1
|
Pepler MAD, Mulholland EL, Montague FR, Elliot MA. Defining the networks that connect RNase III and RNase J-mediated regulation of primary and specialized metabolism in Streptomyces venezuelae. J Bacteriol 2025; 207:e0002425. [PMID: 40227046 DOI: 10.1128/jb.00024-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
RNA metabolism involves coordinating RNA synthesis with RNA processing and degradation. Ribonucleases play fundamental roles within the cell, contributing to the cleavage, modification, and degradation of RNA molecules, with these actions ensuring appropriate gene regulation and cellular homeostasis. Here, we employed RNA sequencing to explore the impact of RNase III and RNase J on the transcriptome of Streptomyces venezuelae. Differential expression analysis comparing wild-type and RNase mutant strains at distinct developmental stages revealed significant changes in transcript abundance, particularly in pathways related to multicellular development, nutrient acquisition, and specialized metabolism. Both RNase mutants exhibited dysregulation of the BldD regulon, including altered expression of many cyclic-di-GMP-associated enzymes. We also observed precocious chloramphenicol production in these RNase mutants and found that in the RNase III mutant, this was associated with PhoP-mediated regulation. We further found that RNase III directly targeted members of the PhoP regulon, suggesting a link between RNA metabolism and a regulator that bridges primary and specialized metabolism. We connected RNase J function with translation through the observation that RNase J directly targets multiple ribosomal protein transcripts for degradation. These findings establish distinct but complementary roles for RNase III and RNase J in coordinating the gene expression dynamics critical for S. venezuelae development and specialized metabolism. IMPORTANCE RNA processing and metabolism are mediated by ribonucleases and are fundamental processes in all cells. In the morphologically complex and metabolically sophisticated Streptomyces bacteria, RNase III and RNase J influence both development and metabolism through poorly understood mechanisms. Here, we show that both ribonucleases are required for the proper expression of the BldD developmental pathway and contribute to the control of chloramphenicol production, with an interesting connection to phosphate regulation for RNase III. Additionally, we show that both RNases have the potential to impact translation through distinct mechanisms and can function cooperatively in degrading specific transcripts. This study advances our understanding of RNases in Streptomyces biology by providing insight into distinct contributions made by these enzymes and the intriguing interplay between them.
Collapse
Affiliation(s)
- Meghan A D Pepler
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Emma L Mulholland
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Freddie R Montague
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Marie A Elliot
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Khatri A, Sen R. Functionally important components of the transcription elongation complex involved in Rho-dependent termination. FEMS Microbiol Lett 2025; 372:fnae111. [PMID: 39730149 DOI: 10.1093/femsle/fnae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/14/2024] [Accepted: 12/26/2024] [Indexed: 12/29/2024] Open
Abstract
Bacterial transcription terminator, Rho is an RNA (Ribonucleic Acid)-dependent ATPase that terminates transcription. Several structures of pretermination complexes of the Rho-transcription elongation complex (EC) revealed a static picture of components of the EC that come close to the nascent RNA-bound Rho, where many of the residues of EC reside ≤10 Å from the Rho residues. However, the in vitro-formed Rho-EC complexes do not reveal the in vivo Rho-EC dynamic interaction patterns during the termination process. Here we report synthetic defect analyses of various combinations of the mutations in RNAP β, β' and ω-subunits, NusA, NusG, and Rho proteins to delineate the functional network of this process. Several mutations in the β-flap and β'-Zn-finger and -Clamp helices domains of RNAP are synthetically defective in the presence of Rho mutants indicating functional involvement of these domains. Mutations in the NusA RNA-binding domains were synthetically defective with the Rho mutants suggesting its involvement. Our genetic analyses also revealed functional antagonisms between the ω-subunit of RNAP and the NusG-CTD (c-terminal domain) during termination. We concluded that the regions surrounding the RNA exit channel, the RNA-binding domains of NusA, the RNAP ω-subunit, and NusG-CTD constitute a functional network with Rho just before the onset of in vivo Rho-dependent termination.
Collapse
Affiliation(s)
- Ajay Khatri
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Inner Ring Road, Uppal, Hyderabad 500039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Ranjan Sen
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Inner Ring Road, Uppal, Hyderabad 500039, India
| |
Collapse
|
3
|
Mooney RA, Zhu J, Saba J, Landick R. NusG-Spt5 Transcription Factors: Universal, Dynamic Modulators of Gene Expression. J Mol Biol 2025; 437:168814. [PMID: 39374889 PMCID: PMC12045467 DOI: 10.1016/j.jmb.2024.168814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The accurate and efficient biogenesis of RNA by cellular RNA polymerase (RNAP) requires accessory factors that regulate the initiation, elongation, and termination of transcription. Of the many discovered to date, the elongation regulator NusG-Spt5 is the only universally conserved transcription factor. With orthologs and paralogs found in all three domains of life, this ubiquity underscores their ancient and essential regulatory functions. NusG-Spt5 proteins evolved to maintain a similar binding interface to RNAP through contacts of the NusG N-terminal domain (NGN) that bridge the main DNA-binding cleft. We propose that varying strength of these contacts, modulated by tethering interactions, either decrease transcriptional pausing by smoothing the rugged thermodynamic landscape of transcript elongation or enhance pausing, depending on which conformation of RNAP is stabilized by NGN contacts. NusG-Spt5 contains one (in bacteria and archaea) or more (in eukaryotes) C-terminal domains that use a KOW fold to contact diverse targets, tether the NGN, and control RNA biogenesis. Recent work highlights these diverse functions in different organisms. Some bacteria contain multiple specialized NusG paralogs that regulate subsets of operons via sequence-specific targeting, controlling production of antibiotics, toxins, or capsule proteins. Despite their common origin, NusG orthologs can differ in their target selection, interacting partners, and effects on RNA synthesis. We describe the current understanding of NusG-Spt5 structure, interactions with RNAP and other regulators, and cellular functions including significant recent progress from genome-wide analyses, single-molecule visualization, and cryo-EM. The recent findings highlight the remarkable diversity of function among these structurally conserved proteins.
Collapse
Affiliation(s)
- Rachel A Mooney
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| | - Junqiao Zhu
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Jason Saba
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
4
|
Abishek N MP, Wang X, Jeon HJ, Lim HM. Deciphering the Coupling State-Dependent Transcription Termination in the Escherichia coli Galactose Operon. Mol Microbiol 2025; 123:75-87. [PMID: 39780230 DOI: 10.1111/mmi.15339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
The distance between the ribosome and the RNA polymerase active centers, known as the mRNA loop length, is crucial for transcription-translation coupling. Despite the existence of multiple expressomes with varying mRNA loop lengths, their in vivo roles remain largely unexplored. This study examines the mechanisms governing transcription termination in the Escherichia coli galactose operon, revealing a crucial role in the transcription and translation coupling state. The operon utilizes both Rho-independent and Rho-dependent terminators. Our findings demonstrate that long-loop coupled transcription-translation complexes preferentially terminate at the upstream Rho-independent terminator, while short-loop complexes bypass it, terminating at the downstream Rho-dependent terminator. The efficiency of the Rho-independent terminator is enhanced by an extended U-track, suggesting a novel mechanism to overcome ribosome inhibition. These results uncover a new regulatory layer in transcription termination, challenging the traditional view of this process as random and highlighting a predetermined mechanism based on the coupling state. We propose that tandem terminators may function as regulatory checkpoints under fluctuating ribosome-RNAP coupling conditions, which can occur due to specific cellular states or factors affecting ribosome or RNAP binding efficiency. This suggests a previously overlooked mechanism that could refine transcription termination choices and expand our understanding of transcription regulation.
Collapse
Affiliation(s)
- Monford Paul Abishek N
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Xun Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Heung Jin Jeon
- Cancer Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Heon M Lim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Cooke MB, Herman C, Sivaramakrishnan P. Clues to transcription/replication collision-induced DNA damage: it was RNAP, in the chromosome, with the fork. FEBS Lett 2025; 599:209-243. [PMID: 39582266 DOI: 10.1002/1873-3468.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
DNA replication and RNA transcription processes compete for the same DNA template and, thus, frequently collide. These transcription-replication collisions are thought to lead to genomic instability, which places a selective pressure on organisms to avoid them. Here, we review the predisposing causes, molecular mechanisms, and downstream consequences of transcription-replication collisions (TRCs) with a strong emphasis on prokaryotic model systems, before contrasting prokaryotic findings with cases in eukaryotic systems. Current research points to genomic structure as the primary determinant of steady-state TRC levels and RNA polymerase regulation as the primary inducer of excess TRCs. We review the proposed mechanisms of TRC-induced DNA damage, attempting to clarify their mechanistic requirements. Finally, we discuss what drives genomes to select against TRCs.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Priya Sivaramakrishnan
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, PA, USA
| |
Collapse
|
6
|
Qureshi NS, Duss O. Tracking transcription-translation coupling in real time. Nature 2025; 637:487-495. [PMID: 39633055 PMCID: PMC11711091 DOI: 10.1038/s41586-024-08308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
A central question in biology is how macromolecular machines function cooperatively. In bacteria, transcription and translation occur in the same cellular compartment, and can be physically and functionally coupled1-4. Although high-resolution structures of the ribosome-RNA polymerase (RNAP) complex have provided initial mechanistic insights into the coupling process5-10, we lack knowledge of how these structural snapshots are placed along a dynamic reaction trajectory. Here we reconstitute a complete and active transcription-translation system and develop multi-colour single-molecule fluorescence microscopy experiments to directly and simultaneously track transcription elongation, translation elongation and the physical and functional coupling between the ribosome and the RNAP in real time. Our data show that physical coupling between ribosome and RNAP can occur over hundreds of nucleotides of intervening mRNA by mRNA looping, a process facilitated by NusG. We detect active transcription elongation during mRNA looping and show that NusA-paused RNAPs can be activated by the ribosome by long-range physical coupling. Conversely, the ribosome slows down while colliding with the RNAP. We hereby provide an alternative explanation for how the ribosome can efficiently rescue RNAP from frequent pausing without requiring collisions by a closely trailing ribosome. Overall, our dynamic data mechanistically highlight an example of how two central macromolecular machineries, the ribosome and RNAP, can physically and functionally cooperate to optimize gene expression.
Collapse
Affiliation(s)
- Nusrat Shahin Qureshi
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
7
|
Liu YJ, Wang X, Sun Y, Feng Y. Bacterial 5' UTR: A treasure-trove for post-transcriptional regulation. Biotechnol Adv 2025; 78:108478. [PMID: 39551455 DOI: 10.1016/j.biotechadv.2024.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
In bacteria, where gene transcription and translation occur concurrently, post-transcriptional regulation is acknowledged to be effective and precise. The 5' untranslated regions (5' UTRs) typically harbor diverse post-transcriptional regulatory elements, like riboswitches, RNA thermometers, small RNAs, and upstream open reading frames, that serve to modulate transcription termination, translation initiation, and mRNA stability. Consequently, exploring 5' UTR-derived regulatory elements is vital for synthetic biology and metabolic engineering. Over the past few years, the investigation of successive mechanisms has facilitated the development of various genetic tools from bacterial 5' UTRs. This review consolidates current understanding of 5' UTR regulatory functions, presents recent progress in 5' UTR-element design and screening, updates the tools and regulatory strategies developed, and highlights the challenges and necessity of establishing reliable bioinformatic analysis methods and non-model bacterial chassis in the future.
Collapse
Affiliation(s)
- Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoqing Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuman Sun
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Grelewska‐Nowotko K, Elhag AE, Turowski TW. Transcription Kinetics in the Coronavirus Life Cycle. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70000. [PMID: 39757745 PMCID: PMC11701415 DOI: 10.1002/wrna.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
Coronaviruses utilize a positive-sense single-strand RNA, functioning simultaneously as mRNA and the genome. An RNA-dependent RNA polymerase (RdRP) plays a dual role in transcribing genes and replicating the genome, making RdRP a critical target in therapies against coronaviruses. This review explores recent advancements in understanding the coronavirus transcription machinery, discusses it within virus infection context, and incorporates kinetic considerations on RdRP activity. We also address steric limitations in coronavirus replication, particularly during early infection phases, and outline hypothesis regarding translation-transcription conflicts, postulating the existence of mechanisms that resolve these issues. In cells infected by coronaviruses, abundant structural proteins are synthesized from subgenomic RNA fragments (sgRNAs) produced via discontinuous transcription. During elongation, RdRP can skip large sections of the viral genome, resulting in the creation of shorter sgRNAs that reflects the stoichiometry of viral structural proteins. Although the precise mechanism of discontinuous transcription remains unknown, we discuss recent hypotheses involving long-distance RNA-RNA interactions, helicase-mediated RdRP backtracking, dissociation and reassociation of RdRP, and RdRP dimerization.
Collapse
Affiliation(s)
| | - Ahmed Eisa Elhag
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
- Department of Preventive Medicine and Clinical Studies, Faculty of Veterinary SciencesUniversity of GadarifAl QadarifSudan
| | | |
Collapse
|
9
|
Afsar M, Shukla A, Ali F, Maurya RK, Bharti S, Kumar N, Sadik M, Chandra S, Rahil H, Kumar S, Ansari I, Jahan F, Habib S, Hussain T, Krishnan MY, Ramachandran R. Bacterial Rps3 counters oxidative and UV stress by recognizing and processing AP-sites on mRNA via a novel mechanism. Nucleic Acids Res 2024; 52:13996-14012. [PMID: 39588766 DOI: 10.1093/nar/gkae1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024] Open
Abstract
Lesions and stable secondary structures in mRNA severely impact the translation efficiency, causing ribosome stalling and collisions. Prokaryotic ribosomal proteins Rps3, Rps4 and Rps5, located in the mRNA entry tunnel, form the mRNA helicase center and unwind stable mRNA secondary structures during translation. However, the mechanism underlying the detection of lesions on translating mRNA is unclear. We used Cryo-EM, biochemical assays, and knockdown experiments to investigate the apurinic/apyrimidinic (AP) endoribonuclease activity of bacterial ribosomes on AP-site containing mRNA. Our biochemical assays show that Rps3, specifically the 130RR131 motif, is important for recognizing and performing the AP-endoribonuclease activity. Furthermore, structural analysis revealed cleaved mRNA product in the 30S ribosome entry tunnel. Additionally, knockdown studies in Mycobacterium tuberculosis confirmed the protective role of Rps3 against oxidative and UV stress. Overall, our results show that prokaryotic Rps3 recognizes and processes AP-sites on mRNA via a novel mechanism that is distinct from eukaryotes.
Collapse
Affiliation(s)
- Mohammad Afsar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Ankita Shukla
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Faiz Ali
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Rahul Kumar Maurya
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Suman Bharti
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Nelam Kumar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Mohammad Sadik
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Surabhi Chandra
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Huma Rahil
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Sanjay Kumar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Imran Ansari
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Farheen Jahan
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Saman Habib
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Tanweer Hussain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Manju Yasoda Krishnan
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ravishankar Ramachandran
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
10
|
Große C, Grau J, Herzberg M, Nies DH. Antisense transcription is associated with expression of metal resistance determinants in Cupriavidus metallidurans CH34. Metallomics 2024; 16:mfae057. [PMID: 39562278 DOI: 10.1093/mtomcs/mfae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
Cupriavidus metallidurans is able to thrive in metal-rich environments but also survives metal starvation. Expression of metal resistance determinants in C. metallidurans was investigated on a global scale. Cupriavidus metallidurans was challenged with a MultiTox metal mix specifically designed for the wildtype strain CH34 and its plasmid-free derivative AE104, including treatment with ethylenediamintetraacetate (EDTA), or without challenge. The sense and antisense transcripts were analyzed in both strains and under all three conditions by RNASeq. A total of 10 757 antisense transcripts (ASTs) were assigned to sense signals from genes and untranslated regions, and 1 319 of these ASTs were expressed and were longer than 50 bases. Most of these (82%) were dual-use transcripts that contained antisense and sense regions, but ASTs (16%) were also observed that had no sense regions. Especially in metal-treated cells of strains CH34 and AE104, up- or down-regulated sense transcripts were accompanied by antisense transcription activities that were also regulated. The presence of selected asRNAs was verified by reverse transcription polymerase chain reaction (RT-PCR). Following metal stress, expression of genes encoding components of the respiratory chain, motility, transcription, translation, and protein export were down-regulated. This should also affect the integration of the metal efflux pumps into the membrane and the supply of the energy required to operate them. To solve this dilemma, transcripts for the metal efflux pumps may be stabilized by interactions with ASTs to allow their translation and import into the membrane. Alternatively, metal stress possibly causes recruitment of RNA polymerase from housekeeping genes for preferential expression of metal resistance determinants.
Collapse
Affiliation(s)
- Cornelia Große
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jan Grau
- Computer Sciences, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
11
|
Jiang X, Zhang Z, Wu X, Li C, Sun X, Li Y, Chang A, Yang A, Yang C. Multiplex Expression Cassette Assembly: A flexible and versatile method for building complex genetic circuits in conventional vectors. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3361-3379. [PMID: 39175411 PMCID: PMC11606424 DOI: 10.1111/pbi.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The manipulation of multiple transcription units for simultaneous and coordinated expression is not only key to building complex genetic circuits to accomplish diverse functions in synthetic biology, but is also important in crop breeding for significantly improved productivity and overall performance. However, building constructs with multiple independent transcription units for fine-tuned and coordinated regulation is complicated and time-consuming. Here, we introduce the Multiplex Expression Cassette Assembly (MECA) method, which modifies canonical vectors compatible with Golden Gate Assembly, and then uses them to produce multi-cassette constructs. By embedding the junction syntax in primers that are used to amplify functional elements, MECA is able to make complex constructs using only one intermediate vector and one destination vector via two rounds of one-pot Golden Gate assembly reactions, without the need for dedicated vectors and a coherent library of standardized modules. As a proof-of-concept, we modified eukaryotic and prokaryotic expression vectors to generate constructs for transient expression of green fluorescent protein and β-glucuronidase in Nicotiana benthamiana, genome editing to block monoterpene metabolism in tomato glandular trichomes, production of betanin in tobacco and synthesis of β-carotene in Escherichia coli. Additionally, we engineered the stable production of thymol and carvacrol, bioactive compounds from Lamiaceae family plants, in glandular trichomes of tobacco. These results demonstrate that MECA is a flexible, efficient and versatile method for building complex genetic circuits, which will not only play a critical role in plant synthetic biology, but also facilitate improving agronomic traits and pyramiding traits for the development of next-generation elite crops.
Collapse
Affiliation(s)
- Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Changmei Li
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Xuan Sun
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Aixia Chang
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| |
Collapse
|
12
|
Molodtsov V, Wang C, Zhang J, Kaelber JT, Blaha G, Ebright RH. Structural basis of RfaH-mediated transcription-translation coupling. Nat Struct Mol Biol 2024; 31:1932-1941. [PMID: 39117885 PMCID: PMC11927940 DOI: 10.1038/s41594-024-01372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
The NusG paralog RfaH mediates bacterial transcription-translation coupling in genes that contain a DNA sequence element, termed an ops site, required for pausing RNA polymerase (RNAP) and for loading RfaH onto the paused RNAP. Here, we report cryo-electron microscopy structures of transcription-translation complexes (TTCs) containing Escherichia coli RfaH. The results show that RfaH bridges RNAP and the ribosome, with the RfaH N-terminal domain interacting with RNAP and the RfaH C-terminal domain interacting with the ribosome. The results show that the distribution of translational and orientational positions of RNAP relative to the ribosome in RfaH-coupled TTCs is more restricted than in NusG-coupled TTCs because of the more restricted flexibility of the RfaH interdomain linker. The results further suggest that the structural organization of RfaH-coupled TTCs in the 'loading state', in which RNAP and RfaH are located at the ops site during formation of the TTC, is the same as the structural organization of RfaH-coupled TTCs in the 'loaded state', in which RNAP and RfaH are located at positions downstream of the ops site during function of the TTC. The results define the structural organization of RfaH-containing TTCs and set the stage for analysis of functions of RfaH during translation initiation and transcription-translation coupling.
Collapse
Affiliation(s)
- Vadim Molodtsov
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
- Research Institute for Systems Biology and Medicine, Moscow, Russia
| | - Chengyuan Wang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
- Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Jing Zhang
- Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Jason T Kaelber
- Rutgers CryoEM and Nanoimaging Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
| | - Gregor Blaha
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
13
|
Shang W, Lichtenberg E, Mlesnita AM, Wilde A, Koch HG. The contribution of mRNA targeting to spatial protein localization in bacteria. FEBS J 2024; 291:4639-4659. [PMID: 38226707 DOI: 10.1111/febs.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
About 30% of all bacterial proteins execute their function outside of the cytosol and must be inserted into or translocated across the cytoplasmic membrane. This requires efficient targeting systems that recognize N-terminal signal sequences in client proteins and deliver them to protein transport complexes in the membrane. While the importance of these protein transport machineries for the spatial organization of the bacterial cell is well documented in multiple studies, the contribution of mRNA targeting and localized translation to protein transport is only beginning to emerge. mRNAs can exhibit diverse subcellular localizations in the bacterial cell and can accumulate at sites where new protein is required. This is frequently observed for mRNAs encoding membrane proteins, but the physiological importance of membrane enrichment of mRNAs and the consequences it has for the insertion of the encoded protein have not been explored in detail. Here, we briefly highlight some basic concepts of signal sequence-based protein targeting and describe in more detail strategies that enable the monitoring of mRNA localization in bacterial cells and potential mechanisms that route mRNAs to particular positions within the cell. Finally, we summarize some recent developments that demonstrate that mRNA targeting and localized translation can sustain membrane protein insertion under stress conditions when the protein-targeting machinery is compromised. Thus, mRNA targeting likely acts as a back-up strategy and complements the canonical signal sequence-based protein targeting.
Collapse
Affiliation(s)
- Wenkang Shang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | | | - Andreea Mihaela Mlesnita
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| | - Annegret Wilde
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| |
Collapse
|
14
|
Wang C, Molodtsov V, Kaelber JT, Blaha G, Ebright RH. Structural basis of long-range transcription-translation coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.604413. [PMID: 39071276 PMCID: PMC11275968 DOI: 10.1101/2024.07.20.604413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Structures recently have been reported of molecular assemblies that mediate transcription-translation coupling in Escherichia coli . In these molecular assemblies, termed "coupled transcription-translation complexes" or "TTC-B", RNA polymerase (RNAP) interacts directly with the ribosome, the transcription elongation factor NusG or its paralog RfaH forms a bridge between RNAP and ribosome, and the transcription elongation factor NusA optionally forms a second bridge between RNAP and ribosome. Here, we have determined structures of coupled transcription-translation complexes having mRNA spacers between RNAP and ribosome longer than the maximum-length mRNA spacer compatible with formation of TTC-B. The results define a new class of coupled transcription-translation complex, termed "TTC-LC," where "LC" denotes "long-range coupling." TTC-LC differs from TTC-B by a ∼60° rotation and ∼70 Å translation of RNAP relative to ribosome, resulting in loss of direct interactions between RNAP and ribosome and creation of a ∼70 Å gap between RNAP and ribosome. TTC-LC accommodates long mRNA spacers by looping out mRNA from the gap between RNAP and ribosome. We propose that TTC-LC is an intermediate in assembling and disassembling TTC-B, mediating pre-TTC-B transcription-translation coupling before a ribosome catches up to RNAP, and mediating post-TTC-B transcription-translation coupling after a ribosome stops moving and RNAP continues moving.
Collapse
|
15
|
Hustmyer CM, Landick R. Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression. Mol Microbiol 2024; 122:81-112. [PMID: 38847475 PMCID: PMC11260248 DOI: 10.1111/mmi.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.
Collapse
Affiliation(s)
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison
- Department of Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
16
|
Webster MW, Chauvier A, Rahil H, Graziadei A, Charles K, Takacs M, Saint-André C, Rappsilber J, Walter NG, Weixlbaumer A. Molecular basis of mRNA delivery to the bacterial ribosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585789. [PMID: 38562847 PMCID: PMC10983998 DOI: 10.1101/2024.03.19.585789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein synthesis begins with the formation of a ribosome-mRNA complex. In bacteria, the 30S ribosomal subunit is recruited to many mRNAs through base pairing with the Shine Dalgarno (SD) sequence and RNA binding by ribosomal protein bS1. Translation can initiate on nascent mRNAs and RNA polymerase (RNAP) can promote recruitment of the pioneering 30S subunit. Here we examined ribosome recruitment to nascent mRNAs using cryo-EM, single-molecule fluorescence co-localization, and in-cell crosslinking mass spectrometry. We show that bS1 delivers the mRNA to the ribosome for SD duplex formation and 30S subunit activation. Additionally, bS1 mediates the stimulation of translation initiation by RNAP. Together, our work provides a mechanistic framework for how the SD duplex, ribosomal proteins and RNAP cooperate in 30S recruitment to mRNAs and establish transcription-translation coupling.
Collapse
Affiliation(s)
- Michael W. Webster
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France
- Université de Strasbourg, 67404 Illkirch Cedex, France
- CNRS UMR7104, 67404 Illkirch Cedex, France
- INSERM U1258, 67404 Illkirch Cedex, France
| | - Adrien Chauvier
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huma Rahil
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France
- Université de Strasbourg, 67404 Illkirch Cedex, France
- CNRS UMR7104, 67404 Illkirch Cedex, France
- INSERM U1258, 67404 Illkirch Cedex, France
| | - Andrea Graziadei
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Kristine Charles
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Maria Takacs
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France
- Université de Strasbourg, 67404 Illkirch Cedex, France
- CNRS UMR7104, 67404 Illkirch Cedex, France
- INSERM U1258, 67404 Illkirch Cedex, France
| | - Charlotte Saint-André
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France
- Université de Strasbourg, 67404 Illkirch Cedex, France
- CNRS UMR7104, 67404 Illkirch Cedex, France
- INSERM U1258, 67404 Illkirch Cedex, France
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Albert Weixlbaumer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France
- Université de Strasbourg, 67404 Illkirch Cedex, France
- CNRS UMR7104, 67404 Illkirch Cedex, France
- INSERM U1258, 67404 Illkirch Cedex, France
| |
Collapse
|
17
|
El Sayyed H, Pambos OJ, Stracy M, Gottesman ME, Kapanidis AN. Single-molecule tracking reveals the functional allocation, in vivo interactions, and spatial organization of universal transcription factor NusG. Mol Cell 2024; 84:926-937.e4. [PMID: 38387461 DOI: 10.1016/j.molcel.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
During transcription elongation, NusG aids RNA polymerase by inhibiting pausing, promoting anti-termination on rRNA operons, coupling transcription with translation on mRNA genes, and facilitating Rho-dependent termination. Despite extensive work, the in vivo functional allocation and spatial distribution of NusG remain unknown. Using single-molecule tracking and super-resolution imaging in live E. coli cells, we found NusG predominantly in a chromosome-associated population (binding to RNA polymerase in elongation complexes) and a slowly diffusing population complexed with the 30S ribosomal subunit; the latter provides a "30S-guided" path for NusG into transcription elongation. Only ∼10% of NusG is fast diffusing, with its mobility suggesting non-specific interactions with DNA for >50% of the time. Antibiotic treatments and deletion mutants revealed that chromosome-associated NusG participates mainly in rrn anti-termination within phase-separated transcriptional condensates and in transcription-translation coupling. This study illuminates the multiple roles of NusG and offers a guide on dissecting multi-functional machines via in vivo imaging.
Collapse
Affiliation(s)
- Hafez El Sayyed
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Kavli Institute of Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK.
| | - Oliver J Pambos
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Kavli Institute of Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
| | - Mathew Stracy
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford, UK
| | - Max E Gottesman
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Achillefs N Kapanidis
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Kavli Institute of Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK.
| |
Collapse
|
18
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
19
|
Brito Querido J, Díaz-López I, Ramakrishnan V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat Rev Mol Cell Biol 2024; 25:168-186. [PMID: 38052923 DOI: 10.1038/s41580-023-00624-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 12/07/2023]
Abstract
The regulation of gene expression is fundamental for life. Whereas the role of transcriptional regulation of gene expression has been studied for several decades, it has been clear over the past two decades that post-transcriptional regulation of gene expression, of which translation regulation is a major part, can be equally important. Translation can be divided into four main stages: initiation, elongation, termination and ribosome recycling. Translation is controlled mainly during its initiation, a process which culminates in a ribosome positioned with an initiator tRNA over the start codon and, thus, ready to begin elongation of the protein chain. mRNA translation has emerged as a powerful tool for the development of innovative therapies, yet the detailed mechanisms underlying the complex process of initiation remain unclear. Recent studies in yeast and mammals have started to shed light on some previously unclear aspects of this process. In this Review, we discuss the current state of knowledge on eukaryotic translation initiation and its regulation in health and disease. Specifically, we focus on recent advances in understanding the processes involved in assembling the 43S pre-initiation complex and its recruitment by the cap-binding complex eukaryotic translation initiation factor 4F (eIF4F) at the 5' end of mRNA. In addition, we discuss recent insights into ribosome scanning along the 5' untranslated region of mRNA and selection of the start codon, which culminates in joining of the 60S large subunit and formation of the 80S initiation complex.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Irene Díaz-López
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
20
|
Dolcemascolo R, Heras-Hernández M, Goiriz L, Montagud-Martínez R, Requena-Menéndez A, Ruiz R, Pérez-Ràfols A, Higuera-Rodríguez RA, Pérez-Ropero G, Vranken WF, Martelli T, Kaiser W, Buijs J, Rodrigo G. Repurposing the mammalian RNA-binding protein Musashi-1 as an allosteric translation repressor in bacteria. eLife 2024; 12:RP91777. [PMID: 38363283 PMCID: PMC10942595 DOI: 10.7554/elife.91777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
The RNA recognition motif (RRM) is the most common RNA-binding protein domain identified in nature. However, RRM-containing proteins are only prevalent in eukaryotic phyla, in which they play central regulatory roles. Here, we engineered an orthogonal post-transcriptional control system of gene expression in the bacterium Escherichia coli with the mammalian RNA-binding protein Musashi-1, which is a stem cell marker with neurodevelopmental role that contains two canonical RRMs. In the circuit, Musashi-1 is regulated transcriptionally and works as an allosteric translation repressor thanks to a specific interaction with the N-terminal coding region of a messenger RNA and its structural plasticity to respond to fatty acids. We fully characterized the genetic system at the population and single-cell levels showing a significant fold change in reporter expression, and the underlying molecular mechanism by assessing the in vitro binding kinetics and in vivo functionality of a series of RNA mutants. The dynamic response of the system was well recapitulated by a bottom-up mathematical model. Moreover, we applied the post-transcriptional mechanism engineered with Musashi-1 to specifically regulate a gene within an operon, implement combinatorial regulation, and reduce protein expression noise. This work illustrates how RRM-based regulation can be adapted to simple organisms, thereby adding a new regulatory layer in prokaryotes for translation control.
Collapse
Affiliation(s)
- Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Biotechnology, Polytechnic University of ValenciaValenciaSpain
| | - María Heras-Hernández
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| | - Lucas Goiriz
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Applied Mathematics, Polytechnic University of ValenciaValenciaSpain
| | - Roser Montagud-Martínez
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Biotechnology, Polytechnic University of ValenciaValenciaSpain
| | | | - Raúl Ruiz
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| | - Anna Pérez-Ràfols
- Giotto Biotech SRLSesto FiorentinoItaly
- Magnetic Resonance Center (CERM), Department of Chemistry Ugo Schiff, Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), University of FlorenceSesto FiorentinoItaly
| | - R Anahí Higuera-Rodríguez
- Dynamic Biosensors GmbHPlaneggGermany
- Department of Physics, Technical University of MunichGarchingGermany
| | - Guillermo Pérez-Ropero
- Ridgeview Instruments ABUppsalaSweden
- Department of Chemistry – BMC, Uppsala UniversityUppsalaSweden
| | - Wim F Vranken
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles – Vrije Universiteit BrusselBrusselsBelgium
| | | | | | - Jos Buijs
- Ridgeview Instruments ABUppsalaSweden
- Department of Immunology, Genetics, and Pathology, Uppsala UniversityUppsalaSweden
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| |
Collapse
|
21
|
Greiss F, Lardon N, Schütz L, Barak Y, Daube SS, Weinhold E, Noireaux V, Bar-Ziv R. A genetic circuit on a single DNA molecule as an autonomous dissipative nanodevice. Nat Commun 2024; 15:883. [PMID: 38287055 PMCID: PMC10825189 DOI: 10.1038/s41467-024-45186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Realizing genetic circuits on single DNA molecules as self-encoded dissipative nanodevices is a major step toward miniaturization of autonomous biological systems. A circuit operating on a single DNA implies that genetically encoded proteins localize during coupled transcription-translation to DNA, but a single-molecule measurement demonstrating this has remained a challenge. Here, we use a genetically encoded fluorescent reporter system with improved temporal resolution and observe the synthesis of individual proteins tethered to a DNA molecule by transient complexes of RNA polymerase, messenger RNA, and ribosome. Against expectations in dilute cell-free conditions where equilibrium considerations favor dispersion, these nascent proteins linger long enough to regulate cascaded reactions on the same DNA. We rationally design a pulsatile genetic circuit by encoding an activator and repressor in feedback on the same DNA molecule. Driven by the local synthesis of only several proteins per hour and gene, the circuit dynamics exhibit enhanced variability between individual DNA molecules, and fluctuations with a broad power spectrum. Our results demonstrate that co-expressional localization, as a nonequilibrium process, facilitates single-DNA genetic circuits as dissipative nanodevices, with implications for nanobiotechnology applications and artificial cell design.
Collapse
Affiliation(s)
- Ferdinand Greiss
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Nicolas Lardon
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Leonie Schütz
- Institute of Organic Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Yoav Barak
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shirley S Daube
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Roy Bar-Ziv
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
22
|
Chauvier A, Walter NG. Regulation of bacterial gene expression by non-coding RNA: It is all about time! Cell Chem Biol 2024; 31:71-85. [PMID: 38211587 DOI: 10.1016/j.chembiol.2023.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Commensal and pathogenic bacteria continuously evolve to survive in diverse ecological niches by efficiently coordinating gene expression levels in their ever-changing environments. Regulation through the RNA transcript itself offers a faster and more cost-effective way to adapt than protein-based mechanisms and can be leveraged for diagnostic or antimicrobial purposes. However, RNA can fold into numerous intricate, not always functional structures that both expand and obscure the plethora of roles that regulatory RNAs serve within the cell. Here, we review the current knowledge of bacterial non-coding RNAs in relation to their folding pathways and interactions. We posit that co-transcriptional folding of these transcripts ultimately dictates their downstream functions. Elucidating the spatiotemporal folding of non-coding RNAs during transcription therefore provides invaluable insights into bacterial pathogeneses and predictive disease diagnostics. Finally, we discuss the implications of co-transcriptional folding andapplications of RNAs for therapeutics and drug targets.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Molodtsov V, Wang C, Kaelber JT, Blaha G, Ebright RH. Structural basis of RfaH-mediated transcription-translation coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565726. [PMID: 37986937 PMCID: PMC10659316 DOI: 10.1101/2023.11.05.565726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The NusG paralog RfaH mediates bacterial transcription-translation coupling on genes that contain a DNA sequence element, termed an ops site, required for pausing RNA polymerase (RNAP) and for loading RfaH onto the paused RNAP. Here we report cryo-EM structures of transcription-translation complexes (TTCs) containing RfaH. The results show that RfaH bridges RNAP and the ribosome, with the RfaH N-terminal domain interacting with RNAP, and with the RfaH C-terminal domain interacting with the ribosome. The results show that the distribution of translational and orientational positions of RNAP relative to the ribosome in RfaH-coupled TTCs is more restricted than in NusG-coupled TTCs, due to the more restricted flexibility of the RfaH interdomain linker. The results further show that the structural organization of RfaH-coupled TTCs in the "loading state," in which RNAP and RfaH are located at the ops site during formation of the TTC, is the same as the structural organization of RfaH-coupled TTCs in the "loaded state," in which RNAP and RfaH are located at positions downstream of the ops site during function of the TTC. The results define the structural organization of RfaH-containing TTCs and set the stage for analysis of functions of RfaH during translation initiation and transcription-translation coupling. One sentence summary Cryo-EM reveals the structural basis of transcription-translation coupling by RfaH.
Collapse
|
24
|
Woodgate J, Zenkin N. Transcription-translation coupling: Recent advances and future perspectives. Mol Microbiol 2023; 120:539-546. [PMID: 37856403 PMCID: PMC10953045 DOI: 10.1111/mmi.15076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 10/21/2023]
Abstract
The flow of genetic information from the chromosome to protein in all living organisms consists of two steps: (1) copying information coded in DNA into an mRNA intermediate via transcription by RNA polymerase, followed by (2) translation of this mRNA into a polypeptide by the ribosome. Unlike eukaryotes, where transcription and translation are separated by a nuclear envelope, in bacterial cells, these two processes occur within the same compartment. This means that a pioneering ribosome starts translation on nascent mRNA that is still being actively transcribed by RNA polymerase. This tethering via mRNA is referred to as 'coupling' of transcription and translation (CTT). CTT raises many questions regarding physical interactions and potential mutual regulation between these large (ribosome is ~2.5 MDa and RNA polymerase is 0.5 MDa) and powerful molecular machines. Accordingly, we will discuss some recently discovered structural and functional aspects of CTT.
Collapse
Affiliation(s)
- Jason Woodgate
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| |
Collapse
|
25
|
Zafar H, Hassan AH, Demo G. Translation machinery captured in motion. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1792. [PMID: 37132456 DOI: 10.1002/wrna.1792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Translation accuracy is one of the most critical factors for protein synthesis. It is regulated by the ribosome and its dynamic behavior, along with translation factors that direct ribosome rearrangements to make translation a uniform process. Earlier structural studies of the ribosome complex with arrested translation factors laid the foundation for an understanding of ribosome dynamics and the translation process as such. Recent technological advances in time-resolved and ensemble cryo-EM have made it possible to study translation in real time at high resolution. These methods provided a detailed view of translation in bacteria for all three phases: initiation, elongation, and termination. In this review, we focus on translation factors (in some cases GTP activation) and their ability to monitor and respond to ribosome organization to enable efficient and accurate translation. This article is categorized under: Translation > Ribosome Structure/Function Translation > Mechanisms.
Collapse
Affiliation(s)
- Hassan Zafar
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
26
|
Wee LM, Tong AB, Florez Ariza AJ, Cañari-Chumpitaz C, Grob P, Nogales E, Bustamante CJ. A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery. Cell 2023; 186:1244-1262.e34. [PMID: 36931247 PMCID: PMC10135430 DOI: 10.1016/j.cell.2023.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
In prokaryotes, translation can occur on mRNA that is being transcribed in a process called coupling. How the ribosome affects the RNA polymerase (RNAP) during coupling is not well understood. Here, we reconstituted the E. coli coupling system and demonstrated that the ribosome can prevent pausing and termination of RNAP and double the overall transcription rate at the expense of fidelity. Moreover, we monitored single RNAPs coupled to ribosomes and show that coupling increases the pause-free velocity of the polymerase and that a mechanical assisting force is sufficient to explain the majority of the effects of coupling. Also, by cryo-EM, we observed that RNAPs with a terminal mismatch adopt a backtracked conformation, while a coupled ribosome allosterically induces these polymerases toward a catalytically active anti-swiveled state. Finally, we demonstrate that prolonged RNAP pausing is detrimental to cell viability, which could be prevented by polymerase reactivation through a coupled ribosome.
Collapse
Affiliation(s)
- Liang Meng Wee
- QB3-Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Alexander B Tong
- QB3-Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Alfredo Jose Florez Ariza
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Cristhian Cañari-Chumpitaz
- QB3-Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Patricia Grob
- QB3-Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Eva Nogales
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Carlos J Bustamante
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA; Department of Physics, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA; Kavli Energy Nanoscience Institute, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
27
|
Sarmah P, Shang W, Origi A, Licheva M, Kraft C, Ulbrich M, Lichtenberg E, Wilde A, Koch HG. mRNA targeting eliminates the need for the signal recognition particle during membrane protein insertion in bacteria. Cell Rep 2023; 42:112140. [PMID: 36842086 PMCID: PMC10066597 DOI: 10.1016/j.celrep.2023.112140] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Signal-sequence-dependent protein targeting is essential for the spatiotemporal organization of eukaryotic and prokaryotic cells and is facilitated by dedicated protein targeting factors such as the signal recognition particle (SRP). However, targeting signals are not exclusively contained within proteins but can also be present within mRNAs. By in vivo and in vitro assays, we show that mRNA targeting is controlled by the nucleotide content and by secondary structures within mRNAs. mRNA binding to bacterial membranes occurs independently of soluble targeting factors but is dependent on the SecYEG translocon and YidC. Importantly, membrane insertion of proteins translated from membrane-bound mRNAs occurs independently of the SRP pathway, while the latter is strictly required for proteins translated from cytosolic mRNAs. In summary, our data indicate that mRNA targeting acts in parallel to the canonical SRP-dependent protein targeting and serves as an alternative strategy for safeguarding membrane protein insertion when the SRP pathway is compromised.
Collapse
Affiliation(s)
- Pinku Sarmah
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Wenkang Shang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University Freiburg, 79104 Freiburg, Germany
| | - Maximilian Ulbrich
- Internal Medicine IV, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | | | - Annegret Wilde
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
28
|
Murayama Y, Ehara H, Aoki M, Goto M, Yokoyama T, Sekine SI. Structural basis of the transcription termination factor Rho engagement with transcribing RNA polymerase from Thermus thermophilus. SCIENCE ADVANCES 2023; 9:eade7093. [PMID: 36753546 PMCID: PMC9908020 DOI: 10.1126/sciadv.ade7093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Transcription termination is an essential step in transcription by RNA polymerase (RNAP) and crucial for gene regulation. For many bacterial genes, transcription termination is mediated by the adenosine triphosphate-dependent RNA translocase/helicase Rho, which causes RNA/DNA dissociation from the RNAP elongation complex (EC). However, the structural basis of the interplay between Rho and RNAP remains obscure. Here, we report the cryo-electron microscopy structure of the Thermus thermophilus RNAP EC engaged with Rho. The Rho hexamer binds RNAP through the carboxyl-terminal domains, which surround the RNA exit site of RNAP, directing the nascent RNA seamlessly from the RNA exit to its central channel. The β-flap tip at the RNA exit is critical for the Rho-dependent RNA release, and its deletion causes an alternative Rho-RNAP binding mode, which is irrelevant to termination. The Rho binding site overlaps with the binding sites of other macromolecules, such as ribosomes, providing a general basis of gene regulation.
Collapse
Affiliation(s)
- Yuko Murayama
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mari Aoki
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mie Goto
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takeshi Yokoyama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Shun-ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
29
|
Klumpp S. Transcription-translation coupling: Traveling a road under construction. Biophys J 2023; 122:1-3. [PMID: 36525978 PMCID: PMC9822832 DOI: 10.1016/j.bpj.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Stefan Klumpp
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
30
|
Li X, Chou T. Stochastic dynamics and ribosome-RNAP interactions in transcription-translation coupling. Biophys J 2023; 122:254-266. [PMID: 36199250 PMCID: PMC9822797 DOI: 10.1016/j.bpj.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 01/11/2023] Open
Abstract
Under certain cellular conditions, transcription and mRNA translation in prokaryotes appear to be "coupled," in which the formation of mRNA transcript and production of its associated protein are temporally correlated. Such transcription-translation coupling (TTC) has been evoked as a mechanism that speeds up the overall process, provides protection against premature termination, and/or regulates the timing of transcript and protein formation. What molecular mechanisms underlie ribosome-RNAP coupling and how they can perform these functions have not been explicitly modeled. We develop and analyze a continuous-time stochastic model that incorporates ribosome and RNAP elongation rates, initiation and termination rates, RNAP pausing, and direct ribosome and RNAP interactions (exclusion and binding). Our model predicts how distributions of delay times depend on these molecular features of transcription and translation. We also propose additional measures for TTC: a direct ribosome-RNAP binding probability and the fraction of time the translation-transcription process is "protected" from attack by transcription-terminating proteins. These metrics quantify different aspects of TTC and differentially depend on parameters of known molecular processes. We use our metrics to reveal how and when our model can exhibit either acceleration or deceleration of transcription, as well as protection from termination. Our detailed mechanistic model provides a basis for designing new experimental assays that can better elucidate the mechanisms of TTC.
Collapse
Affiliation(s)
- Xiangting Li
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California
| | - Tom Chou
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California; Department of Mathematics, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
31
|
Ellinger E, Chauvier A, Romero RA, Liu Y, Ray S, Walter NG. Riboswitches as therapeutic targets: promise of a new era of antibiotics. Expert Opin Ther Targets 2023; 27:433-445. [PMID: 37364239 PMCID: PMC10527229 DOI: 10.1080/14728222.2023.2230363] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION The growth of antibiotic resistance among bacterial pathogens is an impending global threat that can only be averted through the development of novel antibacterial drugs. A promising answer could be the targeting of riboswitches, structured RNA elements found almost exclusively in bacteria. AREAS COVERED This review examines the potential of riboswitches as novel antibacterial drug targets. The limited mechanisms of action of currently available antibiotics are summarized, followed by a delineation of the functional mechanisms of riboswitches. We then discuss the potential for developing novel approaches that target paradigmatic riboswitches in the context of their bacterial gene expression machinery. EXPERT OPINION We highlight potential advantages of targeting riboswitches in their functional form, embedded within gene expression complexes critical for bacterial survival. We emphasize the benefits of this approach, including potentially higher species specificity and lower side effects.
Collapse
Affiliation(s)
- Emily Ellinger
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rosa A. Romero
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Yichen Liu
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Sujay Ray
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G. Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Abstract
In bacteria, transcription and translation take place in the same cellular compartment. Therefore, a messenger RNA can be translated as it is being transcribed, a process known as transcription-translation coupling. This process was already recognized at the dawn of molecular biology, yet the interplay between the two key players, the RNA polymerase and ribosome, remains elusive. Genetic data indicate that an RNA sequence can be translated shortly after it has been transcribed. The closer both processes are in time, the less accessible the RNA sequence is between the RNA polymerase and ribosome. This temporal coupling has important consequences for gene regulation. Biochemical and structural studies have detailed several complexes between the RNA polymerase and ribosome. The in vivo relevance of this physical coupling has not been formally demonstrated. We discuss how both temporal and physical coupling may mesh to produce the phenomenon we know as transcription-translation coupling.
Collapse
Affiliation(s)
- Gregor M Blaha
- Department of Biochemistry, University of California, Riverside, California, USA;
| | - Joseph T Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA;
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| |
Collapse
|
33
|
Mohamed AA, Vazquez Nunez R, Vos SM. Structural advances in transcription elongation. Curr Opin Struct Biol 2022; 75:102422. [PMID: 35816930 PMCID: PMC9398977 DOI: 10.1016/j.sbi.2022.102422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Transcription is the first step of gene expression and involves RNA polymerases. After transcription initiation, RNA polymerase enters elongation followed by transcription termination at the end of the gene. Only recently, structures of transcription elongation complexes bound to key transcription elongation factors have been determined in bacterial and eukaryotic systems. These structures have revealed numerous insights including the basis for transcriptional pausing, RNA polymerase interaction with large complexes such as the ribosome and the spliceosome, and the transition into productive elongation. Here, we review these structures and describe areas for future research.
Collapse
Affiliation(s)
- Abdallah A Mohamed
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/AMohamed_98
| | - Roberto Vazquez Nunez
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/rjareth
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA.
| |
Collapse
|
34
|
Hassler HB, Probert B, Moore C, Lawson E, Jackson RW, Russell BT, Richards VP. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. MICROBIOME 2022; 10:104. [PMID: 35799218 PMCID: PMC9264627 DOI: 10.1186/s40168-022-01295-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/23/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND The 16S rRNA gene is used extensively in bacterial phylogenetics, in species delineation, and now widely in microbiome studies. However, the gene suffers from intragenomic heterogeneity, and reports of recombination and an unreliable phylogenetic signal are accumulating. Here, we compare core gene phylogenies to phylogenies constructed using core gene concatenations to estimate the strength of signal for the 16S rRNA gene, its hypervariable regions, and all core genes at the intra- and inter-genus levels. Specifically, we perform four intra-genus analyses (Clostridium, n = 65; Legionella, n = 47; Staphylococcus, n = 36; and Campylobacter, n = 17) and one inter-genus analysis [41 core genera of the human gut microbiome (31 families, 17 orders, and 12 classes), n = 82]. RESULTS At both taxonomic levels, the 16S rRNA gene was recombinant and subject to horizontal gene transfer. At the intra-genus level, the gene showed one of the lowest levels of concordance with the core genome phylogeny (50.7% average). Concordance for hypervariable regions was lower still, with entropy masking providing little to no benefit. A major factor influencing concordance was SNP count, which showed a positive logarithmic association. Using this relationship, we determined that 690 ± 110 SNPs were required for 80% concordance (average 16S rRNA gene SNP count was 254). We also found a wide range in 16S-23S-5S rRNA operon copy number among genomes (1-27). At the inter-genus level, concordance for the whole 16S rRNA gene was markedly higher (73.8% - 10th out of 49 loci); however, the most concordant hypervariable regions (V4, V3-V4, and V1-V2) ranked in the third quartile (62.5 to 60.0%). CONCLUSIONS Ramifications of a poor phylogenetic performance for the 16S rRNA gene are far reaching. For example, in addition to incorrect species/strain delineation and phylogenetic inference, it has the potential to confound community diversity metrics if phylogenetic information is incorporated - for example, with popular approaches such as Faith's phylogenetic diversity and UniFrac. Our results highlight the problematic nature of these approaches and their use (along with entropy masking) is discouraged. Lastly, the wide range in 16S rRNA gene copy number among genomes also has a strong potential to confound diversity metrics. Video Abstract.
Collapse
Affiliation(s)
- Hayley B. Hassler
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | - Brett Probert
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | - Carson Moore
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | - Elizabeth Lawson
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | | | - Brook T. Russell
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634 USA
| | - Vincent P. Richards
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| |
Collapse
|
35
|
Failure of Translation Initiation of the Next Gene Decouples Transcription at Intercistronic Sites and the Resultant mRNA Generation. mBio 2022; 13:e0128722. [PMID: 35695461 PMCID: PMC9239205 DOI: 10.1128/mbio.01287-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, transcription is coupled with translation. The polar gal operon is transcribed galE-galT-galK-galM; however, about 10% of transcription terminates at the end of galE because of Rho-dependent termination (RDT). When galE translation is complete, galT translation should begin immediately. It is unclear whether RDT at the end of galE is due to decoupling of translation termination and transcription at the cistron junction. In this study, we show that RDT at the galE/galT cistron junction is linked to the failure of translation initiation at the start of galT, rather than translation termination at the end of galE. We also show that transcription pauses 130 nucleotides downstream from the site of galE translation termination, and this pause is required for RDT. IMPORTANCE Transcription of operons is initiated at the promoter of the first gene in the operon, continues through cistron junctions, and terminates at the end of the operon, generating a full-length mRNA. Here, we show that Rho-dependent termination of transcription occurs stochastically at a cistron junction, generating a stable mRNA that is shorter than the full-length mRNA. We further show that stochastic failure in translation initiation of the next gene, rather than the failure of translation termination of the preceding gene, causes the Rho-dependent termination. Thus, stochastic failure in translation initiation at the cistron junction causes the promoter-proximal gene to be transcribed more than promoter-distal genes within the operon.
Collapse
|
36
|
Wang Y, Zhao L, Zhou X, Zhang J, Jiang J, Dong H. Global Fold Switching of the RafH Protein: Diverse Structures with a Conserved Pathway. J Phys Chem B 2022; 126:2979-2989. [PMID: 35438983 DOI: 10.1021/acs.jpcb.1c10965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is generally believed that a protein's sequence uniquely determines its structure, the basis for a protein to perform biological functions. However, as a representative metamorphic protein, RfaH can be encoded by a single amino acid sequence into two distinct native state structures. Its C-terminal domain (CTD) either takes an all-α-helical configuration to pack tightly with its N-terminal domain (NTD), or the CTD disassociates from the NTD, transforms into an all-β-barrel fold, and further attaches to the ribosome, leaving the NTD exposed to bind RNA polymerases. Therefore, the RfaH protein couples transcription and translation processes. Although previous studies have provided a preliminary understanding of its function, the full course of the conformational change of RfaH-CTD at the atomic level is elusive. We used teDA2, a feature space-based enhanced sampling protocol, to explore the transformation of RfaH-CTD. We found that it undergoes a large-scale structural rearrangement, with characteristic spectra as the fingerprint, and a global unfolding transition with a tighter and energetically moderate molten globule-like nucleus formed in between. The formation of this nucleus limits the possible intermediate conformations, facilitates the formation of secondary and tertiary structures, and thus ensures the efficiency of transformation. The key features along the transition path disclosed from this work are likely associated with the evolution of RfaH, such that encoding a single sequence into multiple folds with distinct biological functions is energetically unhindered.
Collapse
Affiliation(s)
- Yiqiao Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.,School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Luyuan Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xuejie Zhou
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Jian Zhang
- School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.,Engineering Research Center of Protein and Peptide Medicine of Ministry of Education, Nanjing University, Nanjing 210023, China
| |
Collapse
|
37
|
Metelev M, Lundin E, Volkov IL, Gynnå AH, Elf J, Johansson M. Direct measurements of mRNA translation kinetics in living cells. Nat Commun 2022; 13:1852. [PMID: 35388013 PMCID: PMC8986856 DOI: 10.1038/s41467-022-29515-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/17/2022] [Indexed: 01/09/2023] Open
Abstract
Ribosome mediated mRNA translation is central to life. The cycle of translation, however, has been characterized mostly using reconstituted systems, with only few techniques applicable for studies in the living cell. Here we describe a live-cell ribosome-labeling method, which allows us to characterize the whole processes of finding and translating an mRNA, using single-molecule tracking techniques. We find that more than 90% of both bacterial ribosomal subunits are engaged in translation at any particular time, and that the 30S and 50S ribosomal subunits spend the same average time bound to an mRNA, revealing that 30S re-initiation on poly-cistronic mRNAs is not prevalent in E. coli. Instead, our results are best explained by substantial 70S re-initiation of translation of poly-cistronic mRNAs, which is further corroborated by experiments with translation initiation inhibitors. Finally, we find that a variety of previously described orthogonal ribosomes, with altered anti-Shine-Dalgarno sequences, show significant binding to endogenous mRNAs.
Collapse
Affiliation(s)
- Mikhail Metelev
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Erik Lundin
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Ivan L Volkov
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Arvid H Gynnå
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Johan Elf
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Magnus Johansson
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
38
|
N MPA, Lim HM. An in vitro Assay of mRNA 3' end Using the E. coli Cell-free Expression System. Bio Protoc 2022; 12:e4333. [PMID: 35340297 PMCID: PMC8899560 DOI: 10.21769/bioprotoc.4333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 12/01/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2023] Open
Abstract
At the end of about 80% of the operon in Escherichia coli, translation termination decouples transcription, leading to Rho-dependent transcription termination (RDT). However, no in vitro or in vivo assay system has proven to be good enough to see the 3' end of the mRNA generated by RDT. Here, we present a cell-free assay system that could provide detailed information on the 3' end of a transcript RNA generated by RDT. Our protocol shows how to extract transcript RNA generated by transcription reactions from a cell-free extract, followed by an RNA oligomer ligation to the 3' end of a transcript RNA of interest. The 3' end of the RNA is amplified using RT-PCR. Its genetic location can be determined using a gene-specific primer extension reaction. The 3' ends of mRNA can be visualized and quantified by polyacrylamide gel electrophoresis. One significant advantage of a cell-free assay system is that factors involved in the generation of the 3' end, such as proteins and sRNA, can be directly assayed by exogenously adding factor(s) to the reaction. Graphic abstract: An illustration of the experimental methodology.
Collapse
Affiliation(s)
- Monford Paul Abishek N
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Heon M. Lim
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
39
|
Dai W, Darst SA, Dunham CM, Landick R, Petsko G, Weixlbaumer A. Seeing gene expression in cells: the future of structural biology. Fac Rev 2022; 10:79. [PMID: 35146496 DOI: 10.12703/r-01-000004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although much is known about the machinery that executes fundamental processes of gene expression in cells, much also remains to be learned about how that machinery works. A recent paper by O'Reilly et al. reports a major step forward in the direct visualization of central dogma processes at submolecular resolution inside bacterial cells frozen in a native state. The essential methodologies involved are cross-linking mass spectrometry (CLMS) and cryo-electron tomography (cryo-ET). In-cell CLMS provides in vivo protein interaction maps. Cryo-ET allows visualization of macromolecular complexes in their native environment. These methods have been integrated by O'Reilly et al. to describe a dynamic assembly in situ between a transcribing RNA polymerase (RNAP) and a translating ribosome - a complex known as the expressome - in the model bacterium Mycoplasma pneumoniae 1. With the application of improved data processing and classification capabilities, this approach has allowed unprecedented insights into the architecture of this molecular assembly line, confirming the existence of a physical link between RNAP and the ribosome and identifying the transcription factor NusA as the linking molecule, as well as making it possible to see the structural effects of drugs that inhibit either transcription or translation. The work provides a glimpse into the future of integrative structural cell biology and can serve as a roadmap for the study of other molecular machineries in their native context.
Collapse
Affiliation(s)
- Wei Dai
- Institute for Quantitative Biomedicine, Rutgers University
| | | | | | | | | | | |
Collapse
|
40
|
Bailey EJ, Gottesman ME, Gonzalez RL. NusG-mediated Coupling of Transcription and Translation Enhances Gene Expression by Suppressing RNA Polymerase Backtracking. J Mol Biol 2022; 434:167330. [PMID: 34710399 PMCID: PMC9833396 DOI: 10.1016/j.jmb.2021.167330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 02/01/2023]
Abstract
In bacteria, transcription is coupled to, and can be regulated by, translation. Although recent structural studies suggest that the N-utilization substance G (NusG) transcription factor can serve as a direct, physical link between the transcribing RNA polymerase (RNAP) and the lead ribosome, mechanistic studies investigating the potential role of NusG in mediating transcription-translation coupling are lacking. Here, we report development of a cellular extract- and reporter gene-based, in vitro biochemical system that supports transcription-translation coupling as well as the use of this system to study the role of NusG in coupling. Our findings show that NusG is required for coupling and that the enhanced gene expression that results from coupling is dependent on the ability of NusG to directly interact with the lead ribosome. Moreover, we provide strong evidence that NusG-mediated coupling enhances gene expression through a mechanism in which the lead ribosome that is tethered to the RNAP by NusG suppresses spontaneous backtracking of the RNAP on its DNA template that would otherwise inhibit transcription.
Collapse
Affiliation(s)
- Elizabeth J. Bailey
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA,Current Address: Center for Research on Learning and Teaching in Engineering, University of Michigan, 2609 Draper Drive, Ann Arbor, MI 48109, USA
| | - Max E. Gottesman
- Department of Microbiology and Immunology, Columbia University Medical Center, 701 West 168 Street, New York, NY 10032, USA,To whom correspondence should be addressed: Max E. Gottesman, Department of Microbiology and Immunology, Columbia University Medical Center, 701 West 168 Street, New York, NY 10032 USA Tel.: (212) 305-6900; Fax: (212) 305-1468; and Ruben L. Gonzalez, Jr., Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA, Tel.: (212) 854-1096; Fax: (212) 932-1289;
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA,To whom correspondence should be addressed: Max E. Gottesman, Department of Microbiology and Immunology, Columbia University Medical Center, 701 West 168 Street, New York, NY 10032 USA Tel.: (212) 305-6900; Fax: (212) 305-1468; and Ruben L. Gonzalez, Jr., Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA, Tel.: (212) 854-1096; Fax: (212) 932-1289;
| |
Collapse
|
41
|
Zhu M, Mu H, Han F, Wang Q, Dai X. Quantitative analysis of asynchronous transcription-translation and transcription processivity in Bacillus subtilis under various growth conditions. iScience 2021; 24:103333. [PMID: 34805793 PMCID: PMC8586808 DOI: 10.1016/j.isci.2021.103333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 10/25/2022] Open
Abstract
Tight coordination between transcription and translation has long been recognized as the hallmark of gene expression in bacteria. In Escherichia coli cells, disruption of the transcription-translation coordination leads to the loss of transcription processivity via triggering Rho-mediated premature transcription termination. Here we quantitatively characterize the transcription and translation kinetics in Gram-positive model bacterium Bacillus subtilis. We found that the speed of transcription elongation is much faster than that of translation elongation in B. subtilis under various growth conditions. Moreover, a Rho-independent loss of transcription processivity occurs constitutively in several genes/operons but is not subject to translational control. When the transcription elongation is decelerated under poor nutrients, low temperature, or nucleotide depletion, the loss of transcription processivity is strongly enhanced, suggesting that its degree is modulated by the speed of transcription elongation. Our study reveals distinct design principles of gene expression in E. coli and B. subtilis.
Collapse
Affiliation(s)
- Manlu Zhu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Haoyan Mu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Fei Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Qian Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Xiongfeng Dai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| |
Collapse
|
42
|
Schramm F, Borst A, Linne U, Soppa J. Elucidation of the Translation Initiation Factor Interaction Network of Haloferax volcanii Reveals Coupling of Transcription and Translation in Haloarchaea. Front Microbiol 2021; 12:742806. [PMID: 34764944 PMCID: PMC8576121 DOI: 10.3389/fmicb.2021.742806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/29/2021] [Indexed: 02/04/2023] Open
Abstract
Translation is an important step in gene expression. Initiation of translation is rate-limiting, and it is phylogenetically more diverse than elongation or termination. Bacteria contain only three initiation factors. In stark contrast, eukaryotes contain more than 10 (subunits of) initiation factors (eIFs). The genomes of archaea contain many genes that are annotated to encode archaeal homologs of eukaryotic initiation factors (aIFs). However, experimental characterization of aIFs is scarce and mostly restricted to very few species. To broaden the view, the protein-protein interaction network of aIFs in the halophilic archaeon Haloferax volcanii has been characterized. To this end, tagged versions of 14 aIFs were overproduced, affinity isolated, and the co-isolated binding partners were identified by peptide mass fingerprinting and MS/MS analyses. The aIF-aIF interaction network was resolved, and it was found to contain two interaction hubs, (1) the universally conserved factor aIF5B, and (2) a protein that has been annotated as the enzyme ribose-1,5-bisphosphate isomerase, which we propose to rename to aIF2Bα. Affinity isolation of aIFs also led to the co-isolation of many ribosomal proteins, but also transcription factors and subunits of the RNA polymerase (Rpo). To analyze a possible coupling of transcription and translation, seven tagged Rpo subunits were overproduced, affinity isolated, and co-isolated proteins were identified. The Rpo interaction network contained many transcription factors, but also many ribosomal proteins as well as the initiation factors aIF5B and aIF2Bα. These results showed that transcription and translation are coupled in haloarchaea, like in Escherichia coli. It seems that aIF5B and aIF2Bα are not only interaction hubs in the translation initiation network, but also key players in the transcription-translation coupling.
Collapse
Affiliation(s)
- Franziska Schramm
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | - Andreas Borst
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | - Uwe Linne
- Mass Spectrometry Facility, Department of Chemistry, Phillipps University Marburg, Marburg, Germany
| | - Jörg Soppa
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| |
Collapse
|
43
|
Jeon HJ, Lee Y, N MPA, Wang X, Chattoraj DK, Lim HM. sRNA-mediated regulation of gal mRNA in E. coli: Involvement of transcript cleavage by RNase E together with Rho-dependent transcription termination. PLoS Genet 2021; 17:e1009878. [PMID: 34710092 PMCID: PMC8577784 DOI: 10.1371/journal.pgen.1009878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/09/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022] Open
Abstract
In bacteria, small non-coding RNAs (sRNAs) bind to target mRNAs and regulate their translation and/or stability. In the polycistronic galETKM operon of Escherichia coli, binding of the Spot 42 sRNA to the operon transcript leads to the generation of galET mRNA. The mechanism of this regulation has remained unclear. We show that sRNA-mRNA base pairing at the beginning of the galK gene leads to both transcription termination and transcript cleavage within galK, and generates galET mRNAs with two different 3'-OH ends. Transcription termination requires Rho, and transcript cleavage requires the endonuclease RNase E. The sRNA-mRNA base-paired segments required for generating the two galET species are different, indicating different sequence requirements for the two events. The use of two targets in an mRNA, each of which causes a different outcome, appears to be a novel mode of action for a sRNA. Considering the prevalence of potential sRNA targets at cistron junctions, the generation of new mRNA species by the mechanisms reported here might be a widespread mode of bacterial gene regulation.
Collapse
Affiliation(s)
- Heung Jin Jeon
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yonho Lee
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Monford Paul Abishek N
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Xun Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Dhruba K. Chattoraj
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Heon M. Lim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
44
|
Webster MW, Weixlbaumer A. Macromolecular assemblies supporting transcription-translation coupling. Transcription 2021; 12:103-125. [PMID: 34570660 DOI: 10.1080/21541264.2021.1981713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Coordination between the molecular machineries that synthesize and decode prokaryotic mRNAs is an important layer of gene expression control known as transcription-translation coupling. While it has long been known that translation can regulate transcription and vice-versa, recent structural and biochemical work has shed light on the underlying mechanistic basis. Complexes of RNA polymerase linked to a trailing ribosome (expressomes) have been structurally characterized in a variety of states at near-atomic resolution, and also directly visualized in cells. These data are complemented by recent biochemical and biophysical analyses of transcription-translation systems and the individual components within them. Here, we review our improved understanding of the molecular basis of transcription-translation coupling. These insights are discussed in relation to our evolving understanding of the role of coupling in cells.
Collapse
Affiliation(s)
- Michael W Webster
- Department of Integrated Structural Biology, Institut de Gé né tique et de Biologie Molé culaire et Cellulaire (IGBMC), Illkirch Cedex, France.,Université de Strasbourg, Strasbourg, France.,CNRS Umr 7104, Illkirch Cedex.,Inserm U1258, Illkirch Cedex, France
| | - Albert Weixlbaumer
- Department of Integrated Structural Biology, Institut de Gé né tique et de Biologie Molé culaire et Cellulaire (IGBMC), Illkirch Cedex, France.,Université de Strasbourg, Strasbourg, France.,CNRS Umr 7104, Illkirch Cedex.,Inserm U1258, Illkirch Cedex, France
| |
Collapse
|
45
|
Impressions of expression: bringing structure to the cell. Nat Rev Microbiol 2021; 19:346. [PMID: 33790429 DOI: 10.1038/s41579-021-00552-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Abstract
Cellular life depends on transcription of DNA by RNA polymerase to express genetic information. RNA polymerase has evolved not just to read information from DNA and write it to RNA but also to sense and process information from the cellular and extracellular environments. Much of this information processing occurs during transcript elongation, when transcriptional pausing enables regulatory decisions. Transcriptional pauses halt RNA polymerase in response to DNA and RNA sequences and structures at locations and times that help coordinate interactions with small molecules and transcription factors important for regulation. Four classes of transcriptional pause signals are now evident after decades of study: elemental pauses, backtrack pauses, hairpin-stabilized pauses, and regulator-stabilized pauses. In this review, I describe current understanding of the molecular mechanisms of these four classes of pause signals, remaining questions about how RNA polymerase responds to pause signals, and the many exciting directions now open to understand pausing and the regulation of transcript elongation on a genome-wide scale. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Robert Landick
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| |
Collapse
|
47
|
Feaga HA, Dworkin J. Transcription regulates ribosome hibernation. Mol Microbiol 2021; 116:663-673. [PMID: 34152658 PMCID: PMC8628635 DOI: 10.1111/mmi.14762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
Most bacteria are quiescent, typically as a result of nutrient limitation. In order to minimize energy consumption during this potentially prolonged state, quiescent bacteria substantially attenuate protein synthesis, the most energetically costly cellular process. Ribosomes in quiescent bacteria are present as dimers of two 70S ribosomes. Dimerization is dependent on a single protein, hibernation promoting factor (HPF), that binds the ribosome in the mRNA channel. This interaction indicates that dimers are inactive, suggesting that HPF inhibits translation. However, we observe that HPF does not significantly affect protein synthesis in vivo suggesting that dimerization is a consequence of inactivity, not the cause. The HPF-dimer interaction further implies that re-initiation of translation when the bacteria exit quiescence requires dimer resolution. We show that ribosome dimers quickly resolve in the presence of nutrients, and this resolution is dependent on transcription, indicating that mRNA synthesis is required for dimer resolution. Finally, we observe that ectopic HPF expression in growing cells where mRNA is abundant does not significantly affect protein synthesis despite stimulating dimer formation, suggesting that dimerization is dynamic. Thus, the extensive transcription that occurs in response to nutrient availability rapidly re-activates the translational apparatus of a quiescent cell and induces dimer resolution.
Collapse
Affiliation(s)
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
48
|
Bergkessel M. Bacterial transcription during growth arrest. Transcription 2021; 12:232-249. [PMID: 34486930 PMCID: PMC8632087 DOI: 10.1080/21541264.2021.1968761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/12/2022] Open
Abstract
Bacteria in most natural environments spend substantial periods of time limited for essential nutrients and not actively dividing. While transcriptional activity under these conditions is substantially reduced compared to that occurring during active growth, observations from diverse organisms and experimental approaches have shown that new transcription still occurs and is important for survival. Much of our understanding of transcription regulation has come from measuring transcripts in exponentially growing cells, or from in vitro experiments focused on transcription from highly active promoters by the housekeeping RNA polymerase holoenzyme. The fact that transcription during growth arrest occurs at low levels and is highly heterogeneous has posed challenges for its study. However, new methods of measuring low levels of gene expression activity, even in single cells, offer exciting opportunities for directly investigating transcriptional activity and its regulation during growth arrest. Furthermore, much of the rich structural and biochemical data from decades of work on the bacterial transcriptional machinery is also relevant to growth arrest. In this review, the physiological changes likely affecting transcription during growth arrest are first considered. Next, possible adaptations to help facilitate ongoing transcription during growth arrest are discussed. Finally, new insights from several recently published datasets investigating mRNA transcripts in single bacterial cells at various growth phases will be explored. Keywords: Growth arrest, stationary phase, RNA polymerase, nucleoid condensation, population heterogeneity.
Collapse
|
49
|
Ravindran S. Profile of Patrick Cramer. Proc Natl Acad Sci U S A 2021; 118:e2111728118. [PMID: 34301909 PMCID: PMC8325307 DOI: 10.1073/pnas.2111728118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Gilbert BR, Thornburg ZR, Lam V, Rashid FZM, Glass JI, Villa E, Dame RT, Luthey-Schulten Z. Generating Chromosome Geometries in a Minimal Cell From Cryo-Electron Tomograms and Chromosome Conformation Capture Maps. Front Mol Biosci 2021; 8:644133. [PMID: 34368224 PMCID: PMC8339304 DOI: 10.3389/fmolb.2021.644133] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
JCVI-syn3A is a genetically minimal bacterial cell, consisting of 493 genes and only a single 543 kbp circular chromosome. Syn3A’s genome and physical size are approximately one-tenth those of the model bacterial organism Escherichia coli’s, and the corresponding reduction in complexity and scale provides a unique opportunity for whole-cell modeling. Previous work established genome-scale gene essentiality and proteomics data along with its essential metabolic network and a kinetic model of genetic information processing. In addition to that information, whole-cell, spatially-resolved kinetic models require cellular architecture, including spatial distributions of ribosomes and the circular chromosome’s configuration. We reconstruct cellular architectures of Syn3A cells at the single-cell level directly from cryo-electron tomograms, including the ribosome distributions. We present a method of generating self-avoiding circular chromosome configurations in a lattice model with a resolution of 11.8 bp per monomer on a 4 nm cubic lattice. Realizations of the chromosome configurations are constrained by the ribosomes and geometry reconstructed from the tomograms and include DNA loops suggested by experimental chromosome conformation capture (3C) maps. Using ensembles of simulated chromosome configurations we predict chromosome contact maps for Syn3A cells at resolutions of 250 bp and greater and compare them to the experimental maps. Additionally, the spatial distributions of ribosomes and the DNA-crowding resulting from the individual chromosome configurations can be used to identify macromolecular structures formed from ribosomes and DNA, such as polysomes and expressomes.
Collapse
Affiliation(s)
- Benjamin R Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zane R Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vinson Lam
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Fatema-Zahra M Rashid
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Center for Microbial Cell Biology, Leiden University, Leiden, Netherlands
| | - John I Glass
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Elizabeth Villa
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Center for Microbial Cell Biology, Leiden University, Leiden, Netherlands
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|