1
|
Zhang H, Mou J, Ding J, Qin W. Peptide-Driven Assembly of Magnetic Beads for Potentiometric Sensing of Bacterial Enzyme at a Subcellular Level. ACS Sens 2024; 9:4947-4955. [PMID: 39180154 DOI: 10.1021/acssensors.4c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Bacterial enzymes with different subcellular localizations play a critical ecological role in biogeochemical processing. However, precisely quantifying enzymes localized at certain subcellular levels, such as extracellular enzymes, has not yet been fully realized due to the complexity and dynamism of the bacterial outer membrane. Here we present a magneto-controlled potentiometric sensing platform for the specific detection of extracellular enzymatic activity. Alkaline phosphatase (ALP), which is one of the crucial hydrolytic enzymes in the ocean, was selected as the target enzyme. Magnetic beads functionalized with an ALP-responsive self-assembled peptide (GGGGGFFFpYpYEEE, MBs-peptides) prevent negatively charged peptides from entering the bacterial outer membrane, thereby enabling direct potentiometric sensing of extracellular ALP both attached to the bacterial cell surface and released into the surrounding environment. The dephosphorylation-triggered assembly of peptide-coupled magnetic beads can be directly and sensitively measured by using a magneto-controlled sensor. In this study, extracellular ALP activity of Pseudomonas aeruginosa at concentrations ranging from 10 to 1.0 × 105 CFU mL-1 was specifically and sensitively monitored. Moreover, this magneto-controlled potentiometric method enabled a simple and accurate assay of ALP activity across different subcellular localizations.
Collapse
Affiliation(s)
- Han Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Junsong Mou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jiawang Ding
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P.R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
2
|
Liu W, Zhang Y, Yu M, Xu J, Du H, Zhang R, Wu D, Xie X. Role of phosphite in the environmental phosphorus cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163463. [PMID: 37062315 DOI: 10.1016/j.scitotenv.2023.163463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
In modern geochemistry, phosphorus (P) is considered synonymous with phosphate (Pi) because Pi controls the growth of organisms as a limiting nutrient in many ecosystems. The researchers therefore realised that a complete P cycle is essential. Limited by thermodynamic barriers, P was long believed to be incapable of redox reactions, and the role of the redox cycle of reduced P in the global P cycling system was thus not ascertained. Nevertheless, the phosphite (Phi) form of P is widely present in various environments and participates in the global P redox cycle. Herein, global quantitative evidences of Phi are enumerated and the early origin and modern biotic/abiotic sources of Phi are elaborated. Further, the Phi-based redox pathway for P reduction is analysed and global multienvironmental Phi redox cycle processes are proposed on the basis of this pathway. The possible role of Phi in controlling algae in eutrophic lakes and its ecological benefits to plants are proposed. In this manner, the important role of Phi in the P redox cycle and global P cycle is systematically and comprehensively identified and confirmed. This work will provide scientific guidance for the future production and use of Phi products and arouse attention and interest on clarifying the role of Phi in the environmental phosphorus cycle.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Yalan Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Mengqin Yu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Jinying Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Hu Du
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Ru Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China; School of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337000, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
3
|
Frolova MA, Bezhin NA, Slizchenko EV, Kozlovskaia ON, Tananaev IG. Assessment of Seasonal Variability in Phosphorus Biodynamics by Cosmogenic Isotopes 32P, 33P around Balaklava Coast. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16051791. [PMID: 36902906 PMCID: PMC10003862 DOI: 10.3390/ma16051791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/12/2023]
Abstract
The sorption efficiency of phosphorus from seawater by aluminum oxide and sorbents based on Fe(OH)3 obtained by various methods (using prepared sodium ferrate or precipitation of Fe(OH)3 with ammonia) was assessed. It was shown that phosphorus was recovered most efficiently at a seawater flow rate of one-to-four column volumes per minute with a sorbent based on hydrolyzed polyacrylonitrile fiber with a precipitation of Fe(OH)3 with ammonia. Based on the results obtained, a method for phosphorus isotopes recovery with this sorbent was suggested. Using this method, the seasonal variability of phosphorus biodynamics in the Balaklava coastal area was estimated. For this purpose, the short-lived isotopes of cosmogenic origin 32P and 33P were used. Volumetric activity profiles of 32P and 33P in particulate and dissolved forms were obtained. Based on 32P and 33P volumetric activity, indicators of phosphorus biodynamics were calculated: the time, rate, and degree of phosphorus circulation to inorganic and particulate organic forms. In spring and summer, elevated values of phosphorus biodynamic parameters were determined. This is explained by the peculiarity of the economic and resort activities of Balaklava, which negatively affect the state of the marine ecosystem. The results obtained can be used to assess the dynamics of changes in the content of forms of dissolved and suspended phosphorus, and the biodynamic parameters when performing a comprehensive environmental assessment of the state of coastal waters.
Collapse
Affiliation(s)
- Mariya A. Frolova
- Department of Chemistry and Chemical Engineering, Sevastopol State University, Universitetskaya Str., 33, 299053 Sevastopol, Russia
| | - Nikolay A. Bezhin
- Department of Chemistry and Chemical Engineering, Sevastopol State University, Universitetskaya Str., 33, 299053 Sevastopol, Russia
| | - Evgeniy V. Slizchenko
- Department of Chemistry and Chemical Engineering, Sevastopol State University, Universitetskaya Str., 33, 299053 Sevastopol, Russia
| | - Ol’ga N. Kozlovskaia
- Department of Chemistry and Chemical Engineering, Sevastopol State University, Universitetskaya Str., 33, 299053 Sevastopol, Russia
| | - Ivan G. Tananaev
- Department of Chemistry and Chemical Engineering, Sevastopol State University, Universitetskaya Str., 33, 299053 Sevastopol, Russia
- Radiochemistry Laboratory, Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences (GEOKHI RAS), Kosygin St., 19, 119991 Moscow, Russia
- Department of Nuclear Technology, Far Eastern Federal University, Sukhanov Str., 8, 690091 Vladivostok, Russia
| |
Collapse
|
4
|
Liu T, Yuan L, Deng S, Zhang X, Cai H, Ding G, Xu F, Shi L, Wu G, Wang C. Improved the Activity of Phosphite Dehydrogenase and its Application in Plant Biotechnology. Front Bioeng Biotechnol 2021; 9:764188. [PMID: 34900961 PMCID: PMC8655118 DOI: 10.3389/fbioe.2021.764188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 12/02/2022] Open
Abstract
Phosphorus (P) is a nonrenewable resource, which is one of the major challenges for sustainable agriculture. Although phosphite (Phi) can be absorbed by the plant cells through the Pi transporters, it cannot be metabolized by plant and unable to use as P fertilizers for crops. However, transgenic plants that overexpressed phosphite dehydrogenase (PtxD) from bacteria can utilize phosphite as the sole P source. In this study, we aimed to improve the catalytic efficiency of PtxD from Ralstonia sp.4506 (PtxDR4506), by directed evolution. Five mutations were generated by saturation mutagenesis at the 139th site of PtxD R4506 and showed higher catalytic efficiency than native PtxDR4506. The PtxDQ showed the highest catalytic efficiency (5.83-fold as compared to PtxDR4506) contributed by the 41.1% decrease in the K m and 2.5-fold increase in the k cat values. Overexpression of PtxDQ in Arabidopsis and rice showed increased efficiency of phosphite utilization and excellent development when phosphite was used as the primary source of P. High-efficiency PtxD transgenic plant is an essential prerequisite for future agricultural production using phosphite as P fertilizers.
Collapse
Affiliation(s)
- Tongtong Liu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), MOA, Huazhong Agricultural University, Wuhan, China
| | - Lili Yuan
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Suren Deng
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xiangxian Zhang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), MOA, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), MOA, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), MOA, Huazhong Agricultural University, Wuhan, China
| | - Gaobing Wu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chuang Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), MOA, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Chen C, Bao Y, Zhao J, Zhu B. Silver-promoted cascade radical cyclization of γ,δ-unsaturated oxime esters with P(O)H compounds: synthesis of phosphorylated pyrrolines. Chem Commun (Camb) 2019; 55:14697-14700. [DOI: 10.1039/c9cc08124k] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the first silver-promoted imino-phosphorylation of γ,δ-unsaturated oxime esters with P(O)H compounds to synthesize various phosphorylated pyrrolines.
Collapse
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Yinwei Bao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Jinghui Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| |
Collapse
|
6
|
Wang S, Deng Y, Liu B, Li X, Lin X, Yuan D, Ma J. High-performance liquid chromatographic determination of 2-aminoethylphosphonic acid and 2-amino-3-phosphonopropionic acid in seawater matrix using precolumn fluorescence derivatization with o-phthalaldehyde-ethanethiol. J Chromatogr A 2018; 1571:147-154. [PMID: 30119975 DOI: 10.1016/j.chroma.2018.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/21/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022]
Abstract
2-Aminoethylphosphonic acid (2-AEP) and 2-amino-3-phosphonopropionic acid (2-AP3) are two types of abundant and ubiquitous naturally occurring phosphonates used as sources of phosphorus by many prokaryotic lineages. The potential utilization mechanism of 2-AEP and 2-AP3 in eukaryotic phytoplankton is currently under investigation. However, the lack of suitable analytical methods in saline samples are the limitation of such researches. Herein, a high-performance liquid chromatography (HPLC) method for monitoring 2-AEP and 2-AP3 using precolumn fluorescence derivatization with o-phthalaldehyde-ethanethiol (OPA-ET) in seawater matrix was developed. The derivatization procedure and HPLC conditions were carefully examined, which included optimization of the fluorescence excitation and emission wavelengths, the ammonium acetate concentration and pH of the mobile phase, the OPA-ET reagent content and composition and derivatization time. Because increasing salinity was observed to lower the derivatization efficiency, working standards were freshly prepared in artificial seawater with the same salinity as that of the samples for the quantification of 2-AEP and 2-AP3. The developed HPLC method showed a wide linear response with high linearity (R2 > 0.999) and high repeatability at three concentration levels. The relative standard deviation was less than 4.1% for 2-AEP and less than 1.7% for 2-AP3 (n = 7). The limits of detection for 2-AEP and 2-AP3 in artificial seawater matrix were both 12.0 μg/L. The recoveries were 83.0-104% for 2-AEP and 72.6-98.6% for 2-AP3 in different aqueous samples, including algal culture medium prepared with filtered seawater. These results indicated the matrix effect of this method was insignificant.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yao Deng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| | - Baomin Liu
- State Key Laboratory of Marine Environmental Science, College of the Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xiaolin Li
- State Key Laboratory of Marine Environmental Science, College of the Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of the Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Dongxing Yuan
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jian Ma
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China.
| |
Collapse
|
7
|
Shinohara R, Iwata T, Ikarashi Y, Sano T. Detection of 2-aminoethylphosphonic acid in suspended particles in an ultraoligotrophic lake: a two-dimensional nuclear magnetic resonance (2D-NMR) study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30739-30743. [PMID: 29569193 DOI: 10.1007/s11356-018-1744-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Particulate organic phosphorus (P) compounds were examined in ultraoligotrophic Lake Saiko, Japan. A cartridge filter was used to collect sufficient amount of suspended particles for analysis by a two-dimensional NMR (1H-31P heteronuclear multiple bond correlation). 2-Aminoethylphosphonic acid (2-AEP), a phosphonate, was detected in suspended particles in Lake Saiko. The identity of the phosphonate was confirmed by comparison with a commercially available compound. Because 2-AEP is bioavailable, microorganisms can store and use this compound under extremely P-limited conditions. This is the first study to detect 2-AEP in an ultra-oligotrophic environment.
Collapse
Affiliation(s)
- Ryuichiro Shinohara
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Tomoya Iwata
- Department of Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, 400-8510, Japan
| | - Yoshiki Ikarashi
- Department of Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, 400-8510, Japan
| | - Tomoharu Sano
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
8
|
Liang D, Ge D, Lv Y, Huang W, Wang B, Li W. Silver-Catalyzed Radical Arylphosphorylation of Unactivated Alkenes: Synthesis of 3-Phosphonoalkyl Indolines. J Org Chem 2018; 83:4681-4691. [DOI: 10.1021/acs.joc.8b00450] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Deqiang Liang
- Department of Chemistry, Kunming University, Kunming 650214, China
- Yunnan Engineering Technology Research Center for Plastic Films, Kunming 650214, China
| | - Dandan Ge
- Department of Chemistry, Kunming University, Kunming 650214, China
| | - Yanping Lv
- Department of Chemistry, Kunming University, Kunming 650214, China
| | - Wenzhong Huang
- Yunnan Engineering Technology Research Center for Plastic Films, Kunming 650214, China
| | - Baoling Wang
- Yunnan Engineering Technology Research Center for Plastic Films, Kunming 650214, China
| | - Weili Li
- Yunnan Engineering Technology Research Center for Plastic Films, Kunming 650214, China
| |
Collapse
|
9
|
Dovhyi II, Kremenchutskii DA, Proskurnin VY, Kozlovskaya ON. Atmospheric depositional fluxes of cosmogenic 32P, 33P and 7Be in the Sevastopol region. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5577-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Drzyzga D, Lipok J. Analytical insight into degradation processes of aminopolyphosphonates as potential factors that induce cyanobacterial blooms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24364-24375. [PMID: 28891037 PMCID: PMC5655564 DOI: 10.1007/s11356-017-0068-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Aminopolyphosphonates (AAPs) are commonly used industrial complexones of metal ions, which upon the action of biotic and abiotic factors undergo a breakdown and release their substructures. Despite the low toxicity of AAPs towards vertebrates, products of their transformations, especially those that contain phosphorus and nitrogen, can affect algal communities. To verify whether such chemical entities are present in water ecosystems, much effort has been made in developing fast, inexpensive, and reliable methods for analyzing phosphonates. However, unfortunately, the methods described thus far require time-consuming sample pretreatment and offer relatively high values of the limit of detection (LOD). The aim of this study was to develop an analytical approach to study the environmental fate of AAPs. Four phosphonic acids, N,N-bis(phosphonomethyl)glycine (GBMP), aminotris(methylenephosphonic) acid (ATMP), hexamethylenediamine-N,N,N',N'-tetrakis(methylphosphonic) acid (HDTMP), and diethylenetriamine penta(methylenephosphonic) acid (DTPMP) were selected and examined in a water matrix. In addition, the susceptibility of these compounds to biotransformations was tested in colonies of five freshwater cyanobacteria-microorganisms responsible for the so-called blooms in the water. Our efforts to track the AAP decomposition were based on derivatization of N-alkyl moieties with p-toluenesulfonyl chloride (tosylation) followed by chromatographic (HPLC-UV) separation of derivatives. This approach allowed us to determine seven products of the breakdown of popular phosphonate chelators, in nanomolar concentrations and in one step. It should be noted that the LOD of four of those products, aminemethylphosphonic acid (AMPA), N-phosphomethyl glycine (NPMG), N-(methyl)aminemethanephosphonic acid (MAMPA), and N-(methyl) glycine (SAR), was set below the concentration of 50 nM. Among those substances, N-(methylamino)methanephosphonic acid (MAMPA) was identified for the first time as the product of decomposition of the examined aminopolyphosphonates.
Collapse
Affiliation(s)
- Damian Drzyzga
- Faculty of Chemistry, Opole University, Oleska 48, 45-052, Opole, Poland
| | - Jacek Lipok
- Faculty of Chemistry, Opole University, Oleska 48, 45-052, Opole, Poland.
| |
Collapse
|
11
|
Drzyzga D, Lipok J. Glyphosate dose modulates the uptake of inorganic phosphate by freshwater cyanobacteria. JOURNAL OF APPLIED PHYCOLOGY 2017; 30:299-309. [PMID: 29576687 PMCID: PMC5857279 DOI: 10.1007/s10811-017-1231-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 05/26/2023]
Abstract
The usefulness of glyphosate [N-(phosphonomethyl)glycine] as a source of nutritive phosphorus for species of halophilic cyanobacteria has been postulated for years. Our results indicate a stimulating effect of glyphosate on the growth of four out of five examined freshwater species, Anabaena variabilis (CCALA 007), Chroococcus minutus (CCALA 055), Fischerella cf. maior (CCALA 067) and Nostoc cf. muscorum (CCALA 129), in a manner dependent on the applied concentration. The most significant stimulation was observed at a dose of 0.1 mM glyphosate. The decrease in the amount of phosphonate, which correlated with microbial growth, demonstrated that glyphosate may play an important role in cyanobacterial nourishment. Surprisingly, the consumption of organic phosphorus did not start when concentrations of inorganic phosphate (PO43-) had fallen dramatically; instead, the assimilation of both types of phosphorus occurred simultaneously. The greatest decrease in the amount of glyphosate was observed during the first week. The uptake of the standard nutrient-phosphate (PO43-), was strongly dependent on the xenobiotic concentration. When a concentration of 0.1 mM glyphosate was used, the consumption of phosphate decreased in favour of glyphosate assimilation. Our study revealed for the very first time that the presence of inorganic phosphate significantly enhances the bioavailability of glyphosate. Statistical analysis confirmed that the nutritive usage of glyphosate and the absorption of phosphate are features associated with the herbicide concentration rather than features related to the species of freshwater cyanobacterium. This finding supports the thesis of an important role of organic phosphorus in the formation of cyanobacterial blooms and creates the opportunity of using these cyanobacteria to bind both organic and inorganic forms of phosphorus in microalgal biomasses.
Collapse
Affiliation(s)
- Damian Drzyzga
- Faculty of Chemistry, Opole University, Oleska 48, 45-052 Opole, Poland
| | - Jacek Lipok
- Faculty of Chemistry, Opole University, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
12
|
Dang H, Chen CTA. Ecological Energetic Perspectives on Responses of Nitrogen-Transforming Chemolithoautotrophic Microbiota to Changes in the Marine Environment. Front Microbiol 2017; 8:1246. [PMID: 28769878 PMCID: PMC5509916 DOI: 10.3389/fmicb.2017.01246] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/20/2017] [Indexed: 11/15/2022] Open
Abstract
Transformation and mobilization of bioessential elements in the biosphere, lithosphere, atmosphere, and hydrosphere constitute the Earth’s biogeochemical cycles, which are driven mainly by microorganisms through their energy and material metabolic processes. Without microbial energy harvesting from sources of light and inorganic chemical bonds for autotrophic fixation of inorganic carbon, there would not be sustainable ecosystems in the vast ocean. Although ecological energetics (eco-energetics) has been emphasized as a core aspect of ecosystem analyses and microorganisms largely control the flow of matter and energy in marine ecosystems, marine microbial communities are rarely studied from the eco-energetic perspective. The diverse bioenergetic pathways and eco-energetic strategies of the microorganisms are essentially the outcome of biosphere-geosphere interactions over evolutionary times. The biogeochemical cycles are intimately interconnected with energy fluxes across the biosphere and the capacity of the ocean to fix inorganic carbon is generally constrained by the availability of nutrients and energy. The understanding of how microbial eco-energetic processes influence the structure and function of marine ecosystems and how they interact with the changing environment is thus fundamental to a mechanistic and predictive understanding of the marine carbon and nitrogen cycles and the trends in global change. By using major groups of chemolithoautotrophic microorganisms that participate in the marine nitrogen cycle as examples, this article examines their eco-energetic strategies, contributions to carbon cycling, and putative responses to and impacts on the various global change processes associated with global warming, ocean acidification, eutrophication, deoxygenation, and pollution. We conclude that knowledge gaps remain despite decades of tremendous research efforts. The advent of new techniques may bring the dawn to scientific breakthroughs that necessitate the multidisciplinary combination of eco-energetic, biogeochemical and “omics” studies in this field.
Collapse
Affiliation(s)
- Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
| | - Chen-Tung A Chen
- Department of Oceanography, National Sun Yat-sen UniversityKaohsiung, Taiwan
| |
Collapse
|
13
|
Drzyzga D, Forlani G, Vermander J, Kafarski P, Lipok J. Biodegradation of the aminopolyphosphonate DTPMP by the cyanobacterium Anabaena variabilis proceeds via a C-P lyase-independent pathway. Environ Microbiol 2016; 19:1065-1076. [PMID: 27907245 DOI: 10.1111/1462-2920.13616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, play a major role in carbon, nitrogen and phosphorus global cycling. Under conditions of increased P availability and nutrient loading, some cyanobacteria are capable of blooming, rapidly multiplying and possibly altering the ecological structure of the ecosystem. Because of their ability of using non-conventional P sources, these microalgae can be used for bioremediation purposes. Under this perspective, the metabolization of the polyphosphonate diethylenetriaminepenta(methylenephosphonic) acid (DTPMP) by the strain CCALA 007 of Anabaena variabilis was investigated using 31 P NMR analysis. Results showed a quantitative breakdown of DTPMP by cell-free extracts from cyanobacterial cells grown in the absence of any phosphonate. The identification of intermediates and products allowed us to propose a unique and new biodegradation pathway in which the formation of (N-acetylaminomethyl)phosphonic acid represents a key step. This hypothesis was strengthened by the results obtained by incubating cell-free extracts with pathway intermediates. When Anabaena cultures were grown in the presence of the phosphonate, or phosphorus-starved before the extraction, significantly higher biodegradation rates were found.
Collapse
Affiliation(s)
- Damian Drzyzga
- Faculty of Chemistry, Opole University, Oleska 48, Opole, 45-052, Poland
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara, I-44121, Italy
| | - Jochen Vermander
- Odisee Technologiecampus, Gebroeders de Smetstraat 1, Ghent, 9000, Belgium
| | - Paweł Kafarski
- Faculty of Chemistry, Opole University, Oleska 48, Opole, 45-052, Poland.,Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże, Wyspiańskiego 27, 50-370, Wrocław
| | - Jacek Lipok
- Faculty of Chemistry, Opole University, Oleska 48, Opole, 45-052, Poland
| |
Collapse
|
14
|
Wang S, Liu B, Yuan D, Ma J. A simple method for the determination of glyphosate and aminomethylphosphonic acid in seawater matrix with high performance liquid chromatography and fluorescence detection. Talanta 2016; 161:700-706. [PMID: 27769468 DOI: 10.1016/j.talanta.2016.09.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 01/28/2023]
Abstract
Glyphosate (GLYP) is an important herbicide which is also used as the phosphorus source for marine organisms. The wide applications of GLYP can lead to its accumulation in oceans and coastal waters, thus creating environmental issues. However, there is limited methods for detection of GLYP and its degradation product, aminomethylphosphonic acid (AMPA) in saline samples. Therefore, a simple and fast method for the quantification of GLYP and AMPA in seawater matrix has been developed based on the derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl), separation with high performance liquid chromatography (HPLC) and detection with fluorescence detector (FLD). In order to maximize sensitivity, the derivatization procedure was carefully optimized regarding concentration of FMOC-Cl, volume of borate buffer, pH of borate buffer, mixing and derivatization time. The derivatization reaction could be completed within 30min in seawater samples without any additional clean-up or desalting steps. Under the optimized conditions, the developed HPLC method showed a wide linear response (up to several mg/L, R2>0.99). The limits of detection were 0.60μg/L and 0.30μg/L for GLYP and AMPA in seawater matrix, respectively. The relative standard deviation was 14.0% for GLYP (1.00mg/L) and 3.1% for AMPA (100μg/L) in saline samples with three different operators (n=24). This method was applied to determine the concentration of GLYP and AMPA in seawater culture media and the recovery data indicated minimal matrix interference. Due to its simplicity, high reproducibility and successful application in seawater culture media analysis, this method is a potentially useful analytical technique for both marine research and environmental science.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102 Xiamen, Fujian, China
| | - Baomin Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102 Xiamen, Fujian, China
| | - Dongxing Yuan
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102 Xiamen, Fujian, China
| | - Jian Ma
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102 Xiamen, Fujian, China.
| |
Collapse
|
15
|
How To Live with Phosphorus Scarcity in Soil and Sediment: Lessons from Bacteria. Appl Environ Microbiol 2016; 82:4652-62. [PMID: 27235437 DOI: 10.1128/aem.00160-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/16/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Phosphorus (P) plays a fundamental role in the physiology and biochemistry of all living things. Recent evidence indicates that organisms in the oceans can break down and use P forms in different oxidation states (e.g., +5, +3, +1, and -3); however, information is lacking for organisms from soil and sediment. The Cuatro Ciénegas Basin (CCB), Mexico, is an oligotrophic ecosystem with acute P limitation, providing a great opportunity to assess the various strategies that bacteria from soil and sediment use to obtain P. We measured the activities in sediment and soil of different exoenzymes involved in P recycling and evaluated 1,163 bacterial isolates (mainly Bacillus spp.) for their ability to use six different P substrates. DNA turned out to be a preferred substrate, comparable to a more bioavailable P source, potassium phosphate. Phosphodiesterase activity, required for DNA degradation, was observed consistently in the sampled-soil and sediment communities. A capability to use phosphite (PO3 (3-)) and calcium phosphate was observed mainly in sediment isolates. Phosphonates were used at a lower frequency by both soil and sediment isolates, and phosphonatase activity was detected only in soil communities. Our results revealed that soil and sediment bacteria are able to break down and use P forms in different oxidation states and contribute to ecosystem P cycling. Different strategies for P utilization were distributed between and within the different taxonomic lineages analyzed, suggesting a dynamic movement of P utilization traits among bacteria in microbial communities. IMPORTANCE Phosphorus (P) is an essential element for life found in molecules, such as DNA, cell walls, and in molecules for energy transfer, such as ATP. The Valley of Cuatro Ciénegas, Coahuila (Mexico), is a unique desert characterized by an extreme limitation of P and a great diversity of microbial life. How do bacteria in this valley manage to obtain P? We measured the availability of P and the enzymatic activity associated with P release in soil and sediment. Our results revealed that soil and sediment bacteria can break down and use P forms in different oxidation states and contribute to ecosystem P cycling. Even genetically related bacterial isolates exhibited different preferences for molecules, such as DNA, calcium phosphate, phosphite, and phosphonates, as substrates to obtain P, evidencing a distribution of roles for P utilization and suggesting a dynamic movement of P utilization traits among bacteria in microbial communities.
Collapse
|