1
|
Giberti S, Dutta S, Corni S, Frasconi M, Brancolini G. Protein-surface interactions in nano-scale biosensors for IL-6 detection using functional monolayers. NANOSCALE 2025; 17:4389-4399. [PMID: 39831436 DOI: 10.1039/d4nr04199b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A multiscale approach is employed to investigate the interaction dynamics between interleukin-6, a key cancer biomarker, and alkyl-functionalized surfaces, with the ultimate goal of guiding biosensor design. The study integrates classical molecular dynamics, Brownian dynamics simulations, and binding experiments to explore the adsorption dynamics and energetics of IL-6 on surfaces modified with self-assembled monolayers (SAMs). The comparative analysis reveals a dramatic effect on the interaction strength of IL-6 with a SAMs comprising a mix of charged and hydrophobic ligands. Solvent accessible surface area analysis shows enhanced exposure of charged terminal groups on the mixed SAM surface. Experimental investigations using surface plasmon resonance reveal that IL-6 interactions enhance with increased charged ligand content in mixed SAMs, retaining high binding affinity even under high ionic strength conditions. Computational studies further highlight hydrophobic and electrostatic interactions as key factors driving the high affinity of IL-6 on the mixed SAMs surface. This research offers insights into optimizing surfaces for enhanced IL-6 recognition, which can be extended to other protein biomarkers, by combining experimental and computational approaches to improve biosensing performance.
Collapse
Affiliation(s)
- Serena Giberti
- Institute Nanoscience - CNR-NANO, Center S3, via G. Campi 213/A, 41125, Modena, Italy.
| | - Sutapa Dutta
- Institute Nanoscience - CNR-NANO, Center S3, via G. Campi 213/A, 41125, Modena, Italy.
| | - Stefano Corni
- Department of Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Marco Frasconi
- Department of Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Giorgia Brancolini
- Institute Nanoscience - CNR-NANO, Center S3, via G. Campi 213/A, 41125, Modena, Italy.
| |
Collapse
|
2
|
Kikkawa K, Sumiya Y, Okazawa K, Yoshizawa K, Itoh Y, Aida T. Thiourea as a "Polar Hydrophobic" Hydrogen-Bonding Motif: Application to Highly Durable All-Underwater Adhesion. J Am Chem Soc 2024. [PMID: 39031475 DOI: 10.1021/jacs.4c07515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Here, we report that, in contrast to urea, thiourea functions as a "polar hydrophobic" hydrogen-bonding motif. Although thiourea is more acidic than urea, thiourea exchanges its N-H protons with water at a rate that is 160 times slower than that for urea at 70 °C. This suggests that thiourea is much less hydrated than urea in an aqueous environment. What led us to this interesting principle was the serendipitous finding that self-healable poly(ether thiourea) adhered strongly to wet glass surfaces. This discovery enabled us to develop an exceptionally durable all-underwater adhesive that can maintain large adhesive strength for over a year even in seawater, simply by mechanically mixing three water-insoluble liquid components on target surfaces. Because thiourea is hydrophobic, its hydrogen-bonding networks within the adhesive structure and at the adhesive-target interface are presumed to be dehydrated. For comparison, a reference adhesive using urea as a representative "polar hydrophilic" hydrogen-bonding motif was durable for less than 4 days in water. Highly durable all-underwater adhesives are needed in various fields of marine engineering and biomedical sciences, but their development has been a major challenge because a hydration layer that spontaneously forms in water always inhibits adhesion.
Collapse
Affiliation(s)
- Kohei Kikkawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yosuke Sumiya
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Okazawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshimitsu Itoh
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
3
|
Bunuasunthon S, Nakamoto M, Hoven VP, Matsusaki M. Construction of Tough Hydrogel Cross-Linked via Ionic Interaction by Protection Effect of Hydrophobic Domains. ACS Biomater Sci Eng 2024; 10:4245-4258. [PMID: 38865608 DOI: 10.1021/acsbiomaterials.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Most hydrogels have poor mechanical properties, severely limiting their potential applications, and numerous approaches have been introduced to fabricate more robust and durable examples. However, these systems consist of nonbiodegradable polymers which limit their application in tissue engineering. Herein, we focus on the fabrication and investigate the influence of hydrophobic segments on ionic cross-linking properties for the construction of a tough, biodegradable hydrogel. A biodegradable, poly(γ-glutamic acid) polymer conjugated with a hydrophobic amino acid, l-phenylalanine ethyl ester (Phe), together with an ionic cross-linking group, alendronic acid (Aln) resulting in γ-PGA-Aln-Phe, was initially synthesized. Rheological assessments through time sweep oscillation testing revealed that the presence of hydrophobic domains accelerated gelation. Comparing gels with and without hydrophobic domains, the compressive strength of γ-PGA-Aln-Phe was found to be six times higher and exhibited longer stability properties in ethylenediaminetetraacetic acid solution, lasting for up to a month. Significantly, the contribution of the hydrophobic domains to the mechanical strength and stability of ionic cross-linking properties of the gel was found to be the dominant factor for the fabrication of a tough hydrogel. As a result, this study provides a new strategy for mechanical enhancement and preserves ionic cross-linked sites by the addition of hydrophobic domains. The development of tough, biodegradable hydrogels reported herein will open up new possibilities for applications in the field of biomaterials.
Collapse
Affiliation(s)
- Sukulya Bunuasunthon
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiko Nakamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Voravee P Hoven
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan Bangkok 10330, Thailand
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Chu C, Tan F, Zhu X, Su L, Xu Z, Sun D. Temperature-Insensitive Nonpolar Suspensions of Polyoxyethylene Alkyl Ether-Grafted Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13207-13218. [PMID: 38867510 DOI: 10.1021/acs.langmuir.4c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Nonpolar suspensions of organically modified particles exhibit a strong temperature sensitivity owing to the high-temperature-induced desorption/decomposition and the low-temperature-induced disorder/order conformational transition of the modifiers. This strong temperature sensitivity limits their applications, such as lubricants and oil-based drilling fluids, which require the suspensions to operate over a wide temperature range (e.g., 0-200 °C). We hypothesize that the introduction of a flexible ethylene oxide (EO) chain into the modifiers can disrupt the low-temperature-induced ordered conformation to improve the stability of the nonpolar suspensions. In this article, nonpolar suspensions with temperature insensitivity in the range of 5-160 °C were obtained via the covalent modification of silica NPs and the introduction of EO chains into the modifier molecules. Here, octadecyl-grafted silica NPs (C18-SiO2) and polyoxyethylene alkyl ether-grafted silica NPs (AEOn-SiO2) were synthesized and subsequently dispersed in mineral oil. The rheological properties of each suspension at different temperatures were evaluated, and the thermal stability of AEOn-SiO2 in mineral oil was investigated along with the conformational changes of the grafted chains. In the temperature range of 5-160 °C, the apparent viscosity and gel strength of the C18-SiO2 suspension changed dramatically, whereas the AEOn-SiO2 suspensions exhibited constant rheological properties over this temperature range. This temperature insensitivity of AEOn-SiO2 suspensions is attributed to the excellent thermal stability of AEOn-SiO2 in mineral oil and the disordered conformation of the EO chains upon cooling. This study provides a novel approach to preparing temperature-insensitive nonpolar suspensions, which have potential applications in the petroleum and lubricant industries.
Collapse
Affiliation(s)
- Cailing Chu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Fei Tan
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xiuyan Zhu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Long Su
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhenghe Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Dejun Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
5
|
Bose HS. Dry molten globule conformational state of CYP11A1 (SCC) regulates the first step of steroidogenesis in the mitochondrial matrix. iScience 2024; 27:110039. [PMID: 38868187 PMCID: PMC11167429 DOI: 10.1016/j.isci.2024.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Multiple metabolic events occur in mitochondria. Mitochondrial protein translocation from the cytoplasm across compartments depends on the amino acid sequence within the precursor. At the mitochondria associated-ER membrane, misfolding of a mitochondrial targeted protein prior to import ablates metabolism. CYP11A1, cytochrome P450 cholesterol side chain cleavage enzyme (SCC), is imported from the cytoplasm to mitochondrial matrix catalyzing cholesterol to pregnenolone, an essential step for metabolic processes and mammalian survival. Multiple steps regulate the availability of an actively folded SCC; however, the mechanism is unknown. We identified that a dry molten globule state of SCC exists in the matrix by capturing intermediate protein folding steps dictated by its C-terminus. The intermediate dry molten globule state in the mitochondrial matrix of living cells is stable with a limited network of interaction and is inactive. The dry molten globule is activated with hydrogen ions availability, triggering cleavage of cholesterol sidechain, and initiating steroidogenesis.
Collapse
Affiliation(s)
- Himangshu S. Bose
- Laboratory of Biochemistry, Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
- Anderson Cancer Institute, Memorial University Medical Center, Savannah, GA 31404, USA
| |
Collapse
|
6
|
Barpuzary D, Hurst PJ, Patterson JP, Guan Z. Waste-Free Fully Electrically Fueled Dissipative Self-Assembly System. J Am Chem Soc 2023; 145:3727-3735. [PMID: 36746118 DOI: 10.1021/jacs.2c13140] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The importance and prevalence of energy-fueled active materials in living systems have inspired the design of synthetic active materials using various fuels. However, several major limitations of current designs remain to be addressed, such as the accumulation of chemical wastes during the process, unsustainable active behavior, and the lack of precise spatiotemporal control. Here, we demonstrate a fully electrically fueled (e-fueled) active self-assembly material that can overcome the aforementioned limitations. Using an electrochemical setup with dual electrocatalysts, the anodic oxidation of one electrocatalyst (ferrocyanide, [Fe(CN)6]4-) creates a positive fuel to activate the self-assembly, while simultaneously, the cathodic reduction of the other electrocatalyst (methyl viologen, [MV]2+) generates a negative fuel triggering fiber disassembly. Due to the fully catalytic nature for the reaction networks, this fully e-fueled active material system does not generate any chemical waste, can sustain active behavior for an extended period when the electrical potential is maintained, and provides spatiotemporal control.
Collapse
Affiliation(s)
- Dipankar Barpuzary
- Center for Complex and Active Materials, University of California Irvine, Irvine, California92697, United States.,Department of Chemistry, University of California Irvine, Irvine, California92697, United States
| | - Paul J Hurst
- Department of Chemistry, University of California Irvine, Irvine, California92697, United States
| | - Joseph P Patterson
- Center for Complex and Active Materials, University of California Irvine, Irvine, California92697, United States.,Department of Chemistry, University of California Irvine, Irvine, California92697, United States.,Department of Materials Science and Engineering, University of California Irvine, Irvine, California92697, United States
| | - Zhibin Guan
- Center for Complex and Active Materials, University of California Irvine, Irvine, California92697, United States.,Department of Chemistry, University of California Irvine, Irvine, California92697, United States.,Department of Materials Science and Engineering, University of California Irvine, Irvine, California92697, United States.,Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California92697, United States.,Department of Biomedical Engineering, University of California Irvine, Irvine, California92697, United States
| |
Collapse
|
7
|
Wang L, Wang Y, Wang CS, Hao Q. An Application of Dipole–Dipole Interaction Model in Stacking Dimers Including Protonated Arginine Residue. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422090205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Gunawardhana SM, Holmstrom ED. Apolar chemical environments compact unfolded RNAs and can promote folding. BIOPHYSICAL REPORTS 2021; 1. [PMID: 35382036 PMCID: PMC8978554 DOI: 10.1016/j.bpr.2021.100004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is well documented that the structure, and thus function, of nucleic acids depends on the chemical environment surrounding them, which often includes potential proteinaceous binding partners. The nonpolar amino acid side chains of these proteins will invariably alter the polarity of the local chemical environment around the nucleic acid. However, we are only beginning to understand how environmental polarity generally influences the structural and energetic properties of RNA folding. Here, we use a series of aqueous-organic cosolvent mixtures to systematically modulate the solvent polarity around two different RNA folding constructs that can form either secondary or tertiary structural elements. Using single-molecule Förster resonance energy transfer spectroscopy to simultaneously monitor the structural and energetic properties of these RNAs, we show that the unfolded conformations of both model RNAs become more compact in apolar environments characterized by dielectric constants less than that of pure water. In the case of tertiary structure formation, this compaction also gives rise to more energetically favorable folding. We propose that these physical changes arise from an enhanced accumulation of counterions in the low dielectric environment surrounding the unfolded RNA.
Collapse
Affiliation(s)
| | - Erik D Holmstrom
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas.,Department of Chemistry, University of Kansas, Lawrence, Kansas
| |
Collapse
|
9
|
Kim S, Lee M, Lee WB, Choi SH. Ionic-Group Dependence of Polyelectrolyte Coacervate Phase Behavior. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sojeong Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Minhwan Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
10
|
Monet G, Bresme F, Kornyshev A, Berthoumieux H. Nonlocal Dielectric Response of Water in Nanoconfinement. PHYSICAL REVIEW LETTERS 2021; 126:216001. [PMID: 34114838 DOI: 10.1103/physrevlett.126.216001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Recent experiments reporting a very low dielectric permittivity for nanoconfined water have renewed the interest in the structure and dielectric properties of water in narrow gaps. Here, we describe such systems with a minimal Landau-Ginzburg field theory composed of a nonlocal bulk-determined term and a local water-surface interaction term. We show how the interplay between the boundary conditions and intrinsic bulk correlations encodes the dielectric properties of confined water. Our theoretical analysis is supported by molecular dynamics simulations and comparison with the experimental data.
Collapse
Affiliation(s)
- G Monet
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC, UMR 7600), F-75005 Paris, France
| | - F Bresme
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ 2AZ London, United Kingdom
| | - A Kornyshev
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ 2AZ London, United Kingdom
| | - H Berthoumieux
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC, UMR 7600), F-75005 Paris, France
| |
Collapse
|
11
|
Kasuya M, Sano Y, Kawashima M, Kurihara K. Evaluation of Interfacial pH Using Surface Forces Apparatus Fluorescence Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5073-5080. [PMID: 33847120 DOI: 10.1021/acs.langmuir.1c00817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The fluorescence spectrum measurement of a fluorescence pH probe, C. SNARF-4F, was performed for monitoring the interfacial pH of aqueous electrolytes between mica or silica surfaces while varying the surface separation (D) using surface force apparatus (SFA) fluorescence spectroscopy. The pH of the aqueous CsCl between mica exponentially decreased with decreasing D. The order of the decay lengths of the interfacial pH obtained from the exponential fitting (L) at various electrolyte concentrations was L1mM > L0.1mM ≈ L0.4mM > L10mM. For studying the mechanisms of these changes, we performed the electric double layer (EDL) model calculation of the interfacial pH based on the surface potentials, which were evaluated from the EDL forces between the substrates in aqueous electrolytes using the same SFA. The calculated pH value for the 0.1 mM aqueous electrolyte corresponded to the values obtained from fluorescence spectroscopy, indicating that the interfacial pH was attributed to only the general EDL effect. On the other hand, the measured pH value for the higher concentrations of aqueous electrolytes (0.4-10 mM) decreased in the longer D ranges than the values calculated from the model, indicating that there was an additional factor affecting the interfacial pH for those concentrations. We also studied the effects of the cationic species of the electrolytes (Cs+, Na+, and Li+) and of the silica substrate on the interfacial pH. The systematic studies of the interfacial pH revealed that it depended on all three factors studied here, that is, the electrolyte concentration, electrolyte species, and the substrates. The results also suggested that the interfacial pH was not only due to the simple EDL theory but could also be affected by an additional factor due to the ion adsorption at the interface and chemical states of the substrates.
Collapse
Affiliation(s)
- Motohiro Kasuya
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Yuka Sano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Masataka Kawashima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Kazue Kurihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
12
|
Saha M, Hossain MS, Bandyopadhyay S. A Photoregulated Racemase Mimic. Angew Chem Int Ed Engl 2021; 60:5220-5224. [PMID: 33180335 DOI: 10.1002/anie.202012124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/11/2020] [Indexed: 01/03/2023]
Abstract
The racemase enzymes convert L-amino acids to their D-isomer. The reaction proceeds through a stepwise deprotonation-reprotonation mechanism that is assisted by a pyridoxal phosphate (PLP) coenzyme. This work reports a PLP-photoswitch-imidazole triad where the racemization reaction can be controlled by light by tweaking the distance between the basic residue and the reaction centre.
Collapse
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Munshi Sahid Hossain
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
13
|
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Munshi Sahid Hossain
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur, Nadia West Bengal 741246 India
| |
Collapse
|
14
|
Zhang F, Yu L, Zhang W, Liu L, Wang C. A minireview on the perturbation effects of polar groups to direct nanoscale hydrophobic interaction and amphiphilic peptide assembly. RSC Adv 2021; 11:28667-28673. [PMID: 35478591 PMCID: PMC9038178 DOI: 10.1039/d1ra05463e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
Hydrophobic interaction provides the essential driving force for creating diverse native and artificial supramolecular architectures. Accumulating evidence leads to a hypothesis that the hydrophobicity of a nonpolar patch of a molecule is non-additive and susceptible to the chemical context of a judicious polar patch. However, the quantification of the hydrophobic interaction at the nanoscale remains a central challenge to validate the hypothesis. In this review, we aim to outline the recent efforts made to determine the hydrophobic interaction at a nanoscopic length scale. The advances achieved in the understanding of proximal polar groups perturbing the magnitude of hydrophobic interaction generated by the nonpolar patch are introduced. We will also discuss the influence of chemical heterogeneity on the modulation of amphiphilic peptide/protein assembly and molecular recognition. Hydrophobic interaction provides the essential driving force for creating diverse native and artificial supramolecular architectures.![]()
Collapse
Affiliation(s)
- Feiyi Zhang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
15
|
Shin D, Seo H, Jhe W. Exploring the Hydration Water Character on Atomically Dislocated Surfaces by Surface Enhanced Raman Spectroscopy. ACS CENTRAL SCIENCE 2020; 6:2079-2087. [PMID: 33274284 PMCID: PMC7706083 DOI: 10.1021/acscentsci.0c01009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 06/12/2023]
Abstract
Hydration is ubiquitous in any kind of water-substance interaction such as in various interfacial and biological processes. Despite substantial progress made to date, however, still less explored is the hydration behavior on complex heterogeneous surfaces, such as the water surrounding the protein, which requires a platform that enables systematic investigation at the atomic scale. Here, we realized a heterogeneous self-assembled monolayer system that allows both controllable mixing with hydrophobic or hydrophilic groups and precise distance control of the functional carboxyl groups from the surface by methylene spacer groups. Using surface-enhanced Raman spectroscopy (SERS), we first demonstrated the hydrophobic (or hydrophilic) mixing ratio-dependent pK a variation of the carboxyl group. Interestingly, we observed a counterintuitive, non-monotonic behavior that a fractionally mixed hydrophobic group can induce significant enhancement of dielectric strength of the interfacial water. In particular, such a fractional mixing substantially decreases the amide coupling efficiency at the surface, as manifested by the corresponding pK a decrease. The SERS-based platform we demonstrated can be widely applied for atomically precise control and molecular-level characterization of hydration water on various heterogeneous surfaces of biological and industrial importance.
Collapse
Affiliation(s)
- Dongha Shin
- Center
for 0D Nanofluidics, Institute of Applied Physics, Department of Physics
and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
- Division
of Fine Chemistry and Engineering, College of Natural Science, Pai Chai University, Daejeon 35345, Republic of Korea
| | - Hoyoung Seo
- Center
for 0D Nanofluidics, Institute of Applied Physics, Department of Physics
and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonho Jhe
- Center
for 0D Nanofluidics, Institute of Applied Physics, Department of Physics
and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Ariga K. Molecular recognition at the air-water interface: nanoarchitectonic design and physicochemical understanding. Phys Chem Chem Phys 2020; 22:24856-24869. [PMID: 33140772 DOI: 10.1039/d0cp04174b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although molecular recognition at the air-water interface has been researched for over 30 years, investigations on its fundamental aspects are still active research targets in current science. In this perspective article, developments and future possibilities of molecular recognition at the air-water interface from pioneering research efforts to current examples are overviewed especially from the physico-chemical viewpoints. Significant enhancements of binding constants for molecular recognition are actually observed at the air-water interface although molecular interactions such as hydrogen bonding are usually suppressed in aqueous media. Recent advanced analytical strategies for direct characterization of interfacial molecules also confirmed the promoted formation of hydrogen bonding at the air-water interfaces. Traditional quantum chemical approaches indicate that modulation of electronic distributions through effects from low-dielectric phases would be the origin of enhanced molecular interactions at the air-water interface. Further theoretical considerations suggest that unusual potential changes for enhanced molecular interactions are available only within a limited range from the interface. These results would be related with molecular recognition in biomolecular systems that is similarly supported by promoted molecular interactions in interfacial environments such as cell membranes, surfaces of protein interiors, and macromolecular interfaces.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
17
|
Fu T, Xing H, Silver ES, Itoh Y, Chen S, Masuda T, Uosaki K, Huang F, Aida T. Anomalously Slow Conformational Change Dynamics of Polar Groups Anchored to Hydrophobic Surfaces in Aqueous Media. Chem Asian J 2020; 15:3321-3325. [PMID: 32844601 DOI: 10.1002/asia.202000742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/21/2020] [Indexed: 11/11/2022]
Abstract
Water molecules within a thin hydration layer, spontaneously generated on hydrophobic protein surfaces, are reported to form a poorly dynamic network structure. However, how such a water network affects the conformational change dynamics of polar groups has never been explored, although such polar groups play a critical role in protein-protein and protein-ligand interactions. In the present work, we utilized as model protein surfaces a series of self-assembled monolayers (SAMs) appended with polar (Fmoc) or ionic (FITC) fluorescent head groups that were tethered via a 1.5-nm-long flexible oligoether chain to a hydrophobic silicon wafer surface, which was densely covered with paraffinic chains. We found that, not only in deionized water but also in aqueous buffer, these oligoether-appended head groups at ambient temperatures both displayed an anomalously slow conformational change, which required ∼10 h to reach a thermodynamically equilibrated state. We suppose that these behaviors reflect the poorly dynamic and low-permittivity natures of the thin hydration layer.
Collapse
Affiliation(s)
- Tengfei Fu
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hao Xing
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Eric S Silver
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshimitsu Itoh
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shuo Chen
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takuya Masuda
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS) Tsukuba, Ibaraki, 305-0044, Japan.,Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS) Tsukuba, Ibaraki, 305-0044, Japan
| | - Kohei Uosaki
- Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS) Tsukuba, Ibaraki, 305-0044, Japan.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) Tsukuba, Ibaraki, 305-0044, Japan
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
18
|
Dubey P, Thakur V, Chattopadhyay M. Role of Minerals and Trace Elements in Diabetes and Insulin Resistance. Nutrients 2020; 12:1864. [PMID: 32585827 PMCID: PMC7353202 DOI: 10.3390/nu12061864] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Minerals and trace elements are micronutrients that are essential to the human body but present only in traceable amounts. Nonetheless, they exhibit well-defined biochemical functions. Deficiencies in these micronutrients are related to widespread human health problems. This review article is focused on some of these minerals and trace element deficiencies and their consequences in diabetes and insulin resistance. The levels of trace elements vary considerably among different populations, contingent on the composition of the diet. In several Asian countries, large proportions of the population are affected by a number of micronutrient deficiencies. Local differences in selenium, zinc, copper, iron, chromium and iodine in the diet occur in both developed and developing countries, largely due to malnutrition and dependence on indigenous nutrition. These overall deficiencies and, in a few cases, excess of essential trace elements may lead to imbalances in glucose homeostasis and insulin resistance. The most extensive problems affecting one billion people or more worldwide are associated with inadequate supply of a number of minerals and trace elements including iodine, selenium, zinc, calcium, chromium, cobalt, iron, boron and magnesium. This review comprises various randomized controlled trials, cohort and case-controlled studies, and observational and laboratory-based studies with substantial outcomes of micronutrient deficiencies on diabetes and insulin resistance in diverse racial inhabitants from parts of Asia, Africa, and North America. Changes in these micronutrient levels in the serum and urine of subjects may indicate the trajectory toward metabolic changes, oxidative stress and provide disease-relevant information.
Collapse
Affiliation(s)
- Pallavi Dubey
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Vikram Thakur
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Munmun Chattopadhyay
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
19
|
Schneible JD, Shi K, Young AT, Ramesh S, He N, Dowdey CE, Dubnansky JM, Lilova RL, Gao W, Santiso E, Daniele M, Menegatti S. Modified gaphene oxide (GO) particles in peptide hydrogels: a hybrid system enabling scheduled delivery of synergistic combinations of chemotherapeutics. J Mater Chem B 2020; 8:3852-3868. [PMID: 32219269 PMCID: PMC7945679 DOI: 10.1039/d0tb00064g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The scheduled delivery of synergistic drug combinations is increasingly recognized as highly effective against advanced solid tumors. Of particular interest are composite systems that release a sequence of drugs with defined kinetics and molar ratios to enhance therapeutic effect, while minimizing the dose to patients. In this work, we developed a homogeneous composite comprising modified graphene oxide (GO) nanoparticles embedded in a Max8 peptide hydrogel, which provides controlled kinetics and molar ratios of release of doxorubicin (DOX) and gemcitabine (GEM). First, modified GO nanoparticles (tGO) were designed to afford high DOX loading and sustained release (18.9% over 72 h and 31.4% over 4 weeks). Molecular dynamics simulations were utilized to model the mechanism of DOX loading as a function of surface modification. In parallel, a Max8 hydrogel was developed to release GEM with faster kinetics and achieve a 10-fold molar ratio to DOX. The selected DOX/tGO nanoparticles were suspended in a GEM/Max8 hydrogel matrix, and the resulting composite was tested against a triple negative breast cancer cell line, MDA-MB-231. Notably, the composite formulation afforded a combination index of 0.093 ± 0.001, indicating a much stronger synergism compared to the DOX-GEM combination co-administered in solution (CI = 0.396 ± 0.034).
Collapse
Affiliation(s)
- John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Kaihang Shi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Ashlyn T Young
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Nanfei He
- Department of Textile Engineering, Chemistry, and Science, 1020 Main Campus Drive, Raleigh, North Carolina, USA
| | - Clay E Dowdey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Jean Marie Dubnansky
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Radina L Lilova
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Wei Gao
- Department of Textile Engineering, Chemistry, and Science, 1020 Main Campus Drive, Raleigh, North Carolina, USA
| | - Erik Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, USA and Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina, USA.
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| |
Collapse
|
20
|
Minamiki T, Ichikawa Y, Kurita R. Systematic Investigation of Molecular Recognition Ability in FET-Based Chemical Sensors Functionalized with a Mixed Self-Assembled Monolayer System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15903-15910. [PMID: 32134238 DOI: 10.1021/acsami.0c00293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exploring new strategies for simple and on-demand methods of manipulating the sensing ability of sensor devices functionalized with artificial receptors embedded in a molecular assembly is important to realizing high-throughput on-site sensing systems based on integrated and miniaturized devices such as field-effect transistors (FETs). Although FET-based chemical sensors can be used for rapid, quantitative, and simultaneous determination of various desired analytes, detectable targets in conventional FET sensors are currently restricted owing to the complicated processes used to prepare sensing materials. In this study, we investigated the relationship between the sensing features of FETs and the nanostructures of mixed self-assembled monolayers (mSAMs) for the detection of biomolecules. The FET devices were systematically functionalized using mixtures of benzenethiol derivatives (4-mercaptobenzoic acid and benzenethiol), which changed the nanostructure of the SAMs formed on gold sensing electrodes. The obtained cross-reactivity in the FETs modified with the mSAMs was derived from the multidimensional variations of the SAM characteristics. Our successful demonstration of continuous control of the molecular recognition ability in the FETs by applying the mSAM system could lead to the development of next-generation versatile analyzers, including chemical sensor arrays for the determination of multiple analytes anytime, anywhere.
Collapse
Affiliation(s)
- Tsukuru Minamiki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuki Ichikawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
21
|
Tuladhar A, Dewan S, Pezzotti S, Brigiano FS, Creazzo F, Gaigeot MP, Borguet E. Ions Tune Interfacial Water Structure and Modulate Hydrophobic Interactions at Silica Surfaces. J Am Chem Soc 2020; 142:6991-7000. [DOI: 10.1021/jacs.9b13273] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Aashish Tuladhar
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Physical Sciences Division, Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Shalaka Dewan
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Simone Pezzotti
- LAMBE UMR8587, Université d’Evry val d’Essonne, CNRS, CEA, Université Paris-Saclay, 91025 Evry, France
| | - Flavio Siro Brigiano
- LAMBE UMR8587, Université d’Evry val d’Essonne, CNRS, CEA, Université Paris-Saclay, 91025 Evry, France
| | - Fabrizio Creazzo
- LAMBE UMR8587, Université d’Evry val d’Essonne, CNRS, CEA, Université Paris-Saclay, 91025 Evry, France
| | - Marie-Pierre Gaigeot
- LAMBE UMR8587, Université d’Evry val d’Essonne, CNRS, CEA, Université Paris-Saclay, 91025 Evry, France
| | - Eric Borguet
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
22
|
Ganguly P, Shea JE. Distinct and Nonadditive Effects of Urea and Guanidinium Chloride on Peptide Solvation. J Phys Chem Lett 2019; 10:7406-7413. [PMID: 31721587 DOI: 10.1021/acs.jpclett.9b03004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using enhanced-sampling replica exchange fully atomistic molecular dynamics simulations, we show that, individually, urea and guanidinium chloride (GdmCl) denature the Trpcage protein, but remarkably, the helical segment 1NLYIQWL7 of the protein is stabilized in mixed denaturant solutions. GdmCl induces protein denaturation via a combination of direct and indirect effects involving dehydration of the protein and destabilization of stabilizing salt bridges. In contrast, urea denatures the protein through favorable protein-urea preferential interactions, with peptide-specific indirect effects of urea on the water structure around the protein. In the case of the helical segment of Trpcage, urea "oversolvates" the peptide backbone by reorganizing water molecules from the peptide side chains to the peptide backbone. An intricate nonadditive thermodynamic balance between GdmCl-induced dehydration of the peptide and the urea-induced changes in solvation structure triggers partial counteraction to urea denaturation and stabilization of the helix.
Collapse
Affiliation(s)
- Pritam Ganguly
- Department of Chemistry and Biochemistry , University of California at Santa Barbara , Santa Barbara , California 93106 , United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry , University of California at Santa Barbara , Santa Barbara , California 93106 , United States
- Department of Physics , University of California at Santa Barbara , Santa Barbara , California 93106 , United States
| |
Collapse
|
23
|
Determination and evaluation of the nonadditivity in wetting of molecularly heterogeneous surfaces. Proc Natl Acad Sci U S A 2019; 116:25516-25523. [PMID: 31792179 PMCID: PMC6926055 DOI: 10.1073/pnas.1916180116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Every folded protein presents an interface with water that is composed of domains of varying hydrophilicity/-phobicity. Many simulation studies have highlighted the nonadditivity in the wetting of such nanostructured surfaces in contrast with the accepted theoretical formula that is additive. We present here an experimental study on surfaces of identical composition but different organization of hydrophobic and hydrophilic domains. We prove that the interfacial energy of such surfaces differs by ∼20% and that a significant difference in the interfacial water H-bonding structure can be measured. As a result, in combination with molecular-dynamics simulations, we propose a model that captures the wetting of molecularly heterogeneous surfaces, showing the importance of local structure (first-nearest neighbors) in determining the wetting properties. The interface between water and folded proteins is very complex. Proteins have “patchy” solvent-accessible areas composed of domains of varying hydrophobicity. The textbook understanding is that these domains contribute additively to interfacial properties (Cassie’s equation, CE). An ever-growing number of modeling papers question the validity of CE at molecular length scales, but there is no conclusive experiment to support this and no proposed new theoretical framework. Here, we study the wetting of model compounds with patchy surfaces differing solely in patchiness but not in composition. Were CE to be correct, these materials would have had the same solid–liquid work of adhesion (WSL) and time-averaged structure of interfacial water. We find considerable differences in WSL, and sum-frequency generation measurements of the interfacial water structure show distinctively different spectral features. Molecular-dynamics simulations of water on patchy surfaces capture the observed behaviors and point toward significant nonadditivity in water density and average orientation. They show that a description of the molecular arrangement on the surface is needed to predict its wetting properties. We propose a predictive model that considers, for every molecule, the contributions of its first-nearest neighbors as a descriptor to determine the wetting properties of the surface. The model is validated by measurements of WSL in multiple solvents, where large differences are observed for solvents whose effective diameter is smaller than ∼6 Å. The experiments and theoretical model proposed here provide a starting point to develop a comprehensive understanding of complex biological interfaces as well as for the engineering of synthetic ones.
Collapse
|
24
|
Madsen KE, Wade KA, Haasch RT, Buchholz DB, Bassett KL, Nicolau BG, Gewirth AA. Origin of Enhanced Cyclability in Covalently Modified LiMn 1.5Ni 0.5O 4 Cathodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39890-39901. [PMID: 31577115 DOI: 10.1021/acsami.9b12912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-voltage lithium-ion cathode materials exhibit exceptional energy densities; however, rapid capacity fade during cell cycling prohibits their widespread utilization. Surface modification of cathode-active materials by organic self-assembled monolayers (SAMs) has emerged as an approach to improve the longevity of high-voltage electrodes; however, the surface chemistry at the electrode/electrolyte interphase and its dependence on monolayer structure remains unclear. Herein, we investigate the interplay between monolayer structure, electrochemical performance, and surface chemistry of high-voltage LiMn1.5Ni0.5O4 (LMNO) electrodes by the application of silane-based SAMs of variable length and chemical composition. We demonstrate that the application of both hydrophobic and hydrophilic monolayers results in improved galvanostatic capacity retention relative to unmodified LMNO. The extent of this improvement is tied to the structure of the monolayer with fluorinated alkyl-silanes exhibiting the greatest overall capacity retention, above 96% after 100 charge/discharge cycles. Postmortem surface analysis reveals that the presence of the monolayer enhances the deposition of LiF at the electrode surface during cell cycling and that the total surface concentration correlates with the overall improvements in capacity retention. We propose that the enhanced deposition of highly insulating LiF increases the anodic stability of the interphase, contributing to the improved galvanostatic performance of modified electrodes. Moreover, this work demonstrates that the modification of the electrode surface by the selection of an appropriate monolayer is an effective approach to tune the properties and behavior of the electrode/electrolyte interphase formed during battery operation.
Collapse
Affiliation(s)
- Kenneth E Madsen
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Kevin A Wade
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Richard T Haasch
- Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - D Bruce Buchholz
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Kimberly L Bassett
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Bruno G Nicolau
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Andrew A Gewirth
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
25
|
Lou J, Friedowitz S, Qin J, Xia Y. Tunable Coacervation of Well-Defined Homologous Polyanions and Polycations by Local Polarity. ACS CENTRAL SCIENCE 2019; 5:549-557. [PMID: 30937382 PMCID: PMC6439447 DOI: 10.1021/acscentsci.8b00964] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 05/23/2023]
Abstract
The ionic complexation of polyelectrolytes is an important mechanism underlying many important biological processes and technical applications. The main driving force for complexation is electrostatic, which is known to be affected by the local polarity near charge centers, but the impact of which on the complexation of polyelectrolytes remains poorly explored. We developed a homologous series of well-defined polyelectrolytes with identical backbone structures, controlled molecular weights, and tunable local polarity to modulate the solvation environment near charged groups. A multitude of systematic, accurate phase diagrams were obtained by spectroscopic measurements of polymer concentrations via fluorescent labeling of polycations. These phase diagrams unambiguously revealed that the liquidlike coacervation is more stable against salt addition at reduced local polarity over a wide range of molecular weights. These trends were quantitatively captured by a theory of complexation that incorporates the effects of dispersion interactions, charge connectivity, and reversible ion-binding, providing the microscopic design rules for tuning molecular parameters and local polarity.
Collapse
Affiliation(s)
- Junzhe Lou
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Sean Friedowitz
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian Qin
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yan Xia
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
26
|
Dallin BC, Yeon H, Ostwalt AR, Abbott NL, Van Lehn RC. Molecular Order Affects Interfacial Water Structure and Temperature-Dependent Hydrophobic Interactions between Nonpolar Self-Assembled Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2078-2088. [PMID: 30645942 DOI: 10.1021/acs.langmuir.8b03287] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding how material properties affect hydrophobic interactions-the water-mediated interactions that drive the association of nonpolar materials-is vital to the design of materials in contact with water. Conventionally, the magnitude of the hydrophobic interactions between extended interfaces is attributed to interfacial chemical properties, such as the amount of nonpolar solvent-exposed surface area. However, recent experiments have demonstrated that the hydrophobic interactions between uniformly nonpolar self-assembled monolayers (SAMs) also depend on molecular-level SAM order. In this work, we use atomistic molecular dynamics simulations to investigate the relationship between SAM order, water structure, and hydrophobic interactions to explain these experimental observations. The SAM-SAM hydrophobic interactions calculated from the simulations increase in magnitude as SAM order increases, matching experimental observations. We explain this trend by showing that the molecular-level order of the SAM impacts the nanoscale structure of interfacial water molecules, leading to an increase in water structure near disordered SAMs. These findings are consistent with a decrease in the solvation entropy of disordered SAMs, which is confirmed by measuring the temperature dependence of hydrophobic interactions using both simulations and experiments. This study elucidates how hydrophobic interactions can be influenced by an interfacial physical property, which may guide the design of synthetic materials with fine-tuned interfacial hydrophobicity.
Collapse
Affiliation(s)
- Bradley C Dallin
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , Wisconsin 53706 United States
| | - Hongseung Yeon
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , Wisconsin 53706 United States
| | - Alexis R Ostwalt
- Department of Chemical and Biological Engineering , Montana State University , 306 Cobleigh Hall , Bozeman , Montana 59715 United States
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , Wisconsin 53706 United States
- Department of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall , Ithaca , New York 14853 , United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , Wisconsin 53706 United States
| |
Collapse
|
27
|
Sato T, Sasaki T, Ohnuki J, Umezawa K, Takano M. Hydrophobic Surface Enhances Electrostatic Interaction in Water. PHYSICAL REVIEW LETTERS 2018; 121:206002. [PMID: 30500220 DOI: 10.1103/physrevlett.121.206002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 06/09/2023]
Abstract
A high dielectric constant is one of the peculiar properties of liquid water, indicating that the electrostatic interaction between charged substances is largely reduced in water. We show by molecular dynamics simulation that the dielectric constant of water is decreased near the hydrophobic surface. We further show that the decrease in the dielectric constant is due to both the decreased water density and the reduced water dipole correlation in the direction perpendicular to the surface. We finally demonstrate that electrostatic interaction in water is actually strengthened near the hydrophobic surface.
Collapse
Affiliation(s)
- Takato Sato
- Department of Pure and Applied Physics, Waseda University, Ohkubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Tohru Sasaki
- Department of Pure and Applied Physics, Waseda University, Ohkubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Jun Ohnuki
- Department of Pure and Applied Physics, Waseda University, Ohkubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Koji Umezawa
- Department of Biomedical Engineering/Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Mitsunori Takano
- Department of Pure and Applied Physics, Waseda University, Ohkubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| |
Collapse
|
28
|
Hoshino Y, Jibiki T, Nakamoto M, Miura Y. Reversible p K a Modulation of Carboxylic Acids in Temperature-Responsive Nanoparticles through Imprinted Electrostatic Interactions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31096-31105. [PMID: 30148598 DOI: 10.1021/acsami.8b11397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The acid dissociation constants (p Ka values) of Brønsted acids at the active sites of proteins are reversibly modulated by intramolecular electrostatic interactions with neighboring ions in a reaction cycle. The resulting p Ka shift is crucial for the proteins to capture, transfer, and release target ions. On the other hand, reversible p Ka modulation through electrostatic interactions in synthetic polymer materials has seldom been realized because the interactions are strongly shielded by solvation water molecules in aqueous media. Here, we prepared hydrogel nanoparticles (NPs) bearing carboxylic acid groups whose p Ka values can be reversibly modulated by electrostatic interactions with counterions in the particles. We found that the deprotonated states of the acids were stabilized by electrostatic interactions with countercations only when the acids and cations were both imprinted in hydrophobic microdomains in the NPs during polymerization. Cationic monomers, like primary amine- and guanidium group-containing monomers, which interacted strongly with growing NPs showed greater p Ka modulation than monomers that did not interact with the NPs, such as quaternary ammonium group-containing monomers. Modulation was enhanced when the guanidium moieties were protected with hydrophobic groups during polymerization, so that the guanidium ions were imprinted in the hydrophobic microdomains; the lowest p Ka of ∼4.0 was achieved as a result. The p Ka modulation of the acids could be reversibly removed by inducing a temperature-dependent volume phase transition of the gel NPs. These design principles are applicable to other stimuli-responsive materials and integral to the development of synthetic materials that can be used to capture, transport, and separate target ions.
Collapse
Affiliation(s)
- Yu Hoshino
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Toshiki Jibiki
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Masahiko Nakamoto
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Yoshiko Miura
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| |
Collapse
|
29
|
Electric field induced proton transfer at α,ω-mercaptoalkanecarboxylic acids self-assembled monolayers of different chain length. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Masuda T, Shimada N, Maruyama A. A Thermoresponsive Cationic Comb-Type Copolymer Enhances Membrane Disruption Activity of an Amphiphilic Peptide. Biomacromolecules 2018. [DOI: 10.1021/acs.biomac.8b00197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tsukuru Masuda
- School of Life Science and Technology, Tokyo Institute of Technology, B-57
4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Naohiko Shimada
- School of Life Science and Technology, Tokyo Institute of Technology, B-57
4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Atsushi Maruyama
- School of Life Science and Technology, Tokyo Institute of Technology, B-57
4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
31
|
Chen WG, Witten J, Grindy SC, Holten-Andersen N, Ribbeck K. Charge Influences Substrate Recognition and Self-Assembly of Hydrophobic FG Sequences. Biophys J 2017; 113:2088-2099. [PMID: 29117531 DOI: 10.1016/j.bpj.2017.08.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 08/08/2017] [Accepted: 08/29/2017] [Indexed: 01/19/2023] Open
Abstract
The nuclear pore complex controls the passage of molecules via hydrophobic phenylalanine-glycine (FG) domains on nucleoporins. Such FG domains consist of repeating units of FxFG, FG, or GLFG sequences, many of which are interspersed with highly charged amino acid sequences. Despite the high density of charge in certain FG domains, if and how charge influences FG-domain self-assembly and selective binding of nuclear transport receptors is largely unexplored. Using rationally designed short peptide sequences, we determined that the charge type and identity of amino acids surrounding FG sequences impact the structure and selectivity of FG-based gels. Moreover, we showed that spatial localization of the charged amino acids with respect to the FG sequence determines the degree to which charge influences hydrophobic interactions. Taken together, our study highlights that charge type and placement of amino acids regulate FG-sequence function and are important considerations when studying the mechanism of nuclear pore complex transport in vivo.
Collapse
Affiliation(s)
- Wesley G Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jacob Witten
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Computational Systems Biology Initiative, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Scott C Grindy
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Niels Holten-Andersen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
32
|
|
33
|
Das Mahanta D, Samanta N, Mitra RK. Decisive Role of Hydrophobicity on the Effect of Alkylammonium Chlorides on Protein Stability: A Terahertz Spectroscopic Finding. J Phys Chem B 2017; 121:7777-7785. [DOI: 10.1021/acs.jpcb.7b04088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debasish Das Mahanta
- Chemical, Biological and
Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake, Kolkata, 700106, India
| | - Nirnay Samanta
- Chemical, Biological and
Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake, Kolkata, 700106, India
| | - Rajib Kumar Mitra
- Chemical, Biological and
Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake, Kolkata, 700106, India
| |
Collapse
|
34
|
Jadhav SV, Amabili P, Stammler H, Sewald N. Remarkable Modulation of Self‐Assembly in Short γ‐Peptides by Neighboring Ions and Orthogonal H‐Bonding. Chemistry 2017; 23:10352-10357. [DOI: 10.1002/chem.201701450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Sandip V. Jadhav
- Department of Chemistry, Organic and Bioorganic ChemistryBielefeld University Universitätsstrasse 25 33615 Bielefeld Germany
| | - Paolo Amabili
- Department of Chemistry, Organic and Bioorganic ChemistryBielefeld University Universitätsstrasse 25 33615 Bielefeld Germany
- Department of Life and Environmental SciencesUniversità Politecnica delle Marche Ancona Italy
| | - Hans‐Georg Stammler
- Department of Chemistry, Inorganic ChemistryBielefeld University Universitätsstrasse 25 33615 Bielefeld Germany
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic ChemistryBielefeld University Universitätsstrasse 25 33615 Bielefeld Germany
| |
Collapse
|
35
|
Fukino T, Yamagishi H, Aida T. Redox-Responsive Molecular Systems and Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603888. [PMID: 27990693 DOI: 10.1002/adma.201603888] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Redox reactions can alter the electronic, optical, and magnetic properties of molecules and their ensembles by adding or removing electrons. Here, the developments made over the past 10 years using molecular events are discussed, such as assembly/disassembly, transformation of ensembles, geometric changes, and molecular motions that are designed to be redox-responsive. Considerable progress has occurred in the application of these events to the realization of electronic memory, color displays, actuators, adhesives, and drug delivery. In these cases, systems behave in either a highly or a poorly correlated manner depending on the number of redox-active units involved, based on the method of integration. One of the great advantages of redox-responsive devices and materials is that they have the potential to be readily integrated into existing electronic technologies.
Collapse
Affiliation(s)
- Takahiro Fukino
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Yamagishi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
36
|
Witten J, Ribbeck K. The particle in the spider's web: transport through biological hydrogels. NANOSCALE 2017; 9:8080-8095. [PMID: 28580973 PMCID: PMC5841163 DOI: 10.1039/c6nr09736g] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biological hydrogels such as mucus, extracellular matrix, biofilms, and the nuclear pore have diverse functions and compositions, but all act as selectively permeable barriers to the diffusion of particles. Each barrier has a crosslinked polymeric mesh that blocks penetration of large particles such as pathogens, nanotherapeutics, or macromolecules. These polymeric meshes also employ interactive filtering, in which affinity between solutes and the gel matrix controls permeability. Interactive filtering affects the transport of particles of all sizes including peptides, antibiotics, and nanoparticles and in many cases this filtering can be described in terms of the effects of charge and hydrophobicity. The concepts described in this review can guide strategies to exploit or overcome gel barriers, particularly for applications in diagnostics, pharmacology, biomaterials, and drug delivery.
Collapse
Affiliation(s)
- Jacob Witten
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
37
|
Abstract
This report focuses on the remote control of anion-π catalysis by electric fields. We have synthesized and immobilized anion-π catalysts to explore the addition reaction of malonic acid half thioesters to enolate acceptors on conductive indium tin oxide surfaces. Exposed to increasing electric fields, anion-π catalysts show an increase in activity and an inversion of selectivity. These changes originate from a more than 100-fold rate enhancement of the disfavored enolate addition reaction that coincides with an increase in selectivity of transition-state recognition by up to -14.8 kJ mol-1. The addition of nitrate with strong π affinity nullified (IC50 = 2.2 mM) the responsiveness of anion-π catalysts to electric fields. These results support that the polarization of the π-acidic naphthalenediimide surface in anion-π catalysts with electric fields increases the recognition of anionic intermediates and transition states on this polarized π surface, that is, the existence and relevance of electric-field-assisted anion-π catalysis.
Collapse
Affiliation(s)
- Masaaki Akamatsu
- Department of Organic Chemistry, University of Geneva , 1211 Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva , 1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva , 1211 Geneva, Switzerland
| |
Collapse
|
38
|
Matsubara Y, Grills DC, Koide Y. Experimental Insight into the Thermodynamics of the Dissolution of Electrolytes in Room-Temperature Ionic Liquids: From the Mass Action Law to the Absolute Standard Chemical Potential of a Proton. ACS OMEGA 2016; 1:1393-1411. [PMID: 31457204 PMCID: PMC6640753 DOI: 10.1021/acsomega.6b00129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/12/2016] [Indexed: 06/10/2023]
Abstract
Room-temperature ionic liquids (ILs) are a class of nonaqueous solvents that have expanded the realm of modern chemistry, drawing increasing interest over the last few decades, not only in terms of their own unique physical chemistry but also in many applications including organic synthesis, electrochemistry, and biological systems, wherein charged solutes (i.e., electrolytes) often play vital roles. However, our fundamental understanding of the dissolution of an electrolyte in an IL is still rather limited. For example, the activity of a charged species has frequently been assumed to be unity without a clear experimental basis. In this study, we have discussed a standard component-based scheme for the dissolution of an electrolyte in an IL, supported by our observation of ideal Nernstian responses for the reduction of silver and ferrocenium salts in a representative IL, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([emim+][NTf2 -] or [emim+][TFSI-]). Using this scheme, which was also supported by temperature-dependent measurements with ILs having longer alkyl chains in the imidazolium ring, and the solubility of the IL in water, we established the concept of Gibbs transfer energies of "pseudo-single ions" from the IL to conventional neutral molecular solvents (water, acetonitrile, and methanol). This concept, which bridges component- and constituent-based energetics, utilizes an extrathermodynamic assumption, which itself was justified by experimental observations. These energies enable us to eliminate inner potential differences between the IL and molecular solvents (solvent-solvent interactions), that is, on a practical level, conditional liquid junction potential differences, so that we can discuss ion-solvent interactions independently. Specifically, we have examined the standard electrode potential of the ferrocenium/ferrocene redox couple, Fc+/Fc, and the absolute intrinsic standard chemical potential of a proton in [emim+][NTf2 -], finding that the proton is more acidic in the IL than in water by 6.5 ± 0.6 units on the unified pH scale. These results strengthen the progress on the physical chemistry of ions in IL solvent systems on the basis of their activities, providing a rigorous thermodynamic framework.
Collapse
Affiliation(s)
- Yasuo Matsubara
- Department
of Material and Life Chemistry, Kanagawa
University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - David C. Grills
- Chemistry
Division, Brookhaven National Laboratory, P.O. Box 5000, Upton, New
York 11973-5000, United
States
| | - Yoshihiro Koide
- Department
of Material and Life Chemistry, Kanagawa
University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
39
|
Cantini E, Wang X, Koelsch P, Preece JA, Ma J, Mendes PM. Electrically Responsive Surfaces: Experimental and Theoretical Investigations. Acc Chem Res 2016; 49:1223-31. [PMID: 27268783 PMCID: PMC4917918 DOI: 10.1021/acs.accounts.6b00132] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stimuli-responsive surfaces have sparked considerable interest in recent years, especially in view of their biomimetic nature and widespread biomedical applications. Significant efforts are continuously being directed at developing functional surfaces exhibiting specific property changes triggered by variations in electrical potential, temperature, pH and concentration, irradiation with light, or exposure to a magnetic field. In this respect, electrical stimulus offers several attractive features, including a high level of spatial and temporal controllability, rapid and reverse inducement, and noninvasiveness. In this Account, we discuss how surfaces can be designed and methodologies developed to produce electrically switchable systems, based on research by our groups. We aim to provide fundamental mechanistic and structural features of these dynamic systems, while highlighting their capabilities and potential applications. We begin by briefly describing the current state-of-the-art in integrating electroactive species on surfaces to control the immobilization of diverse biological entities. This premise leads us to portray our electrically switchable surfaces, capable of controlling nonspecific and specific biological interactions by exploiting molecular motions of surface-bound electroswitchable molecules. We demonstrate that our self-assembled monolayer-based electrically switchable surfaces can modulate the interactions of surfaces with proteins, mammalian and bacterial cells. We emphasize how these systems are ubiquitous in both switching biomolecular interactions in highly complex biological conditions while still offering antifouling properties. We also introduce how novel characterization techniques, such as surface sensitive vibrational sum-frequency generation (SFG) spectroscopy, can be used for probing the electrically switchable molecular surfaces in situ. SFG spectroscopy is a technique that not only allowed determining the structural orientation of the surface-tethered molecules under electroinduced switching, but also provided an in-depth characterization of the system reversibility. Furthermore, the unique support from molecular dynamics (MD) simulations is highlighted. MD simulations with polarizable force fields (FFs), which could give proper description of the charge polarization caused by electrical stimulus, have helped not only back many of the experimental observations, but also to rationalize the mechanism of switching behavior. More importantly, this polarizable FF-based approach can efficiently be extended to light or pH stimulated surfaces when integrated with reactive FF methods. The interplay between experimental and theoretical studies has led to a higher level of understanding of the switchable surfaces, and to a more precise interpretation and rationalization of the observed data. The perspectives on the challenges and opportunities for future progress on stimuli-responsive surfaces are also presented.
Collapse
Affiliation(s)
| | - Xingyong Wang
- School
of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Patrick Koelsch
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195−1653, United States
| | | | - Jing Ma
- School
of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | | |
Collapse
|
40
|
Recent experimental advances on hydrophobic interactions at solid/water and fluid/water interfaces. Biointerphases 2016; 11:018903. [DOI: 10.1116/1.4937465] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Castilla AM, Ronson TK, Nitschke JR. Sequence-Dependent Guest Release Triggered by Orthogonal Chemical Signals. J Am Chem Soc 2016; 138:2342-51. [DOI: 10.1021/jacs.5b13016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ana M. Castilla
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Tanya K. Ronson
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Jonathan R. Nitschke
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
42
|
Abstract
Despite the ubiquitous character and relevance of the electric double layer in the entire realm of interface and colloid science, very little is known of the effect that surface heterogeneity exerts on the underlying mechanisms of ion adsorption. Herein, computer simulations offer a perspective that, in sharp contrast to the homogeneously charged surface, discrete groups promote multivalent counterion binding, leading to charge reversal but possibly having not a sign change of the electrophoretic mobility. Counterintuitively, the introduction of dielectric images yields a significantly greater accumulation of counterions, which further facilitates the magnitude of charge reversal. The reported results are very sensitive to both the degree of ion hydration and the representation of surface charges. Our findings shed light on the mechanism for charge reversal over a broad range of coupling regimes operating the adsorption of counterions through surface group bridging attraction with their own images and provide opportunities for experimental studies and theoretical development.
Collapse
Affiliation(s)
- Zhi-Yong Wang
- School of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| |
Collapse
|
43
|
Wen J, Li W, Chen S, Ma J. Simulations of molecular self-assembled monolayers on surfaces: packing structures, formation processes and functions tuned by intermolecular and interfacial interactions. Phys Chem Chem Phys 2016; 18:22757-71. [DOI: 10.1039/c6cp01049k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Simulations using QM and MM methods guide the rational design of functionalized SAMs on surfaces.
Collapse
Affiliation(s)
- Jin Wen
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Wei Li
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Shuang Chen
- Kuang Yaming Honors School
- Nanjing University
- Nanjing
- P. R. China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| |
Collapse
|