1
|
Xie F, Jain S, Xu R, Butrus S, Tan Z, Xu X, Shekhar K, Zipursky SL. Spatial profiling of the interplay between cell type- and vision-dependent transcriptomic programs in the visual cortex. Proc Natl Acad Sci U S A 2025; 122:e2421022122. [PMID: 39946537 PMCID: PMC11848306 DOI: 10.1073/pnas.2421022122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/07/2025] [Indexed: 02/19/2025] Open
Abstract
How early sensory experience during "critical periods" of postnatal life affects the organization of the mammalian neocortex at the resolution of neuronal cell types is poorly understood. We previously reported that the functional and molecular profiles of layer 2/3 (L2/3) cell types in the primary visual cortex (V1) are vision-dependent [S. Cheng et al., Cell 185, 311-327.e24 (2022)]. Here, we characterize the spatial organization of L2/3 cell types with and without visual experience. Spatial transcriptomic profiling based on 500 genes recapitulates the zonation of L2/3 cell types along the pial-ventricular axis in V1. By applying multitasking theory, we suggest that the spatial zonation of L2/3 cell types is linked to the continuous nature of their gene expression profiles, which can be represented as a 2D manifold bounded by three archetypal cell types. By comparing normally reared and dark reared L2/3 cells, we show that visual deprivation-induced transcriptomic changes comprise two independent gene programs. The first, induced specifically in the visual cortex, includes immediate-early genes and genes associated with metabolic processes. It manifests as a change in cell state that is orthogonal to cell-type-specific gene expression programs. By contrast, the second program impacts L2/3 cell-type identity, regulating a subset of cell-type-specific genes and shifting the distribution of cells within the L2/3 cell-type manifold. Through an integrated analysis of spatial transcriptomics with single-nucleus RNA-seq data, we describe how vision patterns cortical L2/3 cell types during the critical period.
Collapse
Affiliation(s)
- Fangming Xie
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Saumya Jain
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Runzhe Xu
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
| | - Zhiqun Tan
- Department of Anatomy and Neurobiology, Center for Neural Circuit Mapping, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA92697
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, Center for Neural Circuit Mapping, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA92697
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - S. Lawrence Zipursky
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| |
Collapse
|
2
|
Urdaneta ME, Kunigk NG, Currlin S, Delgado F, Fried SI, Otto KJ. The Long-Term Stability of Intracortical Microstimulation and the Foreign Body Response Are Layer Dependent. Front Neurosci 2022; 16:908858. [PMID: 35769707 PMCID: PMC9234554 DOI: 10.3389/fnins.2022.908858] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Intracortical microstimulation (ICMS) of the somatosensory cortex (S1) can restore sensory function in patients with paralysis. Studies assessing the stability of ICMS have reported heterogeneous responses across electrodes and over time, potentially hindering the implementation and translatability of these technologies. The foreign body response (FBR) and the encapsulating glial scar have been associated with a decay in chronic performance of implanted electrodes. Moreover, the morphology, intrinsic properties, and function of cells vary across cortical layers, each potentially affecting the sensitivity to ICMS as well as the degree of the FBR across cortical depth. However, layer-by-layer comparisons of the long-term stability of ICMS as well as the extent of the astrocytic glial scar change across cortical layers have not been well explored. Here, we implanted silicon microelectrodes with electrode sites spanning all the layers of S1 in rats. Using a behavioral paradigm, we obtained ICMS detection thresholds from all cortical layers for up to 40 weeks. Our results showed that the sensitivity and long-term performance of ICMS is indeed layer dependent. Overall, detection thresholds decreased during the first 7 weeks post-implantation (WPI). This was followed by a period in which thresholds remained stable or increased depending on the interfacing layer: thresholds in L1 and L6 exhibited the most consistent increases over time, while those in L4 and L5 remained the most stable. Furthermore, histological investigation of the tissue surrounding the electrode showed a biological response of microglia and macrophages which peaked at L1, while the area of the astrocytic glial scar peaked at L2/3. Interestingly, the biological response of these FBR markers is less exacerbated at L4 and L5, suggesting a potential link between the FBR and the long-term stability of ICMS. These findings suggest that interfacing depth can play an important role in the design of chronically stable implantable microelectrodes.
Collapse
Affiliation(s)
- Morgan E. Urdaneta
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- *Correspondence: Morgan E. Urdaneta,
| | - Nicolas G. Kunigk
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Seth Currlin
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Francisco Delgado
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Shelley I. Fried
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Boston Veterans Affairs Healthcare System, Boston, MA, United States
| | - Kevin J. Otto
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
- Kevin J. Otto,
| |
Collapse
|
3
|
An increase in dendritic plateau potentials is associated with experience-dependent cortical map reorganization. Proc Natl Acad Sci U S A 2021; 118:2024920118. [PMID: 33619110 PMCID: PMC7936269 DOI: 10.1073/pnas.2024920118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Here we describe a mechanism for cortical map plasticity. Classically, representational map changes are thought to be driven by changes within cortico-cortical circuits, e.g., Hebbian plasticity of synaptic circuits that lost vs. maintained an excitatory drive from the first-order thalamus, possibly steered by neuromodulatory forces from deep brain regions. Our work provides evidence for an additional gating mechanism, provided by plateau potentials, which are driven by higher-order thalamic feedback. Higher-order thalamic neurons are characterized by broad receptive fields, and the plateau potentials that they evoke strongly facilitate long-term potentiation and elicit spikes. We show that these features combined constitute a powerful driving force for the fusion or expansion of sensory representations within cortical maps. The organization of sensory maps in the cerebral cortex depends on experience, which drives homeostatic and long-term synaptic plasticity of cortico-cortical circuits. In the mouse primary somatosensory cortex (S1) afferents from the higher-order, posterior medial thalamic nucleus (POm) gate synaptic plasticity in layer (L) 2/3 pyramidal neurons via disinhibition and the production of dendritic plateau potentials. Here we address whether these thalamocortically mediated responses play a role in whisker map plasticity in S1. We find that trimming all but two whiskers causes a partial fusion of the representations of the two spared whiskers, concomitantly with an increase in the occurrence of POm-driven N-methyl-D-aspartate receptor-dependent plateau potentials. Blocking the plateau potentials restores the archetypical organization of the sensory map. Our results reveal a mechanism for experience-dependent cortical map plasticity in which higher-order thalamocortically mediated plateau potentials facilitate the fusion of normally segregated cortical representations.
Collapse
|
4
|
Foo C, Lozada A, Aljadeff J, Li Y, Wang JW, Slesinger PA, Kleinfeld D. Reinforcement learning links spontaneous cortical dopamine impulses to reward. Curr Biol 2021; 31:4111-4119.e4. [PMID: 34302743 DOI: 10.1016/j.cub.2021.06.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 11/15/2022]
Abstract
In their pioneering study on dopamine release, Romo and Schultz speculated "...that the amount of dopamine released by unmodulated spontaneous impulse activity exerts a tonic, permissive influence on neuronal processes more actively engaged in preparation of self-initiated movements...."1 Motivated by the suggestion of "spontaneous impulses," as well as by the "ramp up" of dopaminergic neuronal activity that occurs when rodents navigate to a reward,2-5 we asked two questions. First, are there spontaneous impulses of dopamine that are released in cortex? Using cell-based optical sensors of extrasynaptic dopamine, [DA]ex,6 we found that spontaneous dopamine impulses in cortex of naive mice occur at a rate of ∼0.01 per second. Next, can mice be trained to change the amplitude and/or timing of dopamine events triggered by internal brain dynamics, much as they can change the amplitude and timing of dopamine impulses based on an external cue?7-9 Using a reinforcement learning paradigm based solely on rewards that were gated by feedback from real-time measurements of [DA]ex, we found that mice can volitionally modulate their spontaneous [DA]ex. In particular, by only the second session of daily, hour-long training, mice increased the rate of impulses of [DA]ex, increased the amplitude of the impulses, and increased their tonic level of [DA]ex for a reward. Critically, mice learned to reliably elicit [DA]ex impulses prior to receiving a reward. These effects reversed when the reward was removed. We posit that spontaneous dopamine impulses may serve as a salient cognitive event in behavioral planning.
Collapse
Affiliation(s)
- Conrad Foo
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Adrian Lozada
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Johnatan Aljadeff
- Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Yulong Li
- Peking University, School of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Jing W Wang
- Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Paul A Slesinger
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Voigts J, Deister CA, Moore CI. Layer 6 ensembles can selectively regulate the behavioral impact and layer-specific representation of sensory deviants. eLife 2020; 9:48957. [PMID: 33263283 PMCID: PMC7817180 DOI: 10.7554/elife.48957] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/01/2020] [Indexed: 11/21/2022] Open
Abstract
Predictive models can enhance the salience of unanticipated input. Here, we tested a key potential node in neocortical model formation in this process, layer (L) 6, using behavioral, electrophysiological and imaging methods in mouse primary somatosensory neocortex. We found that deviant stimuli enhanced tactile detection and were encoded in L2/3 neural tuning. To test the contribution of L6, we applied weak optogenetic drive that changed which L6 neurons were sensory responsive, without affecting overall firing rates in L6 or L2/3. This stimulation selectively suppressed behavioral sensitivity to deviant stimuli, without impacting baseline performance. This stimulation also eliminated deviance encoding in L2/3 but did not impair basic stimulus responses across layers. In contrast, stronger L6 drive inhibited firing and suppressed overall sensory function. These findings indicate that, despite their sparse activity, specific ensembles of stimulus-driven L6 neurons are required to form neocortical predictions, and to realize their behavioral benefit.
Collapse
Affiliation(s)
- Jakob Voigts
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, United States.,Department of Brain and Cognitive Sciences, MIT, Cambridge, United States
| | - Christopher A Deister
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, United States
| | - Christopher I Moore
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, United States
| |
Collapse
|
6
|
Hama N, Kawai M, Ito SI, Hirota A. Optical Analysis of Acute Changes after Peripheral Nerve Injury in Spatio-Temporal Pattern of Neural Response to Forelimb Stimulation in Rat Somatosensory Cortex. Neuroscience 2020; 448:85-93. [PMID: 32941935 DOI: 10.1016/j.neuroscience.2020.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/21/2020] [Accepted: 09/05/2020] [Indexed: 11/15/2022]
Abstract
Peripheral nerve injury induces functional reorganization of the central nervous system. The mechanisms underlying this reorganization have been widely studied. Our previous study involving multiple-site optical recording reported that a neural excitatory wave induced by somatic stimulation begins in a small area and propagates in the cortex. In the present study, to examine the possible role of this propagation wave in cortical reorganization, we analyzed the early changes in the spatio-temporal pattern of the sensory-evoked wave immediately, and 30 min, after nerve injury. The response to hypothenar stimulation, innervated by the ulnar nerve and adjoining the median nerve area, persisted after injury to either the ulnar or median nerve. Initially, we assessed changes in the response pattern at the focus. The latency increased after ulnar nerve injury, whereas no change was observed after median nerve injury. Similarly, no change was noted in the duration of the response signal with either nerve injury. Second, changes in the propagation wave pattern were analyzed. Ulnar nerve injury decreased the propagation velocity in the medial direction but the median nerve injury induced no changes. These results indicated that the propagation wave pattern is readily altered, even immediately after nerve injury, and suggest that this immediate change in the spatio-temporal pattern is one of the factors contributing to the cortical reorganization.
Collapse
Affiliation(s)
- Noriyuki Hama
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Minako Kawai
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| | - Shin-Ichi Ito
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| | - Akihiko Hirota
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
7
|
Baroncelli L, Lunghi C. Neuroplasticity of the visual cortex: in sickness and in health. Exp Neurol 2020; 335:113515. [PMID: 33132181 DOI: 10.1016/j.expneurol.2020.113515] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 01/18/2023]
Abstract
Brain plasticity refers to the ability of synaptic connections to adapt their function and structure in response to experience, including environmental changes, sensory deprivation and injuries. Plasticity is a distinctive, but not exclusive, property of the developing nervous system. This review introduces the concept of neuroplasticity and describes classic paradigms to illustrate cellular and molecular mechanisms underlying synapse modifiability. Then, we summarize a growing number of studies showing that the adult cerebral cortex retains a significant degree of plasticity highlighting how the identification of strategies to enhance the plastic potential of the adult brain could pave the way for the development of novel therapeutic approaches aimed at treating amblyopia and other neurodevelopmental disorders. Finally, we analyze how the visual system adjusts to neurodegenerative conditions leading to blindness and we discuss the crucial role of spared plasticity in the visual system for sight recovery.
Collapse
Affiliation(s)
- Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy.
| | - Claudia Lunghi
- Laboratoire des systèmes perceptifs, Département d'études cognitives, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| |
Collapse
|
8
|
Barth AL, Ray A. Progressive Circuit Changes during Learning and Disease. Neuron 2019; 104:37-46. [PMID: 31600514 PMCID: PMC12038749 DOI: 10.1016/j.neuron.2019.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/23/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
A critical step toward understanding cognition, learning, and brain dysfunction will be identification of the underlying cellular computations that occur in and across discrete brain areas, as well as how they are progressively altered by experience or disease. These computations will be revealed by targeted analyses of the neurons that perform these calculations, defined not only by their firing properties but also by their molecular identity and how they are wired within the local and broad-scale network of the brain. New studies that take advantage of sophisticated genetic tools for cell-type-specific identification and control are revealing how learning and neurological disorders initiate and successively change the properties of defined neural circuits. Understanding the temporal sequence of adaptive or pathological synaptic changes across multiple synapses within a network will shed light into how small-scale neural circuits contribute to higher cognitive functions during learning and disease.
Collapse
Affiliation(s)
- Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Ajit Ray
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Audette NJ, Bernhard SM, Ray A, Stewart LT, Barth AL. Rapid Plasticity of Higher-Order Thalamocortical Inputs during Sensory Learning. Neuron 2019; 103:277-291.e4. [PMID: 31151774 PMCID: PMC10038228 DOI: 10.1016/j.neuron.2019.04.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/11/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022]
Abstract
Neocortical circuits are sensitive to experience, showing both anatomical and electrophysiological changes in response to altered sensory input. We examined input- and cell-type-specific changes in thalamo- and intracortical pathways during learning using an automated, home-cage sensory association training (SAT) paradigm coupling multi-whisker stimulation to a water reward. We found that the posterior medial nucleus (POm) but not the ventral posterior medial (VPM) nucleus of the thalamus drives increased cortical activity after 24 h of SAT, when behavioral evidence of learning first emerges. Synaptic strengthening within the POm thalamocortical pathway was first observed at thalamic inputs to L5 and was not generated by sensory stimulation alone. Synaptic changes in L2 were delayed relative to L5, requiring 48 h of SAT to drive synaptic plasticity at thalamic and intracortical inputs onto L2 Pyr neurons. These data identify the POm thalamocortical circuit as a site of rapid synaptic plasticity during learning and suggest a temporal sequence to learning-evoked synaptic changes in the sensory cortex.
Collapse
Affiliation(s)
- Nicholas J Audette
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sarah M Bernhard
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ajit Ray
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Luke T Stewart
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
10
|
Kloosterboer E, Funke K. Repetitive transcranial magnetic stimulation recovers cortical map plasticity induced by sensory deprivation due to deafferentiation. J Physiol 2019; 597:4025-4051. [PMID: 31145483 PMCID: PMC6852264 DOI: 10.1113/jp277507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Partial sensory deprivation (deafferentation) by removing whiskers from the rat snout resulted in a reduced responsiveness of related cortical representations. Repetitive transcranial magnetic stimulation (three blocks of intermittent theta-burst) applied for 5 days in combination with sensory exploration restored the normal responsiveness level of the deafferented barrel cortex. However, intracortical inhibition (lateral and recurrent) appeared to be reduced after repetitive transcranial magnetic stimulation, probably as the cause of improved responsiveness. Repetitive transcranial magnetic stimulation also reduced the asymmetry of the lateral spread of sensory activity. ABSTRACT Repetitive transcranial magnetic stimulation (rTMS) modulates human cortical excitability. It has the potential to support recovery to normal cortical function when the excitation-inhibition balance is altered (e.g. after a stroke or loss of sensory input). We tested cortical map plasticity on the basis of sensory responses (local field potentials, LFPs) and expression of neuronal activity marker proteins within the barrel cortex of rats receiving either active or sham rTMS after selective unilateral deafferentation by whiskers plucking. Rats received daily rTMS [intermittent theta-burst (iTBS), active or sham] for 5 days before exploring an enriched environment. Our previous studies indicated a disinhibitory effect of iTBS on cortical activity. Therefore, we also expected disinhibitory effects if deafferentation causes depression of sensory responses. Deafferentation resulted in an acute general reduction of sensory responsiveness and enhanced expression of inhibitory activity markers (GAD67, parvalbumin) in the deafferented hemisphere. Active but not sham-iTBS-rTMS normalized these measures. The stronger caudal-to-frontal horizontal spread of activity across barrels was reduced after deafferentation but not restored after active iTBS, despite generally increased responses. Fitting the LFP data with a computational model of different strengths and types of excitatory and inhibitory connections further revealed an iTBS-induced reduction of lateral and recurrent inhibition as the most probable scenario. Whether the disinhibitory effect of iTBS for the restoration of normal cortical function in the acute phase of depression after deafferentiation is also beneficial in humans remains to be demonstrated. As recently discussed, disinhibition appears to be required to open a window for neuronal plasticity.
Collapse
Affiliation(s)
- Ellen Kloosterboer
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
11
|
A Hypothetical Model Concerning How Spike-Timing-Dependent Plasticity Contributes to Neural Circuit Formation and Initiation of the Critical Period in Barrel Cortex. J Neurosci 2019; 39:3784-3791. [PMID: 30877173 DOI: 10.1523/jneurosci.1684-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 01/15/2023] Open
Abstract
Spike timing is an important factor in the modification of synaptic strength. Various forms of spike timing-dependent plasticity (STDP) occur in the brains of diverse species, from insects to humans. In unimodal STDP, only LTP or LTD occurs at the synapse, regardless of which neuron spikes first; the magnitude of potentiation or depression increases as the time between presynaptic and postsynaptic spikes decreases. This from of STDP may promote developmental strengthening or weakening of early projections. In bidirectional Hebbian STDP, the magnitude and the sign (potentiation or depression) of plasticity depend, respectively, on the timing and the order of presynaptic and postsynaptic spikes. In the rodent barrel cortex, multiple forms of STDP appear sequentially during development, and they contribute to network formation, retraction, or fine-scale functional reorganization. Hebbian STDP appears at L4-L2/3 synapses starting at postnatal day (P) 15; the synapses exhibit unimodal "all-LTP STDP" before that age. The appearance of Hebbian STDP at L4-L2/3 synapses coincides with the maturation of parvalbumin-containing GABA interneurons in L4, which contributes to the generation of L4-before-L2/3 spiking in response to thalamic input by producing fast feedforward suppression of both L4 and L2/3 cells. After P15, L4-L2/3 STDP mediates fine-scale circuit refinement, essential for the critical period in the barrel cortex. In this review, we first briefly describe the relevance of STDP to map plasticity in the barrel cortex, then look over roles of distinct forms of STDP during development. Finally, we propose a hypothesis that explains the transition from network formation to the initiation of the critical period in the barrel cortex.
Collapse
|
12
|
Williams LE, Holtmaat A. Higher-Order Thalamocortical Inputs Gate Synaptic Long-Term Potentiation via Disinhibition. Neuron 2019; 101:91-102.e4. [DOI: 10.1016/j.neuron.2018.10.049] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/29/2018] [Accepted: 10/25/2018] [Indexed: 11/24/2022]
|
13
|
Kole K, Celikel T. Neocortical Microdissection at Columnar and Laminar Resolution for Molecular Interrogation. ACTA ACUST UNITED AC 2018; 86:e55. [PMID: 30285322 DOI: 10.1002/cpns.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The heterogeneous organization of the mammalian neocortex poses a challenge for elucidating the molecular mechanisms underlying its physiological processes. Although high-throughput molecular methods are increasingly deployed in neuroscience, their anatomical specificity is often lacking. In this unit, we introduce a targeted microdissection technique that enables extraction of high-quality RNA and proteins at high anatomical resolution from acutely prepared brain slices. We exemplify its utility by isolating single cortical columns and laminae from the mouse primary somatosensory (barrel) cortex. Tissues can be isolated from living slices in minutes, and the extracted RNA and protein are of sufficient quantity and quality to be used for RNA sequencing and mass spectrometry. This technique will help to increase the anatomical specificity of molecular studies of the neocortex, and the brain in general, as it is applicable to any brain structure that can be identified using optical landmarks in living slices. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Koen Kole
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Chung S, Jeong JH, Ko S, Yu X, Kim YH, Isaac JTR, Koretsky AP. Peripheral Sensory Deprivation Restores Critical-Period-like Plasticity to Adult Somatosensory Thalamocortical Inputs. Cell Rep 2018; 19:2707-2717. [PMID: 28658619 DOI: 10.1016/j.celrep.2017.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 04/27/2017] [Accepted: 06/04/2017] [Indexed: 01/19/2023] Open
Abstract
Recent work has shown that thalamocortical (TC) inputs can be plastic after the developmental critical period has closed, but the mechanism that enables re-establishment of plasticity is unclear. Here, we find that long-term potentiation (LTP) at TC inputs is transiently restored in spared barrel cortex following either a unilateral infra-orbital nerve (ION) lesion, unilateral whisker trimming, or unilateral ablation of the rodent barrel cortex. Restoration of LTP is associated with increased potency at TC input and reactivates anatomical map plasticity induced by whisker follicle ablation. The reactivation of TC LTP is accompanied by reappearance of silent synapses. Both LTP and silent synapse formation are preceded by transient re-expression of synaptic GluN2B-containing N-methyl-D-aspartate (NMDA) receptors, which are required for the reappearance of TC plasticity. These results clearly demonstrate that peripheral sensory deprivation reactivates synaptic plasticity in the mature layer 4 barrel cortex with features similar to the developmental critical period.
Collapse
Affiliation(s)
- Seungsoo Chung
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Ji-Hyun Jeong
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sukjin Ko
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Xin Yu
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Translational Neuroimaging and Neural Control Group, High-field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Young-Hwan Kim
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - John T R Isaac
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK; Department of Physiology, University of Toronto, 1 King's Circle, Toronto, ON M5S 1A8, Canada.
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Abstract
During development, the environment exerts a profound influence on the wiring of brain circuits. Due to the limited resolution of studies in fixed tissue, this experience-dependent structural plasticity was once thought to be restricted to a specific developmental time window. The recent introduction of two-photon microscopy for in vivo imaging has opened the door to repeated monitoring of individual neurons and the study of structural plasticity mechanisms at a very fine scale. In this review, we focus on recent work showing that synaptic structural rearrangements are a key mechanism mediating neural circuit adaptation and behavioral plasticity in the adult brain. We examine this work in the context of classic studies in the visual systems of model organisms, which have laid much of the groundwork for our understanding of activity-dependent synaptic remodeling and its role in brain plasticity.
Collapse
Affiliation(s)
- Kalen P Berry
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Elly Nedivi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
16
|
Abstract
Somatosensory areas containing topographic maps of the body surface are a major feature of parietal cortex. In primates, parietal cortex contains four somatosensory areas, each with its own map, with the primary cutaneous map in area 3b. Rodents have at least three parietal somatosensory areas. Maps are not isomorphic to the body surface, but magnify behaviorally important skin regions, which include the hands and face in primates, and the whiskers in rodents. Within each map, intracortical circuits process tactile information, mediate spatial integration, and support active sensation. Maps may also contain fine-scale representations of touch submodalities, or direction of tactile motion. Functional representations are more overlapping than suggested by textbook depictions of map topography. The whisker map in rodent somatosensory cortex is a canonic system for studying cortical microcircuits, sensory coding, and map plasticity. Somatosensory maps are plastic throughout life in response to altered use or injury. This chapter reviews basic principles and recent findings in primate, human, and rodent somatosensory maps.
Collapse
Affiliation(s)
- Samuel Harding-Forrester
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| |
Collapse
|
17
|
Kole K, Scheenen W, Tiesinga P, Celikel T. Cellular diversity of the somatosensory cortical map plasticity. Neurosci Biobehav Rev 2017; 84:100-115. [PMID: 29183683 DOI: 10.1016/j.neubiorev.2017.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 01/23/2023]
Abstract
Sensory maps are representations of the sensory epithelia in the brain. Despite the intuitive explanatory power behind sensory maps as being neuronal precursors to sensory perception, and sensory cortical plasticity as a neural correlate of perceptual learning, molecular mechanisms that regulate map plasticity are not well understood. Here we perform a meta-analysis of transcriptional and translational changes during altered whisker use to nominate the major molecular correlates of experience-dependent map plasticity in the barrel cortex. We argue that brain plasticity is a systems level response, involving all cell classes, from neuron and glia to non-neuronal cells including endothelia. Using molecular pathway analysis, we further propose a gene regulatory network that could couple activity dependent changes in neurons to adaptive changes in neurovasculature, and finally we show that transcriptional regulations observed in major brain disorders target genes that are modulated by altered sensory experience. Thus, understanding the molecular mechanisms of experience-dependent plasticity of sensory maps might help to unravel the cellular events that shape brain plasticity in health and disease.
Collapse
Affiliation(s)
- Koen Kole
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Wim Scheenen
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Paul Tiesinga
- Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Honjoh S, de Vivo L, Okuno H, Bito H, Tononi G, Cirelli C. Higher Arc Nucleus-to-Cytoplasm Ratio during Sleep in the Superficial Layers of the Mouse Cortex. Front Neural Circuits 2017; 11:60. [PMID: 28878629 PMCID: PMC5572345 DOI: 10.3389/fncir.2017.00060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/10/2017] [Indexed: 11/13/2022] Open
Abstract
The activity-regulated cytoskeleton associated protein Arc is strongly and quickly upregulated by neuronal activity, synaptic potentiation and learning. Arc entry in the synapse is followed by the endocytosis of glutamatergic AMPA receptors (AMPARs), and its nuclear accumulation has been shown in vitro to result in a small decline in the transcription of the GluA1 subunit of AMPARs. Since these effects result in a decline in synaptic strength, we asked whether a change in Arc dynamics may temporally correlate with sleep-dependent GluA1 down-regulation. We measured the ratio of nuclear to cytoplasmic Arc expression (Arc Nuc/Cyto) in the cerebral cortex of EGFP-Arc transgenic mice that were awake most of the night and then perfused immediately before lights on (W mice), or were awake most of the night and then allowed to sleep (S mice) or sleep deprived (SD mice) for the first 2 h of the light phase. In primary motor cortex (M1), neurons with high levels of nuclear Arc (High Arc cells) were present in all mice, but in these cells Arc Nuc/Cyto was higher in S mice than in W mice and, importantly, ~15% higher in S mice than in SD mice collected at the same time of day, ruling out circadian effects. Greater Arc Nuc/Cyto with sleep was observed in the superficial layers of M1, but not in the deep layers. In High Arc cells, Arc Nuc/Cyto was also ~15%-30% higher in S mice than in W and SD mice in the superficial layers of primary somatosensory cortex (S1) and cingulate cortex area 1 (Cg1). In High Arc Cells of Cg1, Arc Nuc/Cyto and cytoplasmic levels of GluA1 immunoreactivities in the soma were also negatively correlated, independent of behavioral state. Thus, Arc moves to the nucleus during both sleep and wake, but its nuclear to cytoplasmic ratio increases with sleep in the superficial layers of several cortical areas. It remains to be determined whether the relative increase in nuclear Arc contributes significantly to the overall decline in the strength of excitatory synapses that occurs during sleep. Similarly, it remains to be determined whether the entry of Arc into specific synapses is gated by sleep.
Collapse
Affiliation(s)
- Sakiko Honjoh
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, United States
| | - Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, United States
| | - Hiroyuki Okuno
- Medical Innovation Center, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of TokyoTokyo, Japan
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, United States
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, United States
| |
Collapse
|
19
|
Brecht M. The Body Model Theory of Somatosensory Cortex. Neuron 2017; 94:985-992. [PMID: 28595055 DOI: 10.1016/j.neuron.2017.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/02/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022]
Abstract
I outline a microcircuit theory of somatosensory cortex as a body model serving both for body representation and "body simulation." A modular model of innervated and non-innervated body parts resides in somatosensory cortical layer 4. This body model is continuously updated and compares to an avatar (an animatable puppet) rather than a mere sensory map. Superficial layers provide context and store sensory memories, whereas layer 5 provides motor output and stores motor memories. I predict that layer-6-to-layer-4 inputs initiate body simulations allowing rehearsal and risk assessment of difficult actions, such as jumps.
Collapse
Affiliation(s)
- Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
| |
Collapse
|
20
|
Neurochemical correlates of functional plasticity in the mature cortex of the brain of rodents. Behav Brain Res 2017; 331:102-114. [DOI: 10.1016/j.bbr.2017.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 01/01/2023]
|
21
|
Blake DT. Network Supervision of Adult Experience and Learning Dependent Sensory Cortical Plasticity. Compr Physiol 2017. [DOI: 10.1002/cphy.c160036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Carpenter-Hyland EP, Griffeth J, Bunting K, Terry A, Vazdarjanova A, Blake DT. Tone identification behavior in Rattus norvegicus: muscarinic receptor blockage lowers responsiveness in nontarget selective neurons, while nicotinic receptor blockage selectively lowers target responses. Eur J Neurosci 2017; 46:1779-1789. [PMID: 28544049 DOI: 10.1111/ejn.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/24/2017] [Accepted: 05/14/2017] [Indexed: 11/30/2022]
Abstract
Learning to associate a stimulus with reinforcement causes plasticity in primary sensory cortex. Neural activity caused by the associated stimulus is paired with reinforcement, but population analyses have not found a selective increase in response to that stimulus. Responses to other stimuli increase as much as, or more than, responses to the associated stimulus. Here, we applied population analysis at a new time point and additionally evaluated whether cholinergic receptor blockers interacted with the plastic changes in cortex. Three days of tone identification behavior caused responsiveness to increase broadly across primary auditory cortex, and target responses strengthened less than overall responsiveness. In pharmacology studies, behaviorally impairing doses of selective acetylcholine receptor blockers were administered during behavior. Neural responses were evaluated on the following day, while the blockers were absent. The muscarinic group, blocked by scopolamine, showed lower responsiveness and an increased response to the tone identification target that exceeded both the 3-day control group and task-naïve controls. Also, a selective increase in the late phase of the response to the tone identification stimulus emerged. Nicotinic receptor antagonism, with mecamylamine, more modestly lowered responses the following day and lowered target responses more than overall responses. Control acute studies demonstrated the muscarinic block did not acutely alter response rates, but the nicotinic block did. These results lead to the hypothesis that the decrease in the proportion of the population spiking response that is selective for the target may be explained by the balance between effects modulated by muscarinic and nicotinic receptors.
Collapse
Affiliation(s)
| | - Jackson Griffeth
- Department of Neurology, Brain and Behavior Discovery Institute, Augusta University, 1120 15th St CL-3031, Augusta, GA, 30912, USA
| | - Kristopher Bunting
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Alvin Terry
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Almira Vazdarjanova
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA.,VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - David T Blake
- Department of Neurology, Brain and Behavior Discovery Institute, Augusta University, 1120 15th St CL-3031, Augusta, GA, 30912, USA
| |
Collapse
|
23
|
Unbiased, High-Throughput Electron Microscopy Analysis of Experience-Dependent Synaptic Changes in the Neocortex. J Neurosci 2016; 35:16450-62. [PMID: 26674870 DOI: 10.1523/jneurosci.1573-15.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Neocortical circuits can be altered by sensory and motor experience, with experimental evidence supporting both anatomical and electrophysiological changes in synaptic properties. Previous studies have focused on changes in specific neurons or pathways-for example, the thalamocortical circuitry, layer 4-3 (L4-L3) synapses, or in the apical dendrites of L5 neurons- but a broad-scale analysis of experience-induced changes across the cortical column has been lacking. Without this comprehensive approach, a full understanding of how cortical circuits adapt during learning or altered sensory input will be impossible. Here we adapt an electron microscopy technique that selectively labels synapses, in combination with a machine-learning algorithm for semiautomated synapse detection, to perform an unbiased analysis of developmental and experience-dependent changes in synaptic properties across an entire cortical column in mice. Synapse density and length were compared across development and during whisker-evoked plasticity. Between postnatal days 14 and 18, synapse density significantly increases most in superficial layers, and synapse length increases in L3 and L5B. Removal of all but a single whisker row for 24 h led to an apparent increase in synapse density in L2 and a decrease in L6, and a significant increase in length in L3. Targeted electrophysiological analysis of changes in miniature EPSC and IPSC properties in L2 pyramidal neurons showed that mEPSC frequency nearly doubled in the whisker-spared column, a difference that was highly significant. Together, this analysis shows that data-intensive analysis of column-wide changes in synapse properties can generate specific and testable hypotheses about experience-dependent changes in cortical organization. SIGNIFICANCE STATEMENT Development and sensory experience can change synapse properties in the neocortex. Here we use a semiautomated analysis of electron microscopy images for an unbiased, column-wide analysis of synapse changes. This analysis reveals new loci for synaptic change that can be verified by targeted electrophysiological investigation. This method can be used as a platform for generating new hypotheses about synaptic changes across different brain areas and experimental conditions.
Collapse
|
24
|
de Vivo L, Nelson AB, Bellesi M, Noguti J, Tononi G, Cirelli C. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex. Sleep 2016; 39:861-74. [PMID: 26715225 DOI: 10.5665/sleep.5644] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/21/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVE The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. METHODS Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6-8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). RESULTS Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. CONCLUSIONS Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss.
Collapse
Affiliation(s)
- Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Aaron B Nelson
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Michele Bellesi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Juliana Noguti
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
25
|
Song W, Semework M. Tactile representation in somatosensory thalamus (VPL) and cortex (S1) of awake primate and the plasticity induced by VPL neuroprosthetic stimulation. Brain Res 2015; 1625:301-13. [PMID: 26348987 DOI: 10.1016/j.brainres.2015.08.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/20/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022]
Abstract
To further understand how tactile information is carried in somatosensory cortex (S1) and the thalamus (VPL), and how neuronal plasticity after neuroprosthetic stimulation affects sensory encoding, we chronically implanted microelectrode arrays across hand areas in both S1 and VPL, where neuronal activities were simultaneously recorded during tactile stimulation on the finger pad of awake monkeys. Tactile information encoded in the firing rate of individual units (rate coding) or in the synchrony of unit pairs (synchrony coding) was quantitatively assessed within the information theoretic-framework. We found that tactile information encoded in VPL was higher than that encoded in S1 for both rate coding and synchrony coding; rate coding carried greater information than synchrony coding for the same recording area. With the aim for neuroprosthetic stimulation, plasticity of the circuit was tested after 30 min of VPL electrical stimulation, where stimuli were delivered either randomly or contingent on the spiking of an S1 unit. We showed that neural encoding in VPL was more stable than in S1, which depends not only on the thalamic input but also on recurrent feedback. The percent change of mutual-information after stimulation was increased with closed-loop stimulation, but decreased with random stimulation. The underlying mechanisms during closed-loop stimulation might be spike-timing-dependent plasticity, while frequency-dependent synaptic plasticity might play a role in random stimulation. Our results suggest that VPL could be a promising target region for somatosensory stimulation with closed-loop brain-machine-interface applications.
Collapse
Affiliation(s)
- Weiguo Song
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, NY 11203, USA.
| | - Mulugeta Semework
- Joint Graduate Program in Biomedical Engineering SUNY Downstate and NYU-POLY, NY 11203, USA
| |
Collapse
|
26
|
Abstract
Synaptic neurotransmission is modified at cortical connections throughout life. Varying the amplitude of the postsynaptic response is one mechanism that generates flexible signaling in neural circuits. The timing of the synaptic response may also play a role. Here, we investigated whether weakening and loss of an entire connection between excitatory cortical neurons was foreshadowed in the timing of the postsynaptic response. We made electrophysiological recordings in rat primary somatosensory cortex that was undergoing experience-dependent loss of complete local excitatory connections. The synaptic latency of pyramid-pyramid connections, which typically comprise multiple synapses, was longer and more variable. Connection strength and latency were not correlated. Instead, prolonged latency was more closely related to progression of connection loss. The action potential waveform and axonal conduction velocity were unaffected, suggesting that the altered timing of neurotransmission was attributable to a synaptic mechanism. Modeling studies indicated that increasing the latency and jitter at a subset of synapses reduced the number of action potentials fired by a postsynaptic neuron. We propose that prolonged synaptic latency and diminished temporal precision of neurotransmission are hallmarks of impending loss of a cortical connection.
Collapse
|
27
|
Abstract
Classical conditioning that involves mnemonic processing, that is, a "trace" period between conditioned and unconditioned stimulus, requires awareness of the association to be formed and is considered a simple model paradigm for declarative learning. Barrel cortex, the whisker representation of primary somatosensory cortex, is required for the learning of a tactile variant of trace eyeblink conditioning (TTEBC) and undergoes distinct map plasticity during learning. To investigate the cellular mechanism underpinning TTEBC and concurrent map plasticity, we used two-photon imaging of dendritic spines in barrel cortex of awake mice while being conditioned. Monitoring layer 5 neurons' apical dendrites in layer 1, we show that one cellular expression of barrel cortex plasticity is a substantial spine count reduction of ∼15% of the dendritic spines present before learning. The number of eliminated spines and their time of elimination are tightly related to the learning success. Moreover, spine plasticity is highly specific for the principal barrel column receiving the main signals from the stimulated vibrissa. Spines located in other columns, even those directly adjacent to the principal column, are unaffected. Because layer 1 spines integrate signals from associative thalamocortical circuits, their column-specific elimination suggests that this spine plasticity may be the result of an association of top-down signals relevant for declarative learning and spatially precise ascending tactile signals.
Collapse
|
28
|
Mayrhofer JM, Haiss F, Helmchen F, Weber B. Sparse, reliable, and long-term stable representation of periodic whisker deflections in the mouse barrel cortex. Neuroimage 2015; 115:52-63. [PMID: 25934471 DOI: 10.1016/j.neuroimage.2015.04.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/24/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022] Open
Abstract
The rodent whisker system is a preferred model for studying plasticity in the somatosensory cortex (barrel cortex). Contrarily, only a small amount of research has been conducted to characterize the stability of neuronal population activity in the barrel cortex. We used the mouse whisker system to address the neuronal basis of stable perception in the somatosensory cortex. Cortical representation of periodic whisker deflections was studied in populations of neurons in supragranular layers over extended time periods (up to 3 months) with long-term two-photon Ca(2+) imaging in anesthetized mice. We found that in most of the neurons (87%), Ca(2+) responses increased sublinearly with increasing number of contralateral whisker deflections. The imaged population of neurons was activated in a stereotypic way over days and for different deflection rates (pulse frequencies). Thus, pulse frequencies are coded by response strength rather than by distinct neuronal sub-populations. A small population of highly responsive neurons (~3%) was sufficient to decode the whisker stimulus. This conserved functional map, led by a small set of highly responsive neurons, might form the foundation of stable sensory percepts.
Collapse
Affiliation(s)
- Johannes M Mayrhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland; Neuroscience Center Zurich, CH-8057 Zurich, Switzerland.
| | - Florent Haiss
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland; IZKF Aachen, Medical Faculty of the RWTH Aachen University, D-52062 Aachen, Germany; Institute for Neuropathology, RWTH Aachen University, D-52062 Aachen, Germany; Department of Ophthalmology, RWTH Aachen University, D-52062 Aachen, Germany
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland; Neuroscience Center Zurich, CH-8057 Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland; Neuroscience Center Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
29
|
Lo SQ, Koh DXP, Sng JCG, Augustine GJ. All-optical mapping of barrel cortex circuits based on simultaneous voltage-sensitive dye imaging and channelrhodopsin-mediated photostimulation. NEUROPHOTONICS 2015; 2:021013. [PMID: 26158003 PMCID: PMC4478985 DOI: 10.1117/1.nph.2.2.021013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/04/2015] [Indexed: 05/25/2023]
Abstract
We describe an experimental approach that uses light to both control and detect neuronal activity in mouse barrel cortex slices: blue light patterned by a digital micromirror array system allowed us to photostimulate specific layers and columns, while a red-shifted voltage-sensitive dye was used to map out large-scale circuit activity. We demonstrate that such all-optical mapping can interrogate various circuits in somatosensory cortex by sequentially activating different layers and columns. Further, mapping in slices from whisker-deprived mice demonstrated that chronic sensory deprivation did not significantly alter feedforward inhibition driven by layer 5 pyramidal neurons. Further development of voltage-sensitive optical probes should allow this all-optical mapping approach to become an important and high-throughput tool for mapping circuit interactions in the brain.
Collapse
Affiliation(s)
- Shun Qiang Lo
- National University of Singapore, Yong Loo Lin School of Medicine, Department of Physiology, Singapore 117597, Singapore
- Nanyang Technological University, Lee Kong Chian School of Medicine, Proteos, Biopolis, Level 4, 61 Biopolis Drive, #04-06/07, Singapore 138673, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Proteos, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, United States
| | - Dawn X. P. Koh
- National University of Singapore, Graduate School of Integrative Sciences and Engineering, Singapore 117456, Singapore
- National University of Singapore, Yong Loo Lin School of Medicine, Department of Pharmacology, Singapore 117599, Singapore
- Singapore Institute of Clinical Sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore 117609, Singapore
| | - Judy C. G. Sng
- National University of Singapore, Yong Loo Lin School of Medicine, Department of Pharmacology, Singapore 117599, Singapore
- Singapore Institute of Clinical Sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore 117609, Singapore
| | - George J. Augustine
- National University of Singapore, Yong Loo Lin School of Medicine, Department of Physiology, Singapore 117597, Singapore
- Nanyang Technological University, Lee Kong Chian School of Medicine, Proteos, Biopolis, Level 4, 61 Biopolis Drive, #04-06/07, Singapore 138673, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Proteos, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, United States
- Korea Institute of Science and Technology, Center for Functional Connectomics, 39-1 Hawolgokdong, Seongbukgu, Seoul 136-791, Republic of Korea
| |
Collapse
|
30
|
Tsubota T, Okubo-Suzuki R, Ohashi Y, Tamura K, Ogata K, Yaguchi M, Matsuyama M, Inokuchi K, Miyashita Y. Cofilin1 controls transcolumnar plasticity in dendritic spines in adult barrel cortex. PLoS Biol 2015; 13:e1002070. [PMID: 25723479 PMCID: PMC4344332 DOI: 10.1371/journal.pbio.1002070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 01/08/2015] [Indexed: 12/20/2022] Open
Abstract
During sensory deprivation, the barrel cortex undergoes expansion of a functional column representing spared inputs (spared column), into the neighboring deprived columns (representing deprived inputs) which are in turn shrunk. As a result, the neurons in a deprived column simultaneously increase and decrease their responses to spared and deprived inputs, respectively. Previous studies revealed that dendritic spines are remodeled during this barrel map plasticity. Because cofilin1, a predominant regulator of actin filament turnover, governs both the expansion and shrinkage of the dendritic spine structure in vitro, it hypothetically regulates both responses in barrel map plasticity. However, this hypothesis remains untested. Using lentiviral vectors, we knocked down cofilin1 locally within layer 2/3 neurons in a deprived column. Cofilin1-knocked-down neurons were optogenetically labeled using channelrhodopsin-2, and electrophysiological recordings were targeted to these knocked-down neurons. We showed that cofilin1 knockdown impaired response increases to spared inputs but preserved response decreases to deprived inputs, indicating that cofilin1 dependency is dissociated in these two types of barrel map plasticity. To explore the structural basis of this dissociation, we then analyzed spine densities on deprived column dendritic branches, which were supposed to receive dense horizontal transcolumnar projections from the spared column. We found that spine number increased in a cofilin1-dependent manner selectively in the distal part of the supragranular layer, where most of the transcolumnar projections existed. Our findings suggest that cofilin1-mediated actin dynamics regulate functional map plasticity in an input-specific manner through the dendritic spine remodeling that occurs in the horizontal transcolumnar circuits. These new mechanistic insights into transcolumnar plasticity in adult rats may have a general significance for understanding reorganization of neocortical circuits that have more sophisticated columnar organization than the rodent neocortex, such as the primate neocortex. In vivo measurement of the electrophysiology and shape of neurons reveals that cofilin1 is needed for remodeling dendritic spines in circuits that connect mouse whisker barrels, so aiding experience-dependent plasticity in the neocortex. Plasticity in the adult neocortex is the basis of our learning and memory. However, its molecular mechanisms are still unclear. In the sensory barrel cortex of rodents, a well-characterized model for neocortical plasticity, neurons directly code for whisker displacement—neurons within a given barrel will fire when the whisker that that barrel represents is moved. Strikingly, the deprivation of all but a single whisker alters the original representations—cortical columns representing the deprived inputs shrink and that representing the spared inputs expands, intruding into the surrounding deprived columns. Because single-neuron-level structural changes are suggested to be involved in this plasticity, here we focused on cofilin1, a protein that is known to modulate the cytoskeleton and to regulate the structure of dendritic spines. We induced experience-dependent plasticity in the D1 column by sparing only the D1 whisker, and knocked down the expression of cofilin1 in the D2 column. Cofilin1 knockdown differentially affected plasticity, such that experience-dependent increases in spared input representation were impaired, whereas decreases in deprived input representation were intact. We then found that during these plastic changes, the density of dendritic spines increased in a cofilin1-dependent manner around the connections between the D1 and D2 columns. Cofilin1-dependent density increase was observed only in the most superficial part of the cortex but not in deeper parts, consistent with the distribution patterns of axons that transmit spared and deprived information, respectively. These results suggest that cofilin1 regulates neocortical functional plasticity through the remodeling of dendritic spines within circuits that connect columns.
Collapse
Affiliation(s)
- Tadashi Tsubota
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Reiko Okubo-Suzuki
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
| | - Yohei Ohashi
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Keita Tamura
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Koshin Ogata
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Masae Yaguchi
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Makoto Matsuyama
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Kaoru Inokuchi
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
| | - Yasushi Miyashita
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
- * E-mail:
| |
Collapse
|
31
|
Harris KD, Shepherd GMG. The neocortical circuit: themes and variations. Nat Neurosci 2015; 18:170-81. [PMID: 25622573 PMCID: PMC4889215 DOI: 10.1038/nn.3917] [Citation(s) in RCA: 720] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/04/2014] [Indexed: 12/12/2022]
Abstract
Similarities in neocortical circuit organization across areas and species suggest a common strategy to process diverse types of information, including sensation from diverse modalities, motor control and higher cognitive processes. Cortical neurons belong to a small number of main classes. The properties of these classes, including their local and long-range connectivity, developmental history, gene expression, intrinsic physiology and in vivo activity patterns, are remarkably similar across areas. Each class contains subclasses; for a rapidly growing number of these, conserved patterns of input and output connections are also becoming evident. The ensemble of circuit connections constitutes a basic circuit pattern that appears to be repeated across neocortical areas, with area- and species-specific modifications. Such 'serially homologous' organization may adapt individual neocortical regions to the type of information each must process.
Collapse
Affiliation(s)
- Kenneth D. Harris
- UCL Institute of Neurology and UCL Department of Neuroscience, Physiology, and Pharmacology, University College London, UK
| | - Gordon M. G. Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
32
|
Eldawlatly S, Oweiss KG. Temporal precision in population-but not individual neuron-dynamics reveals rapid experience-dependent plasticity in the rat barrel cortex. Front Comput Neurosci 2014; 8:155. [PMID: 25505407 PMCID: PMC4243556 DOI: 10.3389/fncom.2014.00155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/07/2014] [Indexed: 11/13/2022] Open
Abstract
Cortical reorganization following sensory deprivation is characterized by alterations in the connectivity between neurons encoding spared and deprived cortical inputs. The extent to which this alteration depends on Spike Timing Dependent Plasticity (STDP), however, is largely unknown. We quantified changes in the functional connectivity between layer V neurons in the vibrissal primary somatosensory cortex (vSI) (barrel cortex) of rats following sensory deprivation. One week after chronic implantation of a microelectrode array in vSI, sensory-evoked activity resulting from mechanical deflections of individual whiskers was recorded (control data) after which two whiskers on the contralateral side were paired by sparing them while trimming all other whiskers on the rat's mystacial pad. The rats' environment was then enriched by placing novel objects in the cages to encourage exploratory behavior with the spared whiskers. Sensory-evoked activity in response to individual stimulation of spared whiskers and adjacent re-grown whiskers was then recorded under anesthesia 1–2 days and 6–7 days post-trimming (plasticity data). We analyzed spike trains within 100 ms of stimulus onset and confirmed previously published reports documenting changes in receptive field sizes in the spared whisker barrels. We analyzed the same data using Dynamic Bayesian Networks (DBNs) to infer the functional connectivity between the recorded neurons. We found that DBNs inferred from population responses to stimulation of each of the spared whiskers exhibited graded increase in similarity that was proportional to the pairing duration. A significant early increase in network similarity in the spared-whisker barrels was detected 1–2 days post pairing, but not when single neuron responses were examined during the same period. These results suggest that rapid reorganization of cortical neurons following sensory deprivation may be mediated by an STDP mechanism.
Collapse
Affiliation(s)
- Seif Eldawlatly
- Department of Computer and Systems Engineering, Faculty of Engineering, Ain Shams University Cairo, Egypt
| | - Karim G Oweiss
- Department of Electrical and Computer Engineering, University of Florida Gainesville, FL, USA ; Department of Biomedical Engineering, University of Florida Gainesville, FL, USA ; Department of Neuroscience, University of Florida Gainesville, FL, USA ; Department of Electrical and Computer Engineering, Michigan State University East Lansing, MI, USA
| |
Collapse
|
33
|
Herrera-Rincon C, Panetsos F. Substitution of natural sensory input by artificial neurostimulation of an amputated trigeminal nerve does not prevent the degeneration of basal forebrain cholinergic circuits projecting to the somatosensory cortex. Front Cell Neurosci 2014; 8:385. [PMID: 25452715 PMCID: PMC4231972 DOI: 10.3389/fncel.2014.00385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/29/2014] [Indexed: 11/13/2022] Open
Abstract
Peripheral deafferentation downregulates acetylcholine (ACh) synthesis in sensory cortices. However, the responsible neural circuits and processes are not known. We irreversibly transected the rat infraorbital nerve and implanted neuroprosthetic microdevices for proximal stump stimulation, and assessed cytochrome-oxidase and choline- acetyl-transferase (ChAT) in somatosensory, auditory and visual cortices; estimated the number and density of ACh-neurons in the magnocellular basal nucleus (MBN); and localized down-regulated ACh-neurons in basal forebrain using retrograde labeling from deafferented cortices. Here we show that nerve transection, causes down regulation of MBN cholinergic neurons. Stimulation of the cut nerve reverses the metabolic decline but does not affect the decrease in cholinergic fibers in cortex or cholinergic neurons in basal forebrain. Artifical stimulation of the nerve also has no affect of ACh-innervation of other cortices. Cortical ChAT depletion is due to loss of corticopetal MBN ChAT-expressing neurons. MBN ChAT downregulation is not due to a decrease of afferent activity or to a failure of trophic support. Basalocortical ACh circuits are sensory specific, ACh is provided to each sensory cortex "on demand" by dedicated circuits. Our data support the existence of a modality-specific cortex-MBN-cortex circuit for cognitive information processing.
Collapse
Affiliation(s)
- Celia Herrera-Rincon
- Neurocomputing and Neurorobotics Research Group, Universidad Complutense de Madrid Madrid, Spain ; Biomathematics Department, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid Madrid, Spain ; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Universidad Complutense de Madrid Madrid, Spain ; Biomathematics Department, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid Madrid, Spain ; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos Madrid, Spain ; Department of Industrial Engineering and Management Systems, University of Central Florida Orlando, FL, USA
| |
Collapse
|
34
|
Alwis DS, Rajan R. Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury. Front Syst Neurosci 2014; 8:156. [PMID: 25228861 PMCID: PMC4151031 DOI: 10.3389/fnsys.2014.00156] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/12/2014] [Indexed: 01/08/2023] Open
Abstract
The brain's life-long capacity for experience-dependent plasticity allows adaptation to new environments or to changes in the environment, and to changes in internal brain states such as occurs in brain damage. Since the initial discovery by Hebb (1947) that environmental enrichment (EE) was able to confer improvements in cognitive behavior, EE has been investigated as a powerful form of experience-dependent plasticity. Animal studies have shown that exposure to EE results in a number of molecular and morphological alterations, which are thought to underpin changes in neuronal function and ultimately, behavior. These consequences of EE make it ideally suited for investigation into its use as a potential therapy after neurological disorders, such as traumatic brain injury (TBI). In this review, we aim to first briefly discuss the effects of EE on behavior and neuronal function, followed by a review of the underlying molecular and structural changes that account for EE-dependent plasticity in the normal (uninjured) adult brain. We then extend this review to specifically address the role of EE in the treatment of experimental TBI, where we will discuss the demonstrated sensorimotor and cognitive benefits associated with exposure to EE, and their possible mechanisms. Finally, we will explore the use of EE-based rehabilitation in the treatment of human TBI patients, highlighting the remaining questions regarding the effects of EE.
Collapse
Affiliation(s)
- Dasuni S Alwis
- Department of Physiology, Monash University Clayton, VIC, Australia
| | - Ramesh Rajan
- Department of Physiology, Monash University Clayton, VIC, Australia
| |
Collapse
|
35
|
Albieri G, Barnes SJ, de Celis Alonso B, Cheetham CEJ, Edwards CE, Lowe AS, Karunaratne H, Dear JP, Lee KC, Finnerty GT. Rapid Bidirectional Reorganization of Cortical Microcircuits. Cereb Cortex 2014; 25:3025-35. [PMID: 24836895 PMCID: PMC4537443 DOI: 10.1093/cercor/bhu098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mature neocortex adapts to altered sensory input by changing neural activity in cortical circuits. The underlying cellular mechanisms remain unclear. We used blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to show reorganization in somatosensory cortex elicited by altered whisker sensory input. We found that there was rapid expansion followed by retraction of whisker cortical maps. The cellular basis for the reorganization in primary somatosensory cortex was investigated with paired electrophysiological recordings in the periphery of the expanded whisker representation. During map expansion, the chance of finding a monosynaptic connection between pairs of pyramidal neurons increased 3-fold. Despite the rapid increase in local excitatory connectivity, the average strength and synaptic dynamics did not change, which suggests that new excitatory connections rapidly acquire the properties of established excitatory connections. During map retraction, entire excitatory connections between pyramidal neurons were lost. In contrast, connectivity between pyramidal neurons and fast spiking interneurons was unchanged. Hence, the changes in local excitatory connectivity did not occur in all circuits involving pyramidal neurons. Our data show that pyramidal neurons are recruited to and eliminated from local excitatory networks over days. These findings suggest that the local excitatory connectome is dynamic in mature neocortex.
Collapse
Affiliation(s)
- Giorgia Albieri
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK Current address: Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Samuel J Barnes
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK Current address: MRC Centre for Developmental Neurobiology King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| | - Benito de Celis Alonso
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK Current address: Faculty of Physics and Mathematics, prior to the University, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Claire E J Cheetham
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK Current address: National Institutes of Health, Bethesda, MD, USA
| | - Clarissa E Edwards
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK
| | - Andrew S Lowe
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK Current address: MRC Centre for Developmental Neurobiology King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| | - Harini Karunaratne
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK
| | - John P Dear
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Kalok C Lee
- Division of Engineering, King's College London, Strand, London WC2R 2LS, UK
| | - Gerald T Finnerty
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK
| |
Collapse
|
36
|
Staiger JF, Bojak I, Miceli S, Schubert D. A gradual depth-dependent change in connectivity features of supragranular pyramidal cells in rat barrel cortex. Brain Struct Funct 2014; 220:1317-37. [PMID: 24569853 PMCID: PMC4409644 DOI: 10.1007/s00429-014-0726-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/31/2014] [Indexed: 01/31/2023]
Abstract
Recent experimental evidence suggests a finer genetic, structural and functional subdivision of the layers which form a cortical column. The classical layer II/III (LII/III) of rodent neocortex integrates ascending sensory information with contextual cortical information for behavioral read-out. We systematically investigated to which extent regular-spiking supragranular pyramidal neurons, located at different depths within the cortex, show different input-output connectivity patterns. Combining glutamate uncaging with whole-cell recordings and biocytin filling, we revealed a novel cellular organization of LII/III: (1) "Lower LII/III" pyramidal cells receive a very strong excitatory input from lemniscal LIV and much fewer inputs from paralemniscal LVa. They project to all layers of the home column, including a feedback projection to LIV, whereas transcolumnar projections are relatively sparse. (2) "Upper LII/III" pyramidal cells also receive their strongest input from LIV, but in addition, a very strong and dense excitatory input from LVa. They project extensively to LII/III as well as LVa and Vb of their home and neighboring columns. (3) "Middle LII/III" pyramidal cell shows an intermediate connectivity phenotype that stands in many ways in between the features described for lower versus upper LII/III. "Lower LII/III" intracolumnarly segregates and transcolumnarly integrates lemniscal information, whereas "upper LII/III" seems to integrate lemniscal with paralemniscal information. This suggests a fine-grained functional subdivision of the supragranular compartment containing multiple circuits without any obvious cytoarchitectonic, other structural or functional correlate of a laminar border in rodent barrel cortex.
Collapse
Affiliation(s)
- Jochen F. Staiger
- Institute for Neuroanatomy, University Medicine Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany
| | - Ingo Bojak
- School of Systems Engineering, University of Reading, PO Box 225, Whiteknights, Reading, Berkshire RG6 6AY UK
- Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, Radboud University Nijmegen Medical Centre, POB 9101//126, 6500 HB Nijmegen, The Netherlands
| | - Stéphanie Miceli
- Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, Radboud University Nijmegen Medical Centre, POB 9101//126, 6500 HB Nijmegen, The Netherlands
| | - Dirk Schubert
- Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, Radboud University Nijmegen Medical Centre, POB 9101//126, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
37
|
Abstract
Visual disruption early in development dramatically changes how primary visual cortex neurons integrate binocular inputs. The disruption is paradigmatic for investigating the synaptic basis of long-term changes in cortical function, because the primary visual cortex is the site of binocular convergence. The underlying alterations in circuitry by visual disruption remain poorly understood. Here we compare membrane potential responses, observed via whole-cell recordings in vivo, of primary visual cortex neurons in normal adult cats with those of cats in which strabismus was induced before the developmental critical period. In strabismic cats, we observed a dramatic shift in the ocular dominance distribution of simple cells, the first stage of visual cortical processing, toward responding to one eye instead of both, but not in complex cells, which receive inputs from simple cells. Both simple and complex cells no longer conveyed the binocular information needed for depth perception based on binocular cues. There was concomitant binocular suppression such that responses were weaker with binocular than with monocular stimulation. Our estimates of the excitatory and inhibitory input to single neurons indicate binocular suppression that was not evident in synaptic excitation, but arose de novo because of synaptic inhibition. Further constraints on circuit models of plasticity result from indications that the ratio of excitation to inhibition evoked by monocular stimulation decreased mainly for nonpreferred eye stimulation. Although we documented changes in synaptic input throughout primary visual cortex, a circuit model with plasticity at only thalamocortical synapses is sufficient to account for our observations.
Collapse
|
38
|
Margolis DJ, Lütcke H, Helmchen F. Microcircuit dynamics of map plasticity in barrel cortex. Curr Opin Neurobiol 2013; 24:76-81. [PMID: 24492082 DOI: 10.1016/j.conb.2013.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
Functional reorganization of the whisker map in rodent barrel cortex has long served as a model for cortical plasticity following changes in sensory experience. Given the heterogeneity of neuronal response properties in neocortex, it has remained unclear how individual neurons in the cortical microcircuit are affected. Novel in vivo imaging and electrophysiology methods allow longitudinal recording of the same neurons' functional properties and therefore have the critical ability to resolve the direction and dynamics of change as plasticity progresses. Tracking sensory responsiveness before and after whisker trimming has uncovered diverse effects in individual neurons, suggesting that longitudinal recording will be essential for elucidating plasticity mechanisms within cortical microcircuits.
Collapse
Affiliation(s)
- David J Margolis
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ, USA.
| | - Henry Lütcke
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Han Y, Li N, Zeiler SR, Pelled G. Peripheral nerve injury induces immediate increases in layer v neuronal activity. Neurorehabil Neural Repair 2013; 27:664-72. [PMID: 23599222 DOI: 10.1177/1545968313484811] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Peripheral nerve injury leads to changes in neuronal activity in the contralateral and ipsilateral primary somatosensory cortices (S1), which may lead to enduring sensory dysfunction and pain. Plasticity in the barrel and visual cortices has been shown to occur in a layer-specific manner. However, little is known about the layer specific changes associated with limb injury. OBJECTIVE To determine the layer-specific changes in neuronal activity associated with short-term plasticity induced by peripheral nerve injury in the rat. METHODS In vivo electrophysiology recordings (multiunit activity and local field potential) and high-resolution functional magnetic resonance imaging techniques were applied to characterize neuronal and hemodynamic responses across the depth of S1 contralateral and ipsilateral to the injury. RESULTS Within 60 minutes following injury, atypical increases in neuronal and hemodynamic responses in the deprived S1, ipsilateral to the noninjured limb, were observed in response to stimulation of the noninjured limb. The most prominent increases in neuronal activity in the deprived S1 occurred in layer V. CONCLUSION Layer V neurons provide the major output of S1 and they send and receive transcallosal input. Thus, the immediate changes in neuronal firing patterns in layer V induced by the injury, can adversely affect the activity of subcortical regions and also interfere with normal cortical processing and interhemispheric communication. Therefore, a rehabilitation strategy that targets layer V neurons activity and starts immediately after the injury may benefit the functional outcome.
Collapse
Affiliation(s)
- Yang Han
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
40
|
Feldmeyer D, Brecht M, Helmchen F, Petersen CC, Poulet JF, Staiger JF, Luhmann HJ, Schwarz C. Barrel cortex function. Prog Neurobiol 2013. [DOI: 10.1016/j.pneurobio.2012.11.002] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
41
|
Papaioannou S, Brigham L, Krieger P. Sensory deprivation during early development causes an increased exploratory behavior in a whisker-dependent decision task. Brain Behav 2013; 3:24-34. [PMID: 23408764 PMCID: PMC3568787 DOI: 10.1002/brb3.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/19/2012] [Accepted: 10/09/2012] [Indexed: 11/08/2022] Open
Abstract
Stimulation of sensory pathways is important for the normal development of cortical sensory areas, and impairments in the normal development can have long-lasting effect on animal's behavior. In particular, disturbances that occur early in development can cause permanent changes in brain structure and function. The behavioral effect of early sensory deprivation was studied in the mouse whisker system using a protocol to induce a 1-week sensory deprivation immediately after birth. Only two rows of whiskers were spared (C and D rows), and the rest were deprived, to create a situation where an unbalanced sensory input, rather than a complete loss of input, causes a reorganization of the sensory map. Sensory deprivation increased the barrel size ratio of the spared CD rows compared with the deprived AB rows; thus, the map reorganization is likely due, at least in part, to a rewiring of thalamocortical projections. The behavioral effect of such a map reorganization was investigated in the gap-crossing task, where the animals used a whisker that was spared during the sensory deprivation. Animals that had been sensory deprived performed equally well with the control animals in the gap-crossing task, but were more active in exploring the gap area and consequently made more approaches to the gap - approaches that on average were of shorter duration. A restricted sensory deprivation of only some whiskers, although it does not seem to affect the overall performance of the animals, does have an effect on their behavioral strategy on executing the gap-crossing task.
Collapse
Affiliation(s)
- Stylianos Papaioannou
- Department of Neuroscience, Karolinska Institutet, Stockholm Brain Institute Stockholm, Sweden
| | | | | |
Collapse
|
42
|
Reorganization of cortical population activity imaged throughout long-term sensory deprivation. Nat Neurosci 2012; 15:1539-46. [DOI: 10.1038/nn.3240] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/19/2012] [Indexed: 12/15/2022]
|
43
|
Gambino F, Holtmaat A. Spike-timing-dependent potentiation of sensory surround in the somatosensory cortex is facilitated by deprivation-mediated disinhibition. Neuron 2012; 75:490-502. [PMID: 22884332 DOI: 10.1016/j.neuron.2012.05.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
Abstract
Functional maps in the cerebral cortex reorganize in response to changes in experience, but the synaptic underpinnings remain uncertain. Here, we demonstrate that layer (L) 2/3 pyramidal cell synapses in mouse barrel cortex can be potentiated upon pairing of whisker-evoked postsynaptic potentials (PSPs) with action potentials (APs). This spike-timing-dependent long-term potentiation (STD-LTP) was only effective for PSPs evoked by deflections of a whisker in the neuron's receptive field center, and not its surround. Trimming of all except two whiskers rapidly opened the possibility to drive STD-LTP by the spared surround whisker. This facilitated STD-LTP was associated with a strong decrease in the surrounding whisker-evoked inhibitory conductance and partially occluded picrotoxin-mediated LTP facilitation. Taken together, our data demonstrate that sensory deprivation-mediated disinhibition facilitates STD-LTP from the sensory surround, which may promote correlation- and experience-dependent expansion of receptive fields.
Collapse
Affiliation(s)
- Frédéric Gambino
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, CMU, 1 rue Michel Servet, 1211 Geneva, Switzerland.
| | | |
Collapse
|
44
|
Abstract
In primary sensory neocortical areas of mammals, the distribution of sensory receptors is mapped with topographic precision and amplification in proportion to the peripheral receptor density. The visual, somatosensory and auditory cortical maps are established during a critical period in development. Throughout this window in time, the developing cortical maps are vulnerable to deleterious effects of sense organ damage or sensory deprivation. The rodent barrel cortex offers an invaluable model system with which to investigate the mechanisms underlying the formation of topographic maps and their plasticity during development. Five rows of mystacial vibrissa (whisker) follicles on the snout and an array of sinus hairs are represented by layer IV neural modules ('barrels') and thalamocortical axon terminals in the primary somatosensory cortex. Perinatal damage to the whiskers or the sensory nerve innervating them irreversibly alters the structural organization of the barrels. Earlier studies emphasized the role of the sensory periphery in dictating whisker-specific brain maps and patterns. Recent advances in molecular genetics and analyses of genetically altered mice allow new insights into neural pattern formation in the neocortex and the mechanisms underlying critical period plasticity. Here, we review the development and patterning of the barrel cortex and the critical period plasticity.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201-1075, USA.
| | | |
Collapse
|
45
|
Mahon S, Charpier S. Bidirectional plasticity of intrinsic excitability controls sensory inputs efficiency in layer 5 barrel cortex neurons in vivo. J Neurosci 2012; 32:11377-89. [PMID: 22895720 PMCID: PMC6621180 DOI: 10.1523/jneurosci.0415-12.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/18/2012] [Accepted: 06/25/2012] [Indexed: 11/21/2022] Open
Abstract
Responsiveness of cortical neurons to sensory inputs can be altered by experience and learning. While synaptic plasticity is generally proposed as the underlying cellular mechanism, possible contributions of activity-dependent changes in intrinsic excitability remain poorly investigated. Here, we show that periods of rhythmic firing in rat barrel cortex layer 5 pyramidal neurons can trigger a long-lasting increase or decrease in their membrane excitability in vivo. Potentiation of cortical excitability consisted of an increased firing in response to intracellular stimulation and a reduction in threshold current for spike initiation. Conversely, depression of cortical excitability was evidenced by an augmented firing threshold leading to a reduced current-evoked spiking. The direction of plasticity depended on the baseline level of spontaneous firing rate and cell excitability. We also found that changes in intrinsic excitability were accompanied by corresponding modifications in the effectiveness of sensory inputs. Potentiation and depression of cortical neuron excitability resulted, respectively, in an increased or decreased firing probability on whisker-evoked synaptic responses, without modifications in the synaptic strength itself. These data suggest that bidirectional intrinsic plasticity could play an important role in experience-dependent refinement of sensory cortical networks.
Collapse
Affiliation(s)
- Séverine Mahon
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Université Pierre et Marie Curie (UPMC), INSERM UMR-S 975, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, F-75013, Paris, France.
| | | |
Collapse
|
46
|
Yu X, Chung S, Chen DY, Wang S, Dodd SJ, Walters JR, Isaac JTR, Koretsky AP. Thalamocortical inputs show post-critical-period plasticity. Neuron 2012; 74:731-42. [PMID: 22632730 DOI: 10.1016/j.neuron.2012.04.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2012] [Indexed: 11/19/2022]
Abstract
Experience-dependent plasticity in the adult brain has clinical potential for functional rehabilitation following central and peripheral nerve injuries. Here, plasticity induced by unilateral infraorbital (IO) nerve resection in 4-week-old rats was mapped using MRI and synaptic mechanisms were elucidated by slice electrophysiology. Functional MRI demonstrates a cortical potentiation compared to thalamus 2 weeks after IO nerve resection. Tracing thalamocortical (TC) projections with manganese-enhanced MRI revealed circuit changes in the spared layer 4 (L4) barrel cortex. Brain slice electrophysiology revealed TC input strengthening onto L4 stellate cells due to an increase in postsynaptic strength and the number of functional synapses. This work shows that the TC input is a site for robust plasticity after the end of the previously defined critical period for this input. Thus, TC inputs may represent a major site for adult plasticity in contrast to the consensus that adult plasticity mainly occurs at cortico-cortical connections.
Collapse
Affiliation(s)
- Xin Yu
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Yang S, Su W, Bao S. Long-term, but not transient, threshold shifts alter the morphology and increase the excitability of cortical pyramidal neurons. J Neurophysiol 2012; 108:1567-74. [PMID: 22723674 DOI: 10.1152/jn.00371.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Partial hearing loss often results in enlarged representations of the remaining hearing frequency range in primary auditory cortex (AI). Recent studies have implicated certain types of synaptic plasticity in AI map reorganization in response to transient and long-term hearing loss. How changes in neuronal excitability and morphology contribute to cortical map reorganization is less clear. In the present study, we exposed adult rats to a 4-kHz tone at 123 dB, which resulted in increased thresholds over their entire hearing range. The threshold shift gradually recovered in the lower-frequency, but not the higher-frequency, range. As reported previously, two distinct zones were observed 10 days after the noise exposure, an enlarged lower-characteristic frequency (CF) zone displaying normal threshold and enhanced cortical responses and a higher-CF zone showing higher threshold and a disorganized tonotopic map. Membrane excitability of layer II/III pyramidal neurons increased only in the higher-CF, but not the lower-CF, zone. In addition, dendritic morphology and spine density of the pyramidal neurons were altered in the higher-CF zone only. These results indicate that membrane excitability and neuronal morphology are altered by long-term, but not transient, threshold shift. They also suggest that these changes may contribute to tinnitus but are unlikely to be involved in map expansion in the lower-CF zone.
Collapse
Affiliation(s)
- Sungchil Yang
- Helen Wills Neuroscience Inst., Univ. of California, Berkeley, CA 94720-3190, USA
| | | | | |
Collapse
|
48
|
Miyazaki T, Takase K, Nakajima W, Tada H, Ohya D, Sano A, Goto T, Hirase H, Malinow R, Takahashi T. Disrupted cortical function underlies behavior dysfunction due to social isolation. J Clin Invest 2012; 122:2690-701. [PMID: 22706303 DOI: 10.1172/jci63060] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/09/2012] [Indexed: 01/21/2023] Open
Abstract
Stressful events during early childhood can have a profound lifelong influence on emotional and cognitive behaviors. However, the mechanisms by which stress affects neonatal brain circuit formation are poorly understood. Here, we show that neonatal social isolation disrupts molecular, cellular, and circuit developmental processes, leading to behavioral dysfunction. Neonatal isolation prevented long-term potentiation and experience-dependent synaptic trafficking of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors normally occurring during circuit formation in the rodent barrel cortex. This inhibition of AMPA receptor trafficking was mediated by an increase of the stress glucocorticoid hormone and was associated with reduced calcium/calmodulin-dependent protein kinase type II (CaMKII) signaling, resulting in attenuated whisker sensitivity at the cortex. These effects led to defects in whisker-dependent behavior in juvenile animals. These results indicate that neonatal social isolation alters neuronal plasticity mechanisms and perturbs the initial establishment of a normal cortical circuit, which potentially explains the long-lasting behavioral effects of neonatal stress.
Collapse
Affiliation(s)
- Tomoyuki Miyazaki
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jacob V, Petreanu L, Wright N, Svoboda K, Fox K. Regular spiking and intrinsic bursting pyramidal cells show orthogonal forms of experience-dependent plasticity in layer V of barrel cortex. Neuron 2012; 73:391-404. [PMID: 22284191 PMCID: PMC3524456 DOI: 10.1016/j.neuron.2011.11.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2011] [Indexed: 11/27/2022]
Abstract
Most functional plasticity studies in the cortex have focused on layers (L) II/III and IV, whereas relatively little is known of LV. Structural measurements of dendritic spines in vivo suggest some specialization among LV cell subtypes. We therefore studied experience-dependent plasticity in the barrel cortex using intracellular recordings to distinguish regular spiking (RS) and intrinsic bursting (IB) subtypes. Postsynaptic potentials and suprathreshold responses in vivo revealed a remarkable dichotomy in RS and IB cell plasticity; spared whisker potentiation occurred in IB but not RS cells while deprived whisker depression occurred in RS but not IB cells. Similar RS/IB differences were found in the LII/III to V connections in brain slices. Modeling studies showed that subthreshold changes predicted the suprathreshold changes. These studies demonstrate the major functional partition of plasticity within a single cortical layer and reveal the LII/III to LV connection as a major excitatory locus of cortical plasticity.
Collapse
Affiliation(s)
- Vincent Jacob
- School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | - Leopoldo Petreanu
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nick Wright
- School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | - Karel Svoboda
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kevin Fox
- School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
50
|
Nakashima AS, Hussain Butt R, Dyck RH. Alterations in protein and gene expression within the barrel cortices of ZnT3 knockout mice: Experience-independent and dependent changes. Neurochem Int 2011; 59:860-70. [DOI: 10.1016/j.neuint.2011.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/27/2011] [Accepted: 08/08/2011] [Indexed: 12/12/2022]
|