1
|
Synthesis of novel (E)-2-((anthracen-9-ylmethylene)amino)pyridin-3-ol and its transition metal complexes: Multispectral characterization, biological evaluation and computational studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
FRET-based analysis of protein-nucleic acid interactions by genetically incorporating a fluorescent amino acid. Amino Acids 2014; 47:729-34. [PMID: 25540052 DOI: 10.1007/s00726-014-1900-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
Abstract
Protein-nucleic acid interaction is an important process in many biological phenomena. In this study, a fluorescence resonance energy transfer (FRET)-based protein-DNA binding assay has been developed, in which a fluorescent amino acid is genetically incorporated into a DNA-binding protein. A coumarin-containing amino acid was incorporated into a DNA-binding protein, and the mutant protein specifically produced a FRET signal upon binding to its cognate DNA labeled with a fluorophore. The protein-DNA binding affinity was then measured under equilibrium conditions. This method is advantageous for studying protein-nucleic acid interactions, because it is performed under equilibrium conditions, technically easy, and applicable to any nucleic acid-binding protein.
Collapse
|
3
|
Jin S, Lee HJ, Lee S, Lee HS. Genetic Incorporation of a Phenanthroline-Containing Amino Acid in Escherichia coli. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.4.1087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Demidov VN, Kas’yanenko NA, Antonov VS, Volkov IL, Sokolov PA, Pakhomova TB, Simanova SA. Reaction with DNA and pharmacologic activity of 1,10-phenanthroline and electron-rich 1,10-phenanthrocyanine complexes of d-elements. RUSS J GEN CHEM+ 2012. [DOI: 10.1134/s1070363212030401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Porschke D. Structures during binding of cAMP receptor to promoter DNA: promoter search slowed by non-specific sites. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:415-24. [PMID: 22361785 DOI: 10.1007/s00249-012-0791-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/31/2011] [Accepted: 01/16/2012] [Indexed: 11/28/2022]
Abstract
The kinetics of cAMP receptor (CAP) binding to promoter DNA has been studied by stopped-flow electric-dichroism at a reduced salt concentration, where the coupling of non-specific and specific binding can be observed directly. Amplitudes, rise and decay times of dichroism transients provide detailed information about the reaction and the structure of intermediates over more than six orders of magnitude on the time scale. CAP binding during the first milliseconds after mixing is indicated by an increase of both rise- and decay-time constants. A particularly large increase of rise times reflects initial formation of non-symmetric complexes by protein binding to non-specific sites at DNA ends. The increase of the hydrodynamic dimensions continues up to ~1 s, before a decrease of time constants reflects transition to compact states with bent DNA up to the time range of ~10(3) s. The slow approach to CAP-induced DNA bending is due to non-specific complexes, which are formed initially and are converted slowly to the specific complex. At the salt concentration of 13.5 mM, conversion to specific complexes with bent DNA is completed after ~40 s at pH 8 compared to >10(3) s at pH 7, resulting from a higher affinity of CAP to non-specific sites at pH 7 than 8 by a factor of ~100. Thus, under the given conditions non-specific sites delay rather than facilitate formation of the specific complex with bent DNA. Experimental data obtained for a non-specific DNA clearly indicate the impact of pseudo-sites. The different electro-optical parameters have been combined in global fits.
Collapse
Affiliation(s)
- Dietmar Porschke
- AG Biomolecular Dynamics, Max Planck Institut für biophysikalische Chemie, Göttingen, Germany.
| |
Collapse
|
6
|
|
7
|
Bencini A, Lippolis V. 1,10-Phenanthroline: A versatile building block for the construction of ligands for various purposes. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2010.04.008] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Pitié M, Pratviel G. Activation of DNA Carbon−Hydrogen Bonds by Metal Complexes. Chem Rev 2010; 110:1018-59. [DOI: 10.1021/cr900247m] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Marguerite Pitié
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, F-31077 Toulouse, France, and Université de Toulouse, Toulouse, France
| | - Geneviève Pratviel
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, F-31077 Toulouse, France, and Université de Toulouse, Toulouse, France
| |
Collapse
|
9
|
Lee HS, Dimla RD, Schultz PG. Protein-DNA photo-crosslinking with a genetically encoded benzophenone-containing amino acid. Bioorg Med Chem Lett 2009; 19:5222-4. [PMID: 19643606 DOI: 10.1016/j.bmcl.2009.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/30/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
Abstract
The photo-crosslinking amino acid, p-benzoyl-L-phenylalanine (pBpa), was genetically incorporated into Escherichia coli catabolite activator protein (CAP) in bacteria in response to an amber nonsense codon using an orthogonal tRNA/aminoacyl-tRNA synthetase pair. The mutant CAP (CAP-K26Bpa) containing pBpa formed a covalent complex with a DNA fragment containing the consensus operator sequence upon UV irradiation. Because this amino acid can be genetically incorporated into any DNA-binding protein in E. coli, yeast or mammalian cells with minimal perturbation of protein structure, this method should be generally useful for investigating DNA-protein interactions.
Collapse
Affiliation(s)
- Hyun Soo Lee
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
10
|
Gellett AM, Huber PW, Higgins PJ. Synthesis of the unnatural amino acid N-N-(ferrocene-1-acetyl)-l-lysine: a novel organometallic nuclease. J Organomet Chem 2008; 693:2959-2962. [PMID: 19255618 PMCID: PMC2598734 DOI: 10.1016/j.jorganchem.2008.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Paul W. Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
11
|
Reddy PR, Manjula P. Mixed-Ligand Copper(II)–Phenanthroline–Dipeptide Complexes: Synthesis, Characterization, and DNA-Cleavage Properties. Chem Biodivers 2007; 4:468-80. [PMID: 17372949 DOI: 10.1002/cbdv.200790039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mixed-ligand complexes [Cu(II)(HisLeu)(phen)](+) (1) and [Cu(II)(HisSer)(phen)](+) (2; phen=1,10-phenanthroline) were synthesized and characterized. The intercalative interaction of the Cu(II) complexes with calf-thymus DNA (CT-DNA) was probed by UV/VIS and fluorescence titration, as well as by thermal-denaturation experiments, and the intrinsic binding constants (K(b)) for the complexes with 1 and 2 were 4.2x10(3) and 4.9x10(3) M(-1), resp. Both complexes were found to be efficient catalysts for the hydrolytic cleavage of plasmid pUC19 DNA, as tested by gel electrophoresis, converting the DNA from the supercoiled to the nicked-circular form at rate constants of 1.32 and 1.40 h(-1) for 1 and 2, resp.
Collapse
|
12
|
|
13
|
Bales BC, Kodama T, Weledji YN, Pitié M, Meunier B, Greenberg MM. Mechanistic studies on DNA damage by minor groove binding copper-phenanthroline conjugates. Nucleic Acids Res 2005; 33:5371-9. [PMID: 16186134 PMCID: PMC1235636 DOI: 10.1093/nar/gki856] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Copper-phenanthroline complexes oxidatively damage and cleave nucleic acids. Copper bis-phenanthroline and copper complexes of mono- and bis-phenanthroline conjugates are used as research tools for studying nucleic acid structure and binding interactions. The mechanism of DNA oxidation and cleavage by these complexes was examined using two copper-phenanthroline conjugates of the sequence-specific binding molecule, distamycin. The complexes contained either one or two phenanthroline units that were bonded to the DNA-binding domain through a linker via the 3-position of the copper ligand. A duplex containing independently generated 2-deoxyribonolactone facilitated kinetic analysis of DNA cleavage. Oxidation rate constants were highly dependent upon the ligand environment but rate constants describing elimination of the alkali-labile 2-deoxyribonolactone intermediate were not. Rate constants describing DNA cleavage induced by each molecule were 11-54 times larger than the respective oxidation rate constants. The experiments indicate that DNA cleavage resulting from beta-elimination of 2-deoxyribonolactone by copper-phenanthroline complexes is a general mechanism utilized by this family of molecules. In addition, the experiments confirm that DNA damage mediated by mono- and bis-phenanthroline copper complexes proceeds through distinct species, albeit with similar outcomes.
Collapse
Affiliation(s)
| | - Tetsuya Kodama
- Department of Chemistry, Johns Hopkins University3400 North Charles Street, Baltimore, MD 21218, USA
| | - Yvonne N. Weledji
- Department of Chemistry, Johns Hopkins University3400 North Charles Street, Baltimore, MD 21218, USA
| | - Marguerite Pitié
- Laboratoire de Chimie de Coordination du CNRS205 route de Narbonne, 31 077 Toulouse Cedex 4, France
| | - Bernard Meunier
- Laboratoire de Chimie de Coordination du CNRS205 route de Narbonne, 31 077 Toulouse Cedex 4, France
| | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University3400 North Charles Street, Baltimore, MD 21218, USA
- To whom correspondence should be addressed. Tel: +33 410 516 8095; Fax: +33 410 616 7044;
| |
Collapse
|
14
|
Hirohama T, Kuranuki Y, Ebina E, Sugizaki T, Arii H, Chikira M, Tamil Selvi P, Palaniandavar M. Copper(II) complexes of 1,10-phenanthroline-derived ligands: studies on DNA binding properties and nuclease activity. J Inorg Biochem 2005; 99:1205-19. [PMID: 15833344 DOI: 10.1016/j.jinorgbio.2005.02.020] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 02/18/2005] [Accepted: 02/19/2005] [Indexed: 11/25/2022]
Abstract
A series of copper(II) complexes of the type [Cu(L)]2+, where L = N,N'-dialkyl-1,10-phenanthroline-2,9-dimethanamine and R = methyl (L1), n-propyl (L2), isopropyl (L3), sec-butyl (L4), or tert-butyl (L5) group, have been synthesized. The interaction of the complexes with DNA has been studied by DNA fiber electron paramagnetic resonance (EPR) spectroscopy, emission, viscosity and electrochemical measurements and agarose gel electrophoresis. In the X-ray crystal structure of [Cu(HL2)Cl2]NO3, copper(II) is coordinated to two ring nitrogens and one of the two secondary amine nitrogens of the side chains and two chloride ions as well and the coordination geometry is best described as trigonal bipyramidal distorted square based pyramidal (TBDSBP). Electronic and EPR spectral studies reveal that all the complexes in aqueous solution around pH 7 possess CuN3O2 rather than CuN4O chromophore with one of the alkylamino side chain not involved in coordination. The structures of the complexes in aqueous solution around pH 7 change from distorted tetragonal to trigonal bipyramidal as the size of the alkyl group is increased. The observed changes in the physicochemical features of the complexes on binding to DNA suggest that the complexes, except [Cu(L5)]2+, bind to DNA with partial intercalation of the derivatised phen ring in between the DNA base pairs. Electrochemical studies reveal that the complexes prefer to bind to DNA in Cu(II) rather than Cu(I) oxidation state. Interestingly, [Cu(L5)]2+ shows the highest DNA cleavage activity among all the present copper(II) complexes suggesting that the bulky N-tert-butyl group plays an important role in modifying the coordination environment around the copper(II) center, the Cu(II)/Cu(I) redox potential and hence the formation of activated oxidant responsible for the cleavage. These results were compared with those for bis(1,10-phenanthroline)copper(II), [Cu(phen)2]2+.
Collapse
Affiliation(s)
- Tomoya Hirohama
- Department of Applied Chemistry, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Coordination chemistry mimics of nuclease-activity in the hydrolytic cleavage of phosphodiester bond. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf03184297] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Xiao G, Cole DL, Gunsalus RP, Sigman DS, Chen CHB. Site-specific DNA cleavage of synthetic NarL sites by an engineered Escherichia coli NarL protein-1,10-phenanthroline cleaving agent. Protein Sci 2002; 11:2427-36. [PMID: 12237464 PMCID: PMC2373700 DOI: 10.1110/ps.0212502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The NarL response regulatory protein of Escherichia coli has been engineered by covalent modification with 1,10-phenanthroline (OP) to create a set of site-specific DNA-cleaving agents. This was accomplished by introducing single cysteine amino acid replacements at selected locations within the carboxy-terminal DNA-binding domain in or nearby the helix 8 to helix 9 region of the NarL protein using site-directed mutagenesis. Of 18 modified NarL-OP proteins made, 13 retained the ability to bind DNA as evidenced by gel mobility assays, whereas 10 of the 1,10-phenanthroline-modified proteins also exhibited specific cleavage activity for a synthetic NarL recognition sequence. These DNA-cleaving agents were divided into two groups based on the location of the cleavage sites. The first class set cleaved the DNA nearby the center of a synthetic 7-2-7 sequence composed of two NarL heptamer sites separated by a 2-bp spacer element. The second class cut the DNA at the periphery of the 7-2-7 sequence. The cleavage data are consistent with the ability of two NarL monomers to recognize and bind to the DNA in a head-to-head orientation. A second set of DNA-cleaving agents was constructed using the carboxy-terminal domain of NarL called NarL(C). Similar cleavage patterns were observed whether full-length NarL or NarL(C) was used. The availability of 1,10-phenanthroline-modified NarL and NarL(C) proteins opens up the possibility to explore the position, orientation, and number of NarL recognition sites at E. coli promoters predicted to contain multiple and complex arrangements of NarL-binding sites.
Collapse
Affiliation(s)
- Gaoping Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles 90095-1489, USA
| | | | | | | | | |
Collapse
|
17
|
Qi D, Tann CM, Haring D, Distefano MD. Generation of new enzymes via covalent modification of existing proteins. Chem Rev 2001; 101:3081-111. [PMID: 11710063 DOI: 10.1021/cr000059o] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D Qi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
18
|
Wu M, Stoermer D, Tullius TD, Townsend CA. Calicheamicin−Homeodomain Conjugate as an Efficient, Sequence-Specific DNA Cleavage and Mapping Tool. J Am Chem Soc 2000. [DOI: 10.1021/ja002280o] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minwan Wu
- Department of Chemistry, The Johns Hopkins University 3400 North Charles Street, Baltimore, Maryland 21218 Department of Chemistry, Boston University 590 Commonwealth Ave., Boston, Massachusetts 02215
| | - Doris Stoermer
- Department of Chemistry, The Johns Hopkins University 3400 North Charles Street, Baltimore, Maryland 21218 Department of Chemistry, Boston University 590 Commonwealth Ave., Boston, Massachusetts 02215
| | - Thomas D. Tullius
- Department of Chemistry, The Johns Hopkins University 3400 North Charles Street, Baltimore, Maryland 21218 Department of Chemistry, Boston University 590 Commonwealth Ave., Boston, Massachusetts 02215
| | - Craig A. Townsend
- Department of Chemistry, The Johns Hopkins University 3400 North Charles Street, Baltimore, Maryland 21218 Department of Chemistry, Boston University 590 Commonwealth Ave., Boston, Massachusetts 02215
| |
Collapse
|
19
|
Tzou WS, Hwang MJ. Modeling helix-turn-helix protein-induced DNA bending with knowledge-based distance restraints. Biophys J 1999; 77:1191-205. [PMID: 10465734 PMCID: PMC1300411 DOI: 10.1016/s0006-3495(99)76971-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A crucial element of many gene functions is protein-induced DNA bending. Computer-generated models of such bending have generally been derived by using a presumed bending angle for DNA. Here we describe a knowledge-based docking strategy for modeling the structure of bent DNA recognized by a major groove-inserting alpha-helix of proteins with a helix-turn-helix (HTH) motif. The method encompasses a series of molecular mechanics and dynamics simulations and incorporates two experimentally derived distance restraints: one between the recognition helix and DNA, the other between respective sites of protein and DNA involved in chemical modification-enabled nuclease scissions. During simulation, a DNA initially placed at a distance was "steered" by these restraints to dock with the binding protein and bends. Three prototype systems of dimerized HTH DNA binding were examined: the catabolite gene activator protein (CAP), the phage 434 repressor (Rep), and the factor for inversion stimulation (Fis). For CAP-DNA and Rep-DNA, the root mean square differences between model and x-ray structures in nonhydrogen atoms of the DNA core domain were 2.5 A and 1.6 A, respectively. An experimental structure of Fis-DNA is not yet available, but the predicted asymmetrical bending and the bending angle agree with results from a recent biochemical analysis.
Collapse
Affiliation(s)
- W S Tzou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | | |
Collapse
|
20
|
Ishihara T, Corey DR. Rules for Strand Invasion by Chemically Modified Oligonucleotides. J Am Chem Soc 1999. [DOI: 10.1021/ja983834e] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tsutomu Ishihara
- Contribution from the Howard Hughes Medical Institute, Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9041
| | - David R. Corey
- Contribution from the Howard Hughes Medical Institute, Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9041
| |
Collapse
|
21
|
Abstract
In the past decade, site-specific chromosomal DNA cleavage mediated by DNA endonucleases has been used to examine diverse aspects of chromosome structure and function in eukaryotes, such as DNA topology, replication, transcription, recombination, and repair. Here we describe a method with which chromosomes can be linearized at any predefined position in vivo. Yeast homothallic switching endonuclease (HO endo), a sequence-specific double-strand nuclease involved in mating-type switching, is employed for targeting DNA cleavage. HO endo contains discrete functional domains: a N-terminal nuclease and a C-terminal DNA-binding domain, thereby allowing construction of a chimeric nuclease with the cutting site distinct from the original HO recognition sequence. The expression of the nuclease is engineered to be controlled by a tightly regulated, inducible promoter. The cut sites recognized by HO endo or its derivatives are introduced specifically at desired positions in the yeast genome by homologous recombination. Here we present experimental procedures and review some applications based on this approach in yeast and other biological systems.
Collapse
Affiliation(s)
- C P Liang
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Boulevard, Dallas, Texas 75235-9140, USA
| | | |
Collapse
|
22
|
Harrison-McMonagle P, Denissova N, Martínez-Hackert E, Ebright RH, Stock AM. Orientation of OmpR monomers within an OmpR:DNA complex determined by DNA affinity cleaving. J Mol Biol 1999; 285:555-66. [PMID: 9878429 DOI: 10.1006/jmbi.1998.2375] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Escherichia coli OmpR is a transcription factor that regulates the differential expression of the porin genes ompF and ompC. Phosphorylated OmpR binds as a dimer to a 20-bp region of DNA consisting of two tandemly arranged 10-bp half-sites. Expression of the ompF gene is achieved by the hierarchical occupation of three adjacent 20-bp binding sites, designated F1, F2, and F3 and a distally located site, F4. Despite genetic, biochemical, and structural studies, specific details of the interaction between phosphorylated OmpR and the DNA remain unknown. We have linked the DNA cleaving moiety o-phenanthroline-copper to eight different sites within the DNA binding domain of OmpR in order to determine the orientation of the two OmpR monomers in the OmpR:F1 complex. Five of the resulting conjugates exhibited DNA cleaving activity, and four of these yielded patterns that could be used to construct a model of the OmpR:F1 complex. We propose that OmpR binds asymmetrically to the F1 site as a tandemly arranged dimer with each monomer having its recognition helix in the major groove. The N-terminal end of the recognition helix is promoter-proximal and flanked by "wings" W1 and W2 positioned proximally and distally, respectively, to the transcription start site of ompF. We further propose that the C-terminal end of the recognition helix makes the most extensive contacts with DNA and predict bases within the F1 site that are sufficiently close to be contacted by the recognition helix.
Collapse
Affiliation(s)
- P Harrison-McMonagle
- Center for Advanced Biotechnology and Medicine, 679 Hoes Ln, Piscataway, NJ, 08854, USA
| | | | | | | | | |
Collapse
|
23
|
Albright RA, Mossing MC, Matthews BW. Crystal structure of an engineered Cro monomer bound nonspecifically to DNA: possible implications for nonspecific binding by the wild-type protein. Protein Sci 1998; 7:1485-94. [PMID: 9684880 PMCID: PMC2144066 DOI: 10.1002/pro.5560070701] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The structure has been determined at 3.0 A resolution of a complex of engineered monomeric Cro repressor with a seven-base pair DNA fragment. Although the sequence of the DNA corresponds to the consensus half-operator that is recognized by each subunit of the wild-type Cro dimer, the complex that is formed in the crystals by the isolated monomer appears to correspond to a sequence-independent mode of association. The overall orientation of the protein relative to the DNA is markedly different from that observed for Cro dimer bound to a consensus operator. The recognition helix is rotated 48 degrees further out of the major groove, while the turn region of the helix-turn-helix remains in contact with the DNA backbone. All of the direct base-specific interactions seen in the wild-type Cro-operator complex are lost. Virtually all of the ionic interactions with the DNA backbone, however, are maintained, as is the subset of contacts between the DNA backbone and a channel on the protein surface. Overall, 25% less surface area is buried at the protein DNA interface than for half of the wild-type Cro-operator complex, and the contacts are more ionic in character due to a reduction of hydrogen bonding and van der Waals interactions. Based on this crystal structure, model building was used to develop a possible model for the sequence-nonspecific interaction of the wild-type Cro dimer with DNA. In the sequence-specific complex, the DNA is bent, the protein dimer undergoes a large hinge-bending motion relative to the uncomplexed form, and the complex is twofold symmetric. In contrast, in the proposed nonspecific complex the DNA is straight, the protein retains a conformation similar to the apo form, and the complex lacks twofold symmetry. The model is consistent with thermodynamic, chemical, and mutagenic studies, and suggests that hinge bending of the Cro dimer may be critical in permitting the transition from the binding of protein at generic sites on the DNA to binding at high affinity operator sites.
Collapse
Affiliation(s)
- R A Albright
- Howard Hughes Medical Institute and Department of Physics, University of Oregon, Eugene 97403, USA
| | | | | |
Collapse
|
24
|
Coombs GS, Corey DR. Site-Directed Mutagenesis and Protein Engineering. Proteins 1998. [DOI: 10.1016/b978-012058785-8/50006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
|
26
|
Affiliation(s)
- H C Kistler
- Plant Molecular and Cellular Biology Program, Plant Pathology Department, University of Florida, Gainesville 32611-0680, USA
| |
Collapse
|
27
|
Krejsa CM, Nadler SG, Esselstyn JM, Kavanagh TJ, Ledbetter JA, Schieven GL. Role of oxidative stress in the action of vanadium phosphotyrosine phosphatase inhibitors. Redox independent activation of NF-kappaB. J Biol Chem 1997; 272:11541-9. [PMID: 9111069 DOI: 10.1074/jbc.272.17.11541] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The role of intracellular oxidative stress in the mechanism of action of phosphotyrosine phosphatase (PTP) inhibitors was studied using three vanadium-based compounds. Sodium orthovanadate (Na3VO4), sodium oxodiperoxo(1,10-phenanthroline)vanadate(V) (pV(phen), and bis(maltolato)-oxovanadium(IV) (BMOV) differentially induced oxidative stress in lymphocytes. Treatment with pV(phen), which caused intracellular oxidation, induced strong protein tyrosine phosphorylation compared with Na3VO4 and BMOV. Syk family kinases and the mitogen-activated protein kinase erk2 were rapidly activated by pV(phen) but not by BMOV or Na3VO4. In contrast, both BMOV and pV(phen) strongly activated NF-kappaB. The antioxidant pyrrolidine dithiocarbamate (PDTC) greatly diminished the intracellular oxidation and protein phosphotyrosine accumulation induced by pV(phen). Pretreatment of cells with PDTC reduced and delayed the activation of Syk kinases and erk2. However, NF-kappaB activation by pV(phen) was markedly enhanced in lymphocytes pretreated with PDTC, and another antioxidant, N-acetylcysteine, did not prevent the activation of NF-kappaB by BMOV. These results indicate a role for oxidative stress in the biological effects of some PTP inhibitors, whereas NF-kappaB activation by PTP inhibitors is mediated by mechanisms independent of intracellular redox status.
Collapse
Affiliation(s)
- C M Krejsa
- Department of Environmental Health, University of Washington, Seattle, Washington 98195 and Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, Washington 98121, USA
| | | | | | | | | | | |
Collapse
|
28
|
Corazza A, Harvey I, Sadler PJ. 1H,13C-NMR and X-ray absorption studies of copper(I) glutathione complexes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:697-705. [PMID: 8612647 DOI: 10.1111/j.1432-1033.1996.0697d.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The tripeptide glutathione (gamma-L-Glu-L-Cys-Gly, GSH) is an important intracellular reducing agent for Cu(II) and complexation agent for Cu(I). We have studied the complexation of Cu(I) to GSH in aqueous solution at a range of pH values and Cu(I):GSH molar ratios by 1H-NMR and 13C-NMR spectroscopy and X-ray absorption spectroscopy. The NMR data are consistent with formation of a complex with approximate 1:1 stoichiometry [Cu(SG)] as the major species with only thiolate sulfur of GSH binding to Cu(I). The rate of exchange of GSH with GS-Cu was determined to 13 s(-1) at 283 K, pH 6.8. X-ray absorption spectroscopic measurements showed that Cu(I) is coordinated to 3.1+/-0.3 sulfur atoms at approximately 0.222 nm in solutions (and solids) containing GSH:Cu in 1:1 and 2:1 mol ratios. The possible structures of polymeric Cu(I)-glutathione complexes are discussed. The high thermodynamic stability of Cu(I)-S bonds in Cu(I)-glutathione complexes coupled with their kinetic lability may provide efficient and specific pathways for the transport of copper in cells.
Collapse
Affiliation(s)
- A Corazza
- Christopher Ingold Laboratories, Birkbeck College, University of London, England
| | | | | |
Collapse
|
29
|
Frey ST, Sun HH, Murthy NN, Karlin KD. A new trinuclear copper complex and its reactions with plasmid DNA. Inorganica Chim Acta 1996. [DOI: 10.1016/0020-1693(96)04883-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Perrin DM, Mazumder A, Sigman DS. Oxidative chemical nucleases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 52:123-51. [PMID: 8821260 DOI: 10.1016/s0079-6603(08)60966-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D M Perrin
- Department of Biological Chemistry, University of California, Los Angeles 90024, USA
| | | | | |
Collapse
|
31
|
Pan CQ, Landgraf R, Sigman DS. Drosophila engrailed-1,10-phenanthroline chimeras as probes of homeodomain-DNA complexes. Protein Sci 1995; 4:2279-88. [PMID: 8563624 PMCID: PMC2143021 DOI: 10.1002/pro.5560041105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have converted the Drosophila engrailed homeodomain into a sequence-specific nuclease by linking the protein to the chemical nuclease 1,10-phenanthroline-copper (OP-Cu). Unique cysteines were introduced at six positions into the homeodomain by site-directed mutagenesis for the covalent attachment of OP-Cu. The varied DNA-binding affinity and specificity of these mutants and the DNA cleavage pattern of their OP-Cu derivatives allowed us to assess the crystal structure of the engrailed homeodomain-DNA complex. We have also achieved site-specific double-stranded DNA scission with one of the homeodomain mutants, E28C, which has the potential of being used to identify engrailed binding sites in the genome. Because the homeodomain is so well conserved among members of the homeodomain-containing protein family, other homeodomain proteins can be converted into nucleases by attaching OP-Cu at position 28 of their homeodomains.
Collapse
Affiliation(s)
- C Q Pan
- Molecular Biology Institute, University of California at Los Angeles 90095-1570, USA
| | | | | |
Collapse
|
32
|
Voyer N, Lamothe J. The use of peptidic frameworks for the construction of molecular receptors and devices. Tetrahedron 1995. [DOI: 10.1016/0040-4020(95)00569-t] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Qin M, Lee E, Zankel T, Ow DW. Site-specific cleavage of chromosomes in vitro through Cre-lox recombination. Nucleic Acids Res 1995; 23:1923-7. [PMID: 7596819 PMCID: PMC306964 DOI: 10.1093/nar/23.11.1923] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Site-specific recombination systems are useful tools for chromosome engineering in vivo and site-specific DNA cleavage methods have applications in genome analysis and gene isolation. Here, we report a new method to fragment chromosomes in vitro using the Cre-lox site-specific recombination system. Two lox sites were targeted into the 5.7 Mb chromosomes I of Schizosaccharomyces pombe. In vitro recombination between chromosomal lox sites and exogenously provided lox oligonucleotides 'cleaved' the chromosome at the defined lox sequences. Site-specific cleavage of lox sites in the tobacco genome was also demonstrated. This recombination-based cleavage method provides a novel approach for structural and functional analyses of eukaryotic chromosomes as it allows direct isolation of chromosome regions that correspond to phenotypes revealed through Cre-lox mediated chromosome rearrangements in vivo. Moreover, recombination with end-labeled lox oligonucleotides would permit the specific end-labeling of chromosome segments to facilitate the long range mapping of chromosomes.
Collapse
Affiliation(s)
- M Qin
- Plant Gene Expression Center, US Department of Agriculture, Albany, CA 94710, USA
| | | | | | | |
Collapse
|
34
|
Pratviel G, Bernadou J, Meunier B. Die CH-Bindungen der Zuckerbausteine von DNA als Angriffspunkte für chemische Nucleasen und Wirkstoffe. Angew Chem Int Ed Engl 1995. [DOI: 10.1002/ange.19951070705] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Heilek GM, Marusak R, Meares CF, Noller HF. Directed hydroxyl radical probing of 16S rRNA using Fe(II) tethered to ribosomal protein S4. Proc Natl Acad Sci U S A 1995; 92:1113-6. [PMID: 7862644 PMCID: PMC42648 DOI: 10.1073/pnas.92.4.1113] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Localized hydroxyl radical probing has been used to explore the rRNA neighborhood around a unique position in the structure of the Escherichia coli 30S ribosomal subunit. Fe(II) was attached to ribosomal protein S4 at Cys-31 via the reagent 1-(p-bromoacetamidobenzyl)-EDTA. [Fe-Cys31]S4 was then complexed with 16S rRNA or incorporated into active 30S ribosomal subunits by in vitro reconstitution with 16S rRNA and a mixture of the remaining 30S subunit proteins. Hydroxyl radicals generated from the tethered Fe resulted in cleavage of the 16S rRNA chain in two localized regions of its 5' domain. One region spans positions 419-432 and is close to the multihelix junction previously placed at the RNA binding site of S4 by chemical and enzymatic protection (footprinting) and crosslinking studies. A second site of directed cleavage includes nucleotides 297-303, which overlap a site that is protected from chemical modification by protein S16, a near neighbor of S4 in the ribosome. These results provide useful information about the three-dimensional organization of 16S rRNA and indicate that these two regions of its 5' domain are in close spatial proximity to Cys-31 of protein S4.
Collapse
Affiliation(s)
- G M Heilek
- Sinsheimer Laboratories, University of California, Santa Cruz 95064
| | | | | | | |
Collapse
|
36
|
Correlations among the DNA binding/cleaving specificities of small molecules revealed by double-strand affinity cleaving. Bioorg Med Chem Lett 1995. [DOI: 10.1016/0960-894x(94)00461-n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|