1
|
Murata EM, Pritschet L, Grotzinger H, Taylor CM, Jacobs EG. Circadian rhythms tied to changes in brain morphology in a densely-sampled male. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588906. [PMID: 38645226 PMCID: PMC11030376 DOI: 10.1101/2024.04.10.588906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Circadian, infradian, and seasonal changes in steroid hormone secretion have been tied to changes in brain volume in several mammalian species. However, the relationship between circadian changes in steroid hormone production and rhythmic changes in brain morphology in humans is largely unknown. Here, we examined the relationship between diurnal fluctuations in steroid hormones and multiscale brain morphology in a precision imaging study of a male who completed forty MRI and serological assessments at 7 A.M. and 8 P.M. over the course of a month, targeting hormone concentrations at their peak and nadir. Diurnal fluctuations in steroid hormones were tied to pronounced changes in global and regional brain morphology. From morning to evening, total brain volume, gray matter volume, and cortical thickness decreased, coincident with decreases in steroid hormone concentrations (testosterone, estradiol, and cortisol). In parallel, cerebrospinal fluid and ventricle size increased from A.M. to P.M. Global changes were driven by decreases within the occipital and parietal cortices. These findings highlight natural rhythms in brain morphology that keep time with the diurnal ebb and flow of steroid hormones.
Collapse
Affiliation(s)
- Elle M. Murata
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Laura Pritschet
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Hannah Grotzinger
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Caitlin M. Taylor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Emily G. Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106
| |
Collapse
|
2
|
Lin A, Feng J, Kanwal JS. Geographic Variation in Social Vocalizations of the Great Himalayan Leaf-Nosed Bat, Hipposideros armiger: Acoustic Overflow Across Population Boundaries. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.948324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bat populations employ rich vocal repertoires for social communication in addition to emitting sound pulses for echolocation. Acoustic parameters of echolocation pulses can vary with the context in which they are emitted, and also with the individual and across populations as a whole. The acoustic parameters of social vocalizations, or “calls”, also vary with the individual and context, but not much is known about their variation across populations at different geographic locations. Here, we leveraged the detailed acoustic classification of social vocalizations available for the Great Himalayan leaf-nosed bat, Hipposideros armiger, to examine geographic variation in five commonly emitted simple syllable types. We hypothesized that individuals within geographically dispersed populations communicate using spectrographically similar constructs or “syllable types”. We also examined whether call syllables vary discordantly with the correlation pattern observed for echolocation pulses across those same geographic regions. Furthermore, we postulated that the acoustic boundaries of a syllable type are not uniquely constrained to its variation within a particular population of the same subspecies. To test our hypotheses, we obtained recordings of social calls of H. a. armiger from nine locations within the oriental region. These locations were consolidated into five geographic regions based on previously established region-specific differences in the peak frequency of echolocation pulses. A multivariate cluster analysis established that unlike echolocation pulses, syllable types exhibit a relatively large variance. Analysis of this variance showed significant differences in Least Squares Means estimates, establishing significant population-level differences in the multiparametric means of individual syllable types across geographic regions. Multivariate discriminant analysis confirmed the presence of region-specific centroids for different syllable constructs, but also showed a large overlap of their multiparametric boundaries across geographic regions. We propose that despite differences in the population-specific core construct of a syllable type, bats maximize acoustic variation across individuals within a population irrespective of its overflow and overlap with other populations.
Collapse
|
3
|
Rose EM, Haakenson CM, Ball GF. Sex differences in seasonal brain plasticity and the neuroendocrine regulation of vocal behavior in songbirds. Horm Behav 2022; 142:105160. [PMID: 35366412 DOI: 10.1016/j.yhbeh.2022.105160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022]
Abstract
Birdsong is controlled in part by a discrete network of interconnected brain nuclei regulated in turn by steroid hormones and environmental stimuli. This complex interaction results in neural changes that occur seasonally as the environment varies (e.g., photoperiod, food/water availability, etc.). Variation in environment, vocal behavior, and neuroendocrine control has been primarily studied in male songbirds in both laboratory studies of captive birds and field studies of wild caught birds. The bias toward studying seasonality in the neuroendocrine regulation of song in male birds comes from a historic focus on sexually selected male behaviors. In fact, given that male song is often loud and accompanied by somewhat extravagant courtship behaviors, female song has long been overlooked. To compound this bias, the primary model songbird species for studies in the lab, zebra finches (Taeniopygia guttata) and canaries (Serinus canaria), exhibit little or no female song. Therefore, understanding the degree of variation and neuroendocrine control of seasonality in female songbirds is a major gap in our knowledge. In this review, we discuss the importance of studying sex differences in seasonal plasticity and the song control system. Specifically, we discuss sex differences in 1) the neuroanatomy of the song control system, 2) the distribution of receptors for androgens and estrogens and 3) the seasonal neuroplasticity of the hypothalamo-pituitary-gonadal axis as well as in the neural and cellular mechanisms mediating song system changes. We also discuss how these neuroendocrine mechanisms drive sex differences in seasonal behavior. Finally, we highlight specific gaps in our knowledge and suggest experiments critical for filling these gaps.
Collapse
Affiliation(s)
- Evangeline M Rose
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA.
| | - Chelsea M Haakenson
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
4
|
Sarkar D, Shariq M, Dwivedi D, Krishnan N, Naumann R, Bhalla US, Ghosh HS. Adult brain neurons require continual expression of the schizophrenia-risk gene Tcf4 for structural and functional integrity. Transl Psychiatry 2021; 11:494. [PMID: 34564703 PMCID: PMC8464606 DOI: 10.1038/s41398-021-01618-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
The schizophrenia-risk gene Tcf4 has been widely studied in the context of brain development using mouse models of haploinsufficiency, in utero knockdown and embryonic deletion. However, Tcf4 continues to be abundantly expressed in adult brain neurons where its functions remain unknown. Given the importance of Tcf4 in psychiatric diseases, we investigated its role in adult neurons using cell-specific deletion and genetic tracing in adult animals. Acute loss of Tcf4 in adult excitatory neurons in vivo caused hyperexcitability and increased dendritic complexity of neurons, effects that were distinct from previously observed effects in embryonic-deficiency models. Interestingly, transcriptomic analysis of genetically traced adult-deleted FACS-sorted Tcf4-knockout neurons revealed that Tcf4 targets in adult neurons are distinct from those in the embryonic brain. Meta-analysis of the adult-deleted neuronal transcriptome from our study with the existing datasets of embryonic Tcf4 deficiencies revealed plasma membrane and ciliary genes to underlie Tcf4-mediated structure-function regulation specifically in adult neurons. The profound changes both in the structure and excitability of adult neurons upon acute loss of Tcf4 indicates that proactive regulation of membrane-related processes underlies the functional and structural integrity of adult neurons. These findings not only provide insights for the functional relevance of continual expression of a psychiatric disease-risk gene in the adult brain but also identify previously unappreciated gene networks underpinning mature neuronal regulation during the adult lifespan.
Collapse
Affiliation(s)
- Dipannita Sarkar
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India ,grid.502290.cThe University of Trans-Disciplinary Health Sciences and Technology, Bangalore, 560064 India
| | - Mohammad Shariq
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India ,grid.502290.cThe University of Trans-Disciplinary Health Sciences and Technology, Bangalore, 560064 India
| | - Deepanjali Dwivedi
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India
| | - Nirmal Krishnan
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India
| | - Ronald Naumann
- grid.419537.d0000 0001 2113 4567MPI of Molecular Cell Biology and Genetics, Dresden, 01307 Germany
| | - Upinder Singh Bhalla
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India
| | - Hiyaa Singhee Ghosh
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India.
| |
Collapse
|
5
|
Inflammation Induced by Natural Neuronal Death and LPS Regulates Neural Progenitor Cell Proliferation in the Healthy Adult Brain. eNeuro 2020; 7:ENEURO.0023-20.2020. [PMID: 32424053 PMCID: PMC7333977 DOI: 10.1523/eneuro.0023-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/28/2022] Open
Abstract
Inflammation is typically considered a negative response to injury or insult; however, recent advances demonstrate that inflammatory cells regulate development, plasticity, and homeostasis through anticytotoxic, progenerative responses. Here, we extend analyses of neuroinflammation to natural neurodegenerative and homeostatic states by exploiting seasonal plasticity in cytoarchitecture of the avian telencephalic song control nucleus, high vocal center [HVC (proper name)], in the songbird Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii). We report that local injection of the endotoxin lipopolysaccharide into HVC of birds in both breeding (high circulating testosterone level) and nonbreeding (low circulating testosterone level) conditions increased neural progenitor cell proliferation in the nearby but distinct ventricular zone. Additionally, we found that oral administration of the anti-inflammatory drug minocycline during seasonal regression of HVC reduced microglia activation in HVC and prevented the normal proliferative response in the ventricular zone to apoptosis in HVC. Our results suggest that local neuroinflammation positively regulates neural progenitor cell proliferation and, in turn, contributes to the previously described repatterning of HVC cytoarchitecture following seasonally induced neuronal loss.
Collapse
|
6
|
From serendipity to clinical relevance: How clinical psychology and neuroscience converged to illuminate psychoneuroendocrinology. Psychoneuroendocrinology 2019; 105:36-43. [PMID: 30309685 DOI: 10.1016/j.psyneuen.2018.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023]
Abstract
Dirk Hellhammer and his colleagues have played a major role in creating the field of psychoneuroendocrinology from their roots in psychology. In this review, using examples from the history of the McEwen laboratory and neuroscience and neuroendocrinology colleagues, I summarize my own perspective as to how the fields of neuroscience and neuroendocrinology have contributed to psychoneuroendocrinology and how they converged with the contributions from Dirk Hellhammer and his colleagues.
Collapse
|
7
|
Vellema M, Diales Rocha M, Bascones S, Zsebők S, Dreier J, Leitner S, Van der Linden A, Brewer J, Gahr M. Accelerated redevelopment of vocal skills is preceded by lasting reorganization of the song motor circuitry. eLife 2019; 8:43194. [PMID: 31099755 PMCID: PMC6570526 DOI: 10.7554/elife.43194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/16/2019] [Indexed: 01/16/2023] Open
Abstract
Complex motor skills take considerable time and practice to learn. Without continued practice the level of skill performance quickly degrades, posing a problem for the timely utilization of skilled motor behaviors. Here we quantified the recurring development of vocal motor skills and the accompanying changes in synaptic connectivity in the brain of a songbird, while manipulating skill performance by consecutively administrating and withdrawing testosterone. We demonstrate that a songbird with prior singing experience can significantly accelerate the re-acquisition of vocal performance. We further demonstrate that an increase in vocal performance is accompanied by a pronounced synaptic pruning in the forebrain vocal motor area HVC, a reduction that is not reversed when birds stop singing. These results provide evidence that lasting synaptic changes in the motor circuitry are associated with the savings of motor skills, enabling a rapid recovery of motor performance under environmental time constraints.
Collapse
Affiliation(s)
- Michiel Vellema
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany.,Bio Imaging Lab, University of Antwerp, Antwerp, Belgium
| | - Mariana Diales Rocha
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Sabrina Bascones
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Sándor Zsebők
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Jes Dreier
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stefan Leitner
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | | | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
8
|
McEwen BS. Redefining neuroendocrinology: Epigenetics of brain-body communication over the life course. Front Neuroendocrinol 2018; 49:8-30. [PMID: 29132949 DOI: 10.1016/j.yfrne.2017.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022]
Abstract
The brain is the central organ of stress and adaptation to stress that perceives and determines what is threatening, as well as the behavioral and physiological responses to the stressor, and it does so somewhat differently in males and females. The expression of steroid hormone receptors throughout the brain has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the entire brain and body via hormonal and neural pathways. Mediated in part via systemic hormonal influences, the adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neuronal replacement, dendritic remodeling, and synapse turnover. This article is both an account of an emerging field elucidating brain-body interactions at multiple levels, from molecules to social organization, as well as a personal account of my laboratory's role and, most importantly, the roles of trainees and colleagues, along with my involvement in interdisciplinary groups working on this topic.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA. http://www.rockefeller.edu/labheads/mcewen/mcewen-lab.php
| |
Collapse
|
9
|
Abstract
Contrary to popular belief, sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Many neural and behavioral functions are affected by estrogens, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences, and responses to sex hormones in brain regions and upon functions not previously regarded as subject to such differences, indicate that we are entering a new era in our ability to understand and appreciate the diversity of gender-related behaviors and brain functions.
Collapse
Affiliation(s)
- Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, the Rockefeller University, New York, New York, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, the Rockefeller University, New York, New York, USA
| |
Collapse
|
10
|
Shevchouk OT, Ghorbanpoor S, Ball GF, Cornil CA, Balthazart J. Testosterone-induced neuroendocrine changes in the medial preoptic area precede song activation and plasticity in song control nuclei of female canaries. Eur J Neurosci 2017; 45:886-900. [DOI: 10.1111/ejn.13530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/26/2016] [Accepted: 01/24/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Olesya T. Shevchouk
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Samar Ghorbanpoor
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Gregory F. Ball
- Department of Psychology; University of Maryland; College Park MD USA
| | - Charlotte A. Cornil
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Jacques Balthazart
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| |
Collapse
|
11
|
Estrogen Modulates ubc9 Expression and Synaptic Redistribution in the Brain of APP/PS1 Mice and Cortical Neurons. J Mol Neurosci 2017; 61:436-448. [DOI: 10.1007/s12031-017-0884-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/09/2017] [Indexed: 12/26/2022]
|
12
|
McEwen BS, Milner TA. Understanding the broad influence of sex hormones and sex differences in the brain. J Neurosci Res 2017; 95:24-39. [PMID: 27870427 PMCID: PMC5120618 DOI: 10.1002/jnr.23809] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/23/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
Abstract
Sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Sex hormones can act through many cellular and molecular processes that alter structure and function of neural systems and influence behavior as well as providing neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located near membranes, where they are associated with presynaptic terminals, mitochondria, spine apparatus, and postsynaptic densities. Sex hormone receptors also are found in glial cells. Hormonal regulation of a variety of signaling pathways as well as direct and indirect effects on gene expression induce spine synapses, up- or downregulate and alter the distribution of neurotransmitter receptors, and regulate neuropeptide expression and cholinergic and GABAergic activity as well as calcium sequestration and oxidative stress. Many neural and behavioral functions are affected, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences and responses to sex hormones in brain regions, which influence functions not previously regarded as subject to such differences, indicate that we are entering a new era of our ability to understand and appreciate the diversity of gender-related behaviors and brain functions. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Teresa A. Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
- Feil Family Brain and Mind Research Institute, Weill Cornell School of Medicine, 407 East 61st Street, New York, NY 10065
| |
Collapse
|
13
|
Lisofsky N, Wiener J, de Condappa O, Gallinat J, Lindenberger U, Kühn S. Differences in navigation performance and postpartal striatal volume associated with pregnancy in humans. Neurobiol Learn Mem 2016; 134 Pt B:400-7. [DOI: 10.1016/j.nlm.2016.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/08/2016] [Accepted: 08/28/2016] [Indexed: 12/25/2022]
|
14
|
Lai YJ, Yu D, Zhang JH, Chen GJ. Cooperation of Genomic and Rapid Nongenomic Actions of Estrogens in Synaptic Plasticity. Mol Neurobiol 2016; 54:4113-4126. [PMID: 27324789 PMCID: PMC5509832 DOI: 10.1007/s12035-016-9979-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022]
Abstract
Neuroplasticity refers to the changes in the molecular and cellular processes of neural circuits that occur in response to environmental experiences. Clinical and experimental studies have increasingly shown that estrogens participate in the neuroplasticity involved in cognition, behavior, and memory. It is generally accepted that estrogens exert their effects through genomic actions that occur over a period of hours to days. However, emerging evidence indicates that estrogens also rapidly influence the neural circuitry through nongenomic actions. In this review, we provide an overview of the genomic and nongenomic actions of estrogens and discuss how these actions may cooperate in synaptic plasticity. We then summarize the role of epigenetic modifications, synaptic protein synthesis, and posttranslational modifications, and the splice variants of estrogen receptors in the complicated network of estrogens. The combination of genomic and nongenomic mechanisms endows estrogens with considerable diversity in modulating neural functions including synaptic plasticity.
Collapse
Affiliation(s)
- Yu-Jie Lai
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou Municipal Hospital, Haikou, Hainan, 570208, China
| | - Dan Yu
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou Municipal Hospital, Haikou, Hainan, 570208, China
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
15
|
Surbhi, Rastogi A, Malik S, Rani S, Kumar V. Seasonal neuronal plasticity in song-control and auditory forebrain areas in subtropical nonmigratory and palearctic-indian migratory male songbirds. J Comp Neurol 2016; 524:2914-29. [DOI: 10.1002/cne.24000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Surbhi
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo-U.S. Center for Biological Timing, University of Delhi; Delhi 110 007 India
- Department of Zoology; University of Delhi; Delhi 110 007 India
| | - Ashutosh Rastogi
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo-U.S. Center for Biological Timing, University of Delhi; Delhi 110 007 India
- Department of Zoology; University of Lucknow; Lucknow 226 007 India
| | - Shalie Malik
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo-U.S. Center for Biological Timing, University of Delhi; Delhi 110 007 India
- Department of Zoology; University of Lucknow; Lucknow 226 007 India
| | - Sangeeta Rani
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo-U.S. Center for Biological Timing, University of Delhi; Delhi 110 007 India
- Department of Zoology; University of Lucknow; Lucknow 226 007 India
| | - Vinod Kumar
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo-U.S. Center for Biological Timing, University of Delhi; Delhi 110 007 India
- Department of Zoology; University of Delhi; Delhi 110 007 India
| |
Collapse
|
16
|
Guigueno MF, Sherry DF, MacDougall-Shackleton SA. Sex and seasonal differences in neurogenesis and volume of the song-control system are associated with song in brood-parasitic and non-brood-parasitic icterid songbirds. Dev Neurobiol 2016; 76:1226-1240. [PMID: 26898912 DOI: 10.1002/dneu.22385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/10/2016] [Accepted: 02/16/2016] [Indexed: 01/15/2023]
Abstract
The song-control system in the brain of songbirds is important for the production and acquisition of song and exhibits both remarkable seasonal plasticity and some of the largest neural sex differences observed in vertebrates. We measured sex and seasonal differences in two nuclei of the song-control system of brood-parasitic brown-headed cowbirds (Molothrus ater) and closely-related non-parasitic red-winged blackbirds (Agelaius phoeniceus). These species differ in both the development and function of song. Brown-headed cowbirds have a larger sex difference in song than red-winged blackbirds. Female cowbirds never sing, whereas female blackbirds do though much less than males. In cowbirds, song primarily functions in mate choice and males modify their song as they approach sexual maturity and interact with females. In red-winged blackbirds, song is used primarily in territorial defence and is crystalized earlier in life. We found that the HVC was more likely to be discernable in breeding female blackbirds than in breeding female cowbirds. Compared to males, females had a smaller HVC and a smaller robust nucleus of the arcopallium (RA). However, females had higher doublecortin immunoreactivity (DCX+) in HVC, a measure of neurogenesis. Consistent with sex differences in song, the sex difference in RA volume was greater in cowbirds than in blackbirds. Males of both species had a smaller HVC with higher DCX+ in post-breeding condition than in breeding condition when song is more plastic. Sex and seasonal differences in the song-control system were closely related to variation in song in these two icterid songbirds. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1226-1240, 2016.
Collapse
Affiliation(s)
- Mélanie F Guigueno
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada. .,Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | - David F Sherry
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.,Department of Biology, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.,Department of Biology, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
17
|
Da Silva A, Valcu M, Kempenaers B. Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0126. [PMID: 25780238 PMCID: PMC4375366 DOI: 10.1098/rstb.2014.0126] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Artificial night lighting is expanding globally, but its ecological consequences remain little understood. Animals often use changes in day length as a cue to time seasonal behaviour. Artificial night lighting may influence the perception of day length, and may thus affect both circadian and circannual rhythms. Over a 3.5 month period, from winter to breeding, we recorded daily singing activity of six common songbird species in 12 woodland sites, half of which were affected by street lighting. We previously reported on analyses suggesting that artificial night lighting affects the daily timing of singing in five species. The main aim of this study was to investigate whether the presence of artificial night lighting is also associated with the seasonal occurrence of dawn and dusk singing. We found that in four species dawn and dusk singing developed earlier in the year at sites exposed to light pollution. We also examined the effects of weather conditions and found that rain and low temperatures negatively affected the occurrence of dawn and dusk singing. Our results support the hypothesis that artificial night lighting alters natural seasonal rhythms, independently of other effects of urbanization. The fitness consequences of the observed changes in seasonal timing of behaviour remain unknown.
Collapse
Affiliation(s)
- Arnaud Da Silva
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, 82319 Seewiesen, Germany
| | - Mihai Valcu
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, 82319 Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, 82319 Seewiesen, Germany
| |
Collapse
|
18
|
Wada H, Newman AEM, Hall ZJ, Soma KK, MacDougall-Shackleton SA. Effects of corticosterone and DHEA on doublecortin immunoreactivity in the song control system and hippocampus of adult song sparrows. Dev Neurobiol 2015; 74:52-62. [PMID: 24123830 DOI: 10.1002/dneu.22132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Adult neuroplasticity is strongly influenced by steroids. In particular, corticosterone (CORT) and dehydroepiandrosterone (DHEA) can have opposing effects, where CORT reduces while DHEA increases neurogenesis and neuron recruitment. It has been previously shown that in adult male song sparrows, DHEA treatment increases neuron recruitment throughout the telencephalon, including the lateral ventricular zone, while the effect of CORT treatment is restricted to HVC, one of the song control regions. These data suggest that the two steroids may differentially affect proliferation, migration, differentiation, and/or survival of new neurons. To determine if CORT or DHEA alters the migration and differentiation of young neurons, we examined an endogenous marker of migrating immature neurons, doublecortin (DCX), in HVC and hippocampus of adult male song sparrows that were treated with CORT and/or DHEA for 28 days. In HVC, DHEA increased the number of DCX-labeled round cells, while CORT had no main effect on the number of DCX-labeled cells. Furthermore, DHEA increased the area covered by DCX immunoreactivity in HVC, regardless of CORT treatment. In the hippocampus, neither DHEA nor CORT affected DCX immunoreactivity. These results suggest that DHEA enhances migration and differentiation of young neurons into HVC while CORT does not affect the process, whether in the presence of DHEA or not.
Collapse
Affiliation(s)
- Haruka Wada
- Advanced Facility for Avian Research, Univ of Western Ontario, London, ON, N6A 3K7
| | | | | | | | | |
Collapse
|
19
|
Frankl-Vilches C, Kuhl H, Werber M, Klages S, Kerick M, Bakker A, de Oliveira EH, Reusch C, Capuano F, Vowinckel J, Leitner S, Ralser M, Timmermann B, Gahr M. Using the canary genome to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds. Genome Biol 2015; 16:19. [PMID: 25631560 PMCID: PMC4373106 DOI: 10.1186/s13059-014-0578-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/23/2014] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND While the song of all songbirds is controlled by the same neural circuit, the hormone dependence of singing behavior varies greatly between species. For this reason, songbirds are ideal organisms to study ultimate and proximate mechanisms of hormone-dependent behavior and neuronal plasticity. RESULTS We present the high quality assembly and annotation of a female 1.2-Gbp canary genome. Whole genome alignments between the canary and 13 genomes throughout the bird taxa show a much-conserved synteny, whereas at the single-base resolution there are considerable species differences. These differences impact small sequence motifs like transcription factor binding sites such as estrogen response elements and androgen response elements. To relate these species-specific response elements to the hormone-sensitivity of the canary singing behavior, we identify seasonal testosterone-sensitive transcriptomes of major song-related brain regions, HVC and RA, and find the seasonal gene networks related to neuronal differentiation only in the HVC. Testosterone-sensitive up-regulated gene networks of HVC of singing males concerned neuronal differentiation. Among the testosterone-regulated genes of canary HVC, 20% lack estrogen response elements and 4 to 8% lack androgen response elements in orthologous promoters in the zebra finch. CONCLUSIONS The canary genome sequence and complementary expression analysis reveal intra-regional evolutionary changes in a multi-regional neural circuit controlling seasonal singing behavior and identify gene evolution related to the hormone-sensitivity of this seasonal singing behavior. Such genes that are testosterone- and estrogen-sensitive specifically in the canary and that are involved in rewiring of neurons might be crucial for seasonal re-differentiation of HVC underlying seasonal song patterning.
Collapse
Affiliation(s)
- Carolina Frankl-Vilches
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| | - Heiner Kuhl
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195, Berlin, Germany.
| | - Martin Werber
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195, Berlin, Germany.
| | - Sven Klages
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195, Berlin, Germany.
| | - Martin Kerick
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195, Berlin, Germany.
| | - Antje Bakker
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| | - Edivaldo Hc de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, and Faculdade de Ciências Naturais (ICEN), Universidade Federal do Pará, Belém, 66075-110, Brazil.
| | - Christina Reusch
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| | - Floriana Capuano
- Department of Biochemistry and Cambridge Systems Biology Centre, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Jakob Vowinckel
- Department of Biochemistry and Cambridge Systems Biology Centre, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Stefan Leitner
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
- Division of Physiology and Metabolism, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, NW7 1AA, UK.
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195, Berlin, Germany.
| | - Manfred Gahr
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| |
Collapse
|
20
|
Dittrich F, Ramenda C, Grillitsch D, Frankl-Vilches C, Ko MC, Hertel M, Goymann W, ter Maat A, Gahr M. Regulatory mechanisms of testosterone-stimulated song in the sensorimotor nucleus HVC of female songbirds. BMC Neurosci 2014; 15:128. [PMID: 25442096 PMCID: PMC4261767 DOI: 10.1186/s12868-014-0128-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/13/2014] [Indexed: 01/04/2023] Open
Abstract
Background In male birds, influence of the sex steroid hormone testosterone and its estrogenic metabolites on seasonal song behavior has been demonstrated for many species. In contrast, female song was only recently recognized to be widespread among songbird species, and to date, sex hormone effects on singing and brain regions controlling song development and production (song control nuclei) have been studied in females almost exclusively using domesticated canaries (Serinus canaria). However, domesticated female canaries hardly sing at all in normal circumstances and exhibit only very weak, if any, song seasonally under the natural photoperiod. By contrast, adult female European robins (Erithacus rubecula) routinely sing during the winter season, a time when they defend feeding territories and show elevated circulating testosterone levels. We therefore used wild female European robins captured in the fall to examine the effects of testosterone administration on song as well as on the anatomy and the transcriptome of the song control nucleus HVC (sic). The results obtained from female robins were compared to outcomes of a similar experiment done in female domesticated canaries. Results Testosterone treatment induced abundant song in female robins. Examination of HVC transcriptomes and histological analyses of song control nuclei showed testosterone-induced differentiation processes related to neuron growth and spacing, angiogenesis and neuron projection morphogenesis. Similar effects were found in female canaries treated with testosterone. In contrast, the expression of genes related to synaptic transmission was not enhanced in the HVC of testosterone treated female robins but was strongly up-regulated in female canaries. A comparison of the testosterone-stimulated transcriptomes indicated that brain-derived neurotrophic factor (BDNF) likely functions as a common mediator of the testosterone effects in HVC. Conclusions Testosterone-induced singing of female robins correlated with cellular differentiation processes in the HVC that were partially similar to those seen in the HVC of testosterone-treated female canaries. Other modes of testosterone action, notably related to synaptic transmission, appeared to be regulated in a more species-specific manner in the female HVC. Divergent effects of testosterone on the HVC of different species might be related to differences between species in regulatory mechanisms of the singing behavior. Electronic supplementary material The online version of this article (doi:10.1186/s12868-014-0128-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Falk Dittrich
- Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Eberhard-Gwinner Strasse, Haus 6a, Seewiesen, 82319, Germany.
| | - Claudia Ramenda
- Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Eberhard-Gwinner Strasse, Haus 6a, Seewiesen, 82319, Germany.
| | - Doris Grillitsch
- Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Eberhard-Gwinner Strasse, Haus 6a, Seewiesen, 82319, Germany.
| | - Carolina Frankl-Vilches
- Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Eberhard-Gwinner Strasse, Haus 6a, Seewiesen, 82319, Germany.
| | - Meng-Ching Ko
- Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Eberhard-Gwinner Strasse, Haus 6a, Seewiesen, 82319, Germany.
| | - Moritz Hertel
- Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Eberhard-Gwinner Strasse, Haus 6a, Seewiesen, 82319, Germany.
| | - Wolfgang Goymann
- Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Eberhard-Gwinner Strasse, Haus 6a, Seewiesen, 82319, Germany.
| | - Andries ter Maat
- Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Eberhard-Gwinner Strasse, Haus 6a, Seewiesen, 82319, Germany.
| | - Manfred Gahr
- Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Eberhard-Gwinner Strasse, Haus 6a, Seewiesen, 82319, Germany.
| |
Collapse
|
21
|
McEwen BS. Sex, stress and the brain: interactive actions of hormones on the developing and adult brain. Climacteric 2014; 17 Suppl 2:18-25. [PMID: 25225752 DOI: 10.3109/13697137.2014.949662] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The brain is a target of steroid hormone actions that affect brain architecture, molecular and neurochemical processes, behavior and neuroprotection via both genomic and non-genomic actions. Estrogens have such effects throughout the brain and this article provides an historical and current view of how this new view has come about and how it has affected the study of sex differences, as well as other areas of neuroscience, including the effects of stress on the brain.
Collapse
Affiliation(s)
- B S McEwen
- Alfred E. Mirsky Professor, Head, Harold and Margaret Milliken Hatch, Laboratory of Neuroendocrinology, The Rockefeller University , New York, NY , USA
| |
Collapse
|
22
|
Pfister A, Johnson A, Ellers O, Horch HW. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus. Front Physiol 2013; 3:367. [PMID: 23986706 PMCID: PMC3750946 DOI: 10.3389/fphys.2012.00367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022] Open
Abstract
Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system (CNS) sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2) send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5). Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 h, as well as at 3, 5, 7, 14, and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.
Collapse
Affiliation(s)
- Alexandra Pfister
- Department of Invertebrate Zoology, American Museum of Natural History New York, NY, USA
| | | | | | | |
Collapse
|
23
|
Freas CA, Roth TC, LaDage LD, Pravosudov VV. Hippocampal neuron soma size is associated with population differences in winter climate severity in food-caching chickadees. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cody A. Freas
- Department of Biology; MS 314, University of Nevada at Reno; Reno Nevada 89557 USA
| | - Timothy C. Roth
- Department of Psychology; Franklin & Marshall College; PO Box 3003 Lancaster Pennsylvania 17604 USA
| | - Lara D. LaDage
- Department of Biology; MS 314, University of Nevada at Reno; Reno Nevada 89557 USA
| | | |
Collapse
|
24
|
McDonald KS, Kirn JR. Anatomical plasticity in the adult zebra finch song system. J Comp Neurol 2013; 520:3673-86. [PMID: 22473463 DOI: 10.1002/cne.23120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In many songbirds, vocal learning-related cellular plasticity was thought to end following a developmental critical period. However, mounting evidence in one such species, the zebra finch, suggests that forms of plasticity common during song learning continue well into adulthood, including a reliance on auditory feedback for song maintenance. This reliance wanes with increasing age, in tandem with age-related increases in fine motor control. We investigated age-related morphological changes in the adult zebra finch song system by focusing on two cortical projection neuron types that 1) share a common efferent target, 2) are known to exhibit morphological and functional change during song learning, and 3) exert opposing influences on song acoustic structure. Neurons in HVC and the lateral magnocellular nucleus of the anterior nidopallium (LMAN) both project to the robust nucleus of the arcopallium (RA). During juvenile song learning and adult song maintenance, HVC promotes song syllable stereotypy, whereas LMAN promotes learning and acoustic variability. After retrograde labeling of these two cell types in adults, there were age-related increases in dendritic arbor in HVC-RA but not LMAN-RA neurons, resulting in an increase in the ratio of HVC-RA:LMAN-RA dendritic arbor. Differential growth of HVC relative to LMAN dendrites may relate to increases in song motor refinement, decreases in the reliance of song on auditory feedback, or both. Despite this differential growth with age, both cell types retain the capacity for experience-dependent growth, as we show here. These results may provide insights into mechanisms that promote and constrain adult vocal plasticity.
Collapse
Affiliation(s)
- Kathryn S McDonald
- Biology Department, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|
25
|
Testosterone modulation of angiogenesis and neurogenesis in the adult songbird brain. Neuroscience 2013; 239:139-48. [PMID: 23291451 DOI: 10.1016/j.neuroscience.2012.12.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 01/17/2023]
Abstract
Throughout life, new neurons arise from the ventricular zone of the adult songbird brain and are recruited to the song control nucleus higher vocal center (HVC), from which they extend projections to its target, nucleus robustus of the arcopallium (RA). This process of ongoing parenchymal neuronal addition and circuit integration is both triggered and modulated by seasonal surges in systemic testosterone. Brain aromatase converts circulating testosterone to estradiol, so that HVC is concurrently exposed to both androgenic and estrogenic stimulation. These two signals cooperate to trigger HVC endothelial cell division and angiogenesis, by inducing the regionally-restricted expression of vascular endothelial growth factor (VEGF), its matrix-releasing protease MMP9, and its endothelial receptor VEGFR2. The expanded HVC microvascular network then secretes the neurotrophic factor BDNF, which in turn supports the recruitment of newly generated neurons. This process is striking for its spatial restriction and hence functional specificity. While androgen receptors are broadly expressed by the nuclei of the vocal control system, estrogen receptor (ERα) expression is largely restricted to HVC and its adjacent mediocaudal neopallium. The geographic overlap of these receptor phenotypes in HVC provides the basis for a regionally-defined set of paracrine interactions between the vascular bed and neuronal progenitor pool that both characterize and distinguish this nucleus. These interactions culminate in the focal attraction of new neurons to the adult HVC, the integration of those neurons into the extant vocal control circuits, and ultimately the acquisition and elaboration of song.
Collapse
|
26
|
Freas C, Bingman K, LaDage L, Pravosudov V. Untangling Elevation-Related Differences in the Hippocampus in Food-Caching Mountain Chickadees: The Effect of a Uniform Captive Environment. BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:199-209. [DOI: 10.1159/000355503] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022]
|
27
|
McEwen BS. The ever-changing brain: cellular and molecular mechanisms for the effects of stressful experiences. Dev Neurobiol 2012; 72:878-90. [PMID: 21898852 DOI: 10.1002/dneu.20968] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adult brain is capable of considerable structural and functional plasticity and the study of hormone actions in brain has contributed to our understanding of this important phenomenon. In particular, stress and stress-related hormones such as glucocorticoids and mineralocorticoids play a key role in the ability of acute and chronic stress to cause reversible remodeling of neuronal connections in the hippocampus, prefrontal cortex, and amygdala. To produce this plasticity, these hormones act by both genomic and non-genomic mechanisms together with ongoing, experience-driven neural activity mediated by excitatory amino acid neurotransmitters, neurotrophic factors such as brain derived neurotrophic factor, extracellular molecules such as neural cell adhesion molecule, neuropeptides such as corticotrophin releasing factor, and endocannabinoids. The result is a dynamic brain architecture that can be modified by experience. Under this view, the role of pharmaceutical agents, such as antidepressants, is to facilitate such plasticity that must also be guided by experiences.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065, USA.
| |
Collapse
|
28
|
Influence of testosterone metabolites on song-control system neuroplasticity during photostimulation in adult European starlings (Sturnus vulgaris). PLoS One 2012; 7:e40060. [PMID: 22792214 PMCID: PMC3391231 DOI: 10.1371/journal.pone.0040060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/31/2012] [Indexed: 02/03/2023] Open
Abstract
The song-control system is a network of discrete nuclei in the songbird brain that controls the production and learning of birdsong and exhibits some of the best-studied neuroplasticity found in the adult brain. Photoperiodic growth of the song-control system during the breeding season is driven, at least in part, by the gonadal steroid testosterone. When acting on neural tissue, however, testosterone can be metabolized into 5α-dihydrotestosterone (DHT) or 17β-estradiol (E2), which activate different hormonal signaling pathways. By treating adult starlings with both testosterone metabolites and metabolite antagonists, we attempted to isolate the effects of androgen and estrogen treatment on neuroplasticity during photostimulation in male and female European starlings (Sturnus vulgaris). Photostimulation resulted in a large HVC volume typical of the breeding season in all treatments independent of hormone treatment. E2 had additional effects on HVC growth by reducing neuron density and enhancing early survival of new neurons recruited to HVC in females but did not significantly affect HVC volume. Conversely, DHT reduced the migration of new neurons, assessed by the expression of doublecortin, to HVC. DHT also increased syrinx mass and maintained RA (robust nucleus of the arcopallium) cytoarchitecture in the presence of aromatase inhibitors. In addition, we document the first evidence of sex-specific neuroplastic responses of the song-control system to androgens and estrogens. These findings suggest that the contributions of DHT and E2 signaling in songbird neuroplasticity may be regulated by photoperiod and that future studies should account for species and sex differences in the brain.
Collapse
|
29
|
Yamamura T, Barker JM, Balthazart J, Ball GF. Androgens and estrogens synergistically regulate the expression of doublecortin and enhance neuronal recruitment in the song system of adult female canaries. J Neurosci 2011; 31:9649-57. [PMID: 21715630 PMCID: PMC3214644 DOI: 10.1523/jneurosci.0088-11.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/22/2011] [Accepted: 05/13/2011] [Indexed: 11/21/2022] Open
Abstract
Vocal control nuclei in songbirds display seasonal changes in volume that are regulated by testosterone (T) and its androgenic (5α-dihydrotestosterone; DHT) or estrogenic (17β-estradiol; E(2)) metabolites. In male canaries, T regulates expression of the microtubule-associated protein doublecortin (DCX), a marker of neurogenesis. We examined the effect of T and its two metabolites alone or in combination on DCX expression in adult female canaries. Treatment with T or with DHT+E(2) increased HVC volume and neuron numbers as well as the total numbers of fusiform (migrating) and round (differentiating) DCX neurons in the nucleus but generally not in adjacent areas. DHT or E(2) alone did not increase these measures but increased the density of fusiform DCX cells per section. Similar results were observed in area X, although some effects did not reach significance, presumably because plasticity in X is mediated transsynaptically and follows HVC changes with some delay. There was no effect of any treatment on the total number of neurons in area X, and no change in DCX cell densities was detected in the lateral magnocellular nucleus of the anterior nidopallium, nor in other parts of the nidopallium. DHT and E(2) by themselves thus increase density of DCX cells migrating through HVC but are not sufficient in isolation to induce the recruitment of these newborn neurons in the nucleus. These effects are generally not observed in the rest of the nidopallium, implying that steroids only act on the attraction and recruitment of new neurons in HVC without having any major effects on their production at the ventricle wall.
Collapse
Affiliation(s)
- Takashi Yamamura
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, and
| | | | | | - Gregory F. Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, and
| |
Collapse
|
30
|
Walters BJ, Alexiades NG, Saldanha CJ. Intracerebral estrogen provision increases cytogenesis and neurogenesis in the injured zebra finch brain. Dev Neurobiol 2011; 71:170-81. [PMID: 20878945 PMCID: PMC3019250 DOI: 10.1002/dneu.20839] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To determine whether or not local, injury-induced aromatization and/or estrogen provision can affect cyto- or neuro-genesis following mechanical brain damage, two groups of adult male zebra finches sustained bilateral penetrating brain injuries. The first received contralateral injections of vehicle or the aromatase inhibitor fadrozole. The second group received contalateral injections of fadrozole, or fadrozole with 17β-estradiol. Subsequent to injury, birds were injected with the thymidine analog 5-bromo-2'-deoxyuridine (BrdU). Two weeks following injury, the birds were perfused, and coronal sections were labeled using antibodies against BrdU and the neuronal proteins HuC/HuD. In a double blind fashion, BrdU positive cells and BrdU/Hu double-labeled cells in the subventricular zone (SVZ) and at the injury site (INJ) were imaged and sampled. The average numbers of cells per image were compared across brain regions and treatments using repeated measures ANOVAs and, where applicable, post-hoc, pairwise comparisons. Fadrozole administration had no detectable effect on cytogenesis or neurogenesis, however, fadrozole coupled with estradiol significantly increased both measures. The dorsal SVZ had the greatest proportion of new cells that differentiated into neurons, though the highest numbers of BrdU labeled and BrdU, Hu double-labeled cells were detected at the INJ. In the adult zebra finch brain, local estradiol provision can increase cytogenesis and neurogenesis, however, whether or not endogenous glial aromatization is sufficient to similarly affect these processes remains to be seen.
Collapse
Affiliation(s)
| | | | - Colin J. Saldanha
- Department of Biological Sciences, Lehigh University, Bethlehem, PA
- Program in Cognitive Sciences, Lehigh University, Bethlehem, PA
| |
Collapse
|
31
|
Nottebohm F. Plasticity in Adult Avian Central Nervous System: Possible Relation Between Hormones, Learning, and Brain Repair. Compr Physiol 2011. [DOI: 10.1002/cphy.cp010503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Kirn JR. The relationship of neurogenesis and growth of brain regions to song learning. BRAIN AND LANGUAGE 2010; 115:29-44. [PMID: 19853905 PMCID: PMC2888937 DOI: 10.1016/j.bandl.2009.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 05/28/2023]
Abstract
Song learning, maintenance and production require coordinated activity across multiple auditory, sensory-motor, and neuromuscular structures. Telencephalic components of the sensory-motor circuitry are unique to avian species that engage in song learning. The song system shows protracted development that begins prior to hatching but continues well into adulthood. The staggered developmental timetable for construction of the song system provides clues of subsystems involved in specific stages of song learning and maintenance. Progressive events, including neurogenesis and song system growth, as well as regressive events such as apoptosis and synapse elimination, occur during periods of song learning and the transitions between variable and stereotyped song during both development and adulthood. There is clear evidence that gonadal steroids influence the development of song attributes and shape the underlying neural circuitry. Some aspects of song system development are influenced by sensory, motor and social experience, while other aspects of neural development appear to be experience-independent. Although there are species differences in the extent to which song learning continues into adulthood, growing evidence suggests that despite differences in learning trajectories, adult refinement of song motor control and song maintenance can require remarkable behavioral and neural flexibility reminiscent of sensory-motor learning.
Collapse
Affiliation(s)
- John R Kirn
- Biology Department, Wesleyan University, Middletown, CT 06459, United States.
| |
Collapse
|
33
|
Abstract
The adult brain is much more resilient and adaptable than previously believed, and adaptive structural plasticity involves growth and shrinkage of dendritic trees, turnover of synapses, and limited amounts of neurogenesis in the forebrain, especially the dentate gyrus of the hippocampal formation. Stress and sex hormones help to mediate adaptive structural plasticity, which has been extensively investigated in the hippocampus and to a lesser extent in the prefrontal cortex and amygdala, all brain regions that are involved in cognitive and emotional functions. Stress and sex hormones exert their effects on brain structural remodeling through both classical genomic as well as non-genomic mechanisms, and they do so in collaboration with neurotransmitters and other intra- and extracellular mediators. This review will illustrate the actions of estrogen on synapse formation in the hippocampus and the process of stress-induced remodeling of dendrites and synapses in the hippocampus, amygdala, and prefrontal cortex. The influence of early developmental epigenetic events, such as early life stress and brain sexual differentiation, is noted along with the interactions between sex hormones and the effects of stress on the brain. Because hormones influence brain structure and function and because hormone secretion is governed by the brain, applied molecular neuroscience techniques can begin to reveal the role of hormones in brain-related disorders and the treatment of these diseases. A better understanding of hormone-brain interactions should promote more flexible approaches to the treatment of psychiatric disorders, as well as their prevention through both behavioral and pharmaceutical interventions.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
34
|
WEICHEL KLAUS, SCHWAGER GABY, HEID PETRA, GÜTTINGER HANSR, PESCH ANNEGRET. Sex Differences in Plasma Steroid Concentrations and Singing Behaviour during Ontogeny in Canaries (Serinus canaria). Ethology 2010. [DOI: 10.1111/j.1439-0310.1986.tb00810.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Weichel K, Heid P, Güttinger HR. 17 β-Estradiolbenzoate-dependent Song Induction in Juvenile Female Canaries (Serinus canaria): - Long-term Measurements of Song Activity -. Ethology 2010. [DOI: 10.1111/j.1439-0310.1989.tb00729.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
|
37
|
|
38
|
|
39
|
|
40
|
|
41
|
|
42
|
|
43
|
|
44
|
|
45
|
|
46
|
|
47
|
|
48
|
|
49
|
|
50
|
Abstract
AbstractNo single theory so far proposed gives a wholly satisfactory account of the origin and maintenance of bird-song dialects. This failure is the consequence of a weak comparative literature that precludes careful comparisons among species or studies, and of the complexity of the issues involved. Complexity arises because dialects seem to bear upon a wide range of features in the life history of bird species. We give an account of the principal issues in bird-song dialects: evolution of vocal learning, experimental findings on song ontogeny, dialect descriptions, female and male reactions to differences in dialect, and population genetics and dispersal.We present a synthetic theory of the origin and maintenance of song dialects, one that accommodates most of the different systems reported in the literature. The few data available suggest that large, regional dialect populations are genetically differentiated; this pattern is correlated with reduced dispersal between dialects, assortative mating by females, and male-male exclusion. At the same time, “subdialects” may be formed within regional dialects. Subdialect clusters are usually small and may represent vocal mimicry among a few adjacent territorial males. The relative importance of genetic and social adaptation may contribute to the emergence of subdialects; their distinctiveness may be correlated with the degree of polygyny, for example. Thus, subdialect formation is linked to one theory of the evolution of repertoire size, but data are too fragmentary to examine this idea critically.
Collapse
|