1
|
Dar MS. Ethanol-Induced Cerebellar Ataxia: Cellular and Molecular Mechanisms. THE CEREBELLUM 2016; 14:447-65. [PMID: 25578036 DOI: 10.1007/s12311-014-0638-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cerebellum is an important target of ethanol toxicity given that cerebellar ataxia is the most consistent physical manifestation of acute ethanol consumption. Despite the significance of the cerebellum in ethanol-induced cerebellar ataxia (EICA), the cellular and molecular mechanisms underlying EICA are incompletely understood. However, two important findings have shed greater light on this phenomenon. First, ethanol-induced blockade of cerebellar adenosine uptake in rodent models points to a role for adenosinergic A1 modulation of EICA. Second, the consistent observation that intracerebellar administration of nicotine in mice leads to antagonism of EICA provides evidence for a critical role of cerebellar nitric oxide (NO) in EICA reversal. Based on these two important findings, this review discusses the potential molecular events at two key synaptic sites (mossy fiber-granule cell-Golgi cell (MGG synaptic site) and granule cell parallel fiber-Purkinje cell (GPP synaptic site) that lead to EICA. Specifically, ethanol-induced neuronal NOS inhibition at the MGG synaptic site acts as a critical trigger for Golgi cell activation which leads to granule cell deafferentation. Concurrently, ethanol-induced inhibition of adenosine uptake at the GPP synaptic site produces adenosine accumulation which decreases glutamate release and leads to the profound activation of Purkinje cells (PCs). These molecular events at the MGG and GPP synaptic sites are mutually reinforcing and lead to cerebellar dysfunction, decreased excitatory output of deep cerebellar nuclei, and EICA. The critical importance of PCs as the sole output of the cerebellar cortex suggests normalization of PC function could have important therapeutic implications.
Collapse
Affiliation(s)
- M Saeed Dar
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27858, USA,
| |
Collapse
|
2
|
López-Cruz L, Salamone JD, Correa M. The Impact of Caffeine on the Behavioral Effects of Ethanol Related to Abuse and Addiction: A Review of Animal Studies. JOURNAL OF CAFFEINE RESEARCH 2013; 3:9-21. [PMID: 24761272 PMCID: PMC3643311 DOI: 10.1089/jcr.2013.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The impact of caffeine on the behavioral effects of ethanol, including ethanol consumption and abuse, has become a topic of great interest due to the rise in popularity of the so-called energy drinks. Energy drinks high in caffeine are frequently taken in combination with ethanol under the popular belief that caffeine can offset some of the intoxicating effects of ethanol. However, scientific research has not universally supported the idea that caffeine can reduce the effects of ethanol in humans or in rodents, and the mechanisms mediating the caffeine-ethanol interactions are not well understood. Caffeine and ethanol have a common biological substrate; both act on neurochemical processes related to the neuromodulator adenosine. Caffeine acts as a nonselective adenosine A1 and A2A receptor antagonist, while ethanol has been demonstrated to increase the basal adenosinergic tone via multiple mechanisms. Since adenosine transmission modulates multiple behavioral processes, the interaction of both drugs can regulate a wide range of effects related to alcohol consumption and the development of ethanol addiction. In the present review, we discuss the relatively small number of animal studies that have assessed the interactions between caffeine and ethanol, as well as the interactions between ethanol and subtype-selective adenosine receptor antagonists, to understand the basic findings and determine the possible mechanisms of action underlying the caffeine-ethanol interactions.
Collapse
Affiliation(s)
| | - John D. Salamone
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castelló, Spain
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
3
|
Ferré S, O'Brien MC. Alcohol and Caffeine: The Perfect Storm. JOURNAL OF CAFFEINE RESEARCH 2011; 1:153-162. [PMID: 24761263 DOI: 10.1089/jcr.2011.0017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although it is widely believed that caffeine antagonizes the intoxicating effects of alcohol, the molecular mechanisms underlying their interaction are incompletely understood. It is known that both caffeine and alcohol alter adenosine neurotransmission, but the relationship is complex, and may be dose dependent. In this article, we review the available literature on combining caffeine and alcohol. Ethical constraints prohibit laboratory studies that would mimic the high levels of alcohol intoxication achieved by many young people in real-world settings, with or without the addition of caffeine. We propose a possible neurochemical mechanism for the increase in alcohol consumption and alcohol-related consequences that have been observed in persons who simultaneously consume caffeine. Caffeine is a nonselective adenosine receptor antagonist. During acute alcohol intake, caffeine antagonizes the "unwanted" effects of alcohol by blocking the adenosine A1 receptors that mediate alcohol's somnogenic and ataxic effects. The A1 receptor-mediated "unwanted" anxiogenic effects of caffeine may be ameliorated by alcohol-induced increase in the extracellular concentration of adenosine. Moreover, by means of interactions between adenosine A2A and dopamine D2 receptors, caffeine-mediated blockade of adenosine A2A receptors can potentiate the effects of alcohol-induced dopamine release. Chronic alcohol intake decreases adenosine tone. Caffeine may provide a "treatment" for the withdrawal effects of alcohol by blocking the effects of upregulated A1 receptors. Finally, blockade of A2A receptors by caffeine may contribute to the reinforcing effects of alcohol.
Collapse
Affiliation(s)
- Sergi Ferré
- CNS Receptor-Receptor Interactions Unit, National Institute on Drug Abuse , Intramural Research Program, Department of Health and Human Services, Baltimore, Maryland
| | - Mary Claire O'Brien
- Department of Emergency Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina. ; Department of Social Sciences & Health Policy, Wake Forest School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
4
|
Asatryan L, Nam HW, Lee MR, Thakkar MM, Saeed Dar M, Davies DL, Choi DS. Implication of the purinergic system in alcohol use disorders. Alcohol Clin Exp Res 2011; 35:584-94. [PMID: 21223299 DOI: 10.1111/j.1530-0277.2010.01379.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the central nervous system, adenosine and adenosine 5'-triphosphate (ATP) play an important role in regulating neuronal activity as well as controlling other neurotransmitter systems, such as, GABA, glutamate, and dopamine. Ethanol increases extracellular adenosine levels that regulate the ataxic and hypnotic/sedative effects of ethanol. Interestingly, ethanol is known to increase adenosine levels by inhibiting an ethanol-sensitive adenosine transporter, equilibrative nucleoside transporter type 1 (ENT1). Ethanol is also known to inhibit ATP-specific P2X receptors, which might result in such similar effects as those caused by an increase in adenosine. Adenosine and ATP exert their functions through P1 (metabotropic) and P2 (P2X-ionotropic and P2Y-metabotropic) receptors, respectively. Purinergic signaling in cortex-striatum-ventral tegmental area (VTA) has been implicated in regulating cortical glutamate signaling as well as VTA dopaminergic signaling, which regulates the motivational effect of ethanol. Moreover, several nucleoside transporters and receptors have been identified in astrocytes, which regulate not only adenosine-ATP neurotransmission, but also homeostasis of major inhibitory-excitatory neurotransmission (i.e., GABA or glutamate) through neuron-glial interactions. This review will present novel findings on the implications of adenosine and ATP neurotransmission in alcohol use disorders.
Collapse
Affiliation(s)
- Liana Asatryan
- Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, University of Southern California, Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Dar MS. Sustained antagonism of acute ethanol-induced ataxia following microinfusion of cyclic AMP and cpt-cAMP in the mouse cerebellum. Pharmacol Biochem Behav 2010; 98:341-8. [PMID: 21192968 DOI: 10.1016/j.pbb.2010.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/23/2010] [Accepted: 12/20/2010] [Indexed: 01/18/2023]
Abstract
Ataxia is a conspicuous physical manifestation of alcohol consumption in humans and laboratory animals. Previously we reported possible involvement of cAMP in ethanol-induced ataxia. We now report a sustained antagonism of ataxia due to multiple ethanol injections following intracerebellar (ICB) cAMP or cpt-cAMP microinfusion. Adenylyl cyclase drugs cAMP, cpt-cAMP, Sp-cAMP, Rp-cAMP, adenosine A₁ agonist, N⁶-cyclohexyladenosine (CHA) and GABA(A) agonist muscimol were directly microinfused into the cerebellum of CD-1 male mice to evaluate their effect on ethanol (2 g/kg; i.p.) ataxia. Drug microinfusions were made via stereotaxically implanted stainless steel guide cannulas. Rotorod was used to evaluate the ethanol's ataxic response. Intracerebellar cAMP (0.1, 1, 10 fmol) or cpt-cAMP (0.5, 1, 2 fmol) 60 min before ethanol treatment, dose-dependently attenuated ethanol-induced ataxia in general agreement with previous observations. Intracerebellar microinfusion of cAMP (100 fmol) or cpt-cAMP (2 fmol) produced a sustained attenuation of ataxia following ethanol administration at 1, 4, 7 and 25 h or 31 h post-cAMP/cpt-cAMP microinfusion. At 31 h post-cAMP, the ataxic response of ethanol reappeared. Additionally, marked antagonism to the accentuation of ethanol-induced ataxia by adenosine A₁ and GABA(A) agonists, CHA (34 pmol) and muscimol (88 pmol), respectively, was noted 24h after cAMP and cpt-cAMP treatment. This indicated possible participation of AC/cAMP/PKA signaling in the co-modulation of ethanol-induced ataxia by A₁ adenosinergic and GABAergic systems. No change in normal motor coordination was noted when cAMP or cpt-cAMP microinfusion was followed by saline. Finally, Rp-cAMP (PKA inhibitor, 22 pmol) accentuated ethanol-induced ataxia and antagonized its attenuation by cAMP whereas Sp-cAMP (PKA activator, 22 pmol) produced just the opposite effects, further indicating participation of cAMP-dependent PKA downstream. Overall, the results support a role of AC/cAMP/PKA signaling in the expression of ethanol-induced ataxia and its co-modulation by adenosine A₁ and GABA(A) receptors.
Collapse
Affiliation(s)
- M Saeed Dar
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
6
|
|
7
|
Saeed Dar M. Co-modulation of acute ethanol-induced motor impairment by mouse cerebellar adenosinergic A1 and GABAA receptor systems. Brain Res Bull 2006; 71:287-95. [PMID: 17113958 DOI: 10.1016/j.brainresbull.2006.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 11/24/2022]
Abstract
We have previously demonstrated that cerebellar adenosine modulates ethanol ataxia. Using Rotorod method, we investigated the role of cerebellar GABA(A) receptors in the adenosinergic modulation of ethanol ataxia in mice. Direct cerebellar microinfusion of GABA(A) agonist, muscimol (2.5, 5 and 10 ng) and antagonist, bicuculline (50, 100 and 200 ng), via permanently implanted guide cannulas, produced a marked and dose-dependent accentuation and attenuation, respectively, of ethanol (2g/kg; IP) ataxia. The accentuation of ethanol ataxia by intracerebellar muscimol was through GABA(A) receptor because intracerebellar pretreatment with bicuculline virtually abolished muscimol effect. Intracerebellar microinfusion of adenosine A(1) agonist, N(6)-cyclohexyladenosine (CHA: 4 ng), and antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX: 100 ng) markedly accentuated and attenuated, respectively, ethanol ataxia consistent with our previously published data. Intracerebellar microinfusion of CHA (4 ng) or DPCPX (100 ng) markedly enhanced and reduced, respectively, muscimol (10 ng)-induced accentuation of ethanol ataxia suggesting co-modulation of ethanol ataxia by cerebellar adenosinergic A(1) and GABA(A) receptors. Similarly, intracerebellar bicuculline (200 ng) pretreatment not only prevented CHA-induced accentuation of ethanol ataxia, but caused further decrease in ethanol ataxia. No change in the normal coordination was observed when microinfusion of the highest dose of muscimol, bicuculline, DPCPX or CHA alone or in combination was followed by saline injection instead of ethanol. The results of the present study suggest a functional similarity between GABA(A) and adenosine A(1) receptors even though both receptor types are known to couple to different signaling system and their location is on the opposite ends of the cerebellar granule cells, axons and axonal terminals (i.e., GABA(A) at the granule cells and adenosine A(1) on axons and axonal terminals of the granule cells) and act as co-modulators of ethanol ataxia.
Collapse
Affiliation(s)
- M Saeed Dar
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
8
|
Wallner M, Hanchar HJ, Olsen RW. Low dose acute alcohol effects on GABA A receptor subtypes. Pharmacol Ther 2006; 112:513-28. [PMID: 16814864 PMCID: PMC2847605 DOI: 10.1016/j.pharmthera.2006.05.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 05/15/2006] [Indexed: 12/23/2022]
Abstract
GABA(A) receptors (GABA(A)Rs) are the main inhibitory neurotransmitter receptors and have long been implicated in mediating at least part of the acute actions of ethanol. For example, ethanol and GABAergic drugs including barbiturates and benzodiazepines share many pharmacological properties. Besides the prototypical synaptic GABA(A)R subtypes, nonsynaptic GABA(A)Rs have recently emerged as important regulators of neuronal excitability. While high doses (> or =100 mM) of ethanol have been reported to enhance activity of most GABA(A)R subtypes, most abundant synaptic GABA(A)Rs are essentially insensitive to ethanol concentrations that occur during social ethanol consumption (< 30 mM). However, extrasynaptic delta and beta3 subunit-containing GABA(A)Rs, associated in the brain with alpha4 or alpha6 subunits, are sensitive to low millimolar ethanol concentrations, as produced by drinking half a glass of wine. Additionally, we found that a mutation in the cerebellar alpha6 subunit (alpha6R100Q), initially reported in rats selectively bred for increased alcohol sensitivity, is sufficient to produce increased alcohol-induced motor impairment and further increases of alcohol sensitivity in recombinant alpha6beta3delta receptors. Furthermore, the behavioral alcohol antagonist Ro15-4513 blocks the low dose alcohol enhancement on alpha4/6/beta3delta receptors, without reducing GABA-induced currents. In binding assays alpha4beta3delta GABA(A)Rs bind [(3)H]Ro15-4513 with high affinity, and this binding is inhibited, in an apparently competitive fashion, by low ethanol concentrations, as well as analogs of Ro15-4513 that are active to antagonize ethanol or Ro15-4513's block of ethanol. We conclude that most low to moderate dose alcohol effects are mediated by alcohol actions on alcohol/Ro15-4513 binding sites on GABA(A)R subtypes.
Collapse
Affiliation(s)
| | | | - Richard W. Olsen
- Corresponding author. Tel.: +1 310 825 5093; fax: +1 310 267 2003. (R.W. Olsen)
| |
Collapse
|
9
|
Dar MS, Meng ZH. Acute ethanol-induced adenosine diphosphate ribosylation regulates the functional activity of rat striatal pertussis toxin-sensitive g proteins. Alcohol Clin Exp Res 2004; 28:1299-307. [PMID: 15365299 DOI: 10.1097/01.alc.0000139817.53197.41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND We demonstrated previously that striatal adenosine modulates ethanol-induced motor incoordination (EIMI) via adenosine A1 receptors coupled to pertussis toxin (PT)-sensitive G protein and adenylyl cyclase-cyclic adenosine monophosphate (cAMP). Additionally, intrastriatal (IST) PT antagonizes EIMI and its potentiation by the adenosine A1 agonist N-cyclohexyladenosine; it also inhibits cAMP concentration. METHODS Guide cannulas were stereotaxically implanted for IST pretreatment with PT followed 5 days later by IST of N-cyclohexyladenosine and intraperitoneal ethanol. The adenosine diphosphate (ADP) ribosylation reaction involved PT-catalyzed [P]nicotinamide adenine dinucleotide (NAD) labeling of rat striatal membranes. Antagonism of EIMI (Rotorod method) after IST microinfusion of PT was investigated to determine whether it was due to a decrease in the functional activity of G proteins due to ADP ribosylation of the Gialpha subunit caused it. RESULTS Striatal membranes from IST PT (0.5 microg)-treated animals exhibited significantly attenuated (up to 90%) in vitro ADP ribosylation with [P]NAD. Striatal membranes from animals injected with ethanol (1.5 g/kg intraperitoneally) exhibited statistically significant increase (11%) in in vitro ADP ribosylation. Similarly, ethanol (50 mM) added to striatal membranes from untreated animals produced significant stimulation of in vitro ADP ribosylation. The decrease in the functional activity of G proteins due to ADP ribosylation of the Gialpha subunit after IST PT was functionally correlated with marked attenuation in EIMI, as observed previously. This finding suggests a blockade of functional activity of PT-sensitive striatal Gi/Go proteins (i.e., fewer available sites for labeled NAD incorporation). The in vivo ethanol results indicate that it must have caused an increase in the ribosylation capacity of Gialpha in vivo (i.e., increased Gi activity). Increased ADP ribosylation by in vitro ethanol increases Gi/Go activity, consistent with EIMI, as previously reported. CONCLUSIONS The results provide biochemical evidence of an ethanol-induced increase in ADP ribosylation of Gialpha causing a decrease in the functional activity of G proteins coupled via Gi/Go to adenylyl cyclase-cAMP. These results confirm the previously observed antagonism of EIMI by PT (IST).
Collapse
Affiliation(s)
- M Saeed Dar
- Department of Pharmacology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27858, USA.
| | | |
Collapse
|
10
|
Dar MS. Modulation of ethanol-induced motor incoordination by mouse striatal A(1) adenosinergic receptor. Brain Res Bull 2001; 55:513-20. [PMID: 11543952 DOI: 10.1016/s0361-9230(01)00552-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have demonstrated that ethanol-induced motor incoordination is modulated by cerebellar adenosine A(1) receptor. This study represents an extension into another important brain motor area, the striatum that, unlike cerebellum, has high density of both A(1) and A(2A) receptors. Direct intra-striatal micro-infusion of Ro15-4513 (0.05, 0.5, 1 ng), a partial inverse-agonist of benzodiazepine, significantly and nearly dose-dependently attenuated ethanol-induced motor incoordination indicating mediation of ethanol's motor incoordination by striatum. Intra-striatal A(1)-selective agonist N(6)-cyclohexyladenosine (CHA; 1, 2, 4 ng), A(1) = A(2A) non-selective agonist, 5'-N-ethylcarboxamidoadenosine (NECA; 1.5, 3, 6 ng), and A(1)-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 25, 50, 100 ng) dose-dependently accentuated and attenuated, respectively, ethanol-induced motor incoordination, strongly suggesting modulation by striatal adenosine A(1) receptor. Intra-striatal DPCPX significantly antagonized not only ethanol-induced motor incoordination but also its potentiation by intra-striatal CHA, R-(+)-N(6)-(2-phenylisopropyladenosine) (R-PIA), or NECA. No change in motor coordination occurred after the highest dose of CHA, R-PIA, or NECA followed by saline. Similarly, the highest intra-striatal dose of Ro15-4513 or DPCPX neither altered motor coordination or locomotor activity indicating relative selectivity of interaction with ethanol. Nearly 25-fold higher dose of A(2A)-selective agonist, CGS-21680, compared to CHA was necessary to produce a comparable potentiation of ethanol's motor incoordination perhaps suggesting a lack of or less significant striatal A(2A) involvement. Intra-striatal pertussis toxin (0.5 microg) pre-treatment markedly attenuated ethanol-induced motor incoordination as well as its potentiation by intra-striatal CHA. These results support that striatum is one of the brain motor areas mediating the motor impairing effects of acute ethanol and that the latter's modulation occurs via A(1)-selective receptors coupled to pertussis toxin-sensitive G proteins.
Collapse
Affiliation(s)
- M S Dar
- Department of Pharmacology, The Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
11
|
Meng ZH, Pennington SN, Dar MS. Rat striatal adenosinergic modulation of ethanol-induced motor impairment: possible role of striatal cyclic AMP. Neuroscience 1998; 85:919-30. [PMID: 9639284 DOI: 10.1016/s0306-4522(97)00627-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously reported the involvement of the striatum in acute ethanol-induced motor incoordination and the striatal adenosinergic modulation of ethanol-induced motor incoordination through A1 receptor-mediated mechanism(s). The present study, a continuation of our previous work, was carried out to investigate the possible functional correlation between striatal cyclic AMP and ethanol-induced motor incoordination, and its modulation by striatal adenosine in Sprague-Dawley rats. Forskolin (0.1, 0.5 and 1.0 pmol), a known activator of adenylate cyclase, significantly attenuated ethanol-induced motor incoordination in a dose-dependent manner following its direct intrastriatal microinfusion. Forskolin also antagonized the accentuating effect of intrastriatal N6-cyclohexyladenosine on ethanol-induced motor incoordination. These results suggested that ethanol-induced motor incoordination might be functionally correlated to a decrease in the striatal cyclic AMP levels and that the striatal adenosine A1 receptors might modulate ethanol-induced motor incoordination through cyclic AMP signaling mechanism(s). Further support to this hypothesis was obtained by the actual measurement of the striatal cyclic AMP levels in the same experimental conditions as in motor coordination studies using high-performance liquid chromatography with fluoroscence detection. Regardless of the method (focused microwave irradiation, cervical dislocation or decapitation into a dry ice-ethanol mixture) used to kill the animals, a significant decrease in the striatal cyclic AMP levels was observed due to ethanol. Intrastriatal adenosine A1-selective agonist, N6-cyclohexyladenosine (24 ng), caused a further significant decrease in the striatal cyclic AMP levels in the ethanol- but not in the vehicle-treated animals. The further enhancement in the ethanol-induced decrease in the striatal cyclic AMP levels by intrastriatal N6-cyclohexyladenosine, therefore, functionally correlated with the observed potentiating effect of intrastriatal N6-cyclohexyladenosine on ethanol-induced motor incoordination. The effects of intrastriatal N6-cyclohexyladenosine+ethanol and of ethanol alone on the striatal cyclic AMP levels were blocked by intrastriatal pertussis toxin (500 ng) pretreatment, indicating the involvement of pertussis toxin-sensitive G-proteins (Gi, Go) and possibly of the adenosine A1 receptor coupled to the G-proteins in the striatum. Furthermore, ethanol alone significantly decreased the basal as well as the cyclic AMP-stimulated catalytic activities of the striatal cyclic AMP protein kinase, which were further reduced by intrastriatal N6-cyclohexyladenosine. The results of the present study therefore support an involvement of a cyclic AMP signaling pathway in the striatal adenosinergic modulation of ethanol-induced motor incoordination at the post-adenosine A1 receptor level.
Collapse
Affiliation(s)
- Z H Meng
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | | | |
Collapse
|
12
|
Barwick VS, Dar MS. Adenosinergic modulation of ethanol-induced motor incoordination in the rat motor cortex. Prog Neuropsychopharmacol Biol Psychiatry 1998; 22:587-607. [PMID: 9682275 DOI: 10.1016/s0278-5846(98)00025-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
1. On going work in our laboratory has shown that adenosine modulates ethanol-induced motor incoordination (EIMI) when given systemically as well as directly into the cerebral ventricles, cerebellum and corpus striatum of the rat and/or mouse. 2. The objective of this study was to determine what effect adenosine agonists and antagonists would have within the rat motor cortex on EIMI. 3. The participation of the motor cortex in EIMI was suggested when microinfusion of the anti-ethanol compound, Ro15-4513, an inverse agonist of the benzodiazepine binding site, directly into the motor cortex significantly attenuated EIMI. Further, the adenosine agonists N6-cyclohexyladenosine (CHA) and 2-p-(2-carboxyethyl)-phenethylamino-5'-N-carboxaminoadenosine++ + hydrochloride (CGS-21680) significantly accentuated EIMI in a dose-related manner. The adenosine A1 receptor-selective agonist, CHA, appeared most potent in this modulatory effect when compared to the A2-selective agonist, CGS-21680. 4. The extent of diffusion of the adenosine drugs within the cortical tissue after their microinfusion was also checked by measuring the dispersion of microinfused [3H]CHA. The [3H]CHA dispersion study indirectly confirmed that the results of the present investigation were based on the effect of adenosine drugs within the motor cortex only. 5. Accentuation by the A1- and A2-selective adenosine agonists was significantly attenuated by the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) but not by the A2 receptor-selective antagonist 8-(3-chlorostyryl)caffeine (CSC) further suggesting modulation mainly by the A1-subtype. 6. Pretreatment of the motor cortex with pertussis toxin (PT) significantly reduced the capacity of both A1- and A2-selective adenosine agonists to accentuate EIMI suggesting the involvement of a PT-sensitive Gi/Go protein. 7. These data support earlier work which showed that adenosine modulates EIMI within the central nervous system (CNS), most likely via the A1 receptor, and moreover, extend that work by including the motor cortex as a brain area participating in the adenosinergic modulation of ethanol-induced motor impairment.
Collapse
Affiliation(s)
- V S Barwick
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC, USA
| | | |
Collapse
|
13
|
Jarvis MF, Becker HC. Single and repeated episodes of ethanol withdrawal increase adenosine A1, but not A2A, receptor density in mouse brain. Brain Res 1998; 786:80-8. [PMID: 9554962 DOI: 10.1016/s0006-8993(97)01413-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A history of multiple ethanol withdrawal experiences has been shown to exacerbate the severity of future withdrawal episodes, and this sensitization of the withdrawal response has been hypothesized to represent a 'kindling' phenomenon. Since adenosine functions as an inhibitory modulator of seizure activity and may interact with ethanol to influence neuronal excitability, the present study was conducted to examine the effects of single and repeated episodes of ethanol withdrawal on adenosine A1 and A2A receptors in adult C3H/He mice. Mice were chronically exposed to ethanol vapor in inhalation chambers and tested for withdrawal seizures following multiple withdrawal (MW) experience (four cycles of 16 h ethanol intoxication interrupted by 8 h periods of abstinence), single withdrawal experience following 16 h (SW) or 64 h (CE) continuous ethanol intoxication, or no ethanol exposure (controls). Separate groups of mice from each withdrawal condition were used to generate pooled cortical and striatal tissue for ligand saturation experiments using [3H]cyclohexyladenosine to label A1 receptors and [3H]CGS 21680 to label A2A receptors. Results indicated that withdrawal seizures were significantly more severe in mice with multiple withdrawal experience in comparison to animals that experienced only a single withdrawal episode, even when total amount of ethanol exposure was equated among groups. The density of A1 receptors in cerebral cortex was significantly increased over controls 8 h following final ethanol withdrawal by approximately 35% in SW and CE groups, with the largest increase observed in the MW group (56%). Withdrawal treatment groups did not differ in cortical A1 binding sites immediately upon withdrawal from ethanol, and no significant differences in binding of [3H]CGS 21680 to striatal A2A receptors were observed following ethanol withdrawal. Ethanol exposure and withdrawal did not significantly alter ligand affinity for either adenosine receptor. These results indicate that adenosine A1 receptors are selectively upregulated during ethanol withdrawal and that the degree of upregulation may be enhanced following multiple withdrawal episodes. Further, these observations suggest that the upregulation of brain A1 receptors during ethanol withdrawal may represent a compensatory inhibitory response to increased seizure severity associated with repeated episodes of ethanol withdrawal.
Collapse
Affiliation(s)
- M F Jarvis
- Rhone-Poulenc Rorer Central Research, Collegeville, PA, USA
| | | |
Collapse
|
14
|
Dar MS. Mouse cerebellar adenosinergic modulation of ethanol-induced motor incoordination: possible involvement of cAMP. Brain Res 1997; 749:263-74. [PMID: 9138726 DOI: 10.1016/s0006-8993(96)01263-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As an extension of our previous work pertaining to brain adenosinergic modulation of ethanol-induced motor incoordination, the effect of direct intracerebellar administration of the A1-selective adenosine agonist, N6-cyclohexyladenosine (CHA) on ethanol-induced motor incoordination was evaluated. Marked accentuation of ethanol-induced motor impairment by CHA was observed. No change in the normal motor coordination was noted when CHA administration was followed by saline instead of ethanol. Intracerebellar cAMP or its analog, 8-(4-chlorophenylthio)-cAMP, significantly inhibited ethanol's motor impairment in a dose-related manner as well as abolished CHA's accentuating effect on ethanol-induced motor incoordination. These observations suggested a possible involvement of cAMP in the adenosinergic modulation and in the expression of ethanol-induced motor incoordination. Further support was provided by the observation of a marked accentuation and attenuation in a dose-related manner of ethanol-induced motor impairment as well as CHA's accentuation of ethanol's motor impairment by intracerebellar miconazole and forskolin, respectively. However, equimolar intracerebellar doses of miconazole and forskolin (inhibitor and stimulator of adenylyl cyclase, respectively) failed to significantly alter ethanol-induced motor incoordination probably due to their mutual functional antagonism. The expression of adenosinergic modulation and that of ethanol-induced motor impairment most likely involved Gi protein-coupled receptor(s) (such as adenosine receptors). The involvement of receptors linked to pertussis toxin-sensitive G-proteins was suggested because intracerebellar pertussis toxin pretreatment markedly inhibited ethanol-induced motor incoordination as well as CHA's accentuation of ethanol's motor impairment. Finally, cAMP, unlike its antagonism to CHA's accentuation, failed to antagonize the accentuation of ethanol-induced motor impairment by intracerebellar GABA(A) agonist (+)-muscimol. This indicated selectivity of cAMP participation in G protein coupled receptor (such as adenosine)-mediated response and not in ionic channel coupled receptor (such as GABA(A))-mediated mechanism. Overall, the data suggested a possible involvement of cerebellar adenylyl cyclase-cAMP signalling pathway in the adenosinergic modulation of ethanol's ataxia.
Collapse
Affiliation(s)
- M S Dar
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville 27858, USA
| |
Collapse
|
15
|
Meng ZH, Dar MS. Possible role of striatal adenosine in the modulation of acute ethanol-induced motor incoordination in rats. Alcohol Clin Exp Res 1995; 19:892-901. [PMID: 7485836 DOI: 10.1111/j.1530-0277.1995.tb00964.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Several reports from our laboratory have suggested the involvement of the brain adenosinergic system in ethanol-induced motor incoordination (EIMI). This study is an extension of the previous work and pertains to the evaluation of the role of the striatal adenosine in EIMI in male Sprague-Dawley rats. Using the motor incoordination induced by 1.5 g/kg of ethanol (ip) as a test response, the possible behavioral interactions between ethanol and adenosine agonists and antagonists in the striatum were investigated. Intrastriatal (IST) administration of adenosine A1-, A1 = A2-, and As-selective agonists, R(-)N6-(2-phenylisopropyl)adenosine (R-PIA), 5'-N-ethylcarboxamido-adenosine (NECA), and 5'-(N-cyclopropyl)-carboxamidoadenosine, respectively, significantly and dose-dependently accentuated EIMI when evaluated by rotorod test, suggesting the striatal adenosinergic modulation of EIMI. No significant change in normal motor coordination was noted, even when the highest IST doses of adenosine agonists were followed by saline instead of ethanol, suggesting that the observed behavioral interactions of these drugs were selective to ethanol. Hippocampus, which is known not to be involved in the normal motor functions, was selected as a control brain area because of the presence of high density of adenosine receptors, as well as the high levels of adenosine. Intrahippocampal NECA failed to alter EIMI, indicating the specific role of striatal and not hippocampal adenosinergic system in the modulation of EIMI. The potentiating effects of adenosine agonists N6-cyclohexyladenosine (CHA) and CGS-21680 on EIMI were blocked by adenosine A1- and A2-selective antagonists, 8-cyclopentyl-1,3-dipropylxanthine and 3,7-dimethyl-1-propargylxanthine, respectively, suggesting the participation of specific adenosine receptors in this functional interaction. A role for the adenosine A1 receptor in the striatal adenosinergic modulation of EIMI was favored based on the rank-order potency of adenosine agonists. IST pretreatment with pertussis toxin (PT), but not with PT beta-oligomer, nearly completely eliminated the accentuation of EIMI by CHA, further supporting the favored role of adenosine A1 receptors in EIMI. Histological and IST [3H]R-PIA distribution data confirmed that the observed behavioral effects were caused by exclusive striatal distribution of intrastriatally microinjected drugs. Data obtained suggested modulation of acute EIMI by striatal adenosine receptor-mediated mechanism(s) and the coupling of these adenosine receptor to the PT-sensitive Gi protein.
Collapse
Affiliation(s)
- Z H Meng
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, North Carolina 27858, USA
| | | |
Collapse
|
16
|
Wannamaker VL, Nagy LE. Equilibrative adenosine transport in rat hepatocytes after chronic ethanol feeding. Alcohol Clin Exp Res 1995; 19:735-40. [PMID: 7573801 DOI: 10.1111/j.1530-0277.1995.tb01575.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Acute treatment of cells with ethanol in vitro inhibits adenosine uptake via equilibrative nucleoside transporters. After longer periods of exposure to ethanol in culture, rechallenge with ethanol no longer inhibits adenosine uptake. Herein, we have investigated the long-term effects of ethanol consumption in vivo on equilibrative nucleoside transport. Rats were fed a liquid diet containing 35% of calories as ethanol (ethanol-fed). Control rats were pair-fed a liquid diet that isocalorically substituted maltose dextrins for ethanol. After 4 weeks of ethanol consumption, nucleoside transport was measured in isolated hepatocytes. Uptake of [3H]adenosine was lower in ethanol-fed rats compared with control. Influx of the nonmetabolizable nucleoside analog, [3H]formycin B, was also decreased after ethanol feeding. However, neither the number of nitrobenzylthioinosine (NBMPR) binding sites or inhibition of adenosine uptake by NBMPR were affected by ethanol feeding. In controls, acute treatment of isolated hepatocytes with 100 mM ethanol inhibited [3H]adenosine uptake by 30-40%. However, in ethanol-fed rats, acute challenge with ethanol did not inhibit [3H]adenosine uptake. These data demonstrate that long-term ethanol feeding decreases equilibrative nucleoside transport in hepatocytes independent of a change in the number of nucleoside transporters and renders adenosine uptake insensitive to inhibition by ethanol.
Collapse
Affiliation(s)
- V L Wannamaker
- Department of Nutritional Sciences, University of Guelph, Ontario, Canada
| | | |
Collapse
|
17
|
Anwer J, Dar MS. Possible central adenosinergic modulation of ethanol-induced alterations in [14C]glucose utilization in mice. Alcohol Clin Exp Res 1995; 19:777-83. [PMID: 7573808 DOI: 10.1111/j.1530-0277.1995.tb01582.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The possible role of brain adenosine in acute ethanol-induced alteration in glucose utilization in the whole brain, as well as in the specific brain areas (cerebellum and brain stem), was investigated. Mice were killed 20-min postethanol, and the fresh tissue slices (300 microns) of brain and/or specific brain areas were incubated for 100 min in a 5.5 mM glucose medium in Warburg flasks using [6-(14)C]glucose as a tracer. Trapped 14CO2 was counted to estimate glucose utilization. Ethanol (2 g/kg, i.p.) markedly increased the glucose utilization in whole brain and in both motor areas of brain. Theophylline (50 mg/kg, i.p.), an adenosine antagonist, significantly reduced ethanol-induced increase in glucose utilization in whole brain, as well as in brain areas. However, adenosine agonist N6-cyclohexyladenosine (CHA; 0.1 mg/kg, i.p.) on the contrary, significantly accentuated ethanol-induced increase in glucose utilization in these tissues that was nearly completely blocked by theophylline pretreatment. Theophylline alone did not produce any significant change in glucose utilization, whereas CHA alone (in vivo and in vitro) significantly increased glucose utilization, as well as ethanol-induced increase in glucose utilization in an additive manner. Relevant supportive data were obtained by experiments in which adenosine deaminase (ADA), p-sulfophenyltheophylline (8-SPT), and CHA were administered in vitro to the slice preparations. Both ADA and 8-SPT were effective in almost completely blocking the ethanol-induced increase in glucose utilization, whereas CHA further enhanced the ethanol-induced increase in glucose utilization in an additive manner.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Anwer
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | |
Collapse
|
18
|
Anwer J, Dar MS. In vivo effects of (-)-nicotine on ethanol-induced increase in glucose utilization in the mouse cerebellum. Brain Res Bull 1995; 36:343-8. [PMID: 7712193 DOI: 10.1016/0361-9230(94)00218-p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to investigate the possible in vivo effects of (-)-nicotine, ethanol, and an adenosine agonist N6-cyclohexyladenosine (CHA) when injected individually as well as in various combinations on glucose utilization in the fresh cerebellar slices of mice. Mice received ICV (-)-nicotine or CHA followed 5 min later by a test dose of ethanol (2 g/kg; IP). Animals were killed 20 min postethanol treatment and fresh slices (300 microns) of cerebellum were incubated in a glucose medium in Warburg flasks using 14C-glucose as a tracer. Trapped 14CO2 was counted to estimate glucose utilization. Ethanol treatment markedly accentuated glucose utilization, whereas the pretreatment with (-)-nicotine (125 and 250 ng, ICV) resulted in a significant attenuation in the ethanol-induced increase in glucose utilization. However, ICV (-)-nicotine (125 ng) alone did not produce any change in the cerebellar glucose utilization. The attenuation of ethanol-induced increase in glucose utilization by (-)-nicotine was nearly totally blocked by ICV hexamethonium, a purported nicotinic antagonist, suggesting participation of cholinergic-nicotinic receptors. The (-)-nicotine pretreatment also significantly attenuated both the ICV CHA (25 ng)-induced increase in glucose utilization and the accentuation of ethanol-induced increase in glucose utilization by CHA. The antagonistic effect of (-)-nicotine on CHA- and ethanol-induced increase in glucose utilization indicating an interaction between (-)-nicotine and ethanol and between (-)-nicotine and adenosine may suggest involvement of postreceptor (nicotinic and adenosine) mechanisms including ionic channels.
Collapse
Affiliation(s)
- J Anwer
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858
| | | |
Collapse
|
19
|
Nagy LE. Role of adenosine A1 receptors in inhibition of receptor-stimulated cyclic AMP production by ethanol in hepatocytes. Biochem Pharmacol 1994; 48:2091-6. [PMID: 7802699 DOI: 10.1016/0006-2952(94)90509-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Brief exposure of primary cultures of hepatocytes to ethanol had a biphasic effect on glucagon receptor-dependent cyclic AMP (cAMP) production: 25-50 mM ethanol decreased cAMP levels, whereas treatment with 100-200 mM ethanol increased cAMP. This biphasic effect was also observed after pretreatment with 10 microM 4-methylpyrazole, an inhibitor of alcohol dehydrogenase. Adenosine A1 and A2 receptors in primary cultures of rat hepatocytes are coupled to inhibition and stimulation of adenylyl cyclase, respectively. Since primary cultures of hepatocytes release adenosine into their extracellular media, we tested whether the acute effects of ethanol on cAMP were mediated by extracellular adenosine. Co-incubation with 2 U/mL adenosine deaminase prevented inhibition of cAMP production by 25-50 mM ethanol, but had no effect on stimulation by 100-200 mM ethanol. Pretreatment of hepatocytes with 110 nM 8-cyclopentyl-1,3-dimethylxanthine, an adenosine A1 receptor antagonist, also completely blocked the inhibitory effects of ethanol on cAMP production. Low concentrations of ethanol enhanced the inhibitory effects of R(-)N6-(2-phenylisopropyl)adenosine, an A1 receptor agonist, on cAMP production in cells pretreated with adenosine deaminase to remove endogenous adenosine. These data suggest that endogenously produced adenosine can be an important modulator of the effects of ethanol on receptor-stimulated cAMP production in primary cultures of rat hepatocytes.
Collapse
Affiliation(s)
- L E Nagy
- Department of Nutritional Sciences, University of Guelph, Ontario, Canada
| |
Collapse
|
20
|
Nagy LE, DeSilva SE. Adenosine A1 receptors mediate chronic ethanol-induced increases in receptor-stimulated cyclic AMP in cultured hepatocytes. Biochem J 1994; 304 ( Pt 1):205-10. [PMID: 7998934 PMCID: PMC1137473 DOI: 10.1042/bj3040205] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cellular responses to adenosine depend on the distribution of the two adenosine receptor subclasses. In primary cultures of rat hepatocytes, adenosine receptors were coupled to adenylate cyclase via A1 and A2 receptors which inhibit and stimulate cyclic AMP production respectively. R-(-)-N6-(2-phenylisopropyl)-adenosine (R-PIA), the adenosine A1 receptor-selective agonist, inhibited glucagon-stimulated cyclic AMP production with an IC50 of 19 nM. This inhibition was blocked by the A1-specific antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPDX). 5'-N- Ethylcarboxamidoadenosine (NECA), an agonist which stimulates A2 receptors, increased cyclic AMP production with an EC50 of 0.6 microM. Treatment of primary cultures of rat hepatocytes with 100 mM ethanol for 48 h decreases the quantity and function of the inhibitory guanine-nucleotide regulatory protein (G(i)), resulting in a sensitization of receptor-stimulated cyclic AMP production [Nagy and deSilva (1992) Biochem. J. 286, 681-686]. When cells were cultured with 2 units/ml adenosine deaminase, to degrade extracellular adenosine, ethanol-induced increases in cyclic AMP production were completely prevented. Moreover, the specific A1-receptor antagonist, CPDX, also blocked the chronic effects of ethanol on receptor-stimulated cyclic AMP production. Treatment with adenosine deaminase or CPDX also prevented the decrease in quantity of the alpha subunit protein of G(i) observed in hepatocytes after chronic treatment with ethanol. Taken together, these results suggest that activation of adenosine A1 receptors on primary cultures of hepatocytes is involved in the development of chronic ethanol-induced sensitization of receptor-stimulated cyclic AMP production.
Collapse
Affiliation(s)
- L E Nagy
- Department of Nutritional Sciences, University of Guelph, ON, Canada
| | | |
Collapse
|
21
|
Daly JW, Shi D, Wong V, Nikodijevic O. Chronic effects of ethanol on central adenosine function of mice. Brain Res 1994; 650:153-6. [PMID: 7953667 DOI: 10.1016/0006-8993(94)90219-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chronic ingestion of 5% ethanol had no significant effect on open field locomotor of NIH Swiss strain male mice, nor were the depressant effects of a non-selective adenosine receptor agonist, NECA, or the stimulant effects of a non-selective antagonist, caffeine significantly altered. The density of cerebral cortical A1-adenosine receptors and of nitrendipine binding sites on calcium channels were significantly increased after chronic ethanol, while the density of striatal A2a-adenosine receptors were unchanged. The locomotor stimulant effects of ethanol (2.5 g/kg) were slightly decreased after chronic ethanol, but were markedly reduced in mice after chronic caffeine ingestion. The results suggest some involvement of adenosine systems in the effects of ethanol.
Collapse
Affiliation(s)
- J W Daly
- Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
22
|
Dar MS, Bowman ER, Li C. Intracerebellar nicotinic-cholinergic participation in the cerebellar adenosinergic modulation of ethanol-induced motor incoordination in mice. Brain Res 1994; 644:117-27. [PMID: 7913399 DOI: 10.1016/0006-8993(94)90354-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many epidemiological studies have suggested a high correlation between the use of tobacco and ethanol, the two most frequently abused psychoactive drugs. Recently, we reported behavioral interactions between (-)-nicotine, (-)-cotinine and ethanol within the CNS. The present report is a confirmation and an extension of that study. Using a 2 g/kg ethanol-induced motor incoordination (EIMI) as the test response, possible behavioral interactions between (-)-nicotine, (-)-cotinine and ethanol and between (-)-nicotine, (-)-cotinine and adenosine agonist + ethanol in the cerebellum were investigated. (-)-Nicotine, 0.625, 1.25 and 5 ng intracerebellarly (ICB) significantly attenuated EIMI in a dose-related manner. Likewise, ICB injection of 1.25, 2.5, and 5 ng (-)-cotinine, a major metabolite of nicotine, significantly attenuated EIMI after the same i.p. dose of ethanol as in case of (-)-nicotine but less markedly compared to (-)-nicotine. No change in normal motor coordination was observed when the highest dose of (-)-nicotine or (-)-cotinine was injected ICB followed by saline control, suggesting selectivity of their behavioral interactions with ethanol. The attenuation of EIMI by (-)-nicotine and (-)-cotinine was blocked by ICB hexamethonium (1 microgram) and trimethaphan (100 ng), the purported nicotinic-cholinergic antagonists. Finally, the ICB injection of adenosine agonists, N6-cyclohexyladenosine (CHA) or 5'-N-ethylcarboxamidoadenosine (NECA), produced marked accentuation of EIMI which was significantly antagonized by ICB (-)-nicotine and (-)-cotinine. The data obtained in the present study suggested, for the first time, a cerebellar adenosinergic-nicotinic cholinergic interaction and modulation of EIMI. The data also suggested participation of cerebellar nicotinic-cholinergic receptors in EIMI.
Collapse
Affiliation(s)
- M S Dar
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858
| | | | | |
Collapse
|
23
|
Abstract
Ethanol has been shown to increase markedly portal blood flow, primarily by increasing intestinal blood flow. This effect of ethanol is reproduced by acetate, infused at rates equivalent to those leading to endogenous acetate production following ethanol administration. The physiological mediator, adenosine, is also known to increase markedly intestinal and portal tributary blood flow. We have shown that adenosine receptor blockade with 8-phenyltheophylline completely abolishes the effects of ethanol, acetate, and adenosine on intestinal and portal blood flow, suggesting that increases in adenosine tone may constitute a common mechanism mediating the actions of both ethanol and acetate on the splanchnic vasculature. Studies are also presented that show that acetate administration has marked effects on central nervous system function. On two tests, motor coordination and anesthetic potency, both ethanol and acetate showed similar effects. The effects of acetate were fully abolished by 8-phenyltheophylline. The effects of ethanol were partially blocked by 8-phenyltheophylline, with a greater effect of this blocker being seen at low doses of alcohol. Whereas ethanol at low doses increased locomotor activity in mice, acetate markedly reduced it. The effect of acetate on locomotion was fully reversed by the adenosine receptor blocker 8-phenyltheophylline, whereas the activating effect of ethanol on locomotion was markedly enhanced by this blocker. These data suggest that the actions of ethanol on locomotor activity normally result from the combination of a direct stimulatory effect of ethanol per se and an inhibitory effect of acetate, produced endogenously from ethanol. When the latter effect of acetate is abolished by adenosine receptor blockade, the activating effect of ethanol is fully expressed.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y Israel
- Department of Pharmacology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
24
|
Diamond I, Gordon AS. The role of adenosine in mediating cellular and molecular responses to ethanol. EXS 1994; 71:175-83. [PMID: 8032148 DOI: 10.1007/978-3-0348-7330-7_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have found that ethanol-induced increases in extracellular adenosine activate adenosine receptors which, in turn, mediate many of the acute and chronic effects of ethanol in the nervous system. Several laboratories have demonstrated the importance of adenosine in mediating the acute and chronic effects of ethanol at multiple levels of investigation in the nervous system. These include genetic selection for ethanol sensitivity in mice, behavioral responses to ethanol in naive and tolerant animals, neurophysiologic responses in hippocampal slices, and at the level of cAMP signal transduction and gene expression in cultured neural cells. In this review we present results from our laboratory which document the role of adenosine in mediating ethanol-induced changes in neural function at a cellular and molecular level. A schematic summary of our findings is: Etoh-->decreases Ado uptake-->increases Extracellular Ado-->Activation of Adenosine A2 receptor-->increases cAMP-->increases PKA-->-->-->Heterologous Desensitization (decreases cAMP)-->-->-->insensitivity of adenosine uptake to ETOH
Collapse
Affiliation(s)
- I Diamond
- Ernest Gallo Clinic and Research Center, San Francisco, CA
| | | |
Collapse
|
25
|
Rabin RA, Fiorella D, Van Wylen DG. Role of extracellular adenosine in ethanol-induced desensitization of cyclic AMP production. J Neurochem 1993; 60:1012-7. [PMID: 8382260 DOI: 10.1111/j.1471-4159.1993.tb03249.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The decrease in receptor-stimulated cyclic AMP production after chronic ethanol exposure was suggested previously to be secondary to an ethanol-induced increase in extracellular adenosine. The present study was undertaken to ascertain whether a similar mechanism was responsible for the ethanol-induced desensitization of cyclic AMP production in PC12 pheochromocytoma cells. The acute addition of ethanol in vitro significantly increased both basal cyclic AMP content and extracellular levels of adenosine. A 4-day exposure to ethanol decreased basal as well as 2-chloroadenosine- and forskolin-stimulated cyclic AMP contents. No change in cyclic AMP content was observed after a 2-day exposure of PC12 cells to ethanol. Inclusion of adenosine deaminase during the chronic ethanol treatment significantly decreased extracellular levels of adenosine, yet the percentage decrease in 2-chloroadenosine- and forskolin-stimulated cyclic AMP levels after chronic ethanol exposure was not changed by the inclusion of the adenosine deaminase. Similar results were obtained when the chronic treatment was carried out with serum-free defined media. The ethanol-induced desensitization could not be mimicked by chronic exposure of PC12 cells to adenosine analogues. A 24-h exposure of PC12 cells to 2-chloroadenosine resulted in a decrease in the subsequent ability of this adenosine analogue to stimulate cyclic AMP content, but basal and forskolin-stimulated cyclic AMP levels were increased. Similar results were obtained after a 4-day exposure of PC12 cells to 2-chloroadenosine or 5'-N-ethylcarboxamido-adenosine. The present results indicate that the ethanol-induced decrease in receptor-stimulated cyclic AMP content in PC12 cells is not due to an increase in extracellular adenosine.
Collapse
Affiliation(s)
- R A Rabin
- Department of Pharmacology and Therapeutics, SUNY-Buffalo 14214
| | | | | |
Collapse
|
26
|
Abstract
Caffeine and other methylxanthines induce a dose-dependent reduction in core body temperature in mice. These experiments investigated the effects of neurotransmitter and neuromodulator antagonists on caffeine-induced hypothermia. Pretreatment with the alpha 2-adrenoceptor antagonist, atipamezole; the beta-adrenoceptor antagonist, propranolol; the dopamine antagonist, haloperidol; or the benzodiazepine receptor antagonist, flumazenil had no intrinsic effects on core body temperature nor did they interact significantly with the hypothermic effects of caffeine. The alpha 1-adrenoceptor antagonist, prazosin and the 5-HT receptor antagonist, metergoline significantly enhanced the hypothermic effects of caffeine, probably involving a combined effect with their intrinsic hypothermic actions. Pretreatment with the opiate receptor antagonist, naloxone (3 mg/kg i.p.), had no intrinsic effect on core body temperature but attenuated the hypothermic effect of caffeine reflected in a parallel shift to the right in the caffeine dose-effect curve. The naloxone-induced attenuation of the hypothermic effects of caffeine was also seen to be dose-dependent. The results reveal that opiate receptors (but not adrenoceptors, 5-HT, dopamine or benzodiazepine receptors) may play a role in modulating the hypothermic action of caffeine and possibly other methylxanthines.
Collapse
Affiliation(s)
- M J Durcan
- Laboratory of Neurogenetics, DICBR, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892
| | | |
Collapse
|
27
|
Dar MS, Clark M. Tolerance to adenosine's accentuation of ethanol-induced motor incoordination in ethanol-tolerant mice. Alcohol Clin Exp Res 1992; 16:1138-46. [PMID: 1471769 DOI: 10.1111/j.1530-0277.1992.tb00710.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Our previously published reports have provided data that have supported a functional correlation between ethanol-induced changes in the characteristics of adenosine receptor, adenosine uptake and release in the brain, and ethanol-induced motor incoordination. The present data demonstrated a cross-tolerance between ethanol and adenosine further supporting the hypothesis that brain adenosine modulates the motor impairing effects of ethanol. Mice that received (-)-N6-cyclohexyladenosine (CHA) [0.25 mg/kg/day, intraperitoneally (ip)] for 10 days exhibited marked attenuation (cross-tolerance) to acute ethanol-induced motor incoordination compared with chronic saline (ip) controls. The attenuation of acute ethanol-induced motor incoordination was essentially same in animals that received CHA (25 ng/5 microliters/day for 10 days) by the intracerebroventricular (icv) route as opposed to the controls that chronically received artificial cerebral spinal fluid by the same route. Similarly, tolerance was exhibited to acute CHA (0.125 mg/kg ip and 12.5 ng/5 microliters icv) by animals fed liquid ethanol (19.5 g/kg/24 hr) for 10 days compared with none in the pair-fed sucrose controls. Scatchard plots using cerebellar tissue homogenates from animals given chronic CHA or chronic ethanol indicated no change in Bmax and/or Kd values for CHA binding when compared with CHA binding in tissues from their respective controls. However, a lack of any change in the binding characteristics cannot rule out the involvement of adenosine receptors in the observed cross-tolerance between ethanol and CHA. The results may suggest desensitization of adenosine A1 receptors due to chronic CHA and ethanol as an alternate possible explanation in the development of cross-tolerance between adenosine (CHA) and ethanol.
Collapse
Affiliation(s)
- M S Dar
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, North Carolina 27858
| | | |
Collapse
|
28
|
Nagy LE. Ethanol metabolism and inhibition of nucleoside uptake lead to increased extracellular adenosine in hepatocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 262:C1175-80. [PMID: 1590359 DOI: 10.1152/ajpcell.1992.262.5.c1175] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent evidence suggests that adenosine mediates many of the acute and chronic effects of ethanol in both cultured cells and whole animals. These adenosine-mediated effects of ethanol result from ethanol-induced increases in extracellular adenosine. Acute exposure of primary cultures of rat hepatocytes to 12.5-200 mM ethanol increased extracellular adenosine concentrations by 20-35%. Pretreatment of hepatocytes with 100 microM 4-methylpyrazole, an inhibitor of alcohol dehydrogenase, completely blocked ethanol-induced increases in extracellular adenosine at 12.5 and 25 mM ethanol. However, even in the presence of 4-methylpyrazole, ethanol at concentrations greater than 50 mM still increased extracellular adenosine concentrations. This increase appears to be due to ethanol inhibition of adenosine uptake via the nucleoside transporter (50% inhibitory concentration, 28 mM). After chronic treatment with 100 mM ethanol for 48 h, acute challenge with ethanol no longer inhibited adenosine uptake, i.e., the nucleoside transporter had become tolerant to ethanol. Moreover, in these chronically treated cells, ethanol-induced increases in extracellular adenosine were completely blocked by treatment with 4-methylpyrazole at all concentrations of ethanol. Taken together, these results suggest that increased extracellular adenosine in hepatocytes is dependent on both ethanol oxidation and inhibition of adenosine uptake via the nucleoside transporter.
Collapse
Affiliation(s)
- L E Nagy
- Department of Nutritional Sciences, University of Guelph, Ontario, Canada
| |
Collapse
|
29
|
Durcan MJ, Morgan PF. Hypothermic effects of alkylxanthines: evidence for a calcium-independent phosphodiesterase action. Eur J Pharmacol 1991; 204:15-20. [PMID: 1804662 DOI: 10.1016/0014-2999(91)90829-f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Caffeine induces a dose-dependent decrease in core body temperature in mice and the hypothermia induced by a 100 mg/kg dose of caffeine was seen to persist for greater than 160 min. Other alkylxanthines including theophylline, enprophylline, isbutylmethylxanthine and 1,3-dipropyl-7-methylxanthine also showed dose-dependent reductions in body temperature. The dose of these drugs required to reduce body temperature by 2 degrees C was calculated and correlated with the affinities for the compounds at adenosine A1 and A2 receptors and their activities in inhibiting calcium dependent and independent phosphodiesterases. Significant relationships were found between the 2 degrees C hypothermic dose (HD2) and soluble and membrane calcium-independent phosphodiesterase inhibiting activity (r2s = 0.950 and 0.940, respectively). No significant relationship was seen between HD2 and soluble calcium-dependent phosphodiesterase inhibiting activity or with A2 adenosine receptor affinity. The relationship between HD2 and A1 adenosine receptor affinity (r2 = 0.739) did however almost reach statistical significance. These results would suggest that phosphodiesterase inhibition, instead of or in addition to adenosine receptor blockade, may play an important role in the effects of alkylxanthines on body temperature.
Collapse
Affiliation(s)
- M J Durcan
- Laboratory of Clinical Studies, National Institute on Alcohol Abuse and Alcoholism, DICBR, Bethesda, MD 20892
| | | |
Collapse
|
30
|
Nio E, Kogure K, Yae T, Onodera H. The effects of maternal ethanol exposure on neurotransmission and second messenger systems: a quantitative autoradiographic study in the rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1991; 62:51-60. [PMID: 1662122 DOI: 10.1016/0165-3806(91)90189-p] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of maternal ethanol exposure on neurotransmission and second messenger systems were examined in rats using histochemistry and in vitro autoradiography. Thirty % ethanol was administered to pregnant rats from gestational day 7 to the day of delivery. Quantitative autoradiography was used to map muscarinic cholinergic, dopamine D2, adenosine A1, and inositol 1,4,5-trisphosphate binding sites, as well as to localize adenylate cyclase and protein kinase C. We found no difference in the patterns of staining with acetylcholinesterase and Timm's stain between control and prenatally ethanol-exposed rats on postnatal day (PN) 30. In the ethanol-exposed rats, [3H]forskolin binding sites were increased during early development in the CA1 subfield of the hippocampus and the occipital cortex; [3H]phorbol ester binding sites were increased in the cortex, striatum, and hippocampus; hippocampal muscarinic cholinergic sites were increased on PN4 and 30; adenosine A1 binding was reduced on PN10 in most regions examined, but was increased in the CA1 subfield on PN30; dopamine D2 receptor levels were significantly reduced on PN30 in the striatum; and IP3 receptors were decreased in most regions studied, but particularly in the cerebellum. Thus, some of these changes were transient and others were long-lasting. Although histopathological abnormalities were minimal, the alterations of binding sites in the cerebellum (the coordination center) and in the hippocampus (related to memory and learning) that were detected may contribute to the behavioral and mental deterioration seen in the fetal alcohol syndrome.
Collapse
Affiliation(s)
- E Nio
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | |
Collapse
|
31
|
Diamond I, Nagy L, Mochly-Rosen D, Gordon A. The role of adenosine and adenosine transport in ethanol-induced cellular tolerance and dependence. Possible biologic and genetic markers of alcoholism. Ann N Y Acad Sci 1991; 625:473-87. [PMID: 2058901 DOI: 10.1111/j.1749-6632.1991.tb33878.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acute exposure to ethanol in culture inhibits adenosine uptake into cells, thereby increasing the concentration of extracellular adenosine. Extracellular adenosine then reacts with adenosine A2 receptors to stimulate intracellular cAMP production. During prolonged exposure to ethanol, the increase in cAMP is followed by the development of heterologous desensitization of receptors coupled to adenylyl cyclase via Gs, the stimulatory GTP-binding protein. Ethanol-induced heterologous desensitization appears to be due to a reduction in mRNA and protein for G alpha s, a subunit of Gs. This is an example of cellular dependence on ethanol. The important implication of these findings is that a selective inhibitory effect of ethanol on adenosine uptake can lead to desensitization of diverse receptors coupled to cAMP production. Such changes could contribute to the pleiotropic effects of ethanol in the brain and other organs. Prolonged exposure to ethanol also alters the nucleoside transport system. While ethanol inhibits adenosine uptake into naive cells, ethanol no longer inhibits adenosine uptake into cells that have adapted to ethanol. This resistance to ethanol inhibition appears to be a form of cellular tolerance to ethanol. Thus, there appears to be a synergism between ethanol-induced heterologous desensitization of receptor-stimulated cAMP production (cellular dependence) and resistance to ethanol inhibition of adenosine uptake (cellular tolerance), because both lead to reduced intracellular levels of cAMP. Our studies on cAMP signal transduction in cell culture are directly relevant to the pathophysiology of human alcoholism. Heterologous desensitization of cAMP production is demonstrable in lymphocytes taken from actively drinking alcoholics; this measurement appears to be a biologic marker of active alcohol consumption. In addition, regulation of adenosine receptor-dependent cAMP production may be altered in patients at risk to develop alcoholism because of genetic factors. Thus, lymphocytes from alcoholics cultured many generations in the absence of ethanol show increased adenosine receptor-dependent cAMP production and increased sensitivity to ethanol-induced heterologous desensitization. These persistent phenotypic abnormalities in cell culture could be used as genetic markers for alcoholism. Studies are under way to test this possibility.
Collapse
Affiliation(s)
- I Diamond
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco General Hospital 94110
| | | | | | | |
Collapse
|
32
|
Smolen TN, Smolen A. Purinergic modulation of ethanol-induced sleep time in long-sleep and short-sleep mice. Alcohol 1991; 8:123-30. [PMID: 2064753 DOI: 10.1016/0741-8329(91)91320-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The long-sleep (LS) and short-sleep (SS) mice were selectively bred for differences in sensitivity to the depressant effects of ethanol. In addition to their differential sensitivity to ethanol, they are also differentially sensitive to purinergic agonists and antagonists. This suggests that there may be differences in the purinergic systems of these lines of mice which may aid in understanding how they differ in ethanol sensitivity. We have investigated whether these drugs are capable of modifying acute ethanol sensitivity as measured by ethanol-induced loss of the righting response (ethanol sleep time), waking blood and brain ethanol concentrations, and blood ethanol elimination rate. The purinergic agonists cyclohexyladenosine (CHA), L-phenylisopropyladenosine (PIA), 2-chloroadenosine (CAD), and N-ethylcarboxamidoadenosine (NEC) increased sleep time in both LS and SS mice, however, LS mice were generally more affected than SS. The LS and SS mice were also differentially sensitive to the purinergic antagonists, theophylline and caffeine. Blood and brain ethanol concentration on awakening suggested that CNS sensitivity to acute ethanol administration was altered by pretreatment with agonists but not antagonists. Two agonists, CHA and NEC, significantly lowered ethanol elimination in both lines of mice while PIA, CAD, and the antagonists theophylline, and caffeine were without affect on elimination rate. These data support previous observations that adenosine-mediated systems may be involved in the modulation of ethanol sensitivity.
Collapse
Affiliation(s)
- T N Smolen
- Institute for Behavioral Genetics, University of Colorado, Boulder 80309-0447
| | | |
Collapse
|
33
|
Dar MS. Functional correlation between subclasses of brain adenosine receptor affinities and ethanol-induced motor incoordination in mice. Pharmacol Biochem Behav 1990; 37:747-53. [PMID: 2093180 DOI: 10.1016/0091-3057(90)90558-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To further investigate if the modulation of ethanol-induced motor incoordination is by brain adenosine A1 and/or A2 receptor, adenosine analogs with wide variability in their affinity for A1 and A2 subtypes were administered ICV and their effect on ethanol-induced (IP) motor incoordination was evaluated by rotorod. A dose-dependent marked accentuation of ethanol-induced motor incoordination by adenosine agonists (CHA, NECA, CPA, DCCA) tested, with nearly no effect on normal motor coordination in the absence of ethanol, was observed. There was a positive correlation between A2 affinity, A2/A1 affinity ratio but a negative correlation between A1 affinity and the potency (ED50) of adenosine agonists to accentuate ethanol-induced motor incoordination. However, with the high potency of CHA and NECA, both having significant affinity for A1 and A2 receptors, together with the well known membrane perturbation by ethanol, it seems difficult to rule out until more information becomes available the contribution of A1 receptor activation to adenosine modulation of ethanol-induced motor incoordination. The high density of high affinity A2 (A2a) in the striatum and of A1 in the cerebellum and several brain areas and the known importance of these two brain areas in the motor control, indirectly supports or at least provides a circumstantial evidence for a functional correlation between ethanol-induced motor incoordination and brain adenosine receptors.
Collapse
Affiliation(s)
- M S Dar
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858
| |
Collapse
|
34
|
Affiliation(s)
- M J Durcan
- Laboratory of Clinical Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892
| | | |
Collapse
|
35
|
Nagy LE, Diamond I, Casso DJ, Franklin C, Gordon AS. Ethanol increases extracellular adenosine by inhibiting adenosine uptake via the nucleoside transporter. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39923-5] [Citation(s) in RCA: 213] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
Lê AD, Kiianmaa K. Role of initial sensitivity and genetic factors in the development of tolerance to ethanol in AT and ANT rats. Psychopharmacology (Berl) 1990; 102:11-6. [PMID: 2392498 DOI: 10.1007/bf02245737] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The role of initial sensitivity and genetic factors in the development of tolerance to ethanol were examined in rats selected for low (AT) and high (ANT) sensitivity to the motor impairment effect of ethanol. Following chronic ethanol treatment (5 g/kg PO, daily for 20 days), the AT and ANT rats acquired tolerance to the motor impairment effect of ethanol at a similar rate. The AT rats, however, acquired tolerance to the hypothermic effect of ethanol at a higher rate than the ANT rats. Such ethanol treatment did not produce any metabolic tolerance to ethanol in these animals. Since there is no difference in the initial response to the hypothermic effect of ethanol between the AT and ANT rats, the observed differences in the rate of tolerance development might be related to a direct genetic factor. The similar rate of tolerance development to the motor impairment effect of ethanol between the two lines was attributed to an interaction between an indirect (initial sensitivity) and a genetic factor in tolerance development.
Collapse
Affiliation(s)
- A D Lê
- Research Laboratories, Finnish State Alcohol Company (ALKO Ltd), Helsinki, Finland
| | | |
Collapse
|
37
|
Phillips TJ, Feller DJ, Crabbe JC. Selected mouse lines, alcohol and behavior. EXPERIENTIA 1989; 45:805-27. [PMID: 2570713 DOI: 10.1007/bf01954056] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The technique of selective breeding has been employed to develop a number of mouse lines differing in genetic sensitivity to specific effects of ethanol. Genetic animal models for sensitivity to the hypnotic, thermoregulatory, excitatory, and dependence-producing effects of alcohol have been developed. These genetic animal models have been utilized in numerous studies to assess the bases for those genetic differences, and to determine the specific neurochemical and neurophysiological bases for ethanol's actions. Work with these lines has challenged some long-held beliefs about ethanol's mechanisms of action. For example, lines genetically sensitive to one effect of ethanol are not necessarily sensitive to others, which demonstrates that no single set of genes modulates all ethanol effects. LS mice, selected for sensitivity to ethanol anesthesia, are not similarly sensitive to all anesthetic drugs, which demonstrates that all such drugs cannot have a common mechanism of action. On the other hand, WSP mice, genetically susceptible to the development of severe ethanol withdrawal, show a similar predisposition to diazepam and phenobarbital withdrawal, which suggests that there may be a common set of genes underlying drug dependencies. Studies with these models have also revealed important new directions for future mechanism-oriented research. Several studies implicate brain gamma-aminobutyric acid and dopamine systems as potentially important mediators of susceptibility to alcohol intoxication. The stability of the genetic animal models across laboratories and generations will continue to increase their power as analytic tools.
Collapse
Affiliation(s)
- T J Phillips
- VA Medical Center, Research Service, Portland, Oregon 97201
| | | | | |
Collapse
|
38
|
Clark M, Dar MS. Effect of acute ethanol on uptake of [3H]adenosine by rat cerebellar synaptosomes. Alcohol Clin Exp Res 1989; 13:371-7. [PMID: 2546465 DOI: 10.1111/j.1530-0277.1989.tb00338.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many classes of CNS-acting drugs have been suggested to act at least partially via inhibition of adenosine uptake. Synaptosomal uptake of [3H]adenosine and the effect of acute ethanol on it were studied in a rat brain area known to be involved in the coordination and modulation of normal motor activity, the cerebellum. Uptake of [3H]adenosine was found to be linear with time (about 40 sec) and increasing concentrations (up to 1.5 microM) of adenosine. The uptake of [3H]adenosine was inhibited by dilazep (IC50 = 2.5 x 10(-7) M) in a dose-dependent manner. Pharmacologically and/or toxicologically relevant concentrations of ethanol (2.5 to 100 mM) significantly inhibited the uptake of [3H]adenosine between 12 and 15%. Lineweaver-Burk plots indicated that both in vitro (25 mM) and in vivo (1.5 g/kg i.p.; 30 mM blood level) ethanol lowered Km as well as Vmax values for adenosine uptake to nearly the same extent. In the case of in vivo ethanol, no ethanol was present during the assay since synaptosome preparation would wash out residual ethanol. The results of the present study indicate possible membranal alterations by in vivo ethanol. It is concluded that the uptake of [3H]adenosine is inhibited by intoxicating concentrations of ethanol in vitro and by acute ethanol (1.5 g/kg) in vivo. This may partially explain the modulatory role of endogenous adenosine in ethanol-induced motor disturbances.
Collapse
Affiliation(s)
- M Clark
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, North Carolina 27858-4354
| | | |
Collapse
|
39
|
Clark M, Dar MS. Effect of acute ethanol on release of endogenous adenosine from rat cerebellar synaptosomes. J Neurochem 1989; 52:1859-65. [PMID: 2498462 DOI: 10.1111/j.1471-4159.1989.tb07268.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects of pharmacologically relevant concentrations of ethanol on the release of endogenous adenosine from rat cerebellar synaptosomes were investigated. Release was conducted for 5, 10, 30, or 60 s after which time the incubation medium (containing the released adenosine) was rapidly separated from the synaptosomal membranes by vacuum filtration. The adenosine content of the filtrate was measured by HPLC-fluorescence detection. Both basal and KCl-stimulated adenosine release consisted of an initial rapid phase, for the first 10 s, that was followed by a relatively slower phase. Basal endogenous adenosine release was estimated as 199 +/- 14 pmol/mg protein/5 s. Potassium (chloride) increased adenosine release from the basal level to 433 +/- 83 pmol/mg protein/5 s. Ethanol caused a dose-dependent increase of adenosine release. The interaction between dilazep and ethanol indicates that ethanol-stimulated release does not involve the dilazep-sensitive transport system. The results support previous findings that indicate that cerebellar adenosine is involved in the mediation of ethanol-induced motor disturbances in the rat.
Collapse
Affiliation(s)
- M Clark
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, North Carolina 27858
| | | |
Collapse
|
40
|
Hilakivi LA, Durcan MJ, Lister RG. Effects of caffeine on social behavior, exploration and locomotor activity: interactions with ethanol. Life Sci 1989; 44:543-53. [PMID: 2927259 DOI: 10.1016/0024-3205(89)90616-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of caffeine and its interaction with ethanol were examined in a test of social behavior and a holeboard test of exploration and locomotion. Male mice were injected i.p. with 15, 30 or 60 mg/kg caffeine alone or in combination with 2 g/kg ethanol. The animals were then put in pairs into a familiar arena, or examined individually in the holeboard. Only the highest dose of caffeine (60 mg/kg) had a significant effect on the time spent in social interaction and motor activity in the social behavior test: both measures were reduced. The duration and frequency of avoidance-irritability behavior was dose-dependently increased by caffeine. In the holeboard, caffeine caused a dose-dependent increase in locomotor activity. 30 mg/kg caffeine reversed the ethanol-induced reduction of time spent in social interaction, and 60 mg/kg caffeine antagonized the ethanol-induced increase in locomotor activity in both the social behavior and holeboard tests. Caffeine's effects on ethanol-induced behavioral changes are compared with those of other drugs.
Collapse
Affiliation(s)
- L A Hilakivi
- Laboratory of Clinical Studies, National Institute on Alcohol Abuse & Alcoholism, Bethesda, MD 20892
| | | | | |
Collapse
|
41
|
|
42
|
Clark M, Dar MS. Release of endogenous glutamate from rat cerebellar synaptosomes: interactions with adenosine and ethanol. Life Sci 1989; 44:1625-35. [PMID: 2733544 DOI: 10.1016/0024-3205(89)90479-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effects of ethanol and adenosine receptor agonist R-PIA and antagonist theophylline on release of endogenous glutamate were tested in rat cerebellar synaptosomal preparation. Release was carried out for 5 to 60 sec after which time the released glutamate was separated from the synaptosomal membranes by rapid filtration. The amount of released glutamate in the filtrate was measured by an enzyme-linked fluorometric assay. Basal endogenous glutamate release was estimated as 3.7 +/- 0.3 nmol/mg protein/5 sec and was stimulated by high K+. Glutamate release consisted of an initial rapid phase for the first 10 sec that was followed by a relatively slower phase. Both Ca2+-dependent and Ca2+-independent glutamate release were observed which suggested the involvement of both neuronal and glial constituents of the synaptosomal preparation, respectively. Pharmacologically relevant concentrations of ethanol (25-100 mM) caused a trend toward a dose-dependent inhibition of glutamate release. R-PIA and theophylline inhibited and stimulated, respectively, basal release of glutamate and R-PIA-inhibited release was blocked by theophylline. Ethanol (25 mM) blocked the stimulatory effect of theophylline and the results of experiments following the inclusion of adenosine deaminase suggested the involvement of adenosine in this effect of ethanol. The results support our previous findings that suggest an involvement of cerebellar adenosine in the motor disturbing effects of acute ethanol and extend those findings by indicating that ethanol inhibits glutamate release from granule cells of the cerebellar cortex through an adenosine-sensitive mechanism.
Collapse
Affiliation(s)
- M Clark
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858
| | | |
Collapse
|
43
|
Clark M, Dar MS. The effects of various methods of sacrifice and of ethanol on adenosine levels in selected areas of rat brain. J Neurosci Methods 1988; 25:243-9. [PMID: 3226150 DOI: 10.1016/0165-0270(88)90139-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effect of acute ethanol on adenosine content in four motor areas of the male Sprague-Dawley rat brain was investigated using HPLC-fluorescence detection. Since basal adenosine levels are difficult to assess due to extremely rapid turnover of adenosine, four different methods of sacrifice were also evaluated for adenosine measurement. The rank order for best results in measuring adenosine content with the various methods of sacrifice was: focused microwave irradiation greater than decapitation into liquid nitrogen greater than immersion into liquid nitrogen greater than decapitation. These differences probably reflect differences in degree of hypoxia and postmortem anoxia, factors well known to elevate adenosine, associated with the sacrifice method. Focused microwave irradiation of appropriate duration was found to be the best method of sacrifice and the results probably most closely reflect true basal adenosine levels. No significant alteration in adenosine content in any brain region examined was observed due to ethanol administration.
Collapse
Affiliation(s)
- M Clark
- Department of Pharmacology, East Carolina University, School of Medicine, Greenville, NC 27834
| | | |
Collapse
|
44
|
Nagy LE, Diamond I, Gordon A. Cultured lymphocytes from alcoholic subjects have altered cAMP signal transduction. Proc Natl Acad Sci U S A 1988; 85:6973-6. [PMID: 2842798 PMCID: PMC282101 DOI: 10.1073/pnas.85.18.6973] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Previous work has shown that freshly isolated lymphocytes from alcoholic subjects show significantly reduced basal and adenosine receptor-stimulated cAMP levels. This decrease could be due to ethanol-induced cellular adaptation or to a genetic difference in the regulation of cAMP signal transduction. Therefore, we cultured human lymphocytes in defined medium without ethanol for 7-8 days and then examined differences in receptor-dependent cAMP accumulation between lymphocytes from alcoholic and nonalcoholic subjects. After four to six generations in culture without ethanol, lymphocytes from alcoholic subjects have significantly higher cAMP levels than do cells from nonalcoholic subjects. Thus, a difference in cAMP signal transduction is demonstrable in cells from alcoholic subjects grown without ethanol. We also found that cultured lymphocytes from both alcoholic and nonalcoholic subjects show a decrease in receptor-stimulated cAMP levels after exposure to 200 mM ethanol for 48 hr. To determine whether alcoholic subjects have increased sensitivity to ethanol, lymphocytes were exposed to only 100 mM ethanol for 24 hr. Under these conditions, receptor-dependent cAMP levels did not change in cells from nonalcoholic subjects. However, lymphocytes from alcoholic subjects showed a 39% decrease (P less than 0.003) in adenosine receptor-stimulated cAMP levels. Taken together, the results show that (i) chronic ethanol treatment in culture reproduces the suppression of cAMP levels found in circulating lymphocytes from alcoholic subjects and (ii) despite four to six cell divisions in culture without ethanol, lymphocytes from alcoholic subjects exhibit significantly increased adenosine receptor-dependent cAMP levels and increased sensitivity to chronic exposure to ethanol. These findings suggest that the suppression of cAMP levels observed in freshly isolated lymphocytes from alcoholic subjects results from both a direct effect of chronic exposure to ethanol and a genetic difference leading to altered cAMP signal transduction.
Collapse
Affiliation(s)
- L E Nagy
- Ernest Gallo Clinic and Research Center, San Francisco General Hospital, CA 94110
| | | | | |
Collapse
|
45
|
Gordon AS, Wrubel B, Collier K, Estrin W, Diamond I. Adaptation to ethanol in cultured neural cells and human lymphocytes from alcoholics. Ann N Y Acad Sci 1987; 492:367-74. [PMID: 3037965 DOI: 10.1111/j.1749-6632.1987.tb48693.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Diamond I, Wrubel B, Estrin W, Gordon A. Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients. Proc Natl Acad Sci U S A 1987; 84:1413-6. [PMID: 3029780 PMCID: PMC304440 DOI: 10.1073/pnas.84.5.1413] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Alcoholism causes serious neurologic disease that may be due, in part, to the ability of ethanol to interact with neural cell membranes and change neuronal function. Adenosine receptors are membrane-bound proteins that appear to mediate some of the effects of ethanol in the brain. Human lymphocytes also have adenosine receptors, and their activation causes increases in cAMP levels. To test the hypothesis that basal and adenosine receptor-stimulated cAMP levels in lymphocytes might be abnormal in alcoholism, we studied lymphocytes from 10 alcoholic subjects, 10 age- and sex-matched normal individuals, and 10 patients with nonalcoholic liver disease. Basal and adenosine receptor-stimulated cAMP levels were reduced 75% in lymphocytes from alcoholic subjects. Also, there was a 76% reduction in ethanol stimulation of cAMP accumulation in lymphocytes from alcoholics. Similar results were demonstrable in isolated T cells. Unlike other laboratory tests examined, these measurements appeared to distinguish alcoholics from normal subjects and from patients with nonalcoholic liver disease. Reduced basal and adenosine receptor-stimulated levels of cAMP in lymphocytes from alcoholics may reflect a change in cell membranes due either to chronic alcohol abuse or to a genetic predisposition unique to alcoholic subjects.
Collapse
|
47
|
Dar MS, Jones M, Close G, Mustafa SJ, Wooles WR. Behavioral interactions of ethanol and methylxanthines. Psychopharmacology (Berl) 1987; 91:1-4. [PMID: 2434967 DOI: 10.1007/bf00690916] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of the methylxanthines caffeine, theophylline and isobutylmethylxanthine (IBMX) on ethanol-induced ataxia and loss of righting reflex was investigated in three strains of mice. A significant potentiation of ethanol-induced ataxia was produced in all strains of mice at 20, 45 and 75 min after ethanol in mice pretreated with 62.5 mg/kg caffeine and 12.5 mg/kg IBMX. In mice pretreated with 40 mg/kg caffeine potentiation of ethanol-induced ataxia was observed only at 20 min after ethanol. Theophylline pretreatment produced no alteration in ethanol-induced ataxia. The results of methylxanthine pretreatment on ethanol-induced ataxia were similar, regardless of a shorter (10 min) or longer (75 min) pretreatment time. The methylxanthines produced no effect on motor coordination or behavior when administered separately. Although ethanol-induced loss of righting reflex was shortened by theophylline, neither caffeine nor IBMX altered the duration of loss of righting reflex. It is possible that inhibition of adenosine uptake, a known effect of the methylxanthines, may be a more likely explanation for the modulation of the behavioral effects of ethanol.
Collapse
|
48
|
Abstract
Sensitivity to ethanol, as measured by blood ethanol concentration at loss of righting reflex, was increased significantly in SS but not LS mice following intracerebroventricular (ICV) administration of calcium chloride or A23187, a calcium ionophore. Magnesium chloride or lanthanum chloride, ICV, did not alter sensitivity to ethanol in either SS or LS mice, further indicating a specificity for calcium cation. Calcium was without effect on sensitivity to halothane narcosis in LS or SS mice. Endogenous brain calcium content was similar in these mouse lines, and ethanol administration either in vivo or in vitro did not alter brain calcium concentration. These results indicate that differences in brain sensitivity to ethanol are mediated, in part, by genetic differences in calcium-related processes and support the hypothesis that ethanol-induced narcosis may be due to alterations in calcium metabolism in the CNS.
Collapse
|
49
|
McIntyre TD, Alpern HP. Thiopental, phenobarbital, and chlordiazepoxide induce the same differences in narcotic reaction as ethanol in long-sleep and short-sleep selectively-bred mice. Pharmacol Biochem Behav 1986; 24:895-8. [PMID: 3714783 DOI: 10.1016/0091-3057(86)90433-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hypnotic effects following administration of thiopental, phenobarbital or chlordiazepoxide were evaluated in mice selectively-bred for differential hypnotic sensitivity to ethanol. For every dose employed, except one which had no effect, all three agents induced greater sedation in the ethanol-sensitive Long-Sleep (LS) line than in the ethanol-insensitive Short-Sleep (SS) line. Such findings with regard to the LS and SS lines suggest that the differences in sedative response to ethanol, as well as some barbiturates and benzodiazepines, may be mediated, in part, by a common mechanism. The second experiment showed that age of the subjects can be an important variable influencing hypnotic-induced sleep time. For thiopental, significant line differences occurred only with 150 day old mice, whereas chlordiazepoxide produced differences in 50, 75, 100 and 150 day old mice.
Collapse
|
50
|
Gordon AS, Collier K, Diamond I. Ethanol regulation of adenosine receptor-stimulated cAMP levels in a clonal neural cell line: an in vitro model of cellular tolerance to ethanol. Proc Natl Acad Sci U S A 1986; 83:2105-8. [PMID: 3008152 PMCID: PMC323239 DOI: 10.1073/pnas.83.7.2105] [Citation(s) in RCA: 139] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The acute and chronic neurologic effects of ethanol appear to be due to its interaction with neural cell membranes. Chronic exposure to ethanol induces changes in the membrane that lead to tolerance to the effects of ethanol. However, the actual membrane changes that account for tolerance to ethanol are not understood. We have developed a model cell culture system, using NG108-15 neuroblastoma-glioma hybrid cells, to study cellular tolerance to ethanol. We have found that adenosine receptor-stimulated cAMP levels increased markedly upon acute exposure to ethanol. However, the cells became tolerant to ethanol, since chronically treated cells required ethanol to maintain normal adenosine-stimulated cAMP levels. Moreover, the cells appeared to be dependent on ethanol, as evidenced by reduced adenosine-stimulated cAMP levels in the absence of ethanol. Recovery occurred after ethanol was withdrawn. These cellular changes appear to parallel the clinical events of acute ethanol intoxication, tolerance, and dependence.
Collapse
|