1
|
Nakamura NH, Oku Y, Fukunaga M. "Brain-breath" interactions: respiration-timing-dependent impact on functional brain networks and beyond. Rev Neurosci 2024; 35:165-182. [PMID: 37651646 DOI: 10.1515/revneuro-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023]
Abstract
Breathing is a natural daily action that one cannot do without, and it sensitively and intensely changes under various situations. What if this essential act of breathing can impact our overall well-being? Recent studies have demonstrated that breathing oscillations couple with higher brain functions, i.e., perception, motor actions, and cognition. Moreover, the timing of breathing, a phase transition from exhalation to inhalation, modulates specific cortical activity and accuracy in cognitive tasks. To determine possible respiratory roles in attentional and memory processes and functional neural networks, we discussed how breathing interacts with the brain that are measured by electrophysiology and functional neuroimaging: (i) respiration-dependent modulation of mental health and cognition; (ii) respiratory rhythm generation and respiratory pontomedullary networks in the brainstem; (iii) respiration-dependent effects on specific brainstem regions and functional neural networks (e.g., glutamatergic PreBötzinger complex neurons, GABAergic parafacial neurons, adrenergic C1 neurons, parabrachial nucleus, locus coeruleus, temporoparietal junction, default-mode network, ventral attention network, and cingulo-opercular salience network); and (iv) a potential application of breathing manipulation in mental health care. These outlines and considerations of "brain-breath" interactions lead to a better understanding of the interoceptive and cognitive mechanisms that underlie brain-body interactions in health conditions and in stress-related and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Masaki Fukunaga
- Section of Brain Function Information, National Institute of Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
2
|
Higashino M, Miyata K, Kudo K. Coordination dynamics of thoracic and abdominal movements during voluntary breathing. Sci Rep 2022; 12:13266. [PMID: 35918415 PMCID: PMC9345990 DOI: 10.1038/s41598-022-17473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
Thoracic and abdominal movements can be tightly coupled during voluntary breathing, such as when singing and playing wind instruments. The present study investigated the coordination of thoracic and abdominal movements during voluntary breathing using a dynamical systems approach. We examined whether there are two stable coordination patterns, and if the coordination pattern would abruptly change when the breathing frequency increased, which is known as phase transition. The participants inhaled and exhaled repeatedly at 7.5, 15, 30, 60, or 120 breaths per minute. At the beginning and end of the experiment, the participants performed breathing at their preferred frequency. As a result, the coordination pattern at the lower and preferred frequencies exhibited an in-phase pattern. When breathing frequency increased, participants showed deviated coordination patterns from the in-phase pattern to either a thoracic-leading pattern, an abdominal-leading pattern, or an anti-phase pattern depending on the individual. These deviations occurred gradually; thus, phase transition was not observed. Our findings suggest that thoracic and abdominal movements are tightly coupled at lower frequencies, but their patterns vary depending on the breathing frequency and individuals. Therefore, the present study suggests the importance of viewing breath control in terms of coordination of thoracic and abdominal movements.
Collapse
Affiliation(s)
- Mimu Higashino
- Graduate School of Interdisciplinary Information Studies, The University of Tokyo, 3-8-1, Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Kohei Miyata
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro, Tokyo, 153-8902, Japan.
| | - Kazutoshi Kudo
- Graduate School of Interdisciplinary Information Studies, The University of Tokyo, 3-8-1, Komaba, Meguro, Tokyo, 153-8902, Japan. .,Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
3
|
Juvin L, Colnot E, Barrière G, Thoby-Brisson M, Morin D. Neurogenic mechanisms for locomotor-respiratory coordination in mammals. Front Neuroanat 2022; 16:953746. [PMID: 35968158 PMCID: PMC9365938 DOI: 10.3389/fnana.2022.953746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Central motor rhythm-generating networks controlling different functions are generally considered to operate mostly independently from one another, each controlling the specific behavioral task to which it is assigned. However, under certain physiological circumstances, central pattern generators (CPGs) can exhibit strong uni- or bidirectional interactions that render them closely inter-dependent. One of the best illustrations of such an inter-CPG interaction is the functional relationship that may occur between rhythmic locomotor and respiratory functions. It is well known that in vertebrates, lung ventilatory rates accelerate at the onset of physical exercise in order to satisfy the accompanying rapid increase in metabolism. Part of this acceleration is sustained by a coupling between locomotion and ventilation, which most often results in a periodic drive of the respiratory cycle by the locomotor rhythm. In terrestrial vertebrates, the likely physiological significance of this coordination is that it serves to reduce the mechanical interference between the two motor systems, thereby producing an energetic benefit and ultimately, enabling sustained aerobic activity. Several decades of studies have shown that locomotor-respiratory coupling is present in most species, independent of the mode of locomotion employed. The present article aims to review and discuss mechanisms engaged in shaping locomotor-respiratory coupling (LRC), with an emphasis on the role of sensory feedback inputs, the direct influences between CPG networks themselves, and finally on spinal cellular candidates that are potentially involved in the coupling of these two vital motor functions.
Collapse
Affiliation(s)
- Laurent Juvin
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, Bordeaux, France
| | - Eloïse Colnot
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, Bordeaux, France
| | - Grégory Barrière
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, Bordeaux, France
| | - Muriel Thoby-Brisson
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, Bordeaux, France
| | - Didier Morin
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, Bordeaux, France
- Department of Health, Safety & Environment, Bordeaux Institute of Technology, Bordeaux, France
- *Correspondence: Didier Morin
| |
Collapse
|
4
|
Marino FE, Sibson BE, Lieberman DE. The evolution of human fatigue resistance. J Comp Physiol B 2022; 192:411-422. [PMID: 35552490 PMCID: PMC9197885 DOI: 10.1007/s00360-022-01439-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Abstract
Humans differ from African great apes in numerous respects, but the chief initial difference setting hominins on their unique evolutionary trajectory was habitual bipedalism. The two most widely supported selective forces for this adaptation are increased efficiency of locomotion and improved ability to feed in upright contexts. By 4 million years ago, hominins had evolved the ability to walk long distances but extreme selection for endurance capabilities likely occurred later in the genus Homo to help them forage, power scavenge and persistence hunt in hot, arid conditions. In this review we explore the hypothesis that to be effective long-distance walkers and especially runners, there would also have been a strong selective benefit among Homo to resist fatigue. Our hypothesis is that since fatigue is an important factor that limits the ability to perform endurance-based activities, fatigue resistance was likely an important target for selection during human evolution for improved endurance capabilities. We review the trade-offs between strength, power, and stamina in apes and Homo and discuss three biological systems that we hypothesize humans evolved adaptations for fatigue resistance: neurological, metabolic and thermoregulatory. We conclude that the evolution of endurance at the cost of strength and power likely also involved the evolution of mechanisms to resist fatigue.
Collapse
Affiliation(s)
- Frank E Marino
- School of Allied Health, Exercise and Sport Science, Charles Sturt University, Bathurst, NSW, 2795, Australia.
| | - Benjamin E Sibson
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA, 02138, USA
| | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA, 02138, USA
| |
Collapse
|
5
|
Hérent C, Diem S, Fortin G, Bouvier J. Absent phasing of respiratory and locomotor rhythms in running mice. eLife 2020; 9:61919. [PMID: 33258770 PMCID: PMC7707822 DOI: 10.7554/elife.61919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Examining whether and how the rhythms of limb and breathing movements interact is highly informative about the mechanistic origin of hyperpnoea during running exercise. However, studies have failed to reveal regularities. In particular, whether breathing frequency is inherently proportional to limb velocity and imposed by a synchronization of breaths to strides is still unclear. Here, we examined respiratory changes during running in the resourceful mouse model. We show that, for a wide range of trotting speeds on a treadmill, respiratory rate increases to a fixed and stable value irrespective of trotting velocities. Respiratory rate was yet further increased during escape-like running and most particularly at gallop. However, we found no temporal coordination of breaths to strides at any speed, intensity, or gait. Our work thus highlights that exercise hyperpnoea can operate, at least in mice and in the presently examined running regimes, without phasic constraints from limb movements.
Collapse
Affiliation(s)
- Coralie Hérent
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Séverine Diem
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Gilles Fortin
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Lieberman DE, Mahaffey M, Cubesare Quimare S, Holowka NB, Wallace IJ, Baggish AL. Running in Tarahumara (Rarámuri) Culture. CURRENT ANTHROPOLOGY 2020. [DOI: 10.1086/708810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Longman DP, Macintosh Murray A, Roberts R, Oakley S, Wells JC, Stock JT. Ultra-endurance athletic performance suggests that energetics drive human morphological thermal adaptation. EVOLUTIONARY HUMAN SCIENCES 2019; 1:e16. [PMID: 37588394 PMCID: PMC10427320 DOI: 10.1017/ehs.2019.13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Both extinct and extant hominin populations display morphological features consistent with Bergmann's and Allen's Rules. However, the functional implications of the morphologies described by these ecological laws are poorly understood. We examined this through the lens of endurance running. Previous research concerning endurance running has focused on locomotor energetic economy. We considered a less-studied dimension of functionality, thermoregulation. The performance of male ultra-marathon runners (n = 88) competing in hot and cold environments was analysed with reference to expected thermoregulatory energy costs and the optimal morphologies predicted by Bergmann's and Allen's Rules. Ecogeographical patterning supporting both principles was observed in thermally challenging environments. Finishers of hot-condition events had significantly longer legs than finishers of cold-condition events. Furthermore, hot-condition finishers had significantly longer legs than those failing to complete hot-condition events. A degree of niche-picking was evident; athletes may have tailored their event entry choices in accordance with their previous race experiences. We propose that the interaction between prolonged physical exertion and hot or cold climates may induce powerful selective pressures driving morphological adaptation. The resulting phenotypes reduce thermoregulatory energetic expenditure, allowing diversion of energy to other functional outcomes such as faster running.
Collapse
Affiliation(s)
- Daniel P. Longman
- School of Sport, Health and Exercise Sciences, Loughborough University, LoughboroughLE11 3TU, UK
| | | | - Rebecca Roberts
- Department of Archaeology, University of Cambridge, CambridgeCB2 3QG, UK
| | - Saskia Oakley
- Department of Archaeology, University of Cambridge, CambridgeCB2 3QG, UK
| | - Jonathan C.K. Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, LondonWC1N 1EH, UK
| | - Jay T. Stock
- Department of Archaeology, University of Cambridge, CambridgeCB2 3QG, UK
- Department of Anthropology, University of Western Ontario, Ontario, Canada
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, D-07745Jena, Germany
| |
Collapse
|
8
|
Callison WÉ, Holowka NB, Lieberman DE. Thoracic adaptations for ventilation during locomotion in humans and other mammals. J Exp Biol 2019; 222:jeb.189357. [DOI: 10.1242/jeb.189357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/01/2019] [Indexed: 11/20/2022]
Abstract
Bipedal humans, like canids and some other cursorial mammals, are thought to have been selected for endurance running, which requires the ability to sustain aerobic metabolism over long distances by inspiring large volumes of air for prolonged periods of time. Here we test the general hypothesis that humans and other mammals selected for vigorous endurance activities evolved derived thoracic features to increase ventilatory capacity. To do so, we investigate whether humans and dogs rely on thoracic motion to increase tidal volume during running to a greater extent than goats, a species that was not selected for endurance locomotion. We found that while all three species use diaphragmatic breathing to increase tidal volume with increasing oxygen demand, humans also use both dorsoventral and mediolateral expansions of the thorax. Dogs use increased dorsoventral expansion of the thorax, representing an intermediate between humans and goats. 3D analyses of joint morphology of 10 species across four mammalian orders also show that endurance-adapted cursorial species independently evolved more concavo-convex costovertebral joint morphologies that allow for increased rib mobility for thoracic expansion. Evidence for similarly derived concavo-convex costovertebral joints in Homo erectus corresponds with other evidence for the evolution of endurance running in the genus Homo.
Collapse
Affiliation(s)
- W. Éamon Callison
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, USA
| | - Nicholas B. Holowka
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, USA
| | - Daniel E. Lieberman
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, USA
| |
Collapse
|
9
|
Cieri RL, Moritz S, Capano JG, Brainerd EL. Breathing with floating ribs: XROMM analysis of lung ventilation in savannah monitor lizards. ACTA ACUST UNITED AC 2018; 221:jeb.189449. [PMID: 30257921 DOI: 10.1242/jeb.189449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/20/2018] [Indexed: 11/20/2022]
Abstract
The structures and functions of the vertebrate lung and trunk are linked through the act of ventilation, but the connections between these structures and functions are poorly understood. We used X-ray reconstruction of moving morphology (XROMM) to measure rib kinematics during lung ventilation in three savannah monitor lizards (Varanus exanthematicus). All of the dorsal ribs, including the floating ribs, contributed to ventilation; the magnitude and kinematic pattern showed no detectable cranial-to-caudal gradient. The true ribs acted as two rigid bodies connected by flexible cartilage, with the vertebral rib and ventromedial shaft of each sternal rib remaining rigid and the cartilage between them forming a flexible intracostal joint. Rib rotations can be decomposed into bucket handle rotation around a dorsoventral axis, pump handle rotation around a mediolateral axis and caliper motion around a craniocaudal axis. Dorsal rib motion was dominated by roughly equal contributions of bucket and pump rotation in two individuals and by bucket rotation in the third individual. The recruitment of floating ribs during ventilation in monitor lizards is strikingly different from the situation in iguanas, where only the first few true ribs contribute to breathing. This difference may be related to the design of the pulmonary system and life history traits in these two species. Motion of the floating ribs may maximize ventilation of the caudally and ventrolaterally positioned compliant saccular chambers in the lungs of varanids, while restriction of ventilation to a few true ribs may maximize crypsis in iguanas.
Collapse
Affiliation(s)
- Robert L Cieri
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sabine Moritz
- Department of Biology, Community College of Rhode Island, Warwick, RI 02886, USA
| | - John G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
10
|
Nakamura NH, Fukunaga M, Oku Y. Respiratory modulation of cognitive performance during the retrieval process. PLoS One 2018; 13:e0204021. [PMID: 30216372 PMCID: PMC6138381 DOI: 10.1371/journal.pone.0204021] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022] Open
Abstract
Recent research suggests that cognitive performance might be altered by the respiratory-synchronized activity generated in the brain. Previous human studies, however, have yielded inconsistent results when assessing task performance during distinct respiratory phases (inspiratory phase vs. expiratory phase). We therefore tested whether cognitive performance was regulated based on the timing of breathing components (e.g., expiratory-to-inspiratory (EI) phase transition) during the retrieval process. To determine the role of respiration in performance, the present study employed healthy subjects (n = 18) in a delayed matching-to-sample visual recognition task where a test cue was given in the respiratory phase-locked (Phased) or regularly paced (Non-phased) presentation paradigm. During the Phased session but not during the Non-phased session, the response time (RT) of the task increased by 466 ms (p = 0.003), and accuracy decreased by 21.4% (p = 0.004) when the retrieval process encompassed the EI transition. Breathing-dependent changes were particularly prominent when the EI transition occurred during the middle step of the retrieval process. Meanwhile, changes in the RT and accuracy were not observed when the retrieval process encompassed the inspiratory-to-expiratory phase transition. This is the first time that a certain phase transition in the respiratory cycle has been shown to modulate performance on a time scale of several seconds in a cognitive task. We propose that attenuation of these breathing-dependent cognitive fluctuations might be crucial for the maintenance and stability of successful performance in daily life and sports.
Collapse
Affiliation(s)
- Nozomu H. Nakamura
- Division of Physiome, Department of Physiology, Hyogo College of Medicine, Mukogawa cho, Nishinomiya, Hyogo Japan
- * E-mail:
| | - Masaki Fukunaga
- Division of Cerebral Integration, Department of System Neuroscience, National Institute of Physiological Sciences, Okazaki, Aichi Japan
| | - Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo College of Medicine, Mukogawa cho, Nishinomiya, Hyogo Japan
| |
Collapse
|
11
|
Mario LC, Borghesi J, G Hayashi R, O Favaron P, N Rodrigues M, C Carvalho R, Miglino MA. Morphology of the Oligoryzomys nigripes respiratory system. Anat Histol Embryol 2018; 47:364-371. [PMID: 29869399 DOI: 10.1111/ahe.12363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/28/2017] [Accepted: 04/24/2018] [Indexed: 11/29/2022]
Abstract
Rodents are important in the transmission of infectious diseases that affect the respiratory tract, including simple infections and those caused by specific pathogens. These animals are natural reservoirs of zoonoses that cause many public health diseases. Basic knowledge on the morphology of these animals is important as basic research is useful for applied studies, such as the development of clinical, therapeutic, surgical and clinical models. Morphological data of respiratory tract in Oligoryzomys nigripes are absent in the literature. Therefore, the aim of this study was to perform a morphological analysis of the respiratory tract of O. nigripes. Five adult females from the environmental reserve in São Joaquim da Barra, São Paulo were used, donated to the Museum of Veterinary Anatomy (FMVZ/USP). Several morphological features follow the same pattern seen in rodents; however, this species showed some differences such as the presence of three lobar bronchi, nonlobed left lung and the right lung constituted by two lobes. Respiratory epithelium lined the whole respiratory tract and was seen using scanning electron microscopy the oval shape of the parenchyma and alveoli.
Collapse
Affiliation(s)
- Lara Carolina Mario
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo, Brazil.,Department of Anatomy of Domestic and Wild Animals, FMVZ/USP, São Paulo, Brazil
| | - Jéssica Borghesi
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo, Brazil.,Department of Anatomy of Domestic and Wild Animals, FMVZ/USP, São Paulo, Brazil
| | - Rafael G Hayashi
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo, Brazil.,Department of Anatomy of Domestic and Wild Animals, FMVZ/USP, São Paulo, Brazil
| | - Phelipe O Favaron
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo, Brazil.,Department of Anatomy of Domestic and Wild Animals, FMVZ/USP, São Paulo, Brazil
| | | | - Rafael C Carvalho
- Center for Agricultural and Environmental Sciences, Federal University of Maranhão (CCAA/UFMA), Chapadinha, Maranhão, Brazil
| | - Maria A Miglino
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo, Brazil.,Department of Anatomy of Domestic and Wild Animals, FMVZ/USP, São Paulo, Brazil
| |
Collapse
|
12
|
Wallace IJ, Hainline C, Lieberman DE. Sports and the human brain: an evolutionary perspective. HANDBOOK OF CLINICAL NEUROLOGY 2018; 158:3-10. [PMID: 30482358 DOI: 10.1016/b978-0-444-63954-7.00001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An evolutionary perspective helps explain a conundrum faced by sports neurologists: why is the human brain dependent on physical activity to function optimally, yet simultaneously susceptible to harm from particular types of athletics? For millions of years, human bodies and brains co-evolved to meet the physical and cognitive demands of the uniquely human subsistence strategy of hunting and gathering. Natural selection favored bodies with adaptations for endurance-based physical activity patterns, whereas brains were selected to be big and powerful to navigate the complex cultural and ecologic landscapes of hunter-gatherers. Human brains require physical activity to function optimally because their physiology evolved among individuals who were rarely able to avoid regular physical activity. Moreover, because energy from food was limited, human brains, like most energetically costly physiologic systems, evolved to require stimuli from physical activity to adjust capacity to demand. Consequently, human brains are poorly adapted to excessive physical inactivity. In addition, while brain enlargement during human evolution was vital to successful hunting and gathering, it came at the cost of a decreased ability to withstand brain accelerations and decelerations, which commonly occur during contact/collision sports.
Collapse
Affiliation(s)
- Ian J Wallace
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Clotilde Hainline
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
13
|
Tiller NB, Price MJ, Campbell IG, Romer LM. Effect of cadence on locomotor-respiratory coupling during upper-body exercise. Eur J Appl Physiol 2016; 117:279-287. [PMID: 28032253 PMCID: PMC5313582 DOI: 10.1007/s00421-016-3517-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/19/2016] [Indexed: 11/24/2022]
Abstract
Introduction Asynchronous arm-cranking performed at high cadences elicits greater cardiorespiratory responses compared to low cadences. This has been attributed to increased postural demand and locomotor–respiratory coupling (LRC), and yet, this has not been empirically tested. This study aimed to assess the effects of cadence on cardiorespiratory responses and LRC during upper-body exercise. Methods Eight recreationally-active men performed arm-cranking exercise at moderate and severe intensities that were separated by 10 min of rest. At each intensity, participants exercised for 4 min at each of three cadences (50, 70, and 90 rev min−1) in a random order, with 4 min rest-periods applied in-between cadences. Exercise measures included LRC via whole- and half-integer ratios, cardiorespiratory function, perceptions of effort (RPE and dyspnoea), and diaphragm EMG using an oesophageal catheter. Results The prevalence of LRC during moderate exercise was highest at 70 vs. 50 rev min−1 (27 ± 10 vs. 13 ± 9%, p = 0.000) and during severe exercise at 90 vs. 50 rev min−1 (24 ± 7 vs. 18 ± 5%, p = 0.034), with a shorter inspiratory time and higher mean inspiratory flow (p < 0.05) at higher cadences. During moderate exercise, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{V}{\text{O}}_{ 2} $$\end{document}V˙O2 and fC were higher at 90 rev min−1 (p < 0.05) relative to 70 and 50 rev min−1 (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{V}{\text{O}}_{ 2} $$\end{document}V˙O2 1.19 ± 0.25 vs. 1.05 ± 0.21 vs. 0.97 ± 0.24 L min−1; fC 116 ± 11 vs. 101 ± 13 vs. 101 ± 12 b min−1), with concomitantly elevated dyspnoea. There were no discernible cadence-mediated effects on diaphragm EMG. Conclusion Participants engage in LRC to a greater extent at moderate-high cadences which, in turn, increase respiratory airflow. Cadence rate should be carefully considered when designing aerobic training programmes involving the upper-limbs.
Collapse
Affiliation(s)
- Nicholas B Tiller
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, UK. .,Division of Sport, Health and Exercise Sciences, Brunel University London, London, UK.
| | - Mike J Price
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Ian G Campbell
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Lee M Romer
- Division of Sport, Health and Exercise Sciences, Brunel University London, London, UK
| |
Collapse
|
14
|
Alves JA, Boerner BC, Laplagne DA. Flexible Coupling of Respiration and Vocalizations with Locomotion and Head Movements in the Freely Behaving Rat. Neural Plast 2016; 2016:4065073. [PMID: 27525126 PMCID: PMC4976156 DOI: 10.1155/2016/4065073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022] Open
Abstract
Quadrupedal mammals typically synchronize their respiration with body movements during rhythmic locomotion. In the rat, fast respiration is coupled to head movements during sniffing behavior, but whether respiration is entrained by stride dynamics is not known. We recorded intranasal pressure, head acceleration, instantaneous speed, and ultrasonic vocalizations from male and female adult rats while freely behaving in a social environment. We used high-speed video recordings of stride to understand how head acceleration signals relate to locomotion and developed techniques to identify episodes of sniffing, walking, trotting, and galloping from the recorded variables. Quantitative analysis of synchrony between respiration and head acceleration rhythms revealed that respiration and locomotion movements were coordinated but with a weaker coupling than expected from previous work in other mammals. We have recently shown that rats behaving in social settings produce high rates of ultrasonic vocalizations during locomotion bouts. Accordingly, rats emitted vocalizations in over half of the respiratory cycles during fast displacements. We present evidence suggesting that emission of these calls disrupts the entrainment of respiration by stride. The coupling between these two variables is thus flexible, such that it can be overridden by other behavioral demands.
Collapse
Affiliation(s)
- Joseph Andrews Alves
- Brain Institute, Federal University of Rio Grande do Norte, Avenida Nascimento de Castro 2155, 59056-450 Natal, RN, Brazil
| | - Barbara Ciralli Boerner
- Brain Institute, Federal University of Rio Grande do Norte, Avenida Nascimento de Castro 2155, 59056-450 Natal, RN, Brazil
| | - Diego Andrés Laplagne
- Brain Institute, Federal University of Rio Grande do Norte, Avenida Nascimento de Castro 2155, 59056-450 Natal, RN, Brazil
| |
Collapse
|
15
|
Martin T, Marugán-Lobón J, Vullo R, Martín-Abad H, Luo ZX, Buscalioni AD. A Cretaceous eutriconodont and integument evolution in early mammals. Nature 2016; 526:380-4. [PMID: 26469049 DOI: 10.1038/nature14905] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/13/2015] [Indexed: 11/09/2022]
Abstract
The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.
Collapse
Affiliation(s)
- Thomas Martin
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Universität Bonn, Nussallee 8, 53115 Bonn, Germany
| | - Jesús Marugán-Lobón
- Unidad de Paleontología, Departamento de Biología, Facultad Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain.,Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
| | - Romain Vullo
- Géosciences Rennes, UMR CNRS 6118, Université de Rennes 1, Campus de Beaulieu, bâtiment 15, 263 avenue du Général Leclerc, CS 74205, 35042 Rennes, France
| | - Hugo Martín-Abad
- Unidad de Paleontología, Departamento de Biología, Facultad Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain
| | - Zhe-Xi Luo
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, Illinois 60637, USA
| | - Angela D Buscalioni
- Unidad de Paleontología, Departamento de Biología, Facultad Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
16
|
Abstract
Humans are unique in many respects including being furless, striding bipeds that excel at walking and running long distances in hot conditions. This review summarizes what we do and do not know about the evolution of these characteristics, and how they are related. Although many details remain poorly known, the first hominins (species more closely related to humans than to chimpanzees) apparently diverged from the chimpanzee lineage because of selection for bipedal walking, probably because it improved their ability to forage efficiently. However, because bipedal hominins are necessarily slow runners, early hominins in open habitats likely benefited from improved abilities to dump heat in order to forage safely during times of peak heat when predators were unable to hunt them. Endurance running capabilities evolved later, probably as adaptations for scavenging and then hunting. If so, then there would have been strong selection for heat-loss mechanisms, especially sweating, to persistence hunt, in which hunters combine endurance running and tracking to drive their prey into hyperthermia. As modern humans dispersed into a wide range of habitats over the last few hundred thousand years, recent selection has helped populations cope better with a broader range of locomotor and thermoregulatory challenges, but all humans remain essentially adapted for long distance locomotion rather than speed, and to dump rather than retain heat.
Collapse
Affiliation(s)
- Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Gutierrez DB, Fahlman A, Gardner M, Kleinhenz D, Piscitelli M, Raverty S, Haulena M, Zimba PV. Phosphatidylcholine composition of pulmonary surfactant from terrestrial and marine diving mammals. Respir Physiol Neurobiol 2015; 211:29-36. [PMID: 25812797 DOI: 10.1016/j.resp.2015.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 11/26/2022]
Abstract
Marine mammals are repeatedly exposed to elevated extra-thoracic pressure and alveolar collapse during diving and readily experience alveolar expansion upon inhalation - a unique capability as compared to terrestrial mammals. How marine mammal lungs overcome the challenges of frequent alveolar collapse and recruitment remains unknown. Recent studies indicate that pinniped lung surfactant has more anti-adhesive components compared to terrestrial mammals, which would aid in alveolar opening. However, pulmonary surfactant composition has not yet been investigated in odontocetes, whose physiology and diving behavior differ from pinnipeds. The aim of this study was to investigate the phosphatidylcholine (PC) composition of lung surfactants from various marine mammals and compare these to a terrestrial mammal. We found an increase in anti-adhesive PC species in harp seal (Pagophilus groenlandicus) and California sea lion (Zalophus californianus) compared to dog (Canus lupus familiaris), as well as an increase in the fluidizing PCs 16:0/14:0 and 16:0/16:1 in pinnipeds compared to odontocetes. The harbor porpoise (a representative of the odontocetes) did not have higher levels of fluidizing PCs compared to dog. Our preliminary results support previous findings that pinnipeds may have adapted unique surfactant compositions that allow them to dive at high pressures for extended periods without adverse effects. Future studies will need to investigate the differences in other surfactant components to fully assess the surfactant composition in odontocetes.
Collapse
Affiliation(s)
- Danielle B Gutierrez
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Andreas Fahlman
- Comparative Physiology Laboratory, Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Manuela Gardner
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Danielle Kleinhenz
- Comparative Physiology Laboratory, Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Marina Piscitelli
- Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
| | - Stephen Raverty
- Ministry of Agriculture and Lands, Animal Health Center, 1767 Angus Campbell Road, Abbotsford, BC V3G 2M3, Canada; Fisheries Centre, The University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Martin Haulena
- Vancouver Aquarium, 845 Avison Way, Vancouver, BC V6G 3E2, Canada.
| | - Paul V Zimba
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| |
Collapse
|
18
|
Jones KE. Evolutionary allometry of the thoracolumbar centra in felids and bovids. J Morphol 2015; 276:818-31. [PMID: 25773228 DOI: 10.1002/jmor.20382] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 11/07/2022]
Abstract
Mammals have evolved a remarkable range of body sizes, yet their overall body plan remains unaltered. One challenge of evolutionary biology is to understand the mechanisms by which this size diversity is achieved, and how the mechanical challenges associated with changing body size are overcome. Despite the importance of the axial skeleton in body support and locomotion, and much interest in the allometry of the appendicular skeleton, little is known about vertebral allometry outside primates. This study compares evolutionary allometry of the thoracolumbar centra in two families of quadrupedal running mammals: Felidae and Bovidae. I test the hypothesis that, as size increases, the thoracolumbar region will resist increasing loads by becoming a) craniocaudally shorter, and b) larger in cross-sectional area, particularly in the sagittal plane. Length, width, and height of the thoracolumbar centra of 23 felid and 34 bovid species were taken. Thoracic, prediaphragmatic, lumbar, and postdiaphragmatic lengths were calculated, and diameters were compared at three equivalent positions: the midthoracic, the diaphragmatic and the midlumbar vertebra. Allometric slopes were calculated using a reduced major axis regression, on both raw and independent contrasts data. Slopes and elevations were compared using an ANCOVA. As size increases the thoracolumbar centra become more robust, showing preferential reinforcement in the sagittal plane. There was less allometric shortening of the thoracic than the lumbar region, perhaps reflecting constraints due to its connection with the respiratory apparatus. The thoracic region was more robust in bovids than felids, whereas the lumbar region was longer and more robust in felids than bovids. Elongation of lumbar centra increases the outlever of sagittal bending at intervertebral joints, increasing the total pelvic displacement during dorsomobile running. Both locomotor specializations and functional regionalization of the axial skeleton appear to have influenced its response to increasing size.
Collapse
Affiliation(s)
- Katrina E Jones
- Center for Functional Anatomy and Evolution, Johns Hopkins University, 1830 East Monument st., Baltimore, Maryland, USA
| |
Collapse
|
19
|
Szabo D, Sutherland-Smith J, Barton B, Rozanski EA, Taeymans O. Accuracy of a computed tomography bronchial wall thickness to pulmonary artery diameter ratio for assessing bronchial wall thickening in dogs. Vet Radiol Ultrasound 2014; 56:264-71. [PMID: 25376985 DOI: 10.1111/vru.12216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 08/27/2014] [Indexed: 11/30/2022] Open
Abstract
Computed tomography is increasingly being used in veterinary medicine to evaluate animals with pulmonary signs such as coughing, tachypnea, and exercise intolerance, however, a quantitative measure of bronchial wall thickening has yet to be validated in veterinary medicine. Canine chronic bronchitis is a disease that is characterized histologically by thickening of the bronchial walls. Thoracic CT images of 16 dogs with chronic bronchitis and 72 dogs presenting for conditions unrelated to cough were evaluated. A ratio comparing the bronchial wall thickness to the adjacent pulmonary artery diameter was obtained in the right and left cranial and caudal lung lobes. There was no significant difference in dogs with chronic bronchitis or unaffected dogs between the left and right hemithorax, patient weight, patient age, image slice thickness, or CT machine used. Dogs with chronic bronchitis were found to have a significantly greater ratio than unaffected dogs (P < 0.001). The ratios in the cranial lung lobes were found to be significantly greater than the caudal lung lobes in both chronic bronchitis and unaffected dogs (P < 0.001). A receiver operating characteristic curve of the ratios in the cranial lung lobes had an area under the curve of 0.912, indicating high accuracy in predicting for bronchial wall thickening. A ratio of ≥ 0.6 in the cranial lung lobes was found to have a sensitivity of 77% and specificity of 100% in predicting for the presence of chronic bronchitis, and we propose using this cut-off as supportive of bronchial wall thickening on CT.
Collapse
Affiliation(s)
- David Szabo
- Cummings School of Veterinary Medicine at Tufts University, Department of Clinical Sciences, 200 Westboro Road, North Grafton, MA, 01536
| | | | | | | | | |
Collapse
|
20
|
Abstract
The evolution of the aspiration pump seen in tetrapod vertebrates from the buccal-pharyngeal force pump seen in air breathing fish and amphibians appears to have first involved the production of active expiration. Active inspiration arose later. This appears to have involved reconfiguration of a parafacial oscillator (now the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN)) to produce active expiration, followed by reconfiguration of a paravagal oscillator (now the preBötC) to produce active inspiration. In the ancestral breathing cycle, inspiration follows expiration, which is in turn followed by glottal closure and breath holding. When both rhythms are expressed, as they are in reptiles and birds, and mammals under conditions of elevated respiratory drive, the pFRG/RTN appears to initiate the respiratory cycle. We propose that the coordinated output of this system is a ventilation cycle characterized by four phases. In reptiles, these consist of active inspiration (I), glottal closure (E1), a pause (an apnea or breath hold) (E2), and an active expiration (E3) that initiates the next cycle. In mammals under resting conditions, active expiration (E3) is suppressed and inspiration (I) is followed by airway constriction and diaphragmatic braking (E1) (rather than glottal closure) and a short pause at end-expiration (E2). As respiratory drive increases in mammals, expiratory muscle activity appears. Frequently, it first appears immediately preceding inspiration (E3) just as it does in reptiles. It can also appear in E1, however, and it is not yet clear what mechanisms underlie when and where in the cycle it appears. This may reflect whether the active expiration is recruited to enhance tidal volume, increase breathing frequency, or both.
Collapse
Affiliation(s)
- Sarah E M Jenkin
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
21
|
Niizeki K, Saitoh T. Cardiolocomotor phase synchronization during rhythmic exercise. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2014. [DOI: 10.7600/jpfsm.3.11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Abstract
Many articles in this section of Comprehensive Physiology are concerned with the development and function of a central pattern generator (CPG) for the control of breathing in vertebrate animals. The action of the respiratory CPG is extensively modified by cortical and other descending influences as well as by feedback from peripheral sensory systems. The central nervous system also incorporates other CPGs, which orchestrate a wide variety of discrete and repetitive, voluntary and involuntary movements. The coordination of breathing with these other activities requires interaction and coordination between the respiratory CPG and those governing the nonrespiratory activities. Most of these interactions are complex and poorly understood. They seem to involve both conventional synaptic crosstalk between groups of neurons and fluid identity of neurons as belonging to one CPG or another: neurons that normally participate in breathing may be temporarily borrowed or hijacked by a competing or interrupting activity. This review explores the control of breathing as it is influenced by many activities that are generally considered to be nonrespiratory. The mechanistic detail varies greatly among topics, reflecting the wide variety of pertinent experiments.
Collapse
Affiliation(s)
- Donald Bartlett
- Department of Physiology & Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
| | | |
Collapse
|
23
|
Daley MA, Bramble DM, Carrier DR. Impact loading and locomotor-respiratory coordination significantly influence breathing dynamics in running humans. PLoS One 2013; 8:e70752. [PMID: 23950997 PMCID: PMC3741319 DOI: 10.1371/journal.pone.0070752] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
Locomotor-respiratory coupling (LRC), phase-locking between breathing and stepping rhythms, occurs in many vertebrates. When quadrupedal mammals gallop, 1∶1 stride per breath coupling is necessitated by pronounced mechanical interactions between locomotion and ventilation. Humans show more flexibility in breathing patterns during locomotion, using LRC ratios of 2∶1, 2.5∶1, 3∶1, or 4∶1 and sometimes no coupling. Previous studies provide conflicting evidence on the mechanical significance of LRC in running humans. Some studies suggest LRC improves breathing efficiency, but others suggest LRC is mechanically insignificant because ‘step-driven flows’ (ventilatory flows attributable to step-induced forces) contribute a negligible fraction of tidal volume. Yet, although step-driven flows are brief, they cause large fluctuations in ventilatory flow. Here we test the hypothesis that running humans use LRC to minimize antagonistic effects of step-driven flows on breathing. We measured locomotor-ventilatory dynamics in 14 subjects running at a self-selected speed (2.6±0.1 ms−1) and compared breathing dynamics in their naturally ‘preferred’ and ‘avoided’ entrainment patterns. Step-driven flows occurred at 1-2X step frequency with peak magnitudes of 0.97±0.45 Ls−1 (mean ±S.D). Step-driven flows varied depending on ventilatory state (high versus low lung volume), suggesting state-dependent changes in compliance and damping of thoraco-abdominal tissues. Subjects naturally preferred LRC patterns that minimized antagonistic interactions and aligned ventilatory transitions with assistive phases of the step. Ventilatory transitions initiated in ‘preferred’ phases within the step cycle occurred 2x faster than those in ‘avoided’ phases. We hypothesize that humans coordinate breathing and locomotion to minimize antagonistic loading of respiratory muscles, reduce work of breathing and minimize rate of fatigue. Future work could address the potential consequences of locomotor-ventilatory interactions for elite endurance athletes and individuals who are overweight or obese, populations in which respiratory muscle fatigue can be limiting.
Collapse
Affiliation(s)
- Monica A Daley
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK.
| | | | | |
Collapse
|
24
|
Abstract
Sense organs are often actively controlled by motor processes and such active sensing profoundly shapes the timing of sensory information flow. The temporal coordination between different active sensing processes is less well understood but is essential for multisensory integration, coordination between brain regions, and energetically optimal sampling strategies. Here we studied the coordination between sniffing and whisking, the motor processes in rodents that control the acquisition of smell and touch information, respectively. Sniffing, high-frequency respiratory bouts, and whisking, rapid back and forth movements of mystacial whiskers, occur in the same theta frequency range (4-12 Hz) leading to a hypothesis that these sensorimotor rhythms are phase locked. To test this, we monitored sniffing using a thermocouple in the nasal cavity and whisking with an electromyogram of the mystacial pad in rats engaged in an open field reward foraging behavior. During bouts of exploration, sniffing and whisking showed strong one-to-one phase locking within the theta frequency range (4-12 Hz). Interestingly, we also observed multimode phase locking with multiple whisks within a sniff cycle or multiple sniffs within a whisk cycle-always at the same preferred phase. This specific phase relationship coupled the acquisition phases of the two sensorimotor rhythms, inhalation and whisker protraction. Our results suggest that sniffing and whisking may be under the control of interdependent rhythm generators that dynamically coordinate active acquisition of olfactory and somatosensory information.
Collapse
|
25
|
Hirasawa T, Kuratani S. A new scenario of the evolutionary derivation of the mammalian diaphragm from shoulder muscles. J Anat 2013; 222:504-17. [PMID: 23448284 PMCID: PMC3633340 DOI: 10.1111/joa.12037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2013] [Indexed: 12/30/2022] Open
Abstract
The evolutionary origin of the diaphragm remains unclear, due to the lack of a comparable structure in other extant taxa. However, recent researches into the developmental mechanism of this structure have yielded new insights into its origin. Here we summarize current understanding regarding the development of the diaphragm, and present a possible scenario for the evolutionary acquisition of this uniquely mammalian structure. Recent developmental analyses indicate that the diaphragm and forelimb muscles are derived from a shared cell population during embryonic development. Therefore, the embryonic positions of forelimb muscle progenitors, which correspond to the position of the brachial plexus, likely played an important role in the evolution of the diaphragm. We surveyed the literature to reexamine the position of the brachial plexus among living amniotes and confirmed that the cervico-thoracic transition in ribs reflects the brachial plexus position. Using this osteological correlate, we concluded that the anterior borders of the brachial plexuses in the stem synapsids were positioned at the level of the fourth spinal nerve, suggesting that the forelimb buds were laid in close proximity of the infrahyoid muscles. The topology of the phrenic and suprascapular nerves of mammals is similar to that of subscapular and supracoracoid nerves, respectively, of the other amniotes, suggesting that the diaphragm evolved from a muscle positioned medial to the pectoral girdle (cf. subscapular muscle). We hypothesize that the diaphragm was acquired in two steps: first, forelimb muscle cells were incorporated into tissues to form a primitive diaphragm in the stem synapsid grade, and second, the diaphragm in cynodonts became entrapped in the region controlled by pulmonary development.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan.
| | | |
Collapse
|
26
|
Franklin SH, Van Erck-Westergren E, Bayly WM. Respiratory responses to exercise in the horse. Equine Vet J 2012; 44:726-32. [DOI: 10.1111/j.2042-3306.2012.00666.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- S. H. Franklin
- School of Animal and Veterinary Sciences; University of Adelaide; South Australia; Australia
| | | | - W. M. Bayly
- Office of the Provost; Washington State University; Washington; USA
| |
Collapse
|
27
|
Calcaneus length determines running economy: Implications for endurance running performance in modern humans and Neandertals. J Hum Evol 2011; 60:299-308. [DOI: 10.1016/j.jhevol.2010.11.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 10/01/2010] [Accepted: 11/20/2010] [Indexed: 11/21/2022]
|
28
|
Dempsey JA, Adams L, Ainsworth DM, Fregosi RF, Gallagher CG, Guz A, Johnson BD, Powers SK. Airway, Lung, and Respiratory Muscle Function During Exercise. Compr Physiol 2011. [DOI: 10.1002/cphy.cp120111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
|
30
|
Simon MA, Woods WA, Serebrenik YV, Simon SM, van Griethuijsen LI, Socha JJ, Lee WK, Trimmer BA. Visceral-Locomotory Pistoning in Crawling Caterpillars. Curr Biol 2010; 20:1458-63. [DOI: 10.1016/j.cub.2010.06.059] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/04/2010] [Accepted: 06/17/2010] [Indexed: 11/27/2022]
|
31
|
NYMAN G, BJÖRK M, FUNKQUIST P, PERSSON SGB, WAGNER PD. Ventilation-perfusion relationships during graded exercise in the Standardbred trotter. Equine Vet J 2010. [DOI: 10.1111/j.2042-3306.1995.tb04892.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Cotrel C, Leleu C, Courouce-Malblanc A. Factors influencing variation in locomotor-respiratory coupling in Standardbred Trotters in the field. Equine Vet J 2010:562-6. [PMID: 17402484 DOI: 10.1111/j.2042-3306.2006.tb05605.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
REASONS FOR PERFORMING STUDY A close relationship between limb and respiratory rhythms has been shown in clinically healthy galloping horses due to mechanical constraints in the thoracic region. This synchronisation leads to a 1/1 ratio between stride frequency (SF) and respiratory frequency (RF) during galloping. Very little is known about locomotor-respiratory coupling (LRC) during fast trot. OBJECTIVES To investigate stride and respiratory rates during a standardised exercise test on the track in Standardbred Trotters. METHODS Forty-four French trotters age 2-10 years performed a standardised exercise test consisting of three 3 min steps at constant speeds. Speed (V) of exercise varied between 500 and 750 m/min. Variables measured during exercise: SF, heart rate, RF using a microphone between the nostrils, blood lactate concentration. Physiological variables V4 and V200 were calculated and race performance index recorded. RESULTS There was no age-related difference in RF or in LRC. Two LRC strategies were found: around 1/1 ratio and 3/2 ratio between SF and RF, respectively. A relationship between SF/RF ratio and physiological parameters showed a higher LRC in good performers because of a lower RF during submaximal and maximal exercise. CONCLUSION RF is significantly lower and LRC significantly higher in good compared to poor performers. POTENTIAL RELEVANCE Investigation is required to ensure that the breathing techniques of trotters may be used in the selection process of racehorses.
Collapse
Affiliation(s)
- C Cotrel
- Pégase Mayenne, Département de médecine du Sport, Centre Hospitalier, 53 015 Laval, France
| | | | | |
Collapse
|
33
|
Perry SF, Similowski T, Klein W, Codd JR. The evolutionary origin of the mammalian diaphragm. Respir Physiol Neurobiol 2010; 171:1-16. [PMID: 20080210 DOI: 10.1016/j.resp.2010.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 11/18/2022]
Abstract
The comparatively low compliance of the mammalian lung results in an evolutionary dilemma: the origin and evolution of this bronchoalveolar lung into a high-performance gas-exchange organ results in a high work of breathing that cannot be achieved without the coupled evolution of a muscular diaphragm. However, despite over 400 years of research into respiratory biology, the origin of this exclusively mammalian structure remains elusive. Here we examine the basic structure of the body wall muscles in vertebrates and discuss the mechanics of costal breathing and functional significance of accessory breathing muscles in non-mammalian amniotes. We then critically examine the mammalian diaphragm and compare hypotheses on its ontogenetic and phylogenetic origin. A closer look at the structure and function across various mammalian groups reveals the evolutionary significance of collateral functions of the diaphragm as a visceral organizer and its role in producing high intra-abdominal pressure.
Collapse
|
34
|
Parsons S, Riskin DK, Hermanson JW. Echolocation call production during aerial and terrestrial locomotion by New Zealand's enigmatic lesser short-tailed bat, Mystacina tuberculata. J Exp Biol 2010; 213:551-7. [DOI: 10.1242/jeb.039008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Linkage of echolocation call production with contraction of flight muscles has been suggested to reduce the energetic cost of flight with echolocation, such that the overall cost is approximately equal to that of flight alone. However, the pattern of call production with limb movement in terrestrially agile bats has never been investigated. We used synchronised high-speed video and audio recordings to determine patterns of association between echolocation call production and limb motion by Mystacina tuberculata Gray 1843 as individuals walked and flew, respectively. Results showed that there was no apparent linkage between call production and limb motion when bats walked. When in flight, two calls were produced per wingbeat, late in the downstroke and early in the upstroke. When bats walked, calls were produced at a higher rate, but at a slightly lower intensity, compared with bats in flight. These results suggest that M. tuberculata do not attempt to reduce the cost of terrestrial locomotion and call production through biomechanical linkage. They also suggest that the pattern of linkage seen when bats are in flight is not universal and that energetic savings cannot necessarily be explained by contraction of muscles associated with the downstroke alone.
Collapse
Affiliation(s)
- Stuart Parsons
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniel K. Riskin
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Ecology and Evolutionary Biology, Brown University, Box G-B204, Providence, RI 02912, USA
| | - John W. Hermanson
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
35
|
Gonzales LM, Hessler EE, Amazeen PG. Perceptual Constraints on Frequency Ratio Performance in Motor-Respiratory Coordination. ECOLOGICAL PSYCHOLOGY 2010. [DOI: 10.1080/10407410903493129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Gariépy JF, Missaghi K, Dubuc R. The interactions between locomotion and respiration. PROGRESS IN BRAIN RESEARCH 2010; 187:173-88. [DOI: 10.1016/b978-0-444-53613-6.00012-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Breathing with your belly: Abdominal exhalation, loco-ventilatory integration and size constraints on locomotion in small mammals. ZOOLOGY 2009; 112:161-8. [DOI: 10.1016/j.zool.2008.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/22/2008] [Accepted: 08/23/2008] [Indexed: 11/20/2022]
|
38
|
Lieberman DE, Bramble DM, Raichlen DA, Shea JJ. Brains, Brawn, and the Evolution of Human Endurance Running Capabilities. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2009. [DOI: 10.1007/978-1-4020-9980-9_8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
39
|
Cotten PB, Piscitelli MA, McLellan WA, Rommel SA, Dearolf JL, Pabst DA. The gross morphology and histochemistry of respiratory muscles in bottlenose dolphins, Tursiops truncatus. J Morphol 2008; 269:1520-38. [PMID: 18777569 PMCID: PMC3143717 DOI: 10.1002/jmor.10668] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most mammals possess stamina because their locomotor and respiratory (i.e., ventilatory) systems are mechanically coupled. These systems are decoupled, however, in bottlenose dolphins (Tursiops truncatus) as they swim on a breath hold. Locomotion and ventilation are coupled only during their brief surfacing event, when they respire explosively (up to 90% of total lung volume in approximately 0.3 s) (Ridgway et al. 1969 Science 166:1651-1654). The predominantly slow-twitch fiber profile of their diaphragm (Dearolf 2003 J Morphol 256:79-88) suggests that this muscle does not likely power their rapid ventilatory event. Based on Bramble's (1989 Amer Zool 29:171-186) biomechanical model of locomotor-respiratory coupling in galloping mammals, it was hypothesized that locomotor muscles function to power ventilation in bottlenose dolphins. It was further hypothesized that these muscles would be composed predominantly of fast-twitch fibers to facilitate the bottlenose dolphin's rapid ventilation. The gross morphology of craniocervical (scalenus, sternocephalicus, sternohyoid), thoracic (intercostals, transverse thoracis), and lumbopelvic (hypaxialis, rectus abdominis, abdominal obliques) muscles (n = 7) and the fiber-type profiles (n = 6) of selected muscles (scalenus, sternocephalicus, sternohyoid, rectus abdominis) of bottlenose dolphins were investigated. Physical manipulations of excised thoracic units were carried out to investigate potential actions of these muscles. Results suggest that the craniocervical muscles act to draw the sternum and associated ribs craniodorsally, which flares the ribs laterally, and increases the thoracic cavity volume required for inspiration. The lumbopelvic muscles act to draw the sternum and caudal ribs caudally, which decreases the volumes of the thoracic and abdominal cavities required for expiration. All muscles investigated were composed predominantly of fast-twitch fibers (range 61-88% by area) and appear histochemically poised for rapid contraction. These combined results suggest that dolphins utilize muscles, similar to those used by galloping mammals, to power their explosive ventilation.
Collapse
Affiliation(s)
- Pamela B. Cotten
- University of North Carolina Wilmington, Department of Biology and Marine Biology, Wilmington, North Carolina 28403
| | - Marina A. Piscitelli
- University of North Carolina Wilmington, Department of Biology and Marine Biology, Wilmington, North Carolina 28403
| | - William A. McLellan
- University of North Carolina Wilmington, Department of Biology and Marine Biology, Wilmington, North Carolina 28403
| | - Sentiel A. Rommel
- University of North Carolina Wilmington, Department of Biology and Marine Biology, Wilmington, North Carolina 28403
| | | | - D. Ann Pabst
- University of North Carolina Wilmington, Department of Biology and Marine Biology, Wilmington, North Carolina 28403
| |
Collapse
|
40
|
Dunbar DC, Macpherson JM, Simmons RW, Zarcades A. Stabilization and mobility of the head, neck and trunk in horses during overground locomotion: comparisons with humans and other primates. J Exp Biol 2008; 211:3889-907. [PMID: 19043061 PMCID: PMC2768006 DOI: 10.1242/jeb.020578] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Segmental kinematics were investigated in horses during overground locomotion and compared with published reports on humans and other primates to determine the impact of a large neck on rotational mobility (> 20 deg.) and stability (< or = 20 deg.) of the head and trunk. Three adult horses (Equus caballus) performing walks, trots and canters were videotaped in lateral view. Data analysis included locomotor velocity, segmental positions, pitch and linear displacements and velocities, and head displacement frequencies. Equine, human and monkey skulls and cervical spines were measured to estimate eye and vestibular arc length during head pitch displacements. Horses stabilized all three segments in all planes during all three gaits, unlike monkeys and humans who make large head pitch and yaw rotations during walks, and monkeys that make large trunk pitch rotations during gallops. Equine head angular displacements and velocities, with some exceptions during walks, were smaller than in humans and other primates. Nevertheless, owing to greater off-axis distances, orbital and vestibular arc lengths remained larger in horses, with the exception of head-neck axial pitch during trots, in which equine arc lengths were smaller than in running humans. Unlike monkeys and humans, equine head peak-frequency ranges fell within the estimated range in which inertia has a compensatory stabilizing effect. This inertial effect was typically over-ridden, however, by muscular or ligamentous intervention. Thus, equine head pitch was not consistently compensatory, as reported in humans. The equine neck isolated the head from the trunk enabling both segments to provide a spatial reference frame.
Collapse
Affiliation(s)
- Donald C Dunbar
- Department of Anatomy and Neurobiology, and Caribbean Primate Research Center, University of Puerto Rico School of Medicine, PO Box 365067, San Juan, PR.
| | | | | | | |
Collapse
|
41
|
Carrier DR, Deban SM, Fischbein T. Locomotor function of forelimb protractor and retractor muscles of dogs: evidence of strut-like behavior at the shoulder. ACTA ACUST UNITED AC 2008; 211:150-62. [PMID: 18083743 DOI: 10.1242/jeb.010678] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The limbs of running mammals are thought to function as inverted struts. When mammals run at constant speed, the ground reaction force vector appears to be directed near the point of rotation of the limb on the body such that there is little or no moment at the joint. If this is true, little or no external work is done at the proximal joints during constant-speed running. This possibility has important implications to the energetics of running and to the coupling of lung ventilation to the locomotor cycle. To test if the forelimb functions as an inverted strut at the shoulder during constant-speed running and to characterize the locomotor function of extrinsic muscles of the forelimb, we monitored changes in the recruitment of six muscles that span the shoulder (the m. pectoralis superficialis descendens, m. pectoralis profundus, m. latissimus dorsi, m. omotransversarius, m. cleidobrachialis and m. trapezius) to controlled manipulations of locomotor forces and moments in trotting dogs (Canis lupus familiaris Linnaeus 1753). Muscle activity was monitored while the dogs trotted at moderate speed (approximately 2 m s(-1)) on a motorized treadmill. Locomotor forces were modified by (1) adding mass to the trunk, (2) inclining the treadmill so that the dogs ran up- and downhill (3) adding mass to the wrists or (4) applying horizontally directed force to the trunk through a leash. When the dogs trotted at constant speed on a level treadmill, the primary protractor muscles of the forelimb exhibited activity during the last part of the ipsilateral support phase and the beginning of swing phase, a pattern that is consistent with the initiation of swing phase but not with active protraction of the limb during the beginning of support phase. Results of the force manipulations were also consistent with the protractor muscles initiating swing phase and contributing to active braking via production of a protractor moment on the forelimb when the dogs decelerate. A similar situation appears to be true for the major retractor muscles of the forelimb. The m. pectoralis profundus and the m. latissimus dorsi were completely silent during the support phase of the ipsilateral limb when the dogs ran unencumbered and exhibited little or no increase in activity when the dogs carried added mass on their backs to increase any retraction torque during the support phase of constant-speed running. The most likely explanation for these observations is that the ground force reaction vector is oriented very close to the fulcrum of the forelimb such that the forelimb functions as a compliant strut at the shoulder when dogs trot at constant speed on level surfaces. Because the moments at the fulcrum of the pectoral girdle appear to be small during the support phase of a trotting step, a case can be made that it is the activity of the extrinsic appendicular muscles that produce the swing phase of the forelimb that explain the coupled phase relationship between ventilatory airflow and the locomotor cycle in trotting dogs.
Collapse
Affiliation(s)
- David R Carrier
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
42
|
Lieberman DE, Bramble DM, Raichlen DA, Shea JJ. The evolution of endurance running and the tyranny of ethnography: a reply to Pickering and Bunn (2007). J Hum Evol 2007; 53:439-42. [PMID: 17767947 DOI: 10.1016/j.jhevol.2007.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 06/12/2007] [Accepted: 07/01/2007] [Indexed: 10/22/2022]
|
43
|
Paced Breathing in Roller-Ski Skating: Effects on Metabolic Rate and Poling Forces. Int J Sports Physiol Perform 2007; 2:46-57. [DOI: 10.1123/ijspp.2.1.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose:This study aimed (1) to determine whether paced breathing (synchronization of the expiration phase with poling time) would reduce the metabolic rate and dictate a lower rate of perceived exertion (RPE) than does spontaneous breathing and (2) to analyze the effects of paced breathing on poling forces and stride-mechanics organization during roller-ski skating exercises.Methods:Thirteen well-trained cross-country skiers performed 8 submaximal roller-skiing exercises on a motorized driven treadmill with 4 modes of skiing (2 skating techniques, V2 and V2A, at 2 exercise intensities) by using 2 patterns of breathing (unconscious vs conscious). Poling forces and stride-mechanics organization were measured with a transducer mounted in ski poles. Oxygen uptake (VO2) was continuously collected. After each bout of exercise RPE was assessed by the subject.Results:No difference was observed for VO2 between spontaneous and paced breathing conditions, although RPE was lower with paced breathing (P < .05). Upper-limb cycle time and recovery time were significantly (P < .05) increased by paced breathing during V2A regardless of the exercise intensity, but no changes for poling time were observed. A slight trend of increased peak force with paced breathing was observed (P = .055).Conclusion:The lack of a marked effect of paced breathing on VO2 and some biomechanical variables could be explained by the extensive experience of our subjects in cross-country skiing.
Collapse
|
44
|
Fabre N, Perrey S, Arbez L, Rouillon JD. Neuro-mechanical and chemical influences on locomotor respiratory coupling in humans. Respir Physiol Neurobiol 2007; 155:128-36. [PMID: 16781205 DOI: 10.1016/j.resp.2006.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 04/19/2006] [Accepted: 04/20/2006] [Indexed: 11/30/2022]
Abstract
Mechanisms of coordination between breathing and movement during dynamic exercise are still a matter of debate. This study aimed to examine the degree of coordination between breathing and arm propulsion patterns and to compare the relative contribution of neuro-mechanical and chemical factors. Thirteen trained cross-country skiers performed constant submaximal 6-min roller skiing exercises on a motorized driven treadmill in two different poling techniques (V2A and V2 skating techniques) at two exercise intensity levels corresponding to the first and second ventilatory thresholds. The timing of arm propulsion movements in V2A and V2 techniques was considered as a mechanical/neural influence on breathing whereas exercise intensity represented the metabolic demand to breathing. The degree of coordination, expressed as the percentage of breaths presenting a constant phase interval (time between an arbitrarily chosen point of the arm movement cycle and the onset of expiration) was significantly higher in V2A than V2 (P<0.05) while exercise intensity had no effect on the degree of coordination. We concluded that locomotor-respiratory coupling occurs in cross-country skiing as simulated by roller skiing because of strong influences from neuro-mechanical factors.
Collapse
Affiliation(s)
- Nicolas Fabre
- Laboratoire des Sciences du Sport, Place St. Jacques, 25030 Besançon Cedex, France
| | | | | | | |
Collapse
|
45
|
Abstract
Humans have exceptional capabilities to run long distances in hot, arid conditions. These abilities, unique among primates and rare among mammals, derive from a suite of specialised features that permit running humans to store and release energy effectively in the lower limb, help keep the body's center of mass stable and overcome the thermoregulatory challenges of long distance running. Human endurance running performance capabilities compare favourably with those of other mammals and probably emerged sometime around 2 million years ago in order to help meat-eating hominids compete with other carnivores.
Collapse
Affiliation(s)
- Daniel E Lieberman
- Department of Anthropology and Organismic, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
46
|
Schilling N, Hackert R. Sagittal spine movements of small therian mammals during asymmetrical gaits. ACTA ACUST UNITED AC 2006; 209:3925-39. [PMID: 16985208 DOI: 10.1242/jeb.02400] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian locomotion is characterized by the use of asymmetrical gaits associated with extensive flexions and extensions of the body axis. Although the impact of sagittal spine movements on locomotion is well known, little information is available on the kinematics of spinal motion. Intervertebral joint movements were studied in two metatherian and three eutherian species during the gallop and halfbound using high-speed cineradiography. Fast-Fourier transformation was used to filter out high frequency digitizing errors and keep the lower frequency sinusoid oscillations that characterize the intervertebral angular movements. Independent of their regional classification as thoracic or lumbar vertebrae, 7+/-1 presacral intervertebral joints were involved in sagittal bending movements. In only one species, no more than five intervertebral joints contributed to the resulting 'pelvic movement'. In general, the trunk region involved in sagittal bending during locomotion did not correspond to the traditional subdivisions of the vertebral column (e.g. as thoracic and lumbar or pre- and postdiaphragmatic region). Therefore, these classifications do not predict the regions involved in spinal oscillations during locomotion. Independent of the gait, maximum flexion of the spine was observed in the interval between the last third of the swing phase and touch-down. This results in a retraction of the pelvis and hindlimbs before touch-down and, we hypothesize, enhances the stability of the system. Maximum extension occurred during the first third of the swing phase (i.e. after lift-off) in all species. In general, the observed timing of dorsoventral oscillations of the spine are in accordance with that observed in other mammals and with activity data of respiratory and epaxial back muscles. Although no strict craniocaudal pattern was observable, the more cranial intervertebral joints tend to flex and extend earlier than the more caudal ones. This is in accordance with the organization and the activation of the paravertebral musculature in mammals. The amplitude of intervertebral joint movements increased caudally, reaching its highest values in the presacral joint. The more intense sagittal bending movements in the caudal intervertebral joints are reflected by the muscle fiber type composition of the back muscles involved. Despite the highly similar amplitude of 'pelvic motion', touch-down and lift-off positions of the pelvis were clearly different between the species with a long, external tail and those with no external tail.
Collapse
Affiliation(s)
- Nadja Schilling
- Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University, Erbertstrasse 1, 07743 Jena, Germany.
| | | |
Collapse
|
47
|
Brainerd EL, Owerkowicz T. Functional morphology and evolution of aspiration breathing in tetrapods. Respir Physiol Neurobiol 2006; 154:73-88. [PMID: 16861059 DOI: 10.1016/j.resp.2006.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 06/08/2006] [Accepted: 06/12/2006] [Indexed: 11/28/2022]
Abstract
In the evolution of aspiration breathing, the responsibility for lung ventilation gradually shifted from the hyobranchial to the axial musculoskeletal system, with axial muscles taking over exhalation first, at the base of Tetrapoda, and then inhalation as well at the base of Amniota. This shift from hyobranchial to axial breathing freed the tongue and head to adapt to more diverse feeding styles, but generated a mechanical conflict between costal ventilation and high-speed locomotion. Some "lizards" (non-serpentine squamates) have been shown to circumvent this speed-dependent axial constraint with accessory gular pumping during locomotion, and here we present a new survey of gular pumping behavior in the tuatara and 40 lizard species. We observed gular pumping behavior in 32 of the 40 lizards and in the tuatara, indicating that the ability to inflate the lungs by gular pumping is a shared-derived character for Lepidosauria. Gular pump breathing in lepidosaurs may be homologous with buccal pumping in amphibians, but non-ventilatory buccal oscillation and gular flutter have persisted throughout amniote evolution and gular pumping may have evolved independently by modification of buccal oscillation. In addition to gular pumping in some lizards, three other innovations have evolved repeatedly in the major amniote clades to circumvent the speed-dependent axial constraint: accessory inspiratory muscles (mammals, crocodylians and turtles), changing locomotor posture (mammals and birds) and respiratory-locomotor phase coupling to reduce the mechanical conflict between aspiration breathing and locomotion (mammals and birds).
Collapse
Affiliation(s)
- Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Box G-B210, Brown University, Providence, RI 02912, USA.
| | | |
Collapse
|
48
|
Perry SF, Carrier DR. The Coupled Evolution of Breathing and Locomotion as a Game of Leapfrog. Physiol Biochem Zool 2006; 79:997-9. [PMID: 17041865 DOI: 10.1086/507657] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2006] [Indexed: 11/03/2022]
Abstract
Because the increase in metabolic rate related to locomotor activity places demands on the cardiorespiratory apparatus, it is not surprising that the evolution of breathing and of locomotion are coupled. As the respiratory faculty becomes more refined, increasingly aerobic life strategies can be explored, and this activity is in turn expedited by a higher-performance respiratory apparatus. This apparent leapfrogging of respiratory and locomotor faculties begins in noncraniate chordates and continues in water-breathing and air-breathing vertebrates. Because both locomotor and cardiorespiratory activities are coordinated in the brain, neurological as well as biochemical coupling is evident. In spite of very different breathing mechanisms in various vertebrate groups, the basic respiratory control mechanisms appear to have been conserved, and respiratory-locomotor coupling is evident in all classes of vertebrates. Hypaxial body wall muscles that were strictly locomotor in fish have respiratory function in amniotes, but some locomotor function remains in all groups.
Collapse
Affiliation(s)
- Steven F Perry
- Institut fur Zoologie, Rheinische Friedrich Wilhelms, Universitat Bonn, 53115 Bonn, Germany.
| | | |
Collapse
|
49
|
Klein W, Owerkowicz T. Function of intracoelomic septa in lung ventilation of amniotes: lessons from lizards. Physiol Biochem Zool 2006; 79:1019-32. [PMID: 17041868 DOI: 10.1086/507656] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 11/03/2022]
Abstract
Aspiration breathing is the dominant mechanism of lung inflation among extant amniotes. However, aspiration has two fundamental problems associated with it: paradoxical visceral translation and partial lung collapse. These can constrain the inspiratory tidal volume, reduce the effective lung ventilation, and ultimately curtail the aerobic capacity of an animal. Separation of the pleural and peritoneal cavities by an intracoelomic septum can restrict the cranial shift of abdominal viscera and provide structural support to the caudal lung surface. A muscular septum, such as the diaphragm of mammals or the diaphragmaticus of crocodilians, can exert active control over visceral translation and the degree of lung inflation. To a lesser degree, a nonmuscular septum can also function as a passive barrier when stretched taut by rib rotation. Studies of the posthepatic septum in teiid lizards and the postpulmonary septum in varanid lizards underscore the importance of nonmuscular septa in aspiration. These septa provide plausible functional models that help us infer the evolution of mammalian and avian lung ventilatory systems, respectively.
Collapse
Affiliation(s)
- Wilfried Klein
- Instituto de Biologia, Universidade Federal da Bahia, 40170-290 Salvador, Bahia, Brazil.
| | | |
Collapse
|
50
|
Huys R, Daffertshofer A, Beek PJ. Multiple time scales and subsystem embedding in the learning of juggling. Hum Mov Sci 2005; 23:315-36. [PMID: 15541520 DOI: 10.1016/j.humov.2004.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To gain insight into the multiform dynamics and integration of remote yet pertinent subsystems into the performance of complex perceptual-motor skills, we recently conducted a series of longitudinal and cross-sectional experiments on the acquisition of 3-ball cascade juggling in which we measured, next to the ball trajectories, postural sway, eye and head movements and respiration. The aim of the present paper is to review the main results and theoretical implications of these experimental studies for understanding skill acquisition. As regards the evolution of the quality of the juggling itself, we found that only certain aspects of throwing and catching were adjusted, while the goal behavior of sustained juggling (operationalized as the number of consecutive throws) and the degree of frequency and phase locking between the ball trajectories, indexing pattern stability, increased monotonically. The latter three aspects evolved at different rates, reflecting the existence of a temporal hierarchy in learning. Postural sway exhibited initial manifestations of task-specific, possibly mechanically induced, modes of 3:1 and 3:2 frequency locking with the ball trajectories and only few transitions between those modes. Functional stability appeared to be enhanced during practice by minimizing the sway amplitudes rather than by adjusting the sway dynamics itself. Eye and point-of-gaze movements also showed instances of 3:1 and 3:2 frequency locking with the ball trajectories; especially establishing a 3:1 locking (horizontal eye movements) appeared to be important. Expert behavior suggested that extended practice promotes reliance on multiple sources of information, allowing the proficient juggler to switch adaptively between functional organizations involving distinct perceptual systems. No consistent coordination between breathing and juggling was found. It was concluded that multiform dynamics, involving hierarchically ordered time scales, underlie the acquisition of complex skills and that the subsystems subserving realization of the task goal become assembled and embedded in a task- and subsystem-specific manner.
Collapse
Affiliation(s)
- Raoul Huys
- Faculty of Human Movement Sciences, Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands.
| | | | | |
Collapse
|