1
|
Lehtonen SM, Puumalainen V, Nokia MS, Lensu S. Effects of unilateral hippocampal surgical procedures needed for calcium imaging on mouse behavior and adult hippocampal neurogenesis. Behav Brain Res 2024; 468:115042. [PMID: 38723676 DOI: 10.1016/j.bbr.2024.115042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Hippocampus is essential for episodic memory formation, lesion studies demonstrating its role especially in processing spatial and temporal information. Further, adult hippocampal neurogenesis (AHN) in the dentate gyrus (DG) has also been linked to learning. To study hippocampal neuronal activity during events like learning, in vivo calcium imaging has become increasingly popular. It relies on the use of adeno-associated viral (AAV) vectors, which seem to lead to a decrease in AHN when applied on the DG. More notably, imaging requires the implantation of a relatively large lens into the tissue. Here, we examined how injection of an AAV vector and implantation of a 1-mm-diameter lens into the dorsal DG routinely used to image calcium activity impact the behavior of adult male C57BL/6 mice. To this aim, we conducted open-field, object-recognition and object-location tasks at baseline, after AAV vector injection, and after lens implantation. Finally, we determined AHN from hippocampal slices using a doublecortin-antibody. According to our results, the operations needed for in vivo imaging of the dorsal DG did not have adverse effects on behavior, although we noticed a decrease in AHN ipsilaterally to the operations. Thus, our results suggest that in vivo imaging can be safely used to, for example, correlate patterns of calcium activity with learned behavior. One should still keep in mind that the defects on the operated side might be functionally compensated by the (hippocampus in the) contralateral hemisphere.
Collapse
Affiliation(s)
- Suvi-Maaria Lehtonen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Finland.
| | - Veera Puumalainen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Finland
| | - Miriam S Nokia
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Finland
| | - Sanna Lensu
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Finland
| |
Collapse
|
2
|
Campolattaro MM, Lipatova O, Horenstein K. Impact of Fornix Lesions on Tone-Off Delay- vs Tone-On Trace- Eyeblink Conditioning in Rats. Physiol Behav 2023; 266:114191. [PMID: 37059165 DOI: 10.1016/j.physbeh.2023.114191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Research has shown differences in the neural mechanisms that support trace and delay eyeblink conditioning. The present experiment furthered this investigation by examining the effect of electrolytic fornix lesions on acquisition of trace and delay eyeblink conditioning in the rat. Importantly, the conditioned stimulus (CS) for trace conditioning was a standard tone-on cue, and the CS for delay conditioning was either a tone-off or tone-on CS. The results showed that fornix lesions impaired trace-, but not delay conditioning in rats trained with the tone-on CS or tone-off CS. The findings are consistent with previous studies that found trace-, but not delay eyeblink conditioning is a hippocampal dependent form of associative learning. Our results also indicate that the neural pathways for tone-off delay conditioning and tone-on trace conditioning are different, even though the structural composition of a tone-off CS and the trace conditioning interval are the same cue (i.e., the absence of sound). These findings indicate that the absence of a sensory cue (i.e., tone-off CS) and the presence of a sensory cue (i.e., tone-on CS) have equivalent associative value and effectiveness for engaging the neural pathways that support delay eyeblink conditioning.
Collapse
|
3
|
Froula JM, Hastings SD, Krook-Magnuson E. The little brain and the seahorse: Cerebellar-hippocampal interactions. Front Syst Neurosci 2023; 17:1158492. [PMID: 37034014 PMCID: PMC10076554 DOI: 10.3389/fnsys.2023.1158492] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
There is a growing appreciation for the cerebellum beyond its role in motor function and accumulating evidence that the cerebellum and hippocampus interact across a range of brain states and behaviors. Acute and chronic manipulations, simultaneous recordings, and imaging studies together indicate coordinated coactivation and a bidirectional functional connectivity relevant for various physiological functions, including spatiotemporal processing. This bidirectional functional connectivity is likely supported by multiple circuit paths. It is also important in temporal lobe epilepsy: the cerebellum is impacted by seizures and epilepsy, and modulation of cerebellar circuitry can be an effective strategy to inhibit hippocampal seizures. This review highlights some of the recent key hippobellum literature.
Collapse
Affiliation(s)
- Jessica M. Froula
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | | |
Collapse
|
4
|
Allen MT. Weaker situations: Uncertainty reveals individual differences in learning: Implications for PTSD. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01077-5. [PMID: 36944865 DOI: 10.3758/s13415-023-01077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/23/2023]
Abstract
Few individuals who experience trauma develop posttraumatic stress disorder (PTSD). Therefore, the identification of individual differences that signal increased risk for PTSD is important. Lissek et al. (2006) proposed using a weak rather than a strong situation to identify individual differences. A weak situation involves less-salient cues as well as some degree of uncertainty, which reveal individual differences. A strong situation involves salient cues with little uncertainty, which produce consistently strong responses. Results from fear conditioning studies that support this hypothesis are discussed briefly. This review focuses on recent findings from three learning tasks: classical eyeblink conditioning, avoidance learning, and a computer-based task. These tasks are interpreted as weaker learning situations in that they involve some degree of uncertainty. Individual differences in learning based on behavioral inhibition, which is a risk factor for PTSD, are explored. Specifically, behaviorally inhibited individuals and rodents (i.e., Wistar Kyoto rats), as well as individuals expressing PTSD symptoms, exhibit enhanced eyeblink conditioning. Behaviorally inhibited rodents also demonstrate enhanced avoidance responding (i.e., lever pressing). Both enhanced eyeblink conditioning and avoidance are most evident with schedules of partial reinforcement. Behaviorally inhibited individuals also performed better on reward and punishment trials than noninhibited controls in a probabilistic category learning task. Overall, the use of weaker situations with uncertain relationships may be more ecologically valid than learning tasks in which the aversive event occurs on every trial and may provide more sensitivity for identifying individual differences in learning for those at risk for, or expressing, PTSD symptoms.
Collapse
Affiliation(s)
- M Todd Allen
- School of Psychological Sciences, University of Northern Colorado, Greeley, CO, USA.
| |
Collapse
|
5
|
Switching Operation Modes in the Neocortex via Cholinergic Neuromodulation. Mol Neurobiol 2019; 57:139-149. [DOI: 10.1007/s12035-019-01764-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Indexed: 12/26/2022]
|
6
|
Allen MT, Myers CE, Beck KD, Pang KCH, Servatius RJ. Inhibited Personality Temperaments Translated Through Enhanced Avoidance and Associative Learning Increase Vulnerability for PTSD. Front Psychol 2019; 10:496. [PMID: 30967806 PMCID: PMC6440249 DOI: 10.3389/fpsyg.2019.00496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/20/2019] [Indexed: 12/22/2022] Open
Abstract
Although many individuals who experience a trauma go on to develop post-traumatic stress disorder (PTSD), the rate of PTSD following trauma is only about 15-24%. There must be some pre-existing conditions that impart increased vulnerability to some individuals and not others. Diathesis models of PTSD theorize that pre-existing vulnerabilities interact with traumatic experiences to produce psychopathology. Recent work has indicated that personality factors such as behavioral inhibition (BI), harm avoidance (HA), and distressed (Type D) personality are vulnerability factors for the development of PTSD and anxiety disorders. These personality temperaments produce enhanced acquisition or maintenance of associations, especially avoidance, which is a criterion symptom of PTSD. In this review, we highlight the evidence for a relationship between these personality types and enhanced avoidance and associative learning, which may increase risk for the development of PTSD. First, we provide the evidence confirming a relationship among BI, HA, distressed (Type D) personality, and PTSD. Second, we present recent findings that BI is associated with enhanced avoidance learning in both humans and animal models. Third, we will review evidence that BI is also associated with enhanced eyeblink conditioning in both humans and animal models. Overall, data from both humans and animals suggest that these personality traits promote enhanced avoidance and associative learning, as well as slowing of extinction in some training protocols, which all support the learning diathesis model. These findings of enhanced learning in vulnerable individuals can be used to develop objective behavioral measures to pre-identify individuals who are more at risk for development of PTSD following traumatic events, allowing for early (possibly preventative) intervention, as well as suggesting possible therapies for PTSD targeted on remediating avoidance or associative learning. Future work should explore the neural substrates of enhanced avoidance and associative learning for behaviorally inhibited individuals in both the animal model and human participants.
Collapse
Affiliation(s)
- Michael Todd Allen
- School of Psychological Sciences, University of Northern Colorado, Greeley, CO, United States
- Rutgers Biomedical Health Sciences, Stress and Motivated Behavior Institute, Rutgers University, Newark, NJ, United States
- Central New York Research Corporation, Syracuse, NY, United States
| | - Catherine E. Myers
- Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, United States
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Kevin D. Beck
- Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, United States
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Kevin C. H. Pang
- Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, United States
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Richard J. Servatius
- Rutgers Biomedical Health Sciences, Stress and Motivated Behavior Institute, Rutgers University, Newark, NJ, United States
- Central New York Research Corporation, Syracuse, NY, United States
- Department of Veterans Affairs, Syracuse Veterans Affairs Medical Center, Syracuse, NY, United States
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
7
|
Theodoni P, Rovira B, Wang Y, Roxin A. Theta-modulation drives the emergence of connectivity patterns underlying replay in a network model of place cells. eLife 2018; 7:37388. [PMID: 30355442 PMCID: PMC6224194 DOI: 10.7554/elife.37388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/24/2018] [Indexed: 01/05/2023] Open
Abstract
Place cells of the rodent hippocampus fire action potentials when the animal traverses a particular spatial location in any environment. Therefore for any given trajectory one observes a repeatable sequence of place cell activations. When the animal is quiescent or sleeping, one can observe similar sequences of activation known as replay, which underlie the process of memory consolidation. However, it remains unclear how replay is generated. Here we show how a temporally asymmetric plasticity rule during spatial exploration gives rise to spontaneous replay in a model network by shaping the recurrent connectivity to reflect the topology of the learned environment. Crucially, the rate of this encoding is strongly modulated by ongoing rhythms. Oscillations in the theta range optimize learning by generating repeated pre-post pairings on a time-scale commensurate with the window for plasticity, while lower and higher frequencies generate learning rates which are lower by orders of magnitude.
Collapse
Affiliation(s)
- Panagiota Theodoni
- Centre de Recerca Matemàtica, Bellaterra, Spain.,New York University Shanghai, Shanghai, China.,NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Bernat Rovira
- Centre de Recerca Matemàtica, Bellaterra, Spain.,Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yingxue Wang
- Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Alex Roxin
- Centre de Recerca Matemàtica, Bellaterra, Spain.,Barcelona Graduate School of Mathematics, Barcelona, Spain
| |
Collapse
|
8
|
Allen MT, Handy JD, Blankenship MR, Servatius RJ. The distressed (Type D) personality factor of social inhibition, but not negative affectivity, enhances eyeblink conditioning. Behav Brain Res 2018; 345:93-103. [PMID: 29486267 DOI: 10.1016/j.bbr.2018.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 11/19/2022]
Abstract
Recent work has focused on a learning diathesis model in which specific personality factors such as behavioral inhibition (BI) may influence associative learning and in turn increase risk for the development of anxiety disorders. We have found in a series of studies that individuals self-reporting high levels of BI exhibit enhanced acquisition of conditioned eyeblinks. In the study reported here, hypotheses were extended to include distressed (Type D) personality which has been found to be related to BI. Type D personality is measured with the DS-14 scale which includes two subscales measuring negative affectivity (NA) and social inhibition (SI). We hypothesized that SI, which is similar to BI, would result in enhanced acquisition while the effect of NA is unclear. Eighty nine participants completed personality inventories including the Adult Measure of Behavioral Inhibition (AMBI) and DS-14. All participants received 60 acquisition trials with a 500 ms, 1000 Hz, tone CS and a co-terminating 50 ms, 5 psi corneal airpuff US. Participants received either 100% CS-US paired trials or a schedule of partial reinforcement where 50% US alone trials were intermixed into CS-US training. Acquisition of CRs did not differ between the two training protocols. Whereas BI was significantly related to Type D, SI, and NA, only BI and SI individuals exhibited enhanced acquisition of conditioned eyeblinks as compared to non-inhibited individuals. Personality factors now including social inhibition can be used to identify individuals who express enhanced associative learning which lends further support to a learning diathesis model of anxiety disorders.
Collapse
Affiliation(s)
- M T Allen
- School of Psychological Sciences, University of Northern Colorado, Greeley, CO, United States; Rutgers Biomedical Health Sciences, Stress and Motivated Behavior Institute, Rutgers University, Newark, NJ, United States; Central New York Research Corporation, Syracuse, NY, United States.
| | - J D Handy
- Central New York Research Corporation, Syracuse, NY, United States; Department of Veterans Affairs, Syracuse Veterans Affairs Medical Center, Syracuse NY, United States
| | - M R Blankenship
- Department of Psychology, Western Illinois University, Macomb, IL, United States
| | - R J Servatius
- Rutgers Biomedical Health Sciences, Stress and Motivated Behavior Institute, Rutgers University, Newark, NJ, United States; Department of Veterans Affairs, Syracuse Veterans Affairs Medical Center, Syracuse NY, United States; Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
9
|
US alone trials presented during acquisition do not disrupt classical eyeblink conditioning: Empirical and computational findings. Behav Brain Res 2018; 338:101-108. [PMID: 29054591 DOI: 10.1016/j.bbr.2017.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/25/2017] [Accepted: 10/17/2017] [Indexed: 11/22/2022]
Abstract
Studies of partial reinforcement in eyeblink conditioning have typically shown slower learning of a CS-US association when paired CS-US trials are interleaved with CS-alone trials. However, recent work has shown that CS-US learning is not slowed by interleaved US-alone trials. This discrepancy is surprising since both partial reinforcement protocols reduce the total number of paired CS-US trials. Previously, Kimble et al. (1955) reported that inserting a block of US-alone trials during CS-US training did not disrupt eyeblink acquisition. Here, we sought to replicate and extend these findings by comparing interleaved vs. blocked US-alone trials during CS-US paired training. Ninety-seven undergraduates volunteered for this experiment for research credit. Participants received 60 acquisition trials, consisting of either 100% CS-US paired trials, 50% US-alone trials intermixed with CS-US paired trials, or a block of 20 US-alone trials inserted between blocks of 20 CS-US trials. We also utilized a previously published computational model of hippocampal and cerebellar learning to test the effects of these US-alone protocols. Both empirical and computational results supported the finding that US-alone trials, either intermixed or inserted as a block of trials, do not disrupt acquisition of conditioned eyeblinks. Possible neural substrates of these US-alone effects are discussed.
Collapse
|
10
|
Joshi A, Salib M, Viney TJ, Dupret D, Somogyi P. Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area. Neuron 2017; 96:1342-1357.e5. [PMID: 29198757 PMCID: PMC5746169 DOI: 10.1016/j.neuron.2017.10.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/23/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022]
Abstract
Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra cells show the highest rhythmicity among MS neurons and fire with short burst duration (median, 38 ms) preferentially at the trough of both CA1 theta and slow irregular oscillations, coincident with highest hippocampal excitability. Teevra cells synaptically target GABAergic axo-axonic and some CCK interneurons in restricted septo-temporal CA3 segments. The rhythmicity of their firing decreases from septal to temporal termination of individual axons. We hypothesize that Teevra neurons coordinate oscillatory activity across the septo-temporal axis, phasing the firing of specific CA3 interneurons, thereby contributing to the selection of pyramidal cell assemblies at the theta trough via disinhibition. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Abhilasha Joshi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK; MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK.
| | - Minas Salib
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Tim James Viney
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - David Dupret
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK; MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK; Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
11
|
Franklin DJ, Grossberg S. A neural model of normal and abnormal learning and memory consolidation: adaptively timed conditioning, hippocampus, amnesia, neurotrophins, and consciousness. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 17:24-76. [PMID: 27905080 PMCID: PMC5272895 DOI: 10.3758/s13415-016-0463-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
How do the hippocampus and amygdala interact with thalamocortical systems to regulate cognitive and cognitive-emotional learning? Why do lesions of thalamus, amygdala, hippocampus, and cortex have differential effects depending on the phase of learning when they occur? In particular, why is the hippocampus typically needed for trace conditioning, but not delay conditioning, and what do the exceptions reveal? Why do amygdala lesions made before or immediately after training decelerate conditioning while those made later do not? Why do thalamic or sensory cortical lesions degrade trace conditioning more than delay conditioning? Why do hippocampal lesions during trace conditioning experiments degrade recent but not temporally remote learning? Why do orbitofrontal cortical lesions degrade temporally remote but not recent or post-lesion learning? How is temporally graded amnesia caused by ablation of prefrontal cortex after memory consolidation? How are attention and consciousness linked during conditioning? How do neurotrophins, notably brain-derived neurotrophic factor (BDNF), influence memory formation and consolidation? Is there a common output path for learned performance? A neural model proposes a unified answer to these questions that overcome problems of alternative memory models.
Collapse
Affiliation(s)
- Daniel J Franklin
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, and Departments of Mathematics, Psychological & Brain Sciences, and Biomedical Engineering, Boston University, 677 Beacon Street, Room 213, Boston, MA, 02215, USA
| | - Stephen Grossberg
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, and Departments of Mathematics, Psychological & Brain Sciences, and Biomedical Engineering, Boston University, 677 Beacon Street, Room 213, Boston, MA, 02215, USA.
| |
Collapse
|
12
|
Developmental Changes in Hippocampal CA1 Single Neuron Firing and Theta Activity during Associative Learning. PLoS One 2016; 11:e0164781. [PMID: 27764172 PMCID: PMC5072650 DOI: 10.1371/journal.pone.0164781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/02/2016] [Indexed: 11/19/2022] Open
Abstract
Hippocampal development is thought to play a crucial role in the emergence of many forms of learning and memory, but ontogenetic changes in hippocampal activity during learning have not been examined thoroughly. We examined the ontogeny of hippocampal function by recording theta and single neuron activity from the dorsal hippocampal CA1 area while rat pups were trained in associative learning. Three different age groups [postnatal days (P)17-19, P21-23, and P24-26] were trained over six sessions using a tone conditioned stimulus (CS) and a periorbital stimulation unconditioned stimulus (US). Learning increased as a function of age, with the P21-23 and P24-26 groups learning faster than the P17-19 group. Age- and learning-related changes in both theta and single neuron activity were observed. CA1 pyramidal cells in the older age groups showed greater task-related activity than the P17-19 group during CS-US paired sessions. The proportion of trials with a significant theta (4-10 Hz) power change, the theta/delta ratio, and theta peak frequency also increased in an age-dependent manner. Finally, spike/theta phase-locking during the CS showed an age-related increase. The findings indicate substantial developmental changes in dorsal hippocampal function that may play a role in the ontogeny of learning and memory.
Collapse
|
13
|
Allen MT, Miller DP. Enhanced Eyeblink Conditioning in Behaviorally Inhibited Individuals is Disrupted by Proactive Interference Following US Alone Pre-exposures. Front Behav Neurosci 2016; 10:39. [PMID: 27014001 PMCID: PMC4785178 DOI: 10.3389/fnbeh.2016.00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/22/2016] [Indexed: 11/21/2022] Open
Abstract
Anxiety vulnerable individuals exhibit enhanced acquisition of conditioned eyeblinks as well as enhanced proactive interference from conditioned stimulus (CS) or unconditioned stimulus (US) alone pre-exposures (Holloway et al., 2012). US alone pre-exposures disrupt subsequent conditioned response (CR) acquisition to CS-US paired trials as compared to context pre-exposure controls. While Holloway et al. (2012) reported enhanced acquisition in high trait anxiety individuals in the context condition, anxiety vulnerability effects were not reported for the US alone pre-exposure group. It appears from the published data that there were no differences between high and low anxiety individuals in the US alone condition. In the work reported here, we sought to extend the findings of enhanced proactive interference with US alone pre-exposures to determine if the enhanced conditioning was disrupted by proactive interference procedures. We also were interested in the spontaneous eyeblinks during the pre-exposure phase of training. We categorized individuals as anxiety vulnerability or non-vulnerable individuals based scores on the Adult Measure of Behavioral Inhibition (AMBI). Sixty-six participants received 60 trials consisting of 30 US alone or context alone pre-exposures followed by 30 CS-US trials. US alone pre-exposures not only disrupted CR acquisition overall, but behaviorally inhibited (BI) individuals exhibited enhanced proactive interference as compared to non-inhibited (NI) individuals. In addition, US alone pre-exposures disrupted the enhanced acquisition observed in BI individuals as compared to NI individuals following context alone pre-exposures. Differences were also found in rates of spontaneous eyeblinks between BI and NI individuals during context pre-exposure. Our findings will be discussed in the light of the neural substrates of eyeblink conditioning as well as possible factors such as hypervigilance in the amygdala and hippocampal systems, and possible learned helplessness. Applications of these findings of enhanced proactive interference in BI individuals to pre-exposure therapies to reduce anxiety disorders such as posttraumatic stress disorder (PTSD) will be discussed.
Collapse
Affiliation(s)
- Michael Todd Allen
- School of Psychological Sciences, University of Northern ColoradoGreeley, CO, USA; Stress and Motivated Behavior InstituteSyracuse, NY, USA
| | - Daniel P Miller
- Stress and Motivated Behavior InstituteSyracuse, NY, USA; Program in Neuroscience, Carthage CollegeKenosha, WI, USA
| |
Collapse
|
14
|
Cicchese JJ, Berry SD. Hippocampal Non-Theta-Contingent Eyeblink Classical Conditioning: A Model System for Neurobiological Dysfunction. Front Psychiatry 2016; 7:1. [PMID: 26903886 PMCID: PMC4751249 DOI: 10.3389/fpsyt.2016.00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/01/2016] [Indexed: 11/30/2022] Open
Abstract
Typical information processing is thought to depend on the integrity of neurobiological oscillations that may underlie coordination and timing of cells and assemblies within and between structures. The 3-7 Hz bandwidth of hippocampal theta rhythm is associated with cognitive processes essential to learning and depends on the integrity of cholinergic, GABAergic, and glutamatergic forebrain systems. Since several significant psychiatric disorders appear to result from dysfunction of medial temporal lobe (MTL) neurochemical systems, preclinical studies on animal models may be an important step in defining and treating such syndromes. Many studies have shown that the amount of hippocampal theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning and attainment of asymptotic performance. Our lab has developed a brain-computer interface that makes eyeblink training trials contingent upon the explicit presence or absence of hippocampal theta. The behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to fourfold increase in learning speed over non-theta states. The non-theta behavioral impairment is accompanied by disruption of the amplitude and synchrony of hippocampal local field potentials, multiple-unit excitation, and single-unit response patterns dependent on theta state. Our findings indicate a significant electrophysiological and behavioral impact of the pretrial state of the hippocampus that suggests an important role for this MTL system in associative learning and a significant deleterious impact in the absence of theta. Here, we focus on the impairments in the non-theta state, integrate them into current models of psychiatric disorders, and suggest how improvement in our understanding of neurobiological oscillations is critical for theories and treatment of psychiatric pathology.
Collapse
Affiliation(s)
- Joseph J Cicchese
- Department of Psychology, Center for Neuroscience, Miami University , Oxford, OH , USA
| | - Stephen D Berry
- Department of Psychology, Center for Neuroscience, Miami University , Oxford, OH , USA
| |
Collapse
|
15
|
Yu W, Krook-Magnuson E. Cognitive Collaborations: Bidirectional Functional Connectivity Between the Cerebellum and the Hippocampus. Front Syst Neurosci 2015; 9:177. [PMID: 26732845 PMCID: PMC4686701 DOI: 10.3389/fnsys.2015.00177] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/02/2015] [Indexed: 01/23/2023] Open
Abstract
There is a growing recognition that the utility of the cerebellum is not limited to motor control. This review focuses on the particularly novel area of hippocampal-cerebellar interactions. Recent work has illustrated that the hippocampus and cerebellum are functionally connected in a bidirectional manner such that the cerebellum can influence hippocampal activity and vice versa. This functional connectivity has important implications for physiology, including spatial navigation and timing-dependent tasks, as well as pathophysiology, including seizures. Moving forward, an improved understanding of the critical biological underpinnings of these cognitive collaborations may improve interventions for neurological disorders such as epilepsy.
Collapse
Affiliation(s)
- Wilson Yu
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | | |
Collapse
|
16
|
Neurons in the Primate Medial Basal Forebrain Signal Combined Information about Reward Uncertainty, Value, and Punishment Anticipation. J Neurosci 2015; 35:7443-59. [PMID: 25972172 DOI: 10.1523/jneurosci.0051-15.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It has been suggested that the basal forebrain (BF) exerts strong influences on the formation of memory and behavior. However, what information is used for the memory-behavior formation is unclear. We found that a population of neurons in the medial BF (medial septum and diagonal band of Broca) of macaque monkeys encodes a unique combination of information: reward uncertainty, expected reward value, anticipation of punishment, and unexpected reward and punishment. The results were obtained while the monkeys were expecting (often with uncertainty) a rewarding or punishing outcome during a Pavlovian procedure, or unexpectedly received an outcome outside the procedure. In vivo anterograde tracing using manganese-enhanced MRI suggested that the major recipient of these signals is the intermediate hippocampal formation. Based on these findings, we hypothesize that the medial BF identifies various contexts and outcomes that are critical for memory processing in the hippocampal formation.
Collapse
|
17
|
Hoffmann LC, Cicchese JJ, Berry SD. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning. Front Syst Neurosci 2015; 9:50. [PMID: 25918501 PMCID: PMC4394696 DOI: 10.3389/fnsys.2015.00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/12/2015] [Indexed: 12/17/2022] Open
Abstract
Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3–12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3–7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning.
Collapse
Affiliation(s)
- Loren C Hoffmann
- Center for Learning and Memory, University of Texas Austin, TX, USA
| | - Joseph J Cicchese
- Department of Psychology and Center for Neuroscience, Miami University Oxford, OH, USA
| | - Stephen D Berry
- Department of Psychology and Center for Neuroscience, Miami University Oxford, OH, USA
| |
Collapse
|
18
|
Harmon TC, Freeman JH. Ontogeny of septohippocampal modulation of delay eyeblink conditioning. Dev Psychobiol 2015; 57:168-76. [PMID: 25604349 DOI: 10.1002/dev.21272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/10/2014] [Indexed: 11/10/2022]
Abstract
The current study investigated the effects of disrupting the septohippocampal theta system on the developmental emergence of delay eyeblink conditioning. Theta oscillations are defined as electroencephalographic (EEG) waveforms with a frequency between 3-8 Hz. Hippocampal theta oscillations are generated by inputs from the entorhinal cortex and the medial septum. Theta activity has been shown to facilitate learning in a variety of paradigms, including delay eyeblink conditioning. Lesions of the medial septum disrupt theta activity and slow the rate at which delay eyeblink conditioning is learned (Berry & Thompson, [1979] Science 200:1298-1300). The role of the septohippocampal theta system in the ontogeny of eyeblink conditioning has not been examined. In the current study, infant rats received an electrolytic lesion of the medial septum on postnatal day (P) 12. Rats were later given eyeblink conditioning for 6 sessions with an auditory conditioned stimulus on P17-19, P21-23, or P24-26. Lesions impaired eyeblink conditioning on P21-23 and P24-26 but not on P17-19. The results suggest that the septohippocampal system comes online to facilitate acquisition of eyeblink conditioning between P19 and P21. Developmental changes in septohippocampal modulation of the cerebellum may play a significant role in the ontogeny of eyeblink conditioning.
Collapse
Affiliation(s)
- Thomas C Harmon
- Department of Psychology, University of Iowa, Iowa City, IA, 52242
| | | |
Collapse
|
19
|
Hoffmann LC, Cicchese JJ, Berry SD. Hippocampal Theta-Based Brain Computer Interface. BRAIN-COMPUTER INTERFACES 2015. [DOI: 10.1007/978-3-319-10978-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Tokuda K, Nishikawa M, Kawahara S. Hippocampal state-dependent behavioral reflex to an identical sensory input in rats. PLoS One 2014; 9:e112927. [PMID: 25397873 PMCID: PMC4232594 DOI: 10.1371/journal.pone.0112927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/09/2014] [Indexed: 01/28/2023] Open
Abstract
We examined the local field potential of the hippocampus to monitor brain states during a conditional discrimination task, in order to elucidate the relationship between ongoing brain states and a conditioned motor reflex. Five 10-week-old Wistar/ST male rats underwent a serial feature positive conditional discrimination task in eyeblink conditioning using a preceding light stimulus as a conditional cue for reinforced trials. In this task, a 2-s light stimulus signaled that the following 350-ms tone (conditioned stimulus) was reinforced with a co-terminating 100-ms periorbital electrical shock. The interval between the end of conditional cue and the onset of the conditioned stimulus was 4±1 s. The conditioned stimulus was not reinforced when the light was not presented. Animals successfully utilized the light stimulus as a conditional cue to drive differential responses to the identical conditioned stimulus. We found that presentation of the conditional cue elicited hippocampal theta oscillations, which persisted during the interval of conditional cue and the conditioned stimulus. Moreover, expression of the conditioned response to the tone (conditioned stimulus) was correlated with the appearance of theta oscillations immediately before the conditioned stimulus. These data support hippocampal involvement in the network underlying a conditional discrimination task in eyeblink conditioning. They also suggest that the preceding hippocampal activity can determine information processing of the tone stimulus in the cerebellum and its associated circuits.
Collapse
Affiliation(s)
- Keita Tokuda
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Michimasa Nishikawa
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Shigenori Kawahara
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
- * E-mail:
| |
Collapse
|
21
|
Allen MT, Myers CE, Servatius RJ. Avoidance prone individuals self reporting behavioral inhibition exhibit facilitated acquisition and altered extinction of conditioned eyeblinks with partial reinforcement schedules. Front Behav Neurosci 2014; 8:347. [PMID: 25339877 PMCID: PMC4186341 DOI: 10.3389/fnbeh.2014.00347] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/16/2014] [Indexed: 11/17/2022] Open
Abstract
Avoidance in the face of novel situations or uncertainty is a prime feature of behavioral inhibition which has been put forth as a risk factor for the development of anxiety disorders. Recent work has found that behaviorally inhibited (BI) individuals acquire conditioned eyeblinks faster than non-inhibited (NI) individuals in omission and yoked paradigms in which the predictive relationship between the conditioned stimulus (CS) and unconditional stimulus (US) is less than optimal as compared to standard training with CS-US paired trials (Holloway et al., 2014). In the current study, we tested explicitly partial schedules in which half the trials were CS alone or US alone trials in addition to the standard CS-US paired trials. One hundred and forty nine college-aged undergraduates participated in the study. All participants completed the Adult Measure of Behavioral Inhibition (i.e., AMBI) which was used to group participants as BI and NI. Eyeblink conditioning consisted of three US alone trials, 60 acquisition trials, and 20 CS-alone extinction trials presented in one session. Conditioning stimuli were a 500 ms tone CS and a 50-ms air puff US. Behaviorally inhibited individuals receiving 50% partial reinforcement with CS alone or US alone trials produced facilitated acquisition as compared to NI individuals. A partial reinforcement extinction effect (PREE) was evident with CS alone trials in BI but not NI individuals. These current findings indicate that avoidance prone individuals self-reporting behavioral inhibition over-learn an association and are slow to extinguish conditioned responses (CRs) when there is some level of uncertainty between paired trials and CS or US alone presentations.
Collapse
Affiliation(s)
- Michael Todd Allen
- School of Psychological Sciences, University of Northern Colorado Greeley, CO, USA ; Stress and Motivated Behavior Institute, NJMS-UMDNJ Newark, NJ, USA
| | - Catherine E Myers
- Stress and Motivated Behavior Institute, NJMS-UMDNJ Newark, NJ, USA ; Neurobehavioral Research Lab, DVA Medical Center, NJHCS East Orange, NJ, USA
| | - Richard J Servatius
- Stress and Motivated Behavior Institute, NJMS-UMDNJ Newark, NJ, USA ; Neurobehavioral Research Lab, DVA Medical Center, NJHCS East Orange, NJ, USA
| |
Collapse
|
22
|
|
23
|
Roland JJ, Janke KL, Servatius RJ, Pang KCH. GABAergic neurons in the medial septum-diagonal band of Broca (MSDB) are important for acquisition of the classically conditioned eyeblink response. Brain Struct Funct 2013; 219:1231-7. [PMID: 24965560 DOI: 10.1007/s00429-013-0560-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
The medial septum and diagonal band of Broca (MSDB) influence hippocampal function through cholinergic, GABAergic, and glutamatergic septohippocampal neurons. Non-selective damage of the MSDB or intraseptal scopolamine impairs classical conditioning of the eyeblink response (CCER). Scopolamine preferentially inhibits GABAergic MSDB neurons suggesting that these neurons may be an important modulator of delay CCER, a form of CCER not dependent on the hippocampus. The current study directly examined the importance of GABAergic MSDB neurons in acquisition of delay CCER. Adult male Sprague-Dawley rats received either a sham (PBS) or GABAergic MSDB lesion using GAT1-saporin (SAP). Rats were given two consecutive days of delay eyeblink conditioning with 100 conditioned stimulus-unconditioned stimulus paired trials. Intraseptal GAT1-SAP impaired acquisition of CCER. The impairment was observed on the first day with sham and lesion groups reaching similar performance by the end of the second day. Our results provide evidence that GABAergic MSDB neurons are an important modulator of delay CCER. The pathways by which MSDB neurons influence the neural circuits necessary for delay CCER are discussed.
Collapse
Affiliation(s)
- J J Roland
- Stress and Motivated Behavior Institute, East Orange, NJ, 07018, USA,
| | | | | | | |
Collapse
|
24
|
Visual search enhances subsequent mnemonic search. Mem Cognit 2012; 41:167-75. [PMID: 22961740 DOI: 10.3758/s13421-012-0253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We examined how the performance of a visual search task while studying a list of to-be-remembered words affects subsequent memory for those words by humans. Previous research had suggested that episodic context encoding is facilitated when the study phase of a memory experiment requires, or otherwise encourages, a visual search for the to-be-remembered stimuli, and theta-band oscillations are more robust when animals are searching their environment. Moreover, hippocampal theta oscillations are positively correlated with learning in animals. We assumed that a visual search task performed during the encoding of words for a subsequent memory test would induce an exploratory state that would mimic the one that is induced in animals when performing exploratory activities in their environment, and that the encoding of episodic traces would be improved as a result. The results of several experiments indicated that the performance of the search task improved free recall, but the results did not extend to yes-no or forced choice recognition memory testing. We propose that visual search tasks enhance the encoding of episodic context information but do not enhance the encoding of to-be-remembered words.
Collapse
|
25
|
Valenzuela-Harrington M, Castillo I, Díaz C, Alés I, Rodríguez-Moreno A. Dimethoate accelerates the extinction of eyeblink conditioning in mice. Neurotoxicology 2012; 33:105-10. [DOI: 10.1016/j.neuro.2011.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 11/26/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022]
|
26
|
Cruikshank LC, Singhal A, Hueppelsheuser M, Caplan JB. Theta oscillations reflect a putative neural mechanism for human sensorimotor integration. J Neurophysiol 2012; 107:65-77. [PMID: 21975453 DOI: 10.1152/jn.00893.2010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hippocampal theta oscillations (3–12 Hz) may reflect a mechanism for sensorimotor integration in rats (Bland BH. Prog Neurobiol 26: 1–54, 1986); however, it is unknown whether cortical theta activity underlies sensorimotor integration in humans. Rather, the mu rhythm (8–12 Hz) is typically found to desynchronize during movement. We measured oscillatory EEG activity for two conditions of an instructed delayed reaching paradigm. Conditions 1 and 2 were designed to differentially manipulate the contribution of the ventral visuomotor stream during the response initiation phase. We tested the hypothesis that theta activity would reflect changes in the relevant sensorimotor network: condition 2 engaged ventral stream mechanisms to a greater extent than condition 1. Theta oscillations were more prevalent during movement initiation and execution than during periods of stillness, consistent with a sensorimotor relevance for theta activity. Furthermore, theta activity was more prevalent at temporal sites in condition 2 than condition 1 during response initiation, suggesting that theta activity is present within the necessary sensorimotor network. Mu activity desynchronized more during condition 2 than condition 1, suggesting mu desynchronization is also specific to the sensorimotor network. In summary, cortical theta synchronization and mu desynchronization may represent broadly applicable rhythmic mechanisms for sensorimotor integration in the human brain.
Collapse
Affiliation(s)
| | - Anthony Singhal
- Center for Neuroscience and
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jeremy B. Caplan
- Center for Neuroscience and
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Freeman JH, Steinmetz AB. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learn Mem 2011; 18:666-77. [PMID: 21969489 DOI: 10.1101/lm.2023011] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of parallel fiber synapses on Purkinje cells and long-term potentiation of mossy fiber synapses on neurons in the anterior interpositus nucleus. Conditioned stimulus and unconditioned stimulus inputs arise from the pontine nuclei and inferior olive, respectively, converging in the cerebellar cortex and deep nuclei. Projections from subcortical sensory nuclei to the pontine nuclei that are necessary for eyeblink conditioning are beginning to be identified, and recent studies indicate that there are dynamic interactions between sensory thalamic nuclei and the cerebellum during eyeblink conditioning. Cerebellar output is projected to the magnocellular red nucleus and then to the motor nuclei that generate the blink response(s). Tremendous progress has been made toward determining the neural mechanisms of delay eyeblink conditioning but there are still significant gaps in our understanding of the necessary neural circuitry and plasticity mechanisms underlying cerebellar learning.
Collapse
Affiliation(s)
- John H Freeman
- Department of Psychology and Neuroscience Program, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
28
|
|
29
|
|
30
|
Abstract
AbstractWe examine two different descriptions of the behavioral functions of the hippocampal system. One emphasizes spatially organized behaviors, especially those using cognitive maps. The other emphasizes memory, particularly working memory, a short-term memory that requires iexible stimulus-response associations and is highly susceptible to interference. The predictive value of the spatial and memory descriptions were evaluated by testing rats with damage to the hippocampal system in a series of experiments, independently manipulating the spatial and memory characteristics of a behavioral task. No dissociations were found when the spatial characteristics of the stimuli to be remembered were changed; lesions produced a similar deficit in both spatial and nonspatial test procedures, indicating that the hippocampus was similarly involved regardless of the spatial nature of the task. In contrast, a marked dissociation was found when the memory requirements were altered. Rats with lesions were able to perform accurately in tasks that could be solved exclusively on the basis of reference memory. They performed at chance levels and showed no signs of recovery even with extensive postoperative training in tasks that required working memory. In one experiment all the characteristics of the reference memory and working memory procedures were identical except the type of memory required. Consequently, the behavioral dissociation cannot be explained by differences in attention, motivation, response inhibition, or the type of stimuli to be remembered. As a result of these experiments we propose that the hippocampus is selectively involved in behaviors that require working memory, irrespective of the type of material (spatial or nonspatial) that is to be processed by that memory.
Collapse
|
31
|
|
32
|
|
33
|
|
34
|
|
35
|
|
36
|
|
37
|
A neuropsychological theory of hippocampal function: Procrustean treatment of inconvenient data. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00062786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
|
39
|
Hippocampal function: does the working memory hypothesis work? Should we retire the cognitive map theory? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00062944] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
|
41
|
|
42
|
|
43
|
|
44
|
|
45
|
|
46
|
|
47
|
|
48
|
|
49
|
|
50
|
|