activities of all characterized frameshift suppressor tRNA's that have altered anticodon loops.
Collapse
Affiliation(s)
- J F Curran
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309
| | | |
Collapse
|
37
|
Precup J, Parker J. Missense misreading of asparagine codons as a function of codon identity and context. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)60966-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Buckingham K, Chung DG, Neilson T, Ganoza MC. Recognition of translational termination signals. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 909:92-8. [PMID: 3297159 DOI: 10.1016/0167-4781(87)90030-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ribosomes can specifically shift at certain codons so that the mRNA is read in two different reading frames. To determine if frameshifting occurs at the level of termination, polymers of defined sequence containing AUG, a coding sequence and an in- or out-of-phase nonsense codon were used to bind a termination substrate or to program synthesis and release of dipeptides in a highly purified in vitro translation system. fMet-tRNA bound to ribosomes with AUGUAA, AUGUAAn, AUGUUU, AUGUUA or AUGUAn was not a substrate for release factor RF-1. In contrast, AUGU1UAA, AUGU3UAAn, AUGU4UAAn, AUGU5UAAn effected RF-1-dependent release of fMet from ribosomes. This suggests that nonsense codons can stimulate release whether they occur in- or out-of-phase. Addition of exogenous UAA and RF-1 stimulated release with all oligonucleotides tested. Propagation restricted the RF-1-dependent recognition of out-of-phase nonsense codons but did not restrict recognition of in-phase UAA in AUGU3UAAn. Release of dipeptides from ribosomes programmed with AUGU4UAAn occurred without EF-G and with a mutant lacking EF-G activity, suggesting that out-of-phase termination can occur prior to translocation outside the ribosomal A-site. We propose that the ribosome X RF complex is required to complete proteins, but is also able to frameshift at a nonsense codon resulting in occasional out-of-phase termination of protein synthesis.
Collapse
|
39
|
Mendenhall MD, Leeds P, Fen H, Mathison L, Zwick M, Sleiziz C, Culbertson MR. Frameshift suppressor mutations affecting the major glycine transfer RNAs of Saccharomyces cerevisiae. J Mol Biol 1987; 194:41-58. [PMID: 3039147 DOI: 10.1016/0022-2836(87)90714-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mutations have been identified in Saccharomyces cerevisiae glycine tRNA genes that result in suppression of +1 frameshift mutations in glycine codons. Wild-type and suppressor alleles of genes encoding the two major glycine tRNAs, tRNA(GCC) and tRNA(UCC), were examined in this study. The genes were identified by genetic complementation and by hybridization to a yeast genomic library using purified tRNA probes. tRNA(UCC) is encoded by three genes, whereas approximately 15 genes encode tRNA(GCC). The frameshift suppressor genes suf1+, suf4+ and suf6+ were shown to encode the wild-type tRNA(UCC) tRNA. The suf1+ and suf4+ genes were identical in DNA sequence, whereas the suf6+ gene, whose DNA sequence was not determined, was shown by a hybridization experiment to encode tRNA(UCC). The ultraviolet light-induced SU F1-1 and spontaneous SU F4-1 suppressor mutations were each shown to differ from wild-type at two positions in the anticodon, including a +1 base-pair insertion and a base-pair substitution. These changes resulted in a CCCC four-base anticodon rather than the CCU three-base anticodon found in wild-type. The RNA sequence of tRNA(UCC) was shown to contain a modified uridine in the wobble position. Mutant tRNA(CCCC) isolated from a SU F1-1 strain lacked this modification. Three unlinked genes that encode wild-type tRNA(GCC), suf20+, trn2, and suf17+, were identical in DNA sequence to the previously described suf16+ frameshift suppressor gene. Spontaneous suppressor mutations at the SU F20 and SU F17 loci were analyzed. The SU F20-2 suppressor allele contained a CCCC anticodon. This allele was derived in two serial selections through two independent mutational events, a +1 base insertion and a base substitution in the anticodon. Presumably, the original suppressor allele, SU F20-1, contained the single base insertion. The SU F17-1 suppressor allele also contained a CCCC anticodon resulting from two mutations, a +1 insertion and a base substitution. However, this allele contained an additional base substitution at position 33 adjacent to the 5' side of the four-base anticodon. The possible origin and significance of multiple mutations leading to frameshift suppression is discussed.
Collapse
|
40
|
Yarus M, Cline SW, Wier P, Breeden L, Thompson RC. Actions of the anticodon arm in translation on the phenotypes of RNA mutants. J Mol Biol 1986; 192:235-55. [PMID: 2435916 DOI: 10.1016/0022-2836(86)90362-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In previous publications, we have shown that it is practical to study the translational activity of tRNAs by replacement and alteration of the anticodon arm sequence of the genus on a plasmid clone. Experiments in which the anticodon arm sequence is transplanted between tRNA genes suggest that the translational activity is determined by these sequences. We have therefore made every variant of the anticodon loop and the three base-pairs of the stem proximal to the loop, in order to resolve the relation between the structure of Su7Am tRNATrp, and its function. All derivatives conserved the normal secondary structure of the molecule, which was known to be essential for translational activity. The probability of translation of the amber codon by these suppressors is measured in this work. This translational activity in vivo is rationalized in terms of data on the copy numbers of the plasmid clones, the nucleotide modifications of the tRNAs, the steady-state level of the mature tRNA, and the aminoacylation of these molecules. Nucleotide modification levels vary among these tRNAs, giving information about the specificities of modification systems that make O-methylribose, pseudouridine, and modified A in the anticodon arm. However, for this series of tRNAs, none of these modifications has a strong effect on translational efficiency of the tRNAs. A few of the substitutions reduce aminoacylation of the tRNAs with glutamine, as determined by comparison of suppression in normal strains and related strains, which have 25-fold elevated levels of the glutaminyl-tRNA synthetase (GlnRS). The substitutions that have the largest effect on GlnRS action are, unexpectedly, purines for conserved pyrimidines on the 5' side of the anticodon loop. Data on the concentrations of tRNA in vivo suggest that the anticodon loop and helix contribute similarly to the determination of the steady-state level of the tRNAs. This level varies sevenfold, though all tRNAs are processed from a homologous precursor made from the same transcription unit. Effects on levels appear to be mediated by changes in anticodon arm structure. A robust equation that relates aminoacyl-tRNA levels to suppressor efficiency is developed in order to resolve effects on tRNA levels and on ribosomal steps: E = A/(K + A), where E is efficiency, A is aminoacyl-tRNA concentration, and K is the effective concentration, or cellular tRNA content required for an individual tRNA to have an efficiency of 0.50. The tRNAs vary in their intrinsic ability to function on the ribosome (represented by K), after other influences have been normalized.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
41
|
Stormo GD, Schneider TD, Gold L. Quantitative analysis of the relationship between nucleotide sequence and functional activity. Nucleic Acids Res 1986; 14:6661-79. [PMID: 3092188 PMCID: PMC311672 DOI: 10.1093/nar/14.16.6661] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Matrices can be used to evaluate sequences for functional activity. Multiple regression can solve for the matrix that gives the best fit between sequence evaluations and quantitative activities. This analysis shows that the best model for context effects on suppression by su2 involves primarily the two nucleotides 3' to the amber codon, and that their contributions are independent and additive. Context effects on 2AP mutagenesis also involve the two nucleotides 3' to the 2AP insertion, but their effects are not independent. In a construct for producing beta-galactosidase, the effects on translational yields of the tri-nucleotide 5' to the initiation codon are dependent on the entire triplet. Models based on these quantitative results are presented for each of the examples.
Collapse
|
42
|
Bruce AG, Atkins JF, Gesteland RF. tRNA anticodon replacement experiments show that ribosomal frameshifting can be caused by doublet decoding. Proc Natl Acad Sci U S A 1986; 83:5062-6. [PMID: 2425361 PMCID: PMC323890 DOI: 10.1073/pnas.83.14.5062] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The expression of certain normal genes requires a specific ribosomal frameshift event because the mRNA has the coding information for one protein in two different reading frames. One of several possible mechanisms for this involves recognition of a nontriplet codon by a noncognate tRNA. The AGUC-decoding Escherichia coli tRNASer3 reads a GCA alanine codon to cause a -1 frameshift. Replacement of the anticodon of tRNAPhe with the anticodon of tRNASer3 allows the constructed tRNA to cause this frameshifting. By altering the anticodon loop nucleotides at positions 33-36 in the constructed tRNAPhe molecules, the tRNA was found to recognize a 2-base codon. Instead of the usual anticodon, positions 34-36, the nucleotides in positions 34 and 35 form essential base pairs with the first two positions of the alanine codon. The uridine in position 36 is also required but not for base pairing.
Collapse
|
43
|
Smith DW, Hatfield DL. Effects of post-transcriptional base modifications on the site-specific function of transfer RNA in eukaryote translation. J Mol Biol 1986; 189:663-71. [PMID: 3783686 DOI: 10.1016/0022-2836(86)90496-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The site-specific function in translation of several naturally occurring mammalian transfer RNAs has been studied in a series of investigations with some similarities to studies in other laboratories of tRNAs in suppression. Equal amounts of aminoacyl-tRNA isoacceptors with contrasting isotopes were added in pairs to reticulocyte lysates and allowed to incorporate their amino acids into rabbit globin. Rates of incorporation from unlimiting amounts of each isoacceptor into the corresponding amino-acid-containing sites were determined. The tRNAs of each isoacceptor pair differed as to post-transcriptional base modifications. The natural occurrence of these isoacceptors can be correlated with rates of cellular division, with more rapidly dividing and neoplastic cells containing hypomodified tRNA. The overall incorporation of lysine into globin from a fully modified tRNALys that decodes AAG is faster by 25 to 30% than from the corresponding hypomodified tRNALys. There is considerable scatter in values for incorporation ratios at different lysine-containing sites, with the hypomodified isoacceptor even being preferred at one site. The AAG decoding isoacceptors are capable of translating AAA although much more slowly than AAG. In translating AAA, in contrast to translating AAG, the hypomodified tRNALys isoacceptor is preferred. A Y base-deficient hypomodified tRNAPhe isoacceptor found only in some kinds of rapidly dividing tumor cells donates its phenylalanine preferentially to globin in competition with the fully modified Y-containing tRNAPhe of liver by 15 to 17%. There is a considerable range of incorporation ratios at the different phenylalanine-containing sites of the globin subunits. No correlation can be made between the isoacceptor preferred and the phenylalanine codon being translated. The incorporation of histidine from a fully modified tRNAHis-containing Q base in its anticodon, compared with that from the hypomodified counterpart isoacceptor that lacks Q base and that occurs in rapidly dividing cells, showed no difference in their ability to incorporate overall or into individual histidine-containing sites. There is little evidence that adjacent bases or codons in messenger RNA affect the tRNAs preferred in the translation of most sites. A striking pattern of tRNA preference was observed in three cases in which there are tandem codons, with the same codon appearing twice in succession.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|