1
|
Ghabrial J, Stinnett V, Ribeiro E, Klausner M, Morsberger L, Long P, Middlezong W, Xian R, Gocke C, Lin MT, Rooper L, Baraban E, Argani P, Pallavajjala A, Murry JB, Gross JM, Zou YS. Diagnostic and Prognostic/Therapeutic Significance of Comprehensive Analysis of Bone and Soft Tissue Tumors Using Optical Genome Mapping and Next-Generation Sequencing. Mod Pathol 2025; 38:100684. [PMID: 39675429 DOI: 10.1016/j.modpat.2024.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Detecting somatic structural variants (SVs), copy number variants (CNVs), and mutations in bone and soft tissue tumors is essential for accurately diagnosing, treating, and prognosticating outcomes. Optical genome mapping (OGM) holds promise to yield useful data on SVs and CNVs but requires fresh or snap-frozen tissues. This study aimed to evaluate the clinical utility of data from OGM compared with current standard-of-care cytogenetic testing. We evaluated 60 consecutive specimens from bone and soft tissue tumors using OGM and karyotyping, fluorescence in situ hybridization, gene fusion assays, and deep next-generation sequencing. OGM accurately identified diagnostic SVs/CNVs previously detected by karyotyping and fluorescence in situ hybridization (specificity = 100%). OGM identified diagnostic and pathogenic SVs/CNVs (∼23% of cases) undetected by karyotyping (cryptic/submicroscopic). OGM allowed the detection and further characterization of complex structural rearrangements including chromoanagenesis (27% of cases) and complex 3- to 6-way translocations (15% of cases). In addition to identifying 321 SVs and CNVs among cases with chromoanagenesis events, OGM identified approximately 9 SVs and 12 CNVs per sample. A combination of OGM and deep next-generation sequencing data identified diagnostic, disease-associated, and pathogenic SVs, CNVs, and mutations in ∼98% of the cases. Our cohort contained the most extensive collection of bone and soft tissue tumors profiled by OGM. OGM had excellent concordance with standard-of-care cytogenetic testing, detecting and assigning high-resolution genome-wide genomic abnormalities with higher sensitivity than routine testing. This is the first and largest study to provide insights into the clinical utility of combined OGM and deep sequencing for the pathologic diagnosis and potential prognostication of bone and soft tissue tumors in routine clinical practice.
Collapse
Affiliation(s)
- Jen Ghabrial
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Victoria Stinnett
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Efrain Ribeiro
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Melanie Klausner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura Morsberger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patty Long
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William Middlezong
- Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland
| | - Rena Xian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ming-Tseh Lin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lisa Rooper
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ezra Baraban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pedram Argani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aparna Pallavajjala
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jaclyn B Murry
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John M Gross
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Ying S Zou
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
2
|
Peng C, Chen H, Zhou F, Yang H, Li Y, Keqie Y, Zhao X, Wang H, Hu T, Liu S, Ren J, Chen X. Molecular diagnosis and preimplantation genetic testing for chromosome 1q21.1 recurrent microduplication. Front Genet 2025; 16:1522406. [PMID: 40110042 PMCID: PMC11919917 DOI: 10.3389/fgene.2025.1522406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
As the development of molecular diagnostic methods, a large number of clinically relevant or disease-related copy number variations (CNVs) could be detected, and the demand for genetic counselling and clinical treatment is also increasing. For patients with pathogenic or likely pathogenic CNVs, preimplantation genetic testing (PGT) could provide a feasible path to prevent the inheritance of the genetic disorder in the offspring. In this study, we included a couple with 1q21.1 recurrent microduplication to conduct molecular diagnosis and PGT clinical application. The optical genome mapping (OGM) successfully verified the orientation and location of the microduplication, which further proved OGM as a promising approach for chromosomal anomalies detection with high resolutions. In PGT application, linkage-analysis-based PGT and high resolution PGT-A were simultaneously conducted for the pedigree and all the embryos. The results were consistent between linkage analysis and high resolution aneuploid analysis in the targeted region. One embryo that was absent of paternal 1q21.1q21.2 duplication was selected for further transplantation. This successful clinical practice in this study shed light for future molecular diagnosis and PGT application in tandem microduplications.
Collapse
Affiliation(s)
- Cuiting Peng
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Han Chen
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Fan Zhou
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Hong Yang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yutong Li
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yuezhi Keqie
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xu Zhao
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - He Wang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ting Hu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Shanling Liu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Jun Ren
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xinlian Chen
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
3
|
Chen X, Abakumov S, Wranne MS, Goyvaerts V, Helmer Lauer M, Rubberecht J, Rohand T, Leen V, Westerlund F, Hofkens J. Sequence-Specific Minor Groove Binders in Labeling and Single-Molecule Analysis of DNA. J Am Chem Soc 2025; 147:384-396. [PMID: 39715062 DOI: 10.1021/jacs.4c11028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The ability to address specific sequences within DNA is of tremendous interest in biotechnology and biomedicine. Various technologies have been established over the past few decades, such as nicking enzymes and methyltransferase-directed sequence-specific labeling, transcription activator-like effector nucleases (TALENs), the CRISPR-Cas9 system, and polyamides of heterocycles as sequence-specific DNA minor groove binders. Pyrrole-imidazole polyamides have been reported to recognize predetermined DNA sequences, and some successful attempts have demonstrated their potential in regulating gene expression. However, few studies on single-molecule labeling and analysis of DNA have been explored, particularly at single-targeting sites. In this study, we rationally designed and synthesized a set of functional minor groove binders, varying in structures, sequence information addressed, and methods of dye introduction. Their potential for sequence-specific labeling and single-molecule DNA analysis was evaluated through chromatographic and on-surface optical assays. First results indicated that, while they yielded excellent imaging output, the labeling specificity of the hairpin polyamides for single-molecule use was hindered by single-mismatch sites. To address this issue, and in an unprecedented approach, we devised a competitive binding strategy that utilizes ethidium bromide as a nonspecific binder to competitively block the mismatches, significantly enhancing the labeling specificity. These findings provide valuable insights into the use of hairpin polyamides as sequence-programmable and enzyme-free DNA labelers in the field of sequence-specific DNA recognition and modification.
Collapse
Affiliation(s)
- Xiong Chen
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| | | | - Moa Sandberg Wranne
- Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | | | | | | | - Taoufik Rohand
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohammed I, Nador 60700, Morocco
| | | | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| |
Collapse
|
4
|
Ruppeka Rupeika E, D’Huys L, Leen V, Hofkens J. Sequencing and Optical Genome Mapping for the Adventurous Chemist. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:784-807. [PMID: 39735829 PMCID: PMC11673194 DOI: 10.1021/cbmi.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 12/31/2024]
Abstract
This review provides a comprehensive overview of the chemistries and workflows of the sequencing methods that have been or are currently commercially available, providing a very brief historical introduction to each method. The main optical genome mapping approaches are introduced in the same manner, although only a subset of these are or have ever been commercially available. The review comes with a deck of slides containing all of the figures for ease of access and consultation.
Collapse
Affiliation(s)
| | - Laurens D’Huys
- Faculty
of Science, Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, Flanders 3001, Belgium
| | - Volker Leen
- Perseus
Biomics B.V., Industriepark
6 bus 3, Tienen 3300, Belgium
| | - Johan Hofkens
- Faculty
of Science, Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, Flanders 3001, Belgium
- Max
Planck Institute for Polymer Research, Mainz, Rheinland-Pfalz 55128, Germany
| |
Collapse
|
5
|
Dyagala S, Halder S, Aggrawal R, Paul M, Aswal VK, Biswas S, Saha SK. ct-DNA compaction by nanoparticles formed by silica and gemini surfactants having hydroxyl group substituted spacers: In vitro, in vivo, and ex vivo gene uptake to cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113066. [PMID: 39556939 DOI: 10.1016/j.jphotobiol.2024.113066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
Hybrid nanoparticles formed by Silica (SiO2) coated with cationic gemini surfactants with variable hydroxyl group substituted spacers, 12-4(OH)-12,2Br- and 12-4(OH)2-12,2Br- have shown a great extent of compaction of calf thymus DNA (ct-DNA) compared to conventional counterpart cationic surfactant, dodecyl trimethylammonium bromide (DTAB). Study shows not only the hydrophobicity of the spacer but also the hydrogen bonding interactions between the hydroxyl group substituted spacer and DNA have a great role in DNA compaction. 12-4(OH)2-12,2Br- is more efficient in compacting ct-DNA compared to 12-4(OH)-12,2Br- due to the stronger binding of the former with ct-DNA than the latter. While 12-4(OH)-12,2Br- makes 50 % ct-DNA compaction at its 0.63 μM concentration in the presence of SiO2 nanoparticles, the same % of compaction can be achieved at a concentration as low as 0.25 μM of 12-4(OH)2-12,2Br-. However, DTAB makes 50 % ct-DNA compaction at a concentration as high as 7.00 μM under the same condition. Therefore, the present systems address the very common challenge, i.e., cytotoxicity due to cationic surfactants. The system of 12-4(OH)2-12,2Br- coated SiO2 nanoparticles displays the maximum cell viability (≥90 %), causing the least cell death in the mouse fibroblast cells (NIH3T3) cell lines compared to the cell viability of ≤80 % for DTAB. 12-4(OH)2-12,2Br- coated SiO2 nanoparticles system has presented excellent in vitro cellular uptake of genes on mouse mammary gland adenocarcinoma (4T1) cells after incubating for 3 h and 6 h. In vivo study shows that 12-4(OH)2-12,2Br- coated SiO2 nanoparticles system takes the highest amount of ct-DNA in cells and tumors in a time-dependent manner. The ex vivo studies using different organs of the mice demonstrate that the tumor sites in the breast of the mice are most affected by these formulations. Cytotoxicity assays and cellular uptake studies suggest that the present systems can be used for potential applications for gene delivery and oncological therapies.
Collapse
Affiliation(s)
- Shalini Dyagala
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sayantan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Rishika Aggrawal
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, Maharashtra 400085, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
| | - Subit Kumar Saha
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
| |
Collapse
|
6
|
Lestringant V, Guermouche-Flament H, Jimenez-Pocquet M, Gaillard JB, Penther D. Cytogenetics in the management of hematological malignancies: An overview of alternative technologies for cytogenetic characterization. Curr Res Transl Med 2024; 72:103440. [PMID: 38447270 DOI: 10.1016/j.retram.2024.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Genomic characterization is an essential part of the clinical management of hematological malignancies for diagnostic, prognostic and therapeutic purposes. Although CBA and FISH are still the gold standard in hematology for the detection of CNA and SV, some alternative technologies are intended to complement their deficiencies or even replace them in the more or less near future. In this article, we provide a technological overview of these alternatives. CMA is the historical and well established technique for the high-resolution detection of CNA. For SV detection, there are emerging techniques based on the study of chromatin conformation and more established ones such as RTMLPA for the detection of fusion transcripts and RNA-seq to reveal the molecular consequences of SV. Comprehensive techniques that detect both CNA and SV are the most interesting because they provide all the information in a single examination. Among these, OGM is a promising emerging higher-solution technique that offers a complete solution at a contained cost, at the expense of a relatively low throughput per machine. WGS remains the most adaptable solution, with long-read approaches enabling very high-resolution detection of CAs, but requiring a heavy bioinformatics installation and at a still high cost. However, the development of high-resolution genome-wide detection techniques for CAs allows for a much better description of chromoanagenesis. Therefore, we have included in this review an update on the various existing mechanisms and their consequences and implications, especially prognostic, in hematological malignancies.
Collapse
Affiliation(s)
| | | | | | - Jean-Baptiste Gaillard
- Unité de Génétique Chromosomique, Service de Génétique moléculaire et cytogénomique, CHU Montpellier, Montpellier, France
| | | |
Collapse
|
7
|
Noh C, Kang Y, Heo S, Kim T, Kim H, Chang J, Sundharbaabu PR, Shim S, Lim K, Lee JH, Jo K. Scanning Electron Microscopy Imaging of Large DNA Molecules Using a Metal-Free Electro-Stain Composed of DNA-Binding Proteins and Synthetic Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309702. [PMID: 38704672 PMCID: PMC11267313 DOI: 10.1002/advs.202309702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/19/2024] [Indexed: 05/06/2024]
Abstract
This paper presents the first scanning electron microscopy (SEM)-based DNA imaging in biological samples. This novel approach incorporates a metal-free electro-stain reagent, formulated by combining DNA-binding proteins and synthetic polymers to enhance the visibility of 2-nm-thick DNA under SEM. Notably, DNA molecules stain with proteins and polymers appear as dark lines under SEM. The resulting DNA images exhibit a thickness of 15.0±4.0 nm. As SEM is the primary platform, it integrates seamlessly with various chemically functionalized large surfaces with the aid of microfluidic devices. The approach allows high-resolution imaging of various DNA structures including linear, circular, single-stranded DNA and RNA, originating from nuclear and mitochondrial genomes. Furthermore, quantum dots are successfully visualized as bright labels that are sequence-specifically incorporated into DNA molecules, which highlights the potential for SEM-based optical DNA mapping. In conclusion, DNA imaging using SEM with the novel electro-stain offers electron microscopic resolution with the ease of optical microscopy.
Collapse
Affiliation(s)
- Chanyoung Noh
- Department of ChemistrySogang UniversitySeoul04107South Korea
| | - Yoonjung Kang
- Department of ChemistrySogang UniversitySeoul04107South Korea
| | - Sujung Heo
- Department of ChemistrySogang UniversitySeoul04107South Korea
| | - Taesoo Kim
- Department of ChemistrySogang UniversitySeoul04107South Korea
| | - Hayeon Kim
- Department of ChemistrySogang UniversitySeoul04107South Korea
| | - Junhyuck Chang
- School of Advanced Materials Science and EngineeringDepartment of MetaBioHealth Sungkyunkwan University (SKKU)Suwon16419South Korea
| | - Priyannth Ramasami Sundharbaabu
- School of Advanced Materials Science and EngineeringDepartment of MetaBioHealth Sungkyunkwan University (SKKU)Suwon16419South Korea
| | - Sanghee Shim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Kwang‐il Lim
- Department of Chemical and Biological EngineeringSookmyung Women's UniversitySeoul04312South Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and EngineeringDepartment of MetaBioHealth Sungkyunkwan University (SKKU)Suwon16419South Korea
| | - Kyubong Jo
- Department of ChemistrySogang UniversitySeoul04107South Korea
| |
Collapse
|
8
|
van der Sanden B, Neveling K, Pang AWC, Shukor S, Gallagher MD, Burke SL, Kamsteeg EJ, Hastie A, Hoischen A. Optical Genome Mapping for Applications in Repeat Expansion Disorders. Curr Protoc 2024; 4:e1094. [PMID: 38966883 DOI: 10.1002/cpz1.1094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Short tandem repeat (STR) expansions are associated with more than 60 genetic disorders. The size and stability of these expansions correlate with the severity and age of onset of the disease. Therefore, being able to accurately detect the absolute length of STRs is important. Current diagnostic assays include laborious lab experiments, including repeat-primed PCR and Southern blotting, that still cannot precisely determine the exact length of very long repeat expansions. Optical genome mapping (OGM) is a cost-effective and easy-to-use alternative to traditional cytogenetic techniques and allows the comprehensive detection of chromosomal aberrations and structural variants >500 bp in length, including insertions, deletions, duplications, inversions, translocations, and copy number variants. Here, we provide methodological guidance for preparing samples and performing OGM as well as running the analysis pipelines and using the specific repeat expansion workflows to determine the exact repeat length of repeat expansions expanded beyond 500 bp. Together these protocols provide all details needed to analyze the length and stability of any repeat expansion with an expected repeat size difference from the expected wild-type allele of >500 bp. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Genomic ultra-high-molecular-weight DNA isolation, labeling, and staining Basic Protocol 2: Data generation and genome mapping using the Bionano Saphyr® System Basic Protocol 3: Manual De Novo Assembly workflow Basic Protocol 4: Local guided assembly workflow Basic Protocol 5: EnFocus Fragile X workflow Basic Protocol 6: Molecule distance script workflow.
Collapse
Affiliation(s)
- Bart van der Sanden
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Syukri Shukor
- Bionano Genomics Clinical and Scientific Affairs, San Diego, California
| | | | - Stephanie L Burke
- Bionano Genomics Clinical and Scientific Affairs, San Diego, California
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alex Hastie
- Bionano Genomics Clinical and Scientific Affairs, San Diego, California
| | - Alexander Hoischen
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine, Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Tanudisastro HA, Deveson IW, Dashnow H, MacArthur DG. Sequencing and characterizing short tandem repeats in the human genome. Nat Rev Genet 2024; 25:460-475. [PMID: 38366034 DOI: 10.1038/s41576-024-00692-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
Short tandem repeats (STRs) are highly polymorphic sequences throughout the human genome that are composed of repeated copies of a 1-6-bp motif. Over 1 million variable STR loci are known, some of which regulate gene expression and influence complex traits, such as height. Moreover, variants in at least 60 STR loci cause genetic disorders, including Huntington disease and fragile X syndrome. Accurately identifying and genotyping STR variants is challenging, in particular mapping short reads to repetitive regions and inferring expanded repeat lengths. Recent advances in sequencing technology and computational tools for STR genotyping from sequencing data promise to help overcome this challenge and solve genetically unresolved cases and the 'missing heritability' of polygenic traits. Here, we compare STR genotyping methods, analytical tools and their applications to understand the effect of STR variation on health and disease. We identify emergent opportunities to refine genotyping and quality-control approaches as well as to integrate STRs into variant-calling workflows and large cohort analyses.
Collapse
Affiliation(s)
- Hope A Tanudisastro
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Ira W Deveson
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Harriet Dashnow
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
10
|
Poot M. Methods of Detection and Mechanisms of Origin of Complex Structural Genome Variations. Methods Mol Biol 2024; 2825:39-65. [PMID: 38913302 DOI: 10.1007/978-1-0716-3946-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Based on classical karyotyping, structural genome variations (SVs) have generally been considered to be either "simple" (with one or two breakpoints) or "complex" (with more than two breakpoints). Studying the breakpoints of SVs at nucleotide resolution revealed additional, subtle structural variations, such that even "simple" SVs turned out to be "complex." Genome-wide sequencing methods, such as fosmid and paired-end mapping, short-read and long-read whole genome sequencing, and single-molecule optical mapping, also indicated that the number of SVs per individual was considerably larger than expected from karyotyping and high-resolution chromosomal array-based studies. Interestingly, SVs were detected in studies of cohorts of individuals without clinical phenotypes. The common denominator of all SVs appears to be a failure to accurately repair DNA double-strand breaks (DSBs) or to halt cell cycle progression if DSBs persist. This review discusses the various DSB response mechanisms during the mitotic cell cycle and during meiosis and their regulation. Emphasis is given to the molecular mechanisms involved in the formation of translocations, deletions, duplications, and inversions during or shortly after meiosis I. Recently, CRISPR-Cas9 studies have provided unexpected insights into the formation of translocations and chromothripsis by both breakage-fusion-bridge and micronucleus-dependent mechanisms.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
11
|
Li S, Li H, Gao Y, Zou Y, Yin X, Chen ZJ, Choy KW, Dong Z, Yan J. Identification of cryptic balanced translocations in couples with unexplained recurrent pregnancy loss based upon embryonic PGT-A results. J Assist Reprod Genet 2024; 41:171-184. [PMID: 38102500 PMCID: PMC10789697 DOI: 10.1007/s10815-023-02999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
PURPOSE The goal of this study is to determine whether any balanced translocation (BT) had been missed by previous karyotyping in patients with unexplained recurrent pregnancy loss (uRPL). METHODS This case series included 48 uRPL-affected couples with normal karyotypes. The embryos from these couples have all undergone preimplantation testing for aneuploidies (PGT-A). Based on the PGT-A's results, 48 couples could be categorized into two groups: 17 couples whose multiple embryos were detected with similar structural variations (SVs, segmental/complete) and 31 couples without such findings but who did not develop any euploid embryo despite at least three high-quality blastocysts being tested. The peripheral blood sample of each partner was then collected for mate-pair sequencing (MPseq) to determine whether any of them were BT carriers. RESULTS MPseq analyses identified 13 BTs in the 17 couples whose multiple embryos had similar SVs detected (13/17, 76.47%) and three BTs in the 31 couples without euploid embryo obtained (3/31, 9.7%). Among the 16 MPseq-identified BTs, six were missed due to the limited resolution of G-banding karyotyping analysis, and the rest were mostly owing to the similar banding patterns and/or comparable sizes shared by the two segments exchanged. CONCLUSION A normal karyotype does not eliminate the possibility of carrying BT for couples with uRPL. The use of PGT-A allows us to perceive the "carrier couples" missed by karyotyping analysis, providing an increased risk of finding cryptic BTs if similar SVs are always detected on two chromosomes among multiple embryos. Nonetheless, certain carriers with translocated segments of sub-resolution may still go unnoticed.
Collapse
Affiliation(s)
- Shuo Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Hongchang Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yuan Gao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yang Zou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Xunqiang Yin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai Jiao Tong University, Shanghai, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kwong Wai Choy
- Department of Obstetrics & Gynecology, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
- The Chinese University of Hong Kong-Baylor College of Medicine Joint Center For Medical Genetics, Hong Kong, China.
- Hong Kong Branches of Chinese National Engineering Research Centers-Center for Assisted Reproductive Technology and Reproductive Genetics, Hong Kong, China.
| | - Zirui Dong
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Department of Obstetrics & Gynecology, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Junhao Yan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Shandong University, Jinan, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.
| |
Collapse
|
12
|
Ye JC, Tang G. Optical Genome Mapping: A Machine-Based Platform in Cytogenomics. Methods Mol Biol 2024; 2825:113-124. [PMID: 38913305 DOI: 10.1007/978-1-0716-3946-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Optical genome mapping (OGM) has generated excitement following decades of research and development. Now, commercially available technical platforms have been used to compare various other cytogenetic and cytogenomic technologies, including karyotype, microarrays, and DNA sequencing, with impressive results. In this chapter, using OGM as a case study, we advocate for a new trend in future cytogenomics, emphasizing the power of machine automation to deliver higher-quality cytogenomic data. By briefly discussing OGM, along with its major advantages and limitations, we underscore the importance of karyotype-based genomic research, from both a theoretical framework and a new technology perspective. We also call for the encouragement of further technological platform development for the future of cytogenetics and cytogenomics.
Collapse
Affiliation(s)
- Jing Christine Ye
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Guilin Tang
- Department of Hematopathology, Division of Pathology-Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Nogin Y, Bar-Lev D, Hanania D, Detinis Zur T, Ebenstein Y, Yaakobi E, Weinberger N, Shechtman Y. Design of optimal labeling patterns for optical genome mapping via information theory. Bioinformatics 2023; 39:btad601. [PMID: 37758248 PMCID: PMC10563147 DOI: 10.1093/bioinformatics/btad601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
MOTIVATION Optical genome mapping (OGM) is a technique that extracts partial genomic information from optically imaged and linearized DNA fragments containing fluorescently labeled short sequence patterns. This information can be used for various genomic analyses and applications, such as the detection of structural variations and copy-number variations, epigenomic profiling, and microbial species identification. Currently, the choice of labeled patterns is based on the available biochemical methods and is not necessarily optimized for the application. RESULTS In this work, we develop a model of OGM based on information theory, which enables the design of optimal labeling patterns for specific applications and target organism genomes. We validated the model through experimental OGM on human DNA and simulations on bacterial DNA. Our model predicts up to 10-fold improved accuracy by optimal choice of labeling patterns, which may guide future development of OGM biochemical labeling methods and significantly improve its accuracy and yield for applications such as epigenomic profiling and cultivation-free pathogen identification in clinical samples. AVAILABILITY AND IMPLEMENTATION https://github.com/yevgenin/PatternCode.
Collapse
Affiliation(s)
- Yevgeni Nogin
- Russell Berrie Nanotechnology Institute, Technion, Haifa 320003, Israel
| | | | - Dganit Hanania
- Department of Computer Science, Technion, Haifa 320003, Israel
| | - Tahir Detinis Zur
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Ebenstein
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eitan Yaakobi
- Department of Computer Science, Technion, Haifa 320003, Israel
| | - Nir Weinberger
- Department of Electrical Engineering, Technion, Haifa 320003, Israel
| | - Yoav Shechtman
- Russell Berrie Nanotechnology Institute, Technion, Haifa 320003, Israel
- Department of Biomedical Engineering, Technion, Haifa 320003, Israel
- Lorry I. Lokey Center for Life Sciences and Engineering, Technion, Haifa 320003, Israel
| |
Collapse
|
14
|
Rautiainen M, Nurk S, Walenz BP, Logsdon GA, Porubsky D, Rhie A, Eichler EE, Phillippy AM, Koren S. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nat Biotechnol 2023; 41:1474-1482. [PMID: 36797493 PMCID: PMC10427740 DOI: 10.1038/s41587-023-01662-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/03/2023] [Indexed: 02/18/2023]
Abstract
The Telomere-to-Telomere consortium recently assembled the first truly complete sequence of a human genome. To resolve the most complex repeats, this project relied on manual integration of ultra-long Oxford Nanopore sequencing reads with a high-resolution assembly graph built from long, accurate PacBio high-fidelity reads. We have improved and automated this strategy in Verkko, an iterative, graph-based pipeline for assembling complete, diploid genomes. Verkko begins with a multiplex de Bruijn graph built from long, accurate reads and progressively simplifies this graph by integrating ultra-long reads and haplotype-specific markers. The result is a phased, diploid assembly of both haplotypes, with many chromosomes automatically assembled from telomere to telomere. Running Verkko on the HG002 human genome resulted in 20 of 46 diploid chromosomes assembled without gaps at 99.9997% accuracy. The complete assembly of diploid genomes is a critical step towards the construction of comprehensive pangenome databases and chromosome-scale comparative genomics.
Collapse
Affiliation(s)
- Mikko Rautiainen
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Oxford Nanopore Technologies, Oxford, UK
| | - Brian P Walenz
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Sahajpal NS, Mondal AK, Hastie A, Chaubey A, Kolhe R. Optical Genome Mapping for Oncology Applications. Curr Protoc 2023; 3:e910. [PMID: 37888957 DOI: 10.1002/cpz1.910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Optical genome mapping (OGM) is a next-generation cytogenomic technology that has the potential to replace standard-of-care technologies used in the genetic workup of various malignancies. The ability to detect various classes of structural variations that include copy number variations, deletions, duplications, balanced and unbalanced events (insertions, inversions, and translocation) and complex genomic rearrangements in a single assay and analysis demonstrates the utility of the technology in tumor research and clinical application. Herein, we provide the methodological details for performing OGM and pre- and post-analytical quality control (QC) checks and describe critical steps that should be performed with caution, probable causes for specific QC failures, and potential method modifications that could be implemented as part of troubleshooting. The protocol description and troubleshooting guide should help new and current users of the technology to improve or troubleshoot the problems (if any) in their workflow. © 2023 Wiley Periodicals LLC. Basic Protocol: Optical genome mapping.
Collapse
Affiliation(s)
| | - Ashis K Mondal
- Department of Pathology, Augusta University, Augusta, Georgia
| | | | | | - Ravindra Kolhe
- Department of Pathology, Augusta University, Augusta, Georgia
| |
Collapse
|
16
|
Budassi J, Cho N, Del Valle A, Sokolov J. Microfluidic delivery of cutting enzymes for fragmentation of surface-adsorbed DNA molecules. PLoS One 2023; 18:e0250054. [PMID: 37672538 PMCID: PMC10482287 DOI: 10.1371/journal.pone.0250054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/24/2023] [Indexed: 09/08/2023] Open
Abstract
We describe a method for fragmenting, in-situ, surface-adsorbed and immobilized DNAs on polymethylmethacrylate(PMMA)-coated silicon substrates using microfluidic delivery of the cutting enzyme DNase I. Soft lithography is used to produce silicone elastomer (Sylgard 184) gratings which form microfluidic channels for delivery of the enzyme. Bovine serum albumin (BSA) is used to reduce DNase I adsorption to the walls of the microchannels and enable diffusion of the cutting enzyme to a distance of 10mm. Due to the DNAs being immobilized, the fragment order is maintained on the surface. Possible methods of preserving the order for application to sequencing are discussed.
Collapse
Affiliation(s)
- Julia Budassi
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - NaHyun Cho
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Anthony Del Valle
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, United States of America
| | - Jonathan Sokolov
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
17
|
van Dijk EL, Naquin D, Gorrichon K, Jaszczyszyn Y, Ouazahrou R, Thermes C, Hernandez C. Genomics in the long-read sequencing era. Trends Genet 2023; 39:649-671. [PMID: 37230864 DOI: 10.1016/j.tig.2023.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Long-read sequencing (LRS) technologies have provided extremely powerful tools to explore genomes. While in the early years these methods suffered technical limitations, they have recently made significant progress in terms of read length, throughput, and accuracy and bioinformatics tools have strongly improved. Here, we aim to review the current status of LRS technologies, the development of novel methods, and the impact on genomics research. We will explore the most impactful recent findings made possible by these technologies focusing on high-resolution sequencing of genomes and transcriptomes and the direct detection of DNA and RNA modifications. We will also discuss how LRS methods promise a more comprehensive understanding of human genetic variation, transcriptomics, and epigenetics for the coming years.
Collapse
Affiliation(s)
- Erwin L van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kévin Gorrichon
- National Center of Human Genomics Research (CNRGH), 91000 Évry-Courcouronnes, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Rania Ouazahrou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Céline Hernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
18
|
Halder S, Paul M, Dyagala S, Aggrawal R, Aswal VK, Biswas S, Saha SK. Role of Gemini Surfactants with Variable Spacers and SiO 2 Nanoparticles in ct-DNA Compaction and Applications toward In Vitro/ In Vivo Gene Delivery. ACS APPLIED BIO MATERIALS 2023. [PMID: 37277159 DOI: 10.1021/acsabm.3c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Compaction of calf thymus DNA (ct-DNA) by two cationic gemini surfactants, 12-4-12 and 12-8-12, in the absence and presence of negatively charged SiO2 nanoparticles (NPs) (∼100 nm) has been explored using various techniques. 12-8-12 having a longer hydrophobic spacer induces a greater extent of ct-DNA compaction than 12-4-12, which becomes more efficient with SiO2 NPs. While 50% ct-DNA compaction in the presence of SiO2 NPs occurs at ∼77 nM of 12-8-12 and ∼130 nM of 12-4-12, but a conventional counterpart surfactant, DTAB, does it at its concentration as high as ∼7 μM. Time-resolved fluorescence anisotropy measurements show changes in the rotational dynamics of a fluorescent probe, DAPI, and helix segments in the condensed DNA. Fluorescence lifetime data and ethidium bromide exclusion assays reveal the binding sites of surfactants to ct-DNA. 12-8-12 with SiO2 NPs has shown the highest cell viability (≥90%) and least cell death in the human embryonic kidney (HEK) 293 cell lines in contrast to the cell viability of ≤80% for DTAB. These results show that 12-8-12 with SiO2 NPs has the highest time and dose-dependent cytotoxicity compared to 12-8-12 and 12-4-12 in the murine breast cancer 4T1 cell line. Fluorescence microscopy and flow cytometry are performed for in vitro cellular uptake of YOYO-1-labeled ct-DNA with surfactants and SiO2 NPs using 4T1 cells after 3 and 6 h incubations. The in vivo tumor accumulation studies are carried out using a real-time in vivo imaging system after intravenous injection of the samples into 4T1 tumor-bearing mice. 12-8-12 with SiO2 has delivered the highest amount of ct-DNA in cells and tumors in a time-dependent manner. Thus, the application of a gemini surfactant with a hydrophobic spacer and SiO2 NPs in compacting and delivering ct-DNA to the tumor is proven, warranting its further exploration in nucleic acid therapy for cancer treatment.
Collapse
Affiliation(s)
- Sayantan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Shalini Dyagala
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Rishika Aggrawal
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, Maharashtra 400085, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Subit K Saha
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| |
Collapse
|
19
|
Pradhan S, Apaydin S, Bucevičius J, Gerasimaitė R, Kostiuk G, Lukinavičius G. Sequence-specific DNA labelling for fluorescence microscopy. Biosens Bioelectron 2023; 230:115256. [PMID: 36989663 DOI: 10.1016/j.bios.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The preservation of nucleus structure during microscopy imaging is a top priority for understanding chromatin organization, genome dynamics, and gene expression regulation. In this review, we summarize the sequence-specific DNA labelling methods that can be used for imaging in fixed and/or living cells without harsh treatment and DNA denaturation: (i) hairpin polyamides, (ii) triplex-forming oligonucleotides, (iii) dCas9 proteins, (iv) transcription activator-like effectors (TALEs) and (v) DNA methyltransferases (MTases). All these techniques are capable of identifying repetitive DNA loci and robust probes are available for telomeres and centromeres, but visualizing single-copy sequences is still challenging. In our futuristic vision, we see gradual replacement of the historically important fluorescence in situ hybridization (FISH) by less invasive and non-destructive methods compatible with live cell imaging. Combined with super-resolution fluorescence microscopy, these methods will open the possibility to look into unperturbed structure and dynamics of chromatin in living cells, tissues and whole organisms.
Collapse
|
20
|
Ogiwara Y, Hattori A, Ikegawa K, Hasegawa Y, Kuroki Y, Miyado M, Fukami M. Optical Genome Mapping for a Patient with a Congenital Disorder and Chromosomal Translocation. Cytogenet Genome Res 2023; 162:617-624. [PMID: 37231804 DOI: 10.1159/000531103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
We performed optical genome mapping (OGM), a newly developed cytogenetic technique, for a patient with a disorder of sex development (DSD) and a 46,XX,t(9;11)(p22;p13) karyotype. The results of OGM were validated using other methods. OGM detected a 9;11 reciprocal translocation and successfully mapped its breakpoints to small regions of 0.9-12.3 kb. OGM identified 46 additional small structural variants, only three of which were detected by array-based comparative genomic hybridization. OGM suggested the presence of complex rearrangements on chromosome 10; however, these variants appeared to be artifacts. The 9;11 translocation was unlikely to be associated with DSD, while the pathogenicity of the other structural variants remained unknown. These results indicate that OGM is a powerful tool for detecting and characterizing chromosomal structural variations, although the current methods of OGM data analyses need to be improved.
Collapse
Affiliation(s)
- Yasuko Ogiwara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Tokyo, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kento Ikegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yoko Kuroki
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
21
|
Wang C, Wu DD, Yuan YH, Yao MC, Han JL, Wu YJ, Shan F, Li WP, Zhai JQ, Huang M, Peng SM, Cai QH, Yu JY, Liu QX, Liu ZY, Li LX, Teng MS, Huang W, Zhou JY, Zhang C, Chen W, Tu XL. Population genomic analysis provides evidence of the past success and future potential of South China tiger captive conservation. BMC Biol 2023; 21:64. [PMID: 37069598 PMCID: PMC10111772 DOI: 10.1186/s12915-023-01552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 02/21/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Among six extant tiger subspecies, the South China tiger (Panthera tigris amoyensis) once was widely distributed but is now the rarest one and extinct in the wild. All living South China tigers are descendants of only two male and four female wild-caught tigers and they survive solely in zoos after 60 years of effective conservation efforts. Inbreeding depression and hybridization with other tiger subspecies were believed to have occurred within the small, captive South China tiger population. It is therefore urgently needed to examine the genomic landscape of existing genetic variation among the South China tigers. RESULTS In this study, we assembled a high-quality chromosome-level genome using long-read sequences and re-sequenced 29 high-depth genomes of the South China tigers. By combining and comparing our data with the other 40 genomes of six tiger subspecies, we identified two significantly differentiated genomic lineages among the South China tigers, which harbored some rare genetic variants introgressed from other tiger subspecies and thus maintained a moderate genetic diversity. We noticed that the South China tiger had higher FROH values for longer runs of homozygosity (ROH > 1 Mb), an indication of recent inbreeding/founder events. We also observed that the South China tiger had the least frequent homozygous genotypes of both high- and moderate-impact deleterious mutations, and lower mutation loads than both Amur and Sumatran tigers. Altogether, our analyses indicated an effective genetic purging of deleterious mutations in homozygous states from the South China tiger, following its population contraction with a controlled increase in inbreeding based on its pedigree records. CONCLUSIONS The identification of two unique founder/genomic lineages coupled with active genetic purging of deleterious mutations in homozygous states and the genomic resources generated in our study pave the way for a genomics-informed conservation, following the real-time monitoring and rational exchange of reproductive South China tigers among zoos.
Collapse
Affiliation(s)
- Chen Wang
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| | | | - Meng-Cheng Yao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- International Livestock Research Institute (ILRI), Nairobi, 00100, Kenya
| | - Ya-Jiang Wu
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Fen Shan
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Wan-Ping Li
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Jun-Qiong Zhai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Mian Huang
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Shi-Ming Peng
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Qin-Hui Cai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | | | | | | | - Lin-Xiang Li
- Suzhou Shangfangshan Forest Zoo, Suzhou, 215009, China
| | | | - Wei Huang
- Nanchang Zoo, Nanchang, 330025, China
| | - Jun-Ying Zhou
- Chinese Association of Zoological Gardens, Beijing, 100037, China
| | - Chi Zhang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China.
| | - Xiao-Long Tu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China.
| |
Collapse
|
22
|
Yu S, Liu Z, Li M, Zhou D, Hua P, Cheng H, Fan W, Xu Y, Liu D, Liang S, Zhang Y, Xie M, Tang J, Jiang Y, Hou S, Zhou Z. Resequencing of a Pekin duck breeding population provides insights into the genomic response to short-term artificial selection. Gigascience 2023; 12:giad016. [PMID: 36971291 PMCID: PMC10041536 DOI: 10.1093/gigascience/giad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Short-term, intense artificial selection drives fast phenotypic changes in domestic animals and leaves imprints on their genomes. However, the genetic basis of this selection response is poorly understood. To better address this, we employed the Pekin duck Z2 pure line, in which the breast muscle weight was increased nearly 3-fold after 10 generations of breeding. We denovo assembled a high-quality reference genome of a female Pekin duck of this line (GCA_003850225.1) and identified 8.60 million genetic variants in 119 individuals among 10 generations of the breeding population. RESULTS We identified 53 selected regions between the first and tenth generations, and 93.8% of the identified variations were enriched in regulatory and noncoding regions. Integrating the selection signatures and genome-wide association approach, we found that 2 regions covering 0.36 Mb containing UTP25 and FBRSL1 were most likely to contribute to breast muscle weight improvement. The major allele frequencies of these 2 loci increased gradually with each generation following the same trend. Additionally, we found that a copy number variation region containing the entire EXOC4 gene could explain 1.9% of the variance in breast muscle weight, indicating that the nervous system may play a role in economic trait improvement. CONCLUSIONS Our study not only provides insights into genomic dynamics under intense artificial selection but also provides resources for genomics-enabled improvements in duck breeding.
Collapse
Affiliation(s)
- Simeng Yu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zihua Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Dongke Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ping Hua
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hong Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wenlei Fan
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yaxi Xu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dapeng Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Suyun Liang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunsheng Zhang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ming Xie
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Tang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
23
|
Optical Genome Mapping for Cytogenetic Diagnostics in AML. Cancers (Basel) 2023; 15:cancers15061684. [PMID: 36980569 PMCID: PMC10046241 DOI: 10.3390/cancers15061684] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The classification and risk stratification of acute myeloid leukemia (AML) is based on reliable genetic diagnostics. A broad and expanding variety of relevant aberrations are structural variants beyond single-nucleotide variants. Optical Genome Mapping is an unbiased, genome-wide, amplification-free method for the detection of structural variants. In this review, the current knowledge of Optical Genome Mapping (OGM) with regard to diagnostics in hematological malignancies in general, and AML in specific, is summarized. Furthermore, this review focuses on the ability of OGM to expand the use of cytogenetic diagnostics in AML and perhaps even replace older techniques such as chromosomal-banding analysis, fluorescence in situ hybridization, or copy number variation microarrays. Finally, OGM is compared to amplification-based techniques and a brief outlook for future directions is given.
Collapse
|
24
|
Gladman N, Goodwin S, Chougule K, Richard McCombie W, Ware D. Era of gapless plant genomes: innovations in sequencing and mapping technologies revolutionize genomics and breeding. Curr Opin Biotechnol 2023; 79:102886. [PMID: 36640454 PMCID: PMC9899316 DOI: 10.1016/j.copbio.2022.102886] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023]
Abstract
Whole-genome sequencing and assembly have revolutionized plant genetics and molecular biology over the last two decades. However, significant shortcomings in first- and second-generation technology resulted in imperfect reference genomes: numerous and large gaps of low quality or undeterminable sequence in areas of highly repetitive DNA along with limited chromosomal phasing restricted the ability of researchers to characterize regulatory noncoding elements and genic regions that underwent recent duplication events. Recently, advances in long-read sequencing have resulted in the first gapless, telomere-to-telomere (T2T) assemblies of plant genomes. This leap forward has the potential to increase the speed and confidence of genomics and molecular experimentation while reducing costs for the research community.
Collapse
Affiliation(s)
- Nicholas Gladman
- U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, 538 Tower Rd, Ithaca, NY 14853, USA; Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 , USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 , USA
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 , USA
| | | | - Doreen Ware
- U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, 538 Tower Rd, Ithaca, NY 14853, USA; Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 , USA.
| |
Collapse
|
25
|
Kim T, Kim S, Noh C, Hwang H, Shin J, Won N, Lee S, Kim D, Jang Y, Hong SJ, Park J, Kim SJ, Jang S, Lim KI, Jo K. Counting DNA molecules on a microchannel surface for quantitative analysis. Talanta 2023; 252:123826. [DOI: 10.1016/j.talanta.2022.123826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 12/30/2022]
|
26
|
Koppikar P, Shenoy S, Guruju N, Hegde M. Testing for Facioscapulohumeral Muscular Dystrophy with Optical Genome Mapping. Curr Protoc 2023; 3:e629. [PMID: 36648278 DOI: 10.1002/cpz1.629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The introduction of optical genome mapping has improved time constraints and a lack of specificity from previous methodologies when performing genome-wide analyses of samples. Optical genome mapping allows for the detection of structural variations, aberrations, and functionality traits from a single stained molecule of DNA. Though the preparation time is increased compared to previously utilized visualization techniques, optical genome mapping significantly reduces the time needed for analysis. Specifically, individual disease pipelines have been developed to rapidly analyze prepared samples. One of these diseases, Facioscapulohumeral Muscular Dystrophy (FSHD), is detected through quantification of the D4Z4 repeat array on chromosome 4q35. Optical genome mapping, with the ability to enumerate the repeats of the D4Z4 array, has demonstrated the capability to precisely diagnose FSHD. In this protocol, the preparation of samples and subsequent loading and analysis in an optical genome mapping system is discussed for the detection and analysis of FSHD. These methods should prove highly useful in FSHD analyses and beyond with the development of further disease analysis pipelines within the instrument. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Genomic DNA isolation, labeling, and staining Basic Protocol 2: Mapping and analysis with the Bionano Saphyr® system.
Collapse
Affiliation(s)
| | | | - Naga Guruju
- PerkinElmer Genomics, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
27
|
Ding X, Han J, Van Winkle LS, Zhang QY. Detection of Transgene Location in the CYP2A13/2B6/2F1-transgenic Mouse Model using Optical Genome Mapping Technology. Drug Metab Dispos 2023; 51:46-53. [PMID: 36273825 PMCID: PMC9832375 DOI: 10.1124/dmd.122.001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 01/14/2023] Open
Abstract
Most transgenic mouse models are generated through random integration of the transgene. The location of the transgene provides valuable information for assessing potential effects of the transgenesis on the host and for designing genotyping protocols that can amplify across the integration site, but it is challenging to identify. Here, we report the successful utility of optical genome mapping technology to identify the transgene insertion site in a CYP2A13/2B6/2F1-transgenic mouse model, which produces three human cytochrome P450 (P450) enzymes (CYP2A13, CYP2B6, and CYP2F1) that are encoded by neighboring genes on human chromosome 19. These enzymes metabolize many drugs, respiratory toxicants, and chemical carcinogens. Initial efforts to identify candidate insertion sites by whole genome sequencing was unsuccessful, apparently because the transgene is located in a region of the mouse genome that contains highly repetitive sequences. Subsequent utility of the optical genome mapping approach, which compares genome-wide marker distribution between the transgenic mouse genome and a reference mouse (GRCm38) or human (GRCh38) genome, localized the insertion site to mouse chromosome 14, between two marker positions at 4451324 base pair and 4485032 base pair. A transgene-mouse genome junction sequence was further identified through long-polymerase chain reaction amplification and DNA sequencing at GRCm38 Chr.14:4484726. The transgene insertion (∼2.4 megabase pair) contained 5-7 copies of the human transgenes, which replaced a 26.9-33.4 kilobase pair mouse genomic region, including exons 1-4 of Gm3182, a predicted and highly redundant gene. Finally, the sequencing results enabled the design of a new genotyping protocol that can distinguish between hemizygous and homozygous CYP2A13/2B6/2F1-transgenic mice. SIGNIFICANCE STATEMENT: This study characterizes the genomic structure of, and provides a new genotyping method for, a transgenic mouse model that expresses three human P450 enzymes, CYP2A13, CYP2B6, and CYP2F1, that are important in xenobiotic metabolism and toxicity. The demonstrated success in applying the optical genome mapping technology for identification of transgene insertion sites should encourage others to do the same for other transgenic models generated through random integration, including most of the currently available human P450 transgenic mouse models.
Collapse
Affiliation(s)
- Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| | - John Han
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| | - Laura S Van Winkle
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| |
Collapse
|
28
|
Šimková H, Tulpová Z, Cápal P. Flow Sorting-Assisted Optical Mapping. Methods Mol Biol 2023; 2672:465-483. [PMID: 37335494 DOI: 10.1007/978-1-0716-3226-0_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Optical mapping-a technique that visualizes short sequence motives along DNA molecules of hundred kilobases to megabase in size-has found an important place in genome research. It is widely used to facilitate genome sequence assemblies and analyses of genome structural variations. Application of the technique is conditional on availability of highly pure ultra-long high-molecular-weight DNA (uHMW DNA), which is challenging to achieve in plants due to the presence of the cell wall, chloroplasts, and secondary metabolites, just as a high content of polysaccharides and DNA nucleases in some species. These obstacles can be overcome by employment of flow cytometry, enabling a fast and highly efficient purification of cell nuclei or metaphase chromosomes, which are afterward embedded in agarose plugs and used to isolate the uHMW DNA in situ. Here, we provide a detailed protocol for the flow sorting-assisted uHMW DNA preparation that has been successfully used to construct whole-genome as well as chromosomal optical maps for 20 plant species from several plant families.
Collapse
Affiliation(s)
- Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic.
| | - Zuzana Tulpová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| |
Collapse
|
29
|
Heo W, Seo J, Lee Y, Kim Y. Fluid-driven DNA stretching for single-molecule studies on chromatin-associated proteins. Biochem Biophys Res Commun 2022; 634:122-128. [DOI: 10.1016/j.bbrc.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022]
|
30
|
Dai P, Zhu X, Pei Y, Chen P, Li J, Gao Z, Liang Y, Kong X. Evaluation of optical genome mapping for detecting chromosomal translocation in clinical cytogenetics. Mol Genet Genomic Med 2022; 10:e1936. [PMID: 35384386 PMCID: PMC9184658 DOI: 10.1002/mgg3.1936] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Balanced reciprocal translocation is one of the most common chromosomal abnormalities in humans that may lead to infertility, recurrent pregnancy loss, or having children with physical or mental abnormalities. Karyotyping and FISH are traditional detection approaches with a low resolution. Bionano optical genome mapping (OGM) developed in recent years can be used to analyze chromosomal abnormalities at a higher resolution, providing the possibility of more in‐depth analyses of balanced chromosome translocations. Methods To evaluate the feasibility of OGM to detect chromosome balanced translocations, 10 genetic outpatients were collected and detected simultaneously by karyotype analysis, FISH, CNV‐seq, and Bionano OGM in this study. Results The results showed that the karyotypes of the patients were detected by karyotype analysis, FISH, and Bionano OGM, but one patient with karyotype t(Y,19) was not correctly detected by OGM. There were not find any chromosome abnormality by CNV‐seq. More importantly, OGM allowed the location of the mutation to the gene level, which is important for aiding diagnoses, compared to karyotype analysis, and FISH. Conclusions This study shows that OGM can be a high adjunctive diagnostic method for detecting balanced chromosome translocations, but the accuracy and precision of OGM detecting mutations need to be gradually improved in telomere and centromere regions.
Collapse
Affiliation(s)
- Peng Dai
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofan Zhu
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Peng Chen
- Department of Neurology, The First Hospital of Yulin, Yulin, China
| | | | - Zhi Gao
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Liang
- GrandOmics Diagnostic, Wuhan, China
| | - Xiangdong Kong
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Li M, Li LM. RegScaf: a regression approach to scaffolding. Bioinformatics 2022; 38:2675-2682. [PMID: 35561180 PMCID: PMC9326850 DOI: 10.1093/bioinformatics/btac174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/19/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Crucial to the correctness of a genome assembly is the accuracy of the underlying scaffolds that specify the orders and orientations of contigs together with the gap distances between contigs. The current methods construct scaffolds based on the alignments of 'linking' reads against contigs. We found that some 'optimal' alignments are mistaken due to factors such as the contig boundary effect, particularly in the presence of repeats. Occasionally, the incorrect alignments can even overwhelm the correct ones. The detection of the incorrect linking information is challenging in any existing methods. RESULTS In this study, we present a novel scaffolding method RegScaf. It first examines the distribution of distances between contigs from read alignment by the kernel density. When multiple modes are shown in a density, orientation-supported links are grouped into clusters, each of which defines a linking distance corresponding to a mode. The linear model parameterizes contigs by their positions on the genome; then each linking distance between a pair of contigs is taken as an observation on the difference of their positions. The parameters are estimated by minimizing a global loss function, which is a version of trimmed sum of squares. The least trimmed squares estimate has such a high breakdown value that it can automatically remove the mistaken linking distances. The results on both synthetic and real datasets demonstrate that RegScaf outperforms some popular scaffolders, especially in the accuracy of gap estimates by substantially reducing extremely abnormal errors. Its strength in resolving repeat regions is exemplified by a real case. Its adaptability to large genomes and TGS long reads is validated as well. AVAILABILITY AND IMPLEMENTATION RegScaf is publicly available at https://github.com/lemontealala/RegScaf.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mengtian Li
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei M Li
- To whom correspondence should be addressed.
| |
Collapse
|
32
|
Hou YCC, Neidich JA, Duncavage EJ, Spencer DH, Schroeder MC. Clinical whole-genome sequencing in cancer diagnosis. Hum Mutat 2022; 43:1519-1530. [PMID: 35471774 DOI: 10.1002/humu.24381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 11/10/2022]
Abstract
Characterizing the genomic landscape of cancers is a routine part of clinical care that began with the discovery of the Philadelphia chromosome and has since coevolved with genomic technologies. Genomic analysis of tumors at the nucleotide level using DNA sequencing has revolutionized the understanding of cancer biology and identified new molecular drivers of disease that have led to therapeutic advances and improved patient outcomes. However, the application of next-generation sequencing in the clinical laboratory has generally been limited until very recently to targeted analysis of selected genes. Recent technological innovations and reductions in sequencing costs are now able to deliver the long-promised goal of tumor whole-genome sequencing as a practical clinical assay.
Collapse
Affiliation(s)
- Ying-Chen C Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julie A Neidich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David H Spencer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Molly C Schroeder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
33
|
Suttorp J, Lühmann JL, Behrens YL, Göhring G, Steinemann D, Reinhardt D, von Neuhoff N, Schneider M. Optical Genome Mapping as a Diagnostic Tool in Pediatric Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:2058. [PMID: 35565187 PMCID: PMC9102001 DOI: 10.3390/cancers14092058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric AML is characterized by numerous genetic aberrations (chromosomal translocations, deletions, insertions) impacting its classification for risk of treatment failure. Aberrations are described by classical cytogenetic procedures (karyotyping, FISH), which harbor limitations (low resolution, need for cell cultivation, cost-intensiveness, experienced staff required). Optical Genome Mapping (OGM) is an emerging chip-based DNA technique combining high resolution (~500 bp) with a relatively short turnaround time. Twenty-four pediatric patients with AML, bi-lineage leukemia, and mixed-phenotype acute leukemia were analyzed by OGM, and the results were compared with cytogenetics. Results were discrepant in 17/24 (70%) cases, including 32 previously unknown alterations called by OGM only. One newly detected deletion and two translocations were validated by primer walking, breakpoint-spanning PCR, and DNA sequencing. As an added benefit, in two cases, OGM identified a new minimal residual disease (MRD) marker. Comparing impact on risk stratification in de novo AML, 19/20 (95%) cases had concordant results while only OGM unraveled another high-risk aberration. Thus, OGM considerably expands the methodological spectrum to optimize the diagnosis of pediatric AML via the identification of new aberrations. Results will contribute to a better understanding of leukemogenesis in pediatric AML. In addition, aberrations identified by OGM may provide markers for MRD monitoring.
Collapse
Affiliation(s)
- Julia Suttorp
- Clinic of Pediatrics III, University Hospital Essen, Virchow-Straße 171, 45147 Essen, Germany; (J.S.); (D.R.); (N.v.N.)
| | - Jonathan Lukas Lühmann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (Y.L.B.); (G.G.); (D.S.)
| | - Yvonne Lisa Behrens
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (Y.L.B.); (G.G.); (D.S.)
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (Y.L.B.); (G.G.); (D.S.)
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (Y.L.B.); (G.G.); (D.S.)
| | - Dirk Reinhardt
- Clinic of Pediatrics III, University Hospital Essen, Virchow-Straße 171, 45147 Essen, Germany; (J.S.); (D.R.); (N.v.N.)
| | - Nils von Neuhoff
- Clinic of Pediatrics III, University Hospital Essen, Virchow-Straße 171, 45147 Essen, Germany; (J.S.); (D.R.); (N.v.N.)
| | - Markus Schneider
- Clinic of Pediatrics III, University Hospital Essen, Virchow-Straße 171, 45147 Essen, Germany; (J.S.); (D.R.); (N.v.N.)
| |
Collapse
|
34
|
Gordeeva V, Sharova E, Arapidi G. Progress in Methods for Copy Number Variation Profiling. Int J Mol Sci 2022; 23:ijms23042143. [PMID: 35216262 PMCID: PMC8879278 DOI: 10.3390/ijms23042143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Copy number variations (CNVs) are the predominant class of structural genomic variations involved in the processes of evolutionary adaptation, genomic disorders, and disease progression. Compared with single-nucleotide variants, there have been challenges associated with the detection of CNVs owing to their diverse sizes. However, the field has seen significant progress in the past 20–30 years. This has been made possible due to the rapid development of molecular diagnostic methods which ensure a more detailed view of the genome structure, further complemented by recent advances in computational methods. Here, we review the major approaches that have been used to routinely detect CNVs, ranging from cytogenetics to the latest sequencing technologies, and then cover their specific features.
Collapse
Affiliation(s)
- Veronika Gordeeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.S.); (G.A.)
- Moscow Institute of Physics and Technology, National Research University, Moscow Oblast, 141701 Moscow, Russia
- Correspondence:
| | - Elena Sharova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.S.); (G.A.)
| | - Georgij Arapidi
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.S.); (G.A.)
- Moscow Institute of Physics and Technology, National Research University, Moscow Oblast, 141701 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
35
|
Cao HX, Vu GTH, Gailing O. From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. Int J Mol Sci 2022; 23:966. [PMID: 35055150 PMCID: PMC8780650 DOI: 10.3390/ijms23020966] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Due to the economic and ecological importance of forest trees, modern breeding and genetic manipulation of forest trees have become increasingly prevalent. The CRISPR-based technology provides a versatile, powerful, and widely accepted tool for analyzing gene function and precise genetic modification in virtually any species but remains largely unexplored in forest species. Rapidly accumulating genetic and genomic resources for forest trees enabled the identification of numerous genes and biological processes that are associated with important traits such as wood quality, drought, or pest resistance, facilitating the selection of suitable gene editing targets. Here, we introduce and discuss the latest progress, opportunities, and challenges of genome sequencing and editing for improving forest sustainability.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, 37073 Gottingen, Germany
| |
Collapse
|
36
|
Yuan Y. Applications of Optical Mapping for Plant Genome Assembly and Structural Variation Detection. Methods Mol Biol 2022; 2443:245-257. [PMID: 35037210 DOI: 10.1007/978-1-0716-2067-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optical mapping plays an important role in plant genomics, particularly in plant genome assembly and large-scale structural variation detection. While DNA sequencing provides base-by-base nucleotide information, optical mapping shows the physical locations of selected enzyme restriction sites in a genome. The long single-molecule maps produced by optical mapping make it a useful auxiliary technique to DNA sequencing, which generally cannot span large and complex genomic regions. Although optical mapping, therefore, offers unique advantages to researchers, there are few dedicated tools to assist in optical mapping analyses. In this chapter, we present runBNG2, a successor of runBNG to help optical-mapping data analysis for diverse datasets.
Collapse
Affiliation(s)
- Yuxuan Yuan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
37
|
Torstensson E, Goyal G, Johnning A, Westerlund F, Ambjörnsson T. Combining dense and sparse labeling in optical DNA mapping. PLoS One 2021; 16:e0260489. [PMID: 34843574 PMCID: PMC8629184 DOI: 10.1371/journal.pone.0260489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
Optical DNA mapping (ODM) is based on fluorescent labeling, stretching and imaging of single DNA molecules to obtain sequence-specific fluorescence profiles, DNA barcodes. These barcodes can be mapped to theoretical counterparts obtained from DNA reference sequences, which in turn allow for DNA identification in complex samples and for detecting structural changes in individual DNA molecules. There are several types of DNA labeling schemes for ODM and for each labeling type one or several types of match scoring methods are used. By combining the information from multiple labeling schemes one can potentially improve mapping confidence; however, combining match scores from different labeling assays has not been implemented yet. In this study, we introduce two theoretical methods for dealing with analysis of DNA molecules with multiple label types. In our first method, we convert the alignment scores, given as output from the different assays, into p-values using carefully crafted null models. We then combine the p-values for different label types using standard methods to obtain a combined match score and an associated combined p-value. In the second method, we use a block bootstrap approach to check for the uniqueness of a match to a database for all barcodes matching with a combined p-value below a predefined threshold. For obtaining experimental dual-labeled DNA barcodes, we introduce a novel assay where we cut plasmid DNA molecules from bacteria with restriction enzymes and the cut sites serve as sequence-specific markers, which together with barcodes obtained using the established competitive binding labeling method, form a dual-labeled barcode. All experimental data in this study originates from this assay, but we point out that our theoretical framework can be used to combine data from all kinds of available optical DNA mapping assays. We test our multiple labeling frameworks on barcodes from two different plasmids and synthetically generated barcodes (combined competitive-binding- and nick-labeling). It is demonstrated that by simultaneously using the information from all label types, we can substantially increase the significance when we match experimental barcodes to a database consisting of theoretical barcodes for all sequenced plasmids.
Collapse
Affiliation(s)
- Erik Torstensson
- Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Gaurav Goyal
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Johnning
- Department of Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, Gothenburg, Sweden
- Systems and Data Analysis, Fraunhofer-Chalmers Centre, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research, CARe, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Tobias Ambjörnsson
- Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
38
|
Righini M, Costa J, Zhou W. DNA bridges: A novel platform for single-molecule sequencing and other DNA-protein interaction applications. PLoS One 2021; 16:e0260428. [PMID: 34807931 PMCID: PMC8608331 DOI: 10.1371/journal.pone.0260428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/10/2021] [Indexed: 01/22/2023] Open
Abstract
DNA molecular combing is a technique that stretches thousands of long individual DNA molecules (up to 10 Mbp) into a parallel configuration on surface. It has previously been proposed to sequence these molecules by synthesis. However, this approach poses two critical challenges: 1-Combed DNA molecules are overstretched and therefore a nonoptimal substrate for polymerase extension. 2-The combing surface sterically impedes full enzymatic access to the DNA backbone. Here, we introduce a novel approach that attaches thousands of molecules to a removable surface, with a tunable stretching factor. Next, we dissolve portions of the surface, leaving the DNA molecules suspended as 'bridges'. We demonstrate that the suspended molecules are enzymatically accessible, and we have used an enzyme to incorporate labeled nucleotides, as predicted by the specific molecular sequence. Our results suggest that this novel platform is a promising candidate to achieve high-throughput sequencing of Mbp-long molecules, which could have additional genomic applications, such as the study of other protein-DNA interactions.
Collapse
Affiliation(s)
- Maurizio Righini
- Department of Advanced Research and Development, Centrillion Technologies, Palo Alto, California, United States of America
| | - Justin Costa
- Department of Advanced Research and Development, Centrillion Technologies, Palo Alto, California, United States of America
| | - Wei Zhou
- Department of Advanced Research and Development, Centrillion Technologies, Palo Alto, California, United States of America
| |
Collapse
|
39
|
Huang B, Wei G, Wang B, Ju F, Zhong Y, Shi Z, Sun S, Bu D. Filling gaps of genome scaffolds via probabilistic searching optical maps against assembly graph. BMC Bioinformatics 2021; 22:533. [PMID: 34717539 PMCID: PMC8557617 DOI: 10.1186/s12859-021-04448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Optical maps record locations of specific enzyme recognition sites within long genome fragments. This long-distance information enables aligning genome assembly contigs onto optical maps and ordering contigs into scaffolds. The generated scaffolds, however, often contain a large amount of gaps. To fill these gaps, a feasible way is to search genome assembly graph for the best-matching contig paths that connect boundary contigs of gaps. The combination of searching and evaluation procedures might be "searching followed by evaluation", which is infeasible for long gaps, or "searching by evaluation", which heavily relies on heuristics and thus usually yields unreliable contig paths. RESULTS We here report an accurate and efficient approach to filling gaps of genome scaffolds with aids of optical maps. Using simulated data from 12 species and real data from 3 species, we demonstrate the successful application of our approach in gap filling with improved accuracy and completeness of genome scaffolds. CONCLUSION Our approach applies a sequential Bayesian updating technique to measure the similarity between optical maps and candidate contig paths. Using this similarity to guide path searching, our approach achieves higher accuracy than the existing "searching by evaluation" strategy that relies on heuristics. Furthermore, unlike the "searching followed by evaluation" strategy enumerating all possible paths, our approach prunes the unlikely sub-paths and extends the highly-probable ones only, thus significantly increasing searching efficiency.
Collapse
Affiliation(s)
- Bin Huang
- Key Lab of Intelligent Information Processing, Big-Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
- Institute of Biology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guozheng Wei
- Key Lab of Intelligent Information Processing, Big-Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
- Institute of Biology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bing Wang
- Key Lab of Intelligent Information Processing, Big-Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
- Institute of Biology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fusong Ju
- Key Lab of Intelligent Information Processing, Big-Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
- Institute of Biology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yi Zhong
- School of Computer Science, University of Washington, Seattle, 98195 USA
| | - Zhuozheng Shi
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, 92093 USA
| | - Shiwei Sun
- Key Lab of Intelligent Information Processing, Big-Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
- Institute of Biology, University of Chinese Academy of Sciences, Beijing, 100049 China
- Zhongke Big Data Academy, Zhengzhou, 450046 Henan China
| | - Dongbo Bu
- Key Lab of Intelligent Information Processing, Big-Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
- Institute of Biology, University of Chinese Academy of Sciences, Beijing, 100049 China
- Zhongke Big Data Academy, Zhengzhou, 450046 Henan China
| |
Collapse
|
40
|
Abstract
In genomics, optical mapping technology provides long-range contiguity information to improve genome sequence assemblies and detect structural variation. Originally a laborious manual process, Bionano Genomics platforms now offer high-throughput, automated optical mapping based on chips packed with nanochannels through which unwound DNA is guided and the fluorescent DNA backbone and specific restriction sites are recorded. Although the raw image data obtained is of high quality, the processing and assembly software accompanying the platforms is closed source and does not seem to make full use of data, labeling approximately half of the measured signals as unusable. Here we introduce two new software tools, independent of Bionano Genomics software, to extract and process molecules from raw images (OptiScan) and to perform molecule-to-molecule and molecule-to-reference alignments using a novel signal-based approach (OptiMap). We demonstrate that the molecules detected by OptiScan can yield better assemblies, and that the approach taken by OptiMap results in higher use of molecules from the raw data. These tools lay the foundation for a suite of open-source methods to process and analyze high-throughput optical mapping data. The Python implementations of the OptiTools are publicly available through http://www.bif.wur.nl/.
Collapse
|
41
|
Wold J, Koepfli KP, Galla SJ, Eccles D, Hogg CJ, Le Lec MF, Guhlin J, Santure AW, Steeves TE. Expanding the conservation genomics toolbox: Incorporating structural variants to enhance genomic studies for species of conservation concern. Mol Ecol 2021; 30:5949-5965. [PMID: 34424587 PMCID: PMC9290615 DOI: 10.1111/mec.16141] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
Structural variants (SVs) are large rearrangements (>50 bp) within the genome that impact gene function and the content and structure of chromosomes. As a result, SVs are a significant source of functional genomic variation, that is, variation at genomic regions underpinning phenotype differences, that can have large effects on individual and population fitness. While there are increasing opportunities to investigate functional genomic variation in threatened species via single nucleotide polymorphism (SNP) data sets, SVs remain understudied despite their potential influence on fitness traits of conservation interest. In this future-focused Opinion, we contend that characterizing SVs offers the conservation genomics community an exciting opportunity to complement SNP-based approaches to enhance species recovery. We also leverage the existing literature-predominantly in human health, agriculture and ecoevolutionary biology-to identify approaches for readily characterizing SVs and consider how integrating these into the conservation genomics toolbox may transform the way we manage some of the world's most threatened species.
Collapse
Affiliation(s)
- Jana Wold
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, Front Royal, Virginia, USA.,Centre for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA.,Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | - Stephanie J Galla
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biological Sciences, Boise State University, Boise, Idaho, USA
| | - David Eccles
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Marissa F Le Lec
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Joseph Guhlin
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand.,Genomics Aotearoa, Dunedin, Otago, New Zealand
| | - Anna W Santure
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tammy E Steeves
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
42
|
Mantere T, Neveling K, Pebrel-Richard C, Benoist M, van der Zande G, Kater-Baats E, Baatout I, van Beek R, Yammine T, Oorsprong M, Hsoumi F, Olde-Weghuis D, Majdali W, Vermeulen S, Pauper M, Lebbar A, Stevens-Kroef M, Sanlaville D, Dupont JM, Smeets D, Hoischen A, Schluth-Bolard C, El Khattabi L. Optical genome mapping enables constitutional chromosomal aberration detection. Am J Hum Genet 2021; 108:1409-1422. [PMID: 34237280 PMCID: PMC8387289 DOI: 10.1016/j.ajhg.2021.05.012] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/28/2021] [Indexed: 01/02/2023] Open
Abstract
Chromosomal aberrations including structural variations (SVs) are a major cause of human genetic diseases. Their detection in clinical routine still relies on standard cytogenetics. Drawbacks of these tests are a very low resolution (karyotyping) and the inability to detect balanced SVs or indicate the genomic localization and orientation of duplicated segments or insertions (copy number variant [CNV] microarrays). Here, we investigated the ability of optical genome mapping (OGM) to detect known constitutional chromosomal aberrations. Ultra-high-molecular-weight DNA was isolated from 85 blood or cultured cells and processed via OGM. A de novo genome assembly was performed followed by structural variant and CNV calling and annotation, and results were compared to known aberrations from standard-of-care tests (karyotype, FISH, and/or CNV microarray). In total, we analyzed 99 chromosomal aberrations, including seven aneuploidies, 19 deletions, 20 duplications, 34 translocations, six inversions, two insertions, six isochromosomes, one ring chromosome, and four complex rearrangements. Several of these variants encompass complex regions of the human genome involved in repeat-mediated microdeletion/microduplication syndromes. High-resolution OGM reached 100% concordance compared to standard assays for all aberrations with non-centromeric breakpoints. This proof-of-principle study demonstrates the ability of OGM to detect nearly all types of chromosomal aberrations. We also suggest suited filtering strategies to prioritize clinically relevant aberrations and discuss future improvements. These results highlight the potential for OGM to provide a cost-effective and easy-to-use alternative that would allow comprehensive detection of chromosomal aberrations and structural variants, which could give rise to an era of "next-generation cytogenetics."
Collapse
Affiliation(s)
- Tuomo Mantere
- Department of Human Genetics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Radboud Institute of Medical Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Radboud Institute of Health Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Céline Pebrel-Richard
- Department of Chromosomal and Molecular Genetics, University Hospital of Clermont-Ferrand, 63003 Clermont-Ferrand, France
| | - Marion Benoist
- Department of Cytogenetics, APHP.centre - Université de Paris, Hôpital Cochin, 75014 Paris, France
| | - Guillaume van der Zande
- Department of Human Genetics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Ellen Kater-Baats
- Department of Human Genetics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Imane Baatout
- Department of Cytogenetics, APHP.centre - Université de Paris, Hôpital Cochin, 75014 Paris, France
| | - Ronald van Beek
- Department of Human Genetics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Tony Yammine
- Institut Neuromyogène, CNRS UMR 5310, INSERM U1217, Lyon 1 University, 69008 Lyon, France; Unit of Medical Genetics, Saint-Joseph University, 1107 2180 Beyrouth, Lebanon
| | - Michiel Oorsprong
- Department of Human Genetics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Faten Hsoumi
- Department of Cytogenetics, APHP.centre - Université de Paris, Hôpital Cochin, 75014 Paris, France
| | - Daniel Olde-Weghuis
- Department of Human Genetics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Wed Majdali
- Department of Cytogenetics, APHP.centre - Université de Paris, Hôpital Cochin, 75014 Paris, France
| | - Susan Vermeulen
- Department of Human Genetics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Marc Pauper
- Department of Human Genetics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Aziza Lebbar
- Department of Cytogenetics, APHP.centre - Université de Paris, Hôpital Cochin, 75014 Paris, France
| | - Marian Stevens-Kroef
- Department of Human Genetics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Damien Sanlaville
- Institut Neuromyogène, CNRS UMR 5310, INSERM U1217, Lyon 1 University, 69008 Lyon, France; Department of Genetics, Hospices Civils de Lyon, 69677 Bron, France
| | - Jean Michel Dupont
- Department of Cytogenetics, APHP.centre - Université de Paris, Hôpital Cochin, 75014 Paris, France; Université de Paris, Cochin Institute U1016, INSERM, 75014 Paris, France
| | - Dominique Smeets
- Department of Human Genetics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Radboud Institute of Medical Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands.
| | - Caroline Schluth-Bolard
- Institut Neuromyogène, CNRS UMR 5310, INSERM U1217, Lyon 1 University, 69008 Lyon, France; Department of Genetics, Hospices Civils de Lyon, 69677 Bron, France
| | - Laïla El Khattabi
- Department of Cytogenetics, APHP.centre - Université de Paris, Hôpital Cochin, 75014 Paris, France; Université de Paris, Cochin Institute U1016, INSERM, 75014 Paris, France.
| |
Collapse
|
43
|
Neveling K, Mantere T, Vermeulen S, Oorsprong M, van Beek R, Kater-Baats E, Pauper M, van der Zande G, Smeets D, Weghuis DO, Stevens-Kroef MJPL, Hoischen A. Next-generation cytogenetics: Comprehensive assessment of 52 hematological malignancy genomes by optical genome mapping. Am J Hum Genet 2021; 108:1423-1435. [PMID: 34237281 DOI: 10.1016/j.ajhg.2021.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Somatic structural variants (SVs) are important drivers of cancer development and progression. In a diagnostic set-up, especially for hematological malignancies, the comprehensive analysis of all SVs in a given sample still requires a combination of cytogenetic techniques, including karyotyping, FISH, and CNV microarrays. We hypothesize that the combination of these classical approaches could be replaced by optical genome mapping (OGM). Samples from 52 individuals with a clinical diagnosis of a hematological malignancy, divided into simple (<5 aberrations, n = 36) and complex (≥5 aberrations, n = 16) cases, were processed for OGM, reaching on average: 283-fold genome coverage. OGM called a total of 918 high-confidence SVs per sample, of which, on average, 13 were rare and >100 kb. In addition, on average, 73 CNVs were called per sample, of which six were >5 Mb. For the 36 simple cases, all clinically reported aberrations were detected, including deletions, insertions, inversions, aneuploidies, and translocations. For the 16 complex cases, results were largely concordant between standard-of-care and OGM, but OGM often revealed higher complexity than previously recognized. Detailed technical comparison with standard-of-care tests showed high analytical validity of OGM, resulting in a sensitivity of 100% and a positive predictive value of >80%. Importantly, OGM resulted in a more complete assessment than any previous single test and most likely reported the most accurate underlying genomic architecture (e.g., for complex translocations, chromoanagenesis, and marker chromosomes). In conclusion, the excellent concordance of OGM with diagnostic standard assays demonstrates its potential to replace classical cytogenetic tests as well as to rapidly map novel leukemia drivers.
Collapse
Affiliation(s)
- Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tuomo Mantere
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Susan Vermeulen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Michiel Oorsprong
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Ronald van Beek
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Ellen Kater-Baats
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Marc Pauper
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Guillaume van der Zande
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Dominique Smeets
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Daniel Olde Weghuis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | | | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6532 GA Nijmegen, the Netherlands.
| |
Collapse
|
44
|
Uppuluri L, Jadhav T, Wang Y, Xiao M. Multicolor Whole-Genome Mapping in Nanochannels for Genetic Analysis. Anal Chem 2021; 93:9808-9816. [PMID: 34232611 PMCID: PMC9705121 DOI: 10.1021/acs.analchem.1c01373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Analysis of structural variations (SVs) is important to understand mutations underlying genetic disorders and pathogenic conditions. However, characterizing SVs using short-read, high-throughput sequencing technology is difficult. Although long-read sequencing technologies are being increasingly employed in characterizing SVs, their low throughput and high costs discourage widespread adoption. Sequence motif-based optical mapping in nanochannels is useful in whole-genome mapping and SV detection, but it is not possible to precisely locate the breakpoints or estimate the copy numbers. We present here a universal multicolor mapping strategy in nanochannels combining conventional sequence-motif labeling system with Cas9-mediated target-specific labeling of any 20-base sequences (20mers) to create custom labels and detect new features. The sequence motifs are labeled with green fluorophores and the 20mers are labeled with red fluorophores. Using this strategy, it is possible to not only detect the SVs but also utilize custom labels to interrogate the features not accessible to motif-labeling, locate breakpoints, and precisely estimate copy numbers of genomic repeats. We validated our approach by quantifying the D4Z4 copy numbers, a known biomarker for facioscapulohumeral muscular dystrophy (FSHD) and estimating the telomere length, a clinical biomarker for assessing disease risk factors in aging-related diseases and malignant cancers. We also demonstrate the application of our methodology in discovering transposable long non-interspersed Elements 1 (LINE-1) insertions across the whole genome.
Collapse
Affiliation(s)
- Lahari Uppuluri
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Tanaya Jadhav
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Yilin Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Ming Xiao
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
- Center for Genomic Sciences, Institute of Molecular Medicine and Infectious Disease, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
45
|
Lestringant V, Duployez N, Penther D, Luquet I, Derrieux C, Lutun A, Preudhomme C, West M, Ouled-Haddou H, Devoldere C, Marolleau JP, Garçon L, Jedraszak G, Ferret Y. Optical genome mapping, a promising alternative to gold standard cytogenetic approaches in a series of acute lymphoblastic leukemias. Genes Chromosomes Cancer 2021; 60:657-667. [PMID: 33982372 DOI: 10.1002/gcc.22971] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Acute lymphoblastic leukemias (ALL) are characterized by a large number of cytogenetic abnormalities of clinical interest that require the use of several complementary techniques. Optical genome mapping (OGM) is based on analysis of ultra-high molecular weight DNA molecules that provides a high-resolution genome-wide analysis highlighting copy number and structural anomalies, including balanced translocations. We compared OGM to standard techniques (karyotyping, fluorescent in situ hybridization, single nucleotide polymorphism-array and reverse transcription multiplex ligation-dependent probe amplification) in 10 selected B or T-ALL. Eighty abnormalities were found using standard techniques of which 72 (90%) were correctly detected using OGM. Eight discrepancies were identified, while 12 additional anomalies were found by OGM. Among the discrepancies, four were detected in raw data but not retained because of filtering issues. However, four were truly missed, either because of a low variant allele frequency or because of a low coverage of some regions. Of the additional anomalies revealed by OGM, seven were confirmed by another technique, some of which are recurrent in ALL such as LMO2-TRA and MYC-TRB fusions. Despite false positive anomalies due to background noise and a case of inter-sample contamination secondarily identified, the OGM technology was relatively simple to use with little practice. Thus, OGM represents a promising alternative to cytogenetic techniques currently performed for ALL characterization. It enables a time and cost effective analysis allowing identification of complex cytogenetic events, including those currently inaccessible to standard techniques.
Collapse
Affiliation(s)
| | - Nicolas Duployez
- Univ. Lille, CNRS, Inserm, CHU Lille, Département d'Hématologie, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Dominique Penther
- Department of Oncology Genetics, Henri Becquerel Center, Rouen, France
| | | | - Coralie Derrieux
- Laboratoire d'hématologie, Centre de Biologie - Pathologie- génétique, Lille, France
| | - Anne Lutun
- Service d'Hématologie, Oncologie, Immunologie et Rhumatologie Pédiatriques, CHU Amiens Picardie, France
| | - Claude Preudhomme
- Univ. Lille, CNRS, Inserm, CHU Lille, Département d'Hématologie, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Michaela West
- Genotyping, Sequencing and optical mapping Platform (Gentyane), Clermont-Ferrand, France
| | | | - Catherine Devoldere
- Service d'Hématologie, Oncologie, Immunologie et Rhumatologie Pédiatriques, CHU Amiens Picardie, France
| | - Jean-Pierre Marolleau
- EA4666 HEMATIM, UPJV, Amiens, France.,Service d'Hématologie Clinique, CHU Amiens Picardie, France
| | - Loïc Garçon
- Service d'Hématologie Biologique, CHU Amiens Picardie, France.,EA4666 HEMATIM, UPJV, Amiens, France.,Laboratoire de Génétique Constitutionnelle, CHU Amiens Picardie, France
| | - Guillaume Jedraszak
- EA4666 HEMATIM, UPJV, Amiens, France.,Laboratoire de Génétique Constitutionnelle, CHU Amiens Picardie, France
| | - Yann Ferret
- Service d'Hématologie Biologique, CHU Amiens Picardie, France
| |
Collapse
|
46
|
Mukherjee K, Rossi M, Salmela L, Boucher C. Fast and efficient Rmap assembly using the Bi-labelled de Bruijn graph. Algorithms Mol Biol 2021; 16:6. [PMID: 34034751 PMCID: PMC8147420 DOI: 10.1186/s13015-021-00182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Genome wide optical maps are high resolution restriction maps that give a unique numeric representation to a genome. They are produced by assembling hundreds of thousands of single molecule optical maps, which are called Rmaps. Unfortunately, there are very few choices for assembling Rmap data. There exists only one publicly-available non-proprietary method for assembly and one proprietary software that is available via an executable. Furthermore, the publicly-available method, by Valouev et al. (Proc Natl Acad Sci USA 103(43):15770-15775, 2006), follows the overlap-layout-consensus (OLC) paradigm, and therefore, is unable to scale for relatively large genomes. The algorithm behind the proprietary method, Bionano Genomics' Solve, is largely unknown. In this paper, we extend the definition of bi-labels in the paired de Bruijn graph to the context of optical mapping data, and present the first de Bruijn graph based method for Rmap assembly. We implement our approach, which we refer to as RMAPPER, and compare its performance against the assembler of Valouev et al. (Proc Natl Acad Sci USA 103(43):15770-15775, 2006) and Solve by Bionano Genomics on data from three genomes: E. coli, human, and climbing perch fish (Anabas Testudineus). Our method was able to successfully run on all three genomes. The method of Valouev et al. (Proc Natl Acad Sci USA 103(43):15770-15775, 2006) only successfully ran on E. coli. Moreover, on the human genome RMAPPER was at least 130 times faster than Bionano Solve, used five times less memory and produced the highest genome fraction with zero mis-assemblies. Our software, RMAPPER is written in C++ and is publicly available under GNU General Public License at https://github.com/kingufl/Rmapper .
Collapse
|
47
|
Raeisi Dehkordi S, Luebeck J, Bafna V. FaNDOM: Fast nested distance-based seeding of optical maps. PATTERNS (NEW YORK, N.Y.) 2021; 2:100248. [PMID: 34027500 PMCID: PMC8134938 DOI: 10.1016/j.patter.2021.100248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022]
Abstract
Optical mapping (OM) provides single-molecule readouts of fluorescently labeled sequence motifs on long fragments of DNA, resolved to nucleotide-level coordinates. With the advent of microfluidic technologies for analysis of DNA molecules, it is possible to inexpensively generate long OM data ( > 150 kbp) at high coverage. In addition to scaffolding for de novo assembly, OM data can be aligned to a reference genome for identification of genomic structural variants. We introduce FaNDOM (Fast Nested Distance Seeding of Optical Maps)-an optical map alignment tool that greatly reduces the search space of the alignment process. On four benchmark human datasets, FaNDOM was significantly (4-14×) faster than competing tools while maintaining comparable sensitivity and specificity. We used FaNDOM to map variants in three cancer cell lines and identified many biologically interesting structural variants, including deletions, duplications, gene fusions and gene-disrupting rearrangements. FaNDOM is publicly available at https://github.com/jluebeck/FaNDOM.
Collapse
Affiliation(s)
- Siavash Raeisi Dehkordi
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jens Luebeck
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Bioinformatics & Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vineet Bafna
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
48
|
Savara J, Novosád T, Gajdoš P, Kriegová E. Comparison of structural variants detected by optical mapping with long-read next-generation sequencing. Bioinformatics 2021; 37:3398-3404. [PMID: 33983367 DOI: 10.1093/bioinformatics/btab359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
MOTIVATION Recent studies have shown the potential of using long-read whole-genome sequencing (WGS) approaches and optical mapping (OM) for the detection of clinically relevant structural variants (SVs) in cancer research. Three main long-read WGS platforms are currently in use: Pacific Biosciences (PacBio), Oxford Nanopore Technologies (ONT) and 10x Genomics. Recently, whole-genome OM technology (Bionano Genomics) has been introduced into human diagnostics. Questions remain about the accuracy of these long-read sequencing platforms, how comparable/interchangeable they are when searching for SVs and to what extent they can be replaced or supplemented by OM. Moreover, no tool can effectively compare SVs obtained by OM and WGS. RESULTS This study compared optical maps of the breast cancer cell line SKBR3 with AnnotSV outputs from WGS platforms. For this purpose, a software tool with comparative and filtering features was developed. The majority of SVs up to a 50 kbp distance variance threshold found by OM were confirmed by all WGS platforms, and 99% of translocations and 80% of deletions found by OM were confirmed by both PacBio and ONT, with ∼70% being confirmed by 10x Genomics in combination with PacBio and/or ONT. Interestingly, long deletions (>100 kbp) were detected only by 10x Genomics. Regarding insertions, ∼72% was confirmed by PacBio and ONT, but none by 10x Genomics. Inversions and duplications detected by OM were not detected by WGS. Moreover, the tool enabled the confirmation of SVs that overlapped in the same gene(s) and was applied to the filtering of disease-associated SVs. AVAILABILITY https://github.com/novosadt/om-annotsv-svc.
Collapse
Affiliation(s)
- Jakub Savara
- Department of Computer Science, VSB-Technical University of Ostrava, Ostrava, 708 00, Czech Republic
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University in Olomouc and University Hospital Olomouc, 779 00, Olomouc, Czech Republic
| | - Tomáš Novosád
- Department of Computer Science, VSB-Technical University of Ostrava, Ostrava, 708 00, Czech Republic
| | - Petr Gajdoš
- Department of Computer Science, VSB-Technical University of Ostrava, Ostrava, 708 00, Czech Republic
| | - Eva Kriegová
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University in Olomouc and University Hospital Olomouc, 779 00, Olomouc, Czech Republic
| |
Collapse
|
49
|
Zheng T, Li P, Li L, Zhang Q. Research advances in and prospects of ornamental plant genomics. HORTICULTURE RESEARCH 2021; 8:65. [PMID: 33790259 PMCID: PMC8012582 DOI: 10.1038/s41438-021-00499-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 05/14/2023]
Abstract
The term 'ornamental plant' refers to all plants with ornamental value, which generally have beautiful flowers or special plant architectures. China is rich in ornamental plant resources and known as the "mother of gardens". Genomics is the science of studying genomes and is useful for carrying out research on genome evolution, genomic variations, gene regulation, and important biological mechanisms based on detailed genome sequence information. Due to the diversity of ornamental plants and high sequencing costs, the progress of genome research on ornamental plants has been slow for a long time. With the emergence of new sequencing technologies and a reduction in costs since the whole-genome sequencing of the first ornamental plant (Prunus mume) was completed in 2012, whole-genome sequencing of more than 69 ornamental plants has been completed in <10 years. In this review, whole-genome sequencing and resequencing of ornamental plants will be discussed. We provide analysis with regard to basic data from whole-genome studies of important ornamental plants, the regulation of important ornamental traits, and application prospects.
Collapse
Affiliation(s)
- Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ping Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
50
|
Construction of Whole Genomes from Scaffolds Using Single Cell Strand-Seq Data. Int J Mol Sci 2021; 22:ijms22073617. [PMID: 33807210 PMCID: PMC8037727 DOI: 10.3390/ijms22073617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 12/26/2022] Open
Abstract
Accurate reference genome sequences provide the foundation for modern molecular biology and genomics as the interpretation of sequence data to study evolution, gene expression, and epigenetics depends heavily on the quality of the genome assembly used for its alignment. Correctly organising sequenced fragments such as contigs and scaffolds in relation to each other is a critical and often challenging step in the construction of robust genome references. We previously identified misoriented regions in the mouse and human reference assemblies using Strand-seq, a single cell sequencing technique that preserves DNA directionality Here we demonstrate the ability of Strand-seq to build and correct full-length chromosomes by identifying which scaffolds belong to the same chromosome and determining their correct order and orientation, without the need for overlapping sequences. We demonstrate that Strand-seq exquisitely maps assembly fragments into large related groups and chromosome-sized clusters without using new assembly data. Using template strand inheritance as a bi-allelic marker, we employ genetic mapping principles to cluster scaffolds that are derived from the same chromosome and order them within the chromosome based solely on directionality of DNA strand inheritance. We prove the utility of our approach by generating improved genome assemblies for several model organisms including the ferret, pig, Xenopus, zebrafish, Tasmanian devil and the Guinea pig.
Collapse
|