1
|
Xu Z, Chang CC, Coyle SM. Synthetic Forms Most Beautiful: Engineering Insights into Self-Organization. Physiology (Bethesda) 2025; 40:0. [PMID: 39938118 DOI: 10.1152/physiol.00064.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 02/14/2025] Open
Abstract
Reflecting on the diversity of the natural world, Darwin famously observed that "from so simple a beginning endless forms most beautiful and most wonderful have been, and are being evolved." However, the examples that we are able to observe in nature are a consequence of chance, constrained by selection, drift, and epistasis. Here we explore how the efforts of synthetic biology to build new living systems can expand our understanding of the fundamental design principles that allow life to self-organize biological form, from cellular to organismal levels. We suggest that the ability to impose a length or timescale onto a biological activity is an essential strategy for self-organization in evolved systems and a key design target that is now being realized synthetically at all scales. By learning to integrate these strategies together, we are poised to expand on evolution's success and realize a space of synthetic forms not only beautiful but with diverse applications and transformative potential.
Collapse
Affiliation(s)
- Zhejing Xu
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin, United States
- Integrated Program in Biochemistry Graduate Program, University of Wisconsin-Madison, Wisconsin, United States
| | - Chih-Chia Chang
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin, United States
- Biophysics Graduate Program, University of Wisconsin-Madison, Wisconsin, United States
| | - Scott M Coyle
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin, United States
| |
Collapse
|
2
|
Hamann CA, Kjar A, Kim H, Simmons AJ, Brien HJ, Quartey CI, Walton BL, Lau KS, Lippmann ES, Brunger JM. Induced Neural Progenitor Specification from Human Pluripotent Stem Cells by a Refined Synthetic Notch Platform. ACS Synth Biol 2025; 14:1482-1495. [PMID: 40327355 DOI: 10.1021/acssynbio.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Historically, studying the development of brain and central nervous system (CNS) tissues has been challenging. Human pluripotent stem cell (hPSC) technology has allowed for the in vitro reconstitution of relevant, early cell trajectories by using small molecules and recombinant proteins to guide differentiation of cells toward relevant brain and CNS phenotypes. However, many of these protocols fail to recapitulate the cell-guided differentiation programs intrinsic to embryonic development, particularly the signaling centers that emerge within the neural tube during brain formation. Located on the ventral end of the neural tube, the floor plate acts as one such signaling center to pattern the dorsal/ventral axis by secreting the morphogen Sonic Hedgehog (SHH). Here, we present a method for cell-guided differentiation using the synthetic Notch (synNotch) receptor platform to regulate SHH production and subsequent cell fate specification. We show that the widely used configuration of the orthogonal synNotch ligand green fluorescent protein (GFP) mounted on a platelet-derived growth factor receptor-β transmembrane chassis does not allow for robust artificial signaling in synNotch-hPSCs ("receivers") cocultured with ligand-presenting hPSCs ("senders"). We discovered that refined designs of membrane-bound GFP-ligand allow for efficient receptor activation in hPSC receivers. A variant of this enhanced synNotch system drives the production of SHH in hPSC sender:hPSC receiver cocultures and gives rise to floor plate-like cell types seen during neural tube development. This revised synNotch platform has the potential to pattern hPSC differentiation programs in synthetic morphogenesis studies designed to uncover key paradigms of human CNS development.
Collapse
Affiliation(s)
- Catherine A Hamann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Andrew Kjar
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hannah J Brien
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Cheryl I Quartey
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Bonnie L Walton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Computational Systems Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Computational Systems Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
3
|
Engel L, Liu KJ, Cui KW, de la Serna EL, Vachharajani VT, Dundes CE, Zheng SL, Begur M, Loh KM, Ang LT, Dunn AR. A microfluidic platform for anterior-posterior human endoderm patterning via countervailing morphogen gradients in vitro. iScience 2025; 28:111744. [PMID: 40040808 PMCID: PMC11879597 DOI: 10.1016/j.isci.2025.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/22/2024] [Accepted: 01/02/2025] [Indexed: 03/06/2025] Open
Abstract
Understanding how morphogen gradients spatially pattern tissues is a fundamental question in developmental biology but can be difficult to directly address using conventional approaches. Here, we expose hPSC-derived endoderm cells to countervailing gradients of anteriorizing and posteriorizing signals using a widely available microfluidic device. This approach yielded spatially patterned cultures comprising anterior foregut (precursor to the thyroid, esophagus, and lungs) and mid/hindgut (precursor to the intestines) cells, whose identities were confirmed using single-cell RNA sequencing (scRNA-seq). By exposing stem cells to externally applied signaling gradients, this widely accessible microfluidic platform should accelerate the production of spatially patterned tissues, complementing internally self-organizing organoids. Applying artificial morphogen gradients in vitro may also illuminate how developing tissues interpret signaling gradients in systems that are not readily accessible for in vivo studies.
Collapse
Affiliation(s)
- Leeya Engel
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Kevin J. Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kiara W. Cui
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eva L. de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vipul T. Vachharajani
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Program in Biophysics, Medical Scientist Training Program, Stanford University, Stanford, CA 94305, USA
| | - Carolyn E. Dundes
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Manali Begur
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kyle M. Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Alexander R. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Suh K, Thornton RH, Nguyen L, Farahani PE, Cohen DJ, Toettcher JE. Large-scale control over collective cell migration using light-activated epidermal growth factor receptors. Cell Syst 2025; 16:101203. [PMID: 40037348 DOI: 10.1016/j.cels.2025.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
Receptor tyrosine kinases (RTKs) play key roles in coordinating cell movement at both single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggests that these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled epidermal growth factor (EGF) receptor (OptoEGFR) can be deployed in epithelial cells for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by phosphoinositide 3-kinase (PI3K) signaling, rather than diffusible ligands, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications, including wound healing and tissue morphogenesis.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Richard H Thornton
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Long Nguyen
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Daniel J Cohen
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Jared E Toettcher
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
5
|
Deguchi E, Matsuda M, Terai K. Live imaging of paracrine signaling: Advances in visualization and tracking techniques. Cell Struct Funct 2025; 50:1-14. [PMID: 39842816 DOI: 10.1247/csf.24064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Live imaging techniques have revolutionized our understanding of paracrine signaling, a crucial form of cell-to-cell communication in biological processes. This review examines recent advances in visualizing and tracking paracrine factors through four key stages: secretion from producing cells, diffusion through extracellular space, binding to target cells, and activation of intracellular signaling within target cells. Paracrine factor secretion can be directly visualized by fluorescent protein tagging to ligand, or indirectly by visualizing the cleavage of the transmembrane pro-ligands or plasma membrane fusion of endosomes comprising the paracrine factors. Diffusion of paracrine factors has been studied using techniques such as fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP), fluorescence decay after photoactivation (FDAP), and single-molecule tracking. Binding of paracrine factors to target cells has been visualized through various biosensors, including GPCR-activation-based (GRAB) sensors and Förster resonance energy transfer (FRET) probes for receptor tyrosine kinases. Finally, activation of intracellular signaling is monitored within the target cells by biosensors for second messengers, transcription factors, and so on. In addition to the imaging tools, the review also highlights emerging optogenetic and chemogenetic tools for triggering the release of paracrine factors, which is essential for associating the paracrine factor secretion to biological outcomes during the bioimaging of paracrine factor signaling.Key words: paracrine signaling, live imaging, biosensors, optogenetics, chemogenetics.
Collapse
Affiliation(s)
- Eriko Deguchi
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University
- Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University
- Department of Histology, Graduate School of Medicine, Tokushima University
| |
Collapse
|
6
|
Santorelli M, Bhamidipati PS, Courte J, Swedlund B, Jain N, Poon K, Schildknecht D, Kavanagh A, MacKrell VA, Sondkar T, Malaguti M, Quadrato G, Lowell S, Thomson M, Morsut L. Control of spatio-temporal patterning via cell growth in a multicellular synthetic gene circuit. Nat Commun 2024; 15:9867. [PMID: 39562554 DOI: 10.1038/s41467-024-53078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
A major goal in synthetic development is to build gene regulatory circuits that control patterning. In natural development, an interplay between mechanical and chemical communication shapes the dynamics of multicellular gene regulatory circuits. For synthetic circuits, how non-genetic properties of the growth environment impact circuit behavior remains poorly explored. Here, we first describe an occurrence of mechano-chemical coupling in synthetic Notch (synNotch) patterning circuits: high cell density decreases synNotch-gated gene expression in different cellular systems in vitro. We then construct, both in vitro and in silico, a synNotch-based signal propagation circuit whose outcome can be regulated by cell density. Spatial and temporal patterning outcomes of this circuit can be predicted and controlled via modulation of cell proliferation, initial cell density, and/or spatial distribution of cell density. Our work demonstrates that synthetic patterning circuit outcome can be controlled via cellular growth, providing a means for programming multicellular circuit patterning outcomes.
Collapse
Affiliation(s)
- Marco Santorelli
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pranav S Bhamidipati
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Josquin Courte
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Swedlund
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Naisargee Jain
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kyle Poon
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dominik Schildknecht
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andriu Kavanagh
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Victoria A MacKrell
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Trusha Sondkar
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mattias Malaguti
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Giorgia Quadrato
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sally Lowell
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
- Beckman Center for Single-Cell Profiling and Engineering, Pasadena, CA, USA.
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Reyes R, Lander AD, Nahmad M. Dynamic readout of the Hh gradient in the Drosophila wing disc reveals pattern-specific tradeoffs between robustness and precision. eLife 2024; 13:e85755. [PMID: 39508736 DOI: 10.7554/elife.85755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Understanding the principles underlying the design of robust, yet flexible patterning systems is a key problem in developmental biology. In the Drosophila wing, Hedgehog (Hh) signaling determines patterning outputs using dynamical properties of the Hh gradient. In particular, the pattern of collier (col) is established by the steady-state Hh gradient, whereas the pattern of decapentaplegic (dpp), is established by a transient gradient of Hh known as the Hh overshoot. Here, we use mathematical modeling to suggest that this dynamical interpretation of the Hh gradient results in specific robustness and precision properties. For instance, the location of the anterior border of col, which is subject to self-enhanced ligand degradation is more robustly specified than that of dpp to changes in morphogen dosage, and we provide experimental evidence of this prediction. However, the anterior border of dpp expression pattern, which is established by the overshoot gradient is much more precise to what would be expected by the steady-state gradient. Therefore, the dynamical interpretation of Hh signaling offers tradeoffs between robustness and precision to establish tunable patterning properties in a target-specific manner.
Collapse
Affiliation(s)
- Rosalío Reyes
- Department of Physiology, Biophysics, and Neurosciences; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Mexico City, Mexico
- Interdisciplinary Polytechnic Unit of Biotechnology of the National Polytechnic Institute, Mexico City, Mexico
| | - Arthur D Lander
- Department of Developmental and Cell Biology and Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
| | - Marcos Nahmad
- Department of Physiology, Biophysics, and Neurosciences; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Mexico City, Mexico
| |
Collapse
|
8
|
Mizuno K, Hirashima T, Toda S. Robust tissue pattern formation by coupling morphogen signal and cell adhesion. EMBO Rep 2024; 25:4803-4826. [PMID: 39333626 PMCID: PMC11549100 DOI: 10.1038/s44319-024-00261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Morphogens, locally produced signaling molecules, form a concentration gradient to guide tissue patterning. Tissue patterns emerge as a collaboration between morphogen diffusion and responsive cell behaviors, but the mechanisms through which diffusing morphogens define precise spatial patterns amidst biological fluctuations remain unclear. To investigate how cells respond to diffusing proteins to generate tissue patterns, we develop SYMPLE3D, a 3D culture platform. By engineering gene expression responsive to artificial morphogens, we observe that coupling morphogen signals with cadherin-based adhesion is sufficient to convert a morphogen gradient into distinct tissue domains. Morphogen-induced cadherins gather activated cells into a single domain, removing ectopically activated cells. In addition, we reveal a switch-like induction of cadherin-mediated compaction and cell mixing, homogenizing activated cells within the morphogen gradient to form a uniformly activated domain with a sharp boundary. These findings highlight the cooperation between morphogen gradients and cell adhesion in robust tissue patterning and introduce a novel method for tissue engineering to develop new tissue domains in organoids.
Collapse
Affiliation(s)
- Kosuke Mizuno
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan
- Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Satoshi Toda
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan.
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
9
|
Brien H, Lee JC, Sharma J, Hamann CA, Spetz MR, Lippmann ES, Brunger JM. Templated Pluripotent Stem Cell Differentiation via Substratum-Guided Artificial Signaling. ACS Biomater Sci Eng 2024; 10:6465-6482. [PMID: 39352143 PMCID: PMC11480943 DOI: 10.1021/acsbiomaterials.4c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The emerging field of synthetic morphogenesis implements synthetic biology tools to investigate the minimal cellular processes sufficient for orchestrating key developmental events. As the field continues to grow, there is a need for new tools that enable scientists to uncover nuances in the molecular mechanisms driving cell fate patterning that emerge during morphogenesis. Here, we present a platform that combines cell engineering with biomaterial design to potentiate artificial signaling in pluripotent stem cells (PSCs). This platform, referred to as PSC-MATRIX, extends the use of programmable biomaterials to PSCs competent to activate morphogen production through orthogonal signaling, giving rise to the opportunity to probe developmental events by initiating morphogenetic programs in a spatially constrained manner through non-native signaling channels. We show that the PSC-MATRIX platform enables temporal and spatial control of transgene expression in response to bulk, soluble inputs in synthetic Notch (synNotch)-engineered human PSCs for an extended culture of up to 11 days. Furthermore, we used PSC-MATRIX to regulate multiple differentiation events via material-mediated artificial signaling in engineered PSCs using the orthogonal ligand green fluorescent protein, highlighting the potential of this platform for probing and guiding fate acquisition. Overall, this platform offers a synthetic approach to interrogate the molecular mechanisms driving PSC differentiation that could be applied to a variety of differentiation protocols.
Collapse
Affiliation(s)
- Hannah
J. Brien
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Joanne C. Lee
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jhanvi Sharma
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Catherine A. Hamann
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Madeline R. Spetz
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ethan S. Lippmann
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jonathan M. Brunger
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
10
|
Ho RDJG, Kishi K, Majka M, Kicheva A, Zagorski M. Dynamics of morphogen source formation in a growing tissue. PLoS Comput Biol 2024; 20:e1012508. [PMID: 39401260 PMCID: PMC11501038 DOI: 10.1371/journal.pcbi.1012508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
A tight regulation of morphogen production is key for morphogen gradient formation and thereby for reproducible and organised organ development. Although many genetic interactions involved in the establishment of morphogen production domains are known, the biophysical mechanisms of morphogen source formation are poorly understood. Here we addressed this by focusing on the morphogen Sonic hedgehog (Shh) in the vertebrate neural tube. Shh is produced by the adjacently located notochord and by the floor plate of the neural tube. Using a data-constrained computational screen, we identified different possible mechanisms by which floor plate formation can occur, only one of which is consistent with experimental data. In this mechanism, the floor plate is established rapidly in response to Shh from the notochord and the dynamics of regulatory interactions within the neural tube. In this process, uniform activators and Shh-dependent repressors are key for establishing the floor plate size. Subsequently, the floor plate becomes insensitive to Shh and increases in size due to tissue growth, leading to scaling of the floor plate with neural tube size. In turn, this results in scaling of the Shh amplitude with tissue growth. Thus, this mechanism ensures a separation of time scales in floor plate formation, so that the floor plate domain becomes growth-dependent after an initial rapid establishment phase. Our study raises the possibility that the time scale separation between specification and growth might be a common strategy for scaling the morphogen gradient amplitude in growing organs. The model that we developed provides a new opportunity for quantitative studies of morphogen source formation in growing tissues.
Collapse
Affiliation(s)
- Richard D. J. G. Ho
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Krakow, Poland
- The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway
| | - Kasumi Kishi
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Maciej Majka
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Krakow, Poland
| | - Anna Kicheva
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Marcin Zagorski
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
11
|
Mosby L, Bowen A, Hadjivasiliou Z. Morphogens in the evolution of size, shape and patterning. Development 2024; 151:dev202412. [PMID: 39302048 PMCID: PMC7616732 DOI: 10.1242/dev.202412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Much of the striking diversity of life on Earth has arisen from variations in the way that the same molecules and networks operate during development to shape and pattern tissues and organs into different morphologies. However, we still understand very little about the potential for diversification exhibited by different, highly conserved mechanisms during evolution, or, conversely, the constraints that they place on evolution. With the aim of steering the field in new directions, we focus on morphogen-mediated patterning and growth as a case study to demonstrate how conserved developmental mechanisms can adapt during evolution to drive morphological diversification and optimise functionality, and to illustrate how evolution algorithms and computational tools can be used alongside experiments to provide insights into how these conserved mechanisms can evolve. We first introduce key conserved properties of morphogen-driven patterning mechanisms, before summarising comparative studies that exemplify how changes in the spatiotemporal expression and signalling levels of morphogens impact the diversification of organ size, shape and patterning in nature. Finally, we detail how theoretical frameworks can be used in conjunction with experiments to probe the role of morphogen-driven patterning mechanisms in evolution. We conclude that morphogen-mediated patterning is an excellent model system and offers a generally applicable framework to investigate the evolution of developmental mechanisms.
Collapse
Affiliation(s)
- L.S. Mosby
- The Francis Crick Institute: Mathematical and Physical Biology Laboratory, 1 Midland Road, London, NW1 1AT, UK
- University College London: Department of Physics and Astronomy, Gower Street, London, WC1E 6BT, UK
- London Centre for Nanotechnology, 19 Gordon Street, London, WC1H 0AH, UK
| | - A.E. Bowen
- The Francis Crick Institute: Mathematical and Physical Biology Laboratory, 1 Midland Road, London, NW1 1AT, UK
- University College London: Department of Physics and Astronomy, Gower Street, London, WC1E 6BT, UK
| | - Z. Hadjivasiliou
- The Francis Crick Institute: Mathematical and Physical Biology Laboratory, 1 Midland Road, London, NW1 1AT, UK
- University College London: Department of Physics and Astronomy, Gower Street, London, WC1E 6BT, UK
- London Centre for Nanotechnology, 19 Gordon Street, London, WC1H 0AH, UK
| |
Collapse
|
12
|
Schlissel G, Meziane M, Narducci D, Hansen AS, Li P. Diffusion barriers imposed by tissue topology shape Hedgehog morphogen gradients. Proc Natl Acad Sci U S A 2024; 121:e2400677121. [PMID: 39190357 PMCID: PMC11388384 DOI: 10.1073/pnas.2400677121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
Animals use a small number of morphogens to pattern tissues, but it is unclear how evolution modulates morphogen signaling range to match tissues of varying sizes. Here, we used single-molecule imaging in reconstituted morphogen gradients and in tissue explants to determine that Hedgehog diffused extracellularly as a monomer, and rapidly transitioned between membrane-confined and -unconfined states. Unexpectedly, the vertebrate-specific protein SCUBE1 expanded Hedgehog gradients by accelerating the transition rates between states without affecting the relative abundance of molecules in each state. This observation could not be explained under existing models of morphogen diffusion. Instead, we developed a topology-limited diffusion model in which cell-cell gaps create diffusion barriers, which morphogens can only overcome by passing through a membrane-unconfined state. Under this model, SCUBE1 promoted Hedgehog secretion and diffusion by allowing it to transiently overcome diffusion barriers. This multiscale understanding of morphogen gradient formation unified prior models and identified knobs that nature can use to tune morphogen gradient sizes across tissues and organisms.
Collapse
Affiliation(s)
- Gavin Schlissel
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
| | - Miram Meziane
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Domenic Narducci
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA02142
- Koch Institute for Integrative Cancer Research, Cambridge, MA02139
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA02142
- Koch Institute for Integrative Cancer Research, Cambridge, MA02139
| | - Pulin Li
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
13
|
Kong S, Zhu M, Pan D, Lane B, Smith RS, Roeder AHK. Tradeoff between speed and robustness in primordium initiation mediated by auxin-CUC1 interaction. Nat Commun 2024; 15:5911. [PMID: 39003301 PMCID: PMC11246466 DOI: 10.1038/s41467-024-50172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
Robustness is the reproducible development of a phenotype despite stochastic noise. It often involves tradeoffs with other performance metrics, but the mechanisms underlying such tradeoffs were largely unknown. An Arabidopsis flower robustly develops four sepals from four precisely positioned auxin maxima. The development related myb-like 1 (drmy1) mutant generates noise in auxin signaling that disrupts robustness in sepal initiation. Here, we find that increased expression of CUP-SHAPED COTYLEDON1 (CUC1), a boundary specification transcription factor, in drmy1 underlies this loss of robustness. CUC1 surrounds and amplifies stochastic auxin noise in drmy1 to form variably positioned auxin maxima and sepal primordia. Removing CUC1 from drmy1 provides time for noisy auxin signaling to resolve into four precisely positioned auxin maxima, restoring robust sepal initiation. However, removing CUC1 decreases the intensity of auxin maxima and slows down sepal initiation. Thus, CUC1 increases morphogenesis speed but impairs robustness against auxin noise. Further, using a computational model, we find that the observed phenotype can be explained by the effect of CUC1 in repolarizing PIN FORMED1 (PIN1), a polar auxin transporter. Lastly, our model predicts that reducing global growth rate improves developmental robustness, which we validate experimentally. Thus, our study illustrates a tradeoff between speed and robustness during development.
Collapse
Affiliation(s)
- Shuyao Kong
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Mingyuan Zhu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - David Pan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Brendan Lane
- Department of Computational and Systems Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
14
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
15
|
Onesto MM, Amin ND, Pan C, Chen X, Reis N, Valencia AM, Hudacova Z, McQueen JP, Tessier-Lavigne M, Paşca SP. Midline Assembloids Reveal Regulators of Human Axon Guidance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600229. [PMID: 38979350 PMCID: PMC11230451 DOI: 10.1101/2024.06.26.600229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Organizers are specialized cell populations that orchestrate cell patterning and axon guidance in the developing nervous system. Although non-human models have led to fundamental discoveries about the organization of the nervous system midline by the floor plate, an experimental model of human floor plate would enable broader insights into regulation of human neurodevelopment and midline connectivity. Here, we have developed stem cell-derived organoids resembling human floor plate (hFpO) and assembled them with spinal cord organoids (hSpO) to generate midline assembloids (hMA). We demonstrate that hFpO promote Sonic hedgehog-dependent ventral patterning of human spinal progenitors and Netrin-dependent guidance of human commissural axons, paralleling non-human models. To investigate evolutionary-divergent midline regulators, we profiled the hFpO secretome and identified 27 evolutionarily divergent genes between human and mouse. Utilizing the hMA platform, we targeted these candidates in an arrayed CRISPR knockout screen and reveal that GALNT2 , a gene involved in O-linked glycosylation, impairs floor plate-mediated guidance of commissural axons in humans. This novel platform extends prior axon guidance discoveries into human-specific neurobiology with implications for mechanisms of nervous system evolution and neurodevelopmental disorders.
Collapse
|
16
|
Lam C. Mathematical and In Silico Analysis of Synthetic Inhibitory Circuits That Program Self-Organizing Multicellular Structures. ACS Synth Biol 2024; 13:1925-1940. [PMID: 38781040 DOI: 10.1021/acssynbio.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Bottom-up approaches are becoming increasingly popular for studying multicellular self-organization and development. In contrast to the classic top-down approach, where parts of the organization/developmental process are broken to understand the process, the goal is to build the process to understand it. For example, synthetic circuits have been built to understand how cell-cell communication and differential adhesion can drive multicellular development. The majority of current bottom-up efforts focus on using activatory circuits to engineer and understand development, but efforts with inhibitory circuits have been minimal. Yet, inhibitory circuits are ubiquitous and vital to native developmental processes. Thus, inhibitory circuits are a crucial yet poorly studied facet of bottom-up multicellular development. To demonstrate the potential of inhibitory circuits for building and developing multicellular structures, several synthetic inhibitory circuits that combine engineered cell-cell communication and differential adhesion were designed, and then examined for synthetic development capability using a previously validated in silico framework. These designed inhibitory circuits can build a variety of patterned, self-organized structures and even morphological oscillations. These results support that inhibitory circuits can be powerful tools for building, studying, and understanding developmental processes.
Collapse
Affiliation(s)
- Calvin Lam
- Independent Investigator, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
17
|
He L, Sato JE, Sundar P, Azimi T, Beachy PA, Bekale LA, Pepper JP. Localized application of SAG21k-loaded fibrin hydrogels for targeted modulation of the hedgehog pathway in facial nerve injury. Int J Biol Macromol 2024; 269:131747. [PMID: 38670196 PMCID: PMC11774140 DOI: 10.1016/j.ijbiomac.2024.131747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Given the broad biological effects of the Hedgehog (Hh) pathway, there is potential clinical value in local application of Hh pathway modulators to restrict pathway activation of target tissues and avoid systemic pathway activation. One option to limit Hh pathway activation is using fibrin hydrogels to deliver pathway modulators directly to tissues of interest, bypassing systemic distribution of the drug. In this study, we loaded the potent Hh pathway agonist, SAG21k, into fibrin hydrogels. We describe the binding between fibrin and SAG21k and achieve sustained release of the drug in vitro. SAG21k-loaded fibrin hydrogels exhibit strong biological activity in vitro, using a pathway-specific reporter cell line. To test in vivo activity, we used a mouse model of facial nerve injury. Application of fibrin hydrogels is a common adjunct to surgical nerve repair, and the Hh pathway is known to play an important role in facial nerve injury and regeneration. Local application of the Hh pathway agonist SAG21k using a fibrin hydrogel applied to the site of facial nerve injury successfully activates the Hh pathway in treated nerve tissue. Importantly, this method appears to avoid systemic pathway activation when Hh-responsive organs are analyzed for transcriptional pathway activation. This method of local tissue Hh pathway agonist administration allows for effective pathway targeting surgically accessible tissues and may have translational value in situations where supranormal pathway activation is therapeutic.
Collapse
Affiliation(s)
- Lili He
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Justine Esther Sato
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Praveen Sundar
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Tannaz Azimi
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Philip Arden Beachy
- Departments of Urology, and Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Laurent Adonis Bekale
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States.
| | - Jon-Paul Pepper
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States.
| |
Collapse
|
18
|
Suh K, Thornton R, Farahani PE, Cohen D, Toettcher J. Large-scale control over collective cell migration using light-controlled epidermal growth factor receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596676. [PMID: 38853934 PMCID: PMC11160748 DOI: 10.1101/2024.05.30.596676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Receptor tyrosine kinases (RTKs) are thought to play key roles in coordinating cell movement at single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggested these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled EGF receptor (OptoEGFR) can be deployed in epithelial cell lines for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by PI 3-kinase signaling, rather than diffusible signals, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications including wound healing and tissue morphogenesis.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton 08544
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
| | - Richard Thornton
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
- Department of Molecular Biology, Princeton University, Princeton 08544
| | - Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton 08544
| | - Daniel Cohen
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton 08544
| | - Jared Toettcher
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
- Department of Molecular Biology, Princeton University, Princeton 08544
| |
Collapse
|
19
|
Kong S, Zhu M, Pan D, Lane B, Smith RS, Roeder AHK. Tradeoff Between Speed and Robustness in Primordium Initiation Mediated by Auxin-CUC1 Interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.30.569401. [PMID: 38076982 PMCID: PMC10705432 DOI: 10.1101/2023.11.30.569401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Robustness is the reproducible development of a phenotype despite stochastic noise. It often involves tradeoffs with other performance metrics, but the mechanisms underlying such tradeoffs were largely unknown. An Arabidopsis flower robustly develops four sepals from four precisely positioned auxin maxima. The development related myb-like 1 (drmy1) mutant generates noise in auxin signaling that disrupts robustness in sepal initiation. Here, we found that increased expression of CUP-SHAPED COTYLEDON1 (CUC1), a boundary specification transcription factor, in drmy1 underlies this loss of robustness. CUC1 surrounds and amplifies stochastic auxin noise in drmy1 to form variably positioned auxin maxima and sepal primordia. Removing CUC1 from drmy1 provides time for noisy auxin signaling to resolve into four precisely positioned auxin maxima, restoring robust sepal initiation. However, removing CUC1 decreases auxin maxima intensity and slows down sepal initiation. Thus, CUC1 increases morphogenesis speed but impairs robustness against auxin noise. Further, using a computational model, we found that the observed phenotype can be explained by the effect of CUC1 in repolarizing PIN FORMED1 (PIN1), a polar auxin transporter. Lastly, our model predicts that reducing global growth rate improves developmental robustness, which we validated experimentally. Thus, our study illustrates a tradeoff between speed and robustness during development.
Collapse
Affiliation(s)
- Shuyao Kong
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Mingyuan Zhu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Present address: Department of Biology, Duke University, Durham, NC 27708, USA
| | - David Pan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Brendan Lane
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Richard S. Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Adrienne H. K. Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Lead Contact
| |
Collapse
|
20
|
Schlissel G, Meziane M, Narducci D, Hansen AS, Li P. Diffusion barriers imposed by tissue topology shape morphogen gradients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592050. [PMID: 38746265 PMCID: PMC11092646 DOI: 10.1101/2024.05.01.592050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Animals use a small number of morphogens to pattern tissues, but it is unclear how evolution modulates morphogen signaling range to match tissues of varying sizes. Here, we used single molecule imaging in reconstituted morphogen gradients and in tissue explants to determine that Hedgehog diffused extra-cellularly as a monomer, and rapidly transitioned between membrane-confined and -unconfined states. Unexpectedly, the vertebrate-specific protein SCUBE1 expanded Hedgehog gradients by accelerating the transition rates between states without affecting the relative abundance of molecules in each state. This observation could not be explained under existing models of morphogen diffusion. Instead, we developed a topology-limited diffusion model in which cell-cell gaps create diffusion barriers, and morphogens can only overcome the barrier by passing through a membrane-unconfined state. Under this model, SCUBE1 promotes Hedgehog secretion and diffusion by allowing it to transiently overcome diffusion barriers. This multiscale understanding of morphogen gradient formation unified prior models and discovered novel knobs that nature can use to tune morphogen gradient sizes across tissues and organisms.
Collapse
|
21
|
Mii Y. Understanding and manipulating extracellular behaviors of Wnt ligands. In Vitro Cell Dev Biol Anim 2024; 60:441-448. [PMID: 38379096 DOI: 10.1007/s11626-024-00856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Wnt, a family of secreted signaling proteins, serves diverse functions in embryogenesis, organogenesis, cancer, and stem cell functions. In the context of development, Wnt has been considered a representative morphogen, forming concentration gradients to give positional information to cells or tissues. However, although gradients are often illustrated in schemata, the reality of concentration gradients, or in other words, actual spatial distribution of Wnt ligands, and their behaviors in the extracellular space still remain poorly known. To understand extracellular behavior of Wnt ligands, quantitative analyses such as fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) are highly informative because Wnt dispersal involves physical and biochemical processes, such as diffusion and binding to or dissociation from cell surface molecules, including heparan sulfate proteoglycans (HSPGs). Here, I briefly discuss representative methods to quantify morphogen dynamics. In addition, I discuss molecular manipulations of morphogens, mainly focusing on use of protein binders, and synthetic biology of morphogens as indicators of current and future directions in this field.
Collapse
Affiliation(s)
- Yusuke Mii
- National Institute for Basic Biology (NIBB) and Exploratory Research Center On Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
22
|
Company C, Schmitt MJ, Dramaretska Y, Serresi M, Kertalli S, Jiang B, Yin JA, Aguzzi A, Barozzi I, Gargiulo G. Logical design of synthetic cis-regulatory DNA for genetic tracing of cell identities and state changes. Nat Commun 2024; 15:897. [PMID: 38316783 PMCID: PMC10844330 DOI: 10.1038/s41467-024-45069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Descriptive data are rapidly expanding in biomedical research. Instead, functional validation methods with sufficient complexity remain underdeveloped. Transcriptional reporters allow experimental characterization and manipulation of developmental and disease cell states, but their design lacks flexibility. Here, we report logical design of synthetic cis-regulatory DNA (LSD), a computational framework leveraging phenotypic biomarkers and trans-regulatory networks as input to design reporters marking the activity of selected cellular states and pathways. LSD uses bulk or single-cell biomarkers and a reference genome or custom cis-regulatory DNA datasets with user-defined boundary regions. By benchmarking validated reporters, we integrate LSD with a computational ranking of phenotypic specificity of putative cis-regulatory DNA. Experimentally, LSD-designed reporters targeting a wide range of cell states are functional without minimal promoters. Applied to broadly expressed genes from human and mouse tissues, LSD generates functional housekeeper-like sLCRs compatible with size constraints of AAV vectors for gene therapy applications. A mesenchymal glioblastoma reporter designed by LSD outperforms previously validated ones and canonical cell surface markers. In genome-scale CRISPRa screens, LSD facilitates the discovery of known and novel bona fide cell-state drivers. Thus, LSD captures core principles of cis-regulation and is broadly applicable to studying complex cell states and mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Carlos Company
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Matthias Jürgen Schmitt
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Yuliia Dramaretska
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Michela Serresi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Sonia Kertalli
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Ben Jiang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Jiang-An Yin
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Iros Barozzi
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany.
| |
Collapse
|
23
|
Chew YH, Marucci L. Mechanistic Model-Driven Biodesign in Mammalian Synthetic Biology. Methods Mol Biol 2024; 2774:71-84. [PMID: 38441759 DOI: 10.1007/978-1-0716-3718-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Mathematical modeling plays a vital role in mammalian synthetic biology by providing a framework to design and optimize design circuits and engineered bioprocesses, predict their behavior, and guide experimental design. Here, we review recent models used in the literature, considering mathematical frameworks at the molecular, cellular, and system levels. We report key challenges in the field and discuss opportunities for genome-scale models, machine learning, and cybergenetics to expand the capabilities of model-driven mammalian cell biodesign.
Collapse
Affiliation(s)
- Yin Hoon Chew
- School of Mathematics, University of Birmingham, Birmingham, UK
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
24
|
Boer LL, Winter E, Gorissen B, Oostra RJ. Phenotypically Discordant Anomalies in Conjoined Twins: Quirks of Nature Governed by Molecular Pathways? Diagnostics (Basel) 2023; 13:3427. [PMID: 37998563 PMCID: PMC10669976 DOI: 10.3390/diagnostics13223427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
A multitude of additional anomalies can be observed in virtually all types of symmetrical conjoined twins. These concomitant defects can be divided into different dysmorphological patterns. Some of these patterns reveal their etiological origin through their topographical location. The so-called shared anomalies are traceable to embryological adjustments and directly linked to the conjoined-twinning mechanism itself, inherently located within the boundaries of the coalescence area. In contrast, discordant patterns are anomalies present in only one of the twin members, intrinsically distant from the area of union. These dysmorphological entities are much more difficult to place in a developmental perspective, as it is presumed that conjoined twins share identical intra-uterine environments and intra-embryonic molecular and genetic footprints. However, their existence testifies that certain developmental fields and their respective developmental pathways take different routes in members of conjoined twins. This observation remains a poorly understood phenomenon. This article describes 69 cases of external discordant patterns within different types of otherwise symmetrical mono-umbilical conjoined twins and places them in a developmental perspective and a molecular framework. Gaining insights into the phenotypes and underlying (biochemical) mechanisms could potentially pave the way and generate novel etiological visions in the formation of conjoined twins itself.
Collapse
Affiliation(s)
- Lucas L. Boer
- Department of Medical Imaging, Section Anatomy and Museum for Anatomy and Pathology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Eduard Winter
- Pathologisch-Anatomische Sammlung im Narrenturm-NHM, 1090 Vienna, Austria
| | - Ben Gorissen
- Department of Medical Imaging, Section Anatomy and Museum for Anatomy and Pathology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Roelof-Jan Oostra
- Department of Medical Biology, Sections Clinical Anatomy & Embryology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
25
|
Legnini I, Emmenegger L, Zappulo A, Rybak-Wolf A, Wurmus R, Martinez AO, Jara CC, Boltengagen A, Hessler T, Mastrobuoni G, Kempa S, Zinzen R, Woehler A, Rajewsky N. Spatiotemporal, optogenetic control of gene expression in organoids. Nat Methods 2023; 20:1544-1552. [PMID: 37735569 PMCID: PMC10555836 DOI: 10.1038/s41592-023-01986-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/25/2023] [Indexed: 09/23/2023]
Abstract
Organoids derived from stem cells have become an increasingly important tool for studying human development and modeling disease. However, methods are still needed to control and study spatiotemporal patterns of gene expression in organoids. Here we combined optogenetics and gene perturbation technologies to activate or knock-down RNA of target genes in programmable spatiotemporal patterns. To illustrate the usefulness of our approach, we locally activated Sonic Hedgehog (SHH) signaling in an organoid model for human neurodevelopment. Spatial and single-cell transcriptomic analyses showed that this local induction was sufficient to generate stereotypically patterned organoids and revealed new insights into SHH's contribution to gene regulation in neurodevelopment. With this study, we propose optogenetic perturbations in combination with spatial transcriptomics as a powerful technology to reprogram and study cell fates and tissue patterning in organoids.
Collapse
Affiliation(s)
- Ivano Legnini
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.
- Human Technopole, Milan, Italy.
| | - Lisa Emmenegger
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Alessandra Zappulo
- Systems Biology of Neural Tissue Differentiation, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- Human Technopole, Milan, Italy
| | - Agnieszka Rybak-Wolf
- Organoid Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Ricardo Wurmus
- Bioinformatics and Omics Data Science, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Anna Oliveras Martinez
- Systems Biology Imaging Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Cledi Cerda Jara
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Anastasiya Boltengagen
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Talé Hessler
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Guido Mastrobuoni
- Proteomic and Metabolomics Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Stefan Kempa
- Proteomic and Metabolomics Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Robert Zinzen
- Systems Biology of Neural Tissue Differentiation, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- Systems Biology Imaging Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Andrew Woehler
- Systems Biology Imaging Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.
- Charité-Universitätsmedizin, Berlin, Germany.
- German Center for Cardiovascular Research (DZHK), Berlin, Germany.
- NeuroCure Cluster of Excellence, Berlin, Germany.
- National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Berlin, Germany.
| |
Collapse
|
26
|
Yang H, Tel J. Engineering global and local signal generators for probing temporal and spatial cellular signaling dynamics. Front Bioeng Biotechnol 2023; 11:1239026. [PMID: 37790255 PMCID: PMC10543096 DOI: 10.3389/fbioe.2023.1239026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Cells constantly encounter a wide range of environmental signals and rely on their signaling pathways to initiate reliable responses. Understanding the underlying signaling mechanisms and cellular behaviors requires signal generators capable of providing diverse input signals to deliver to cell systems. Current research efforts are primarily focused on exploring cellular responses to global or local signals, which enable us to understand cellular signaling and behavior in distinct dimensions. This review presents recent advancements in global and local signal generators, highlighting their applications in studying temporal and spatial signaling activity. Global signals can be generated using microfluidic or photochemical approaches. Local signal sources can be created using living or artificial cells in combination with different control methods. We also address the strengths and limitations of each signal generator type, discussing challenges and potential extensions for future research. These approaches are expected to continue to facilitate on-going research to discover novel and intriguing cellular signaling mechanisms.
Collapse
Affiliation(s)
- Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
27
|
Zhu R, Santat LA, Markson JS, Nandagopal N, Gregrowicz J, Elowitz MB. Reconstitution of morphogen shuttling circuits. SCIENCE ADVANCES 2023; 9:eadf9336. [PMID: 37436981 PMCID: PMC10337948 DOI: 10.1126/sciadv.adf9336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Developing tissues form spatial patterns by establishing concentration gradients of diffusible signaling proteins called morphogens. The bone morphogenetic protein (BMP) morphogen pathway uses a family of extracellular modulators to reshape signaling gradients by actively "shuttling" ligands to different locations. It has remained unclear what circuits are sufficient to enable shuttling, what other patterns they can generate, and whether shuttling is evolutionarily conserved. Here, using a synthetic, bottom-up approach, we compared the spatiotemporal dynamics of different extracellular circuits. Three proteins-Chordin, Twsg, and the BMP-1 protease-successfully displaced gradients by shuttling ligands away from the site of production. A mathematical model explained the different spatial dynamics of this and other circuits. Last, combining mammalian and Drosophila components in the same system suggests that shuttling is a conserved capability. Together, these results reveal principles through which extracellular circuits control the spatiotemporal dynamics of morphogen signaling.
Collapse
Affiliation(s)
- Ronghui Zhu
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Leah A. Santat
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Joseph S. Markson
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Jan Gregrowicz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michael B. Elowitz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
28
|
McNamara HM, Ramm B, Toettcher JE. Synthetic developmental biology: New tools to deconstruct and rebuild developmental systems. Semin Cell Dev Biol 2023; 141:33-42. [PMID: 35484026 PMCID: PMC10332110 DOI: 10.1016/j.semcdb.2022.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Technological advances have driven many recent advances in developmental biology. Light sheet imaging can reveal single-cell dynamics in living three-dimensional tissues, whereas single-cell genomic methods open the door to a complete catalogue of cell types and gene expression states. An equally powerful but complementary set of approaches are also becoming available to define development processes from the bottom up. These synthetic approaches aim to reconstruct the minimal developmental patterns, signaling processes, and gene networks that produce the basic set of developmental operations: spatial polarization, morphogen interpretation, tissue movement, and cellular memory. In this review we discuss recent approaches at the intersection of synthetic biology and development, including synthetic circuits to deliver and record signaling stimuli and synthetic reconstitution of pattern formation on multicellular scales.
Collapse
Affiliation(s)
- Harold M McNamara
- Lewis Sigler Institute, Princeton University, Princeton, NJ 08544, USA; Department of Physics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Beatrice Ramm
- Department of Physics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
29
|
Mapping and exploring the organoid state space using synthetic biology. Semin Cell Dev Biol 2023; 141:23-32. [PMID: 35466054 DOI: 10.1016/j.semcdb.2022.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
The functional relevance of an organoid is dependent on the differentiation, morphology, cell arrangement and biophysical properties, which collectively define the state of an organoid. For an organoid culture, an individual organoid or the cells that compose it, these state variables can be characterised, most easily by transcriptomics and by high-content image analysis. Their states can be compared to their in vivo counterparts. Current evidence suggests that organoids explore a wider state space than organs in vivo due to the lack of niche signalling and the variability of boundary conditions in vitro. Using data-driven state inference and in silico modelling, phase diagrams can be constructed to systematically sort organoids along biochemical or biophysical axes. These phase diagrams allow us to identify control strategies to modulate organoid state. To do so, the biochemical and biophysical environment, as well as the cells that seed organoids, can be manipulated.
Collapse
|
30
|
Hedgehog is relayed through dynamic heparan sulfate interactions to shape its gradient. Nat Commun 2023; 14:758. [PMID: 36765094 PMCID: PMC9918555 DOI: 10.1038/s41467-023-36450-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Cellular differentiation is directly determined by concentration gradients of morphogens. As a central model for gradient formation during development, Hedgehog (Hh) morphogens spread away from their source to direct growth and pattern formation in Drosophila wing and eye discs. What is not known is how extracellular Hh spread is achieved and how it translates into precise gradients. Here we show that two separate binding areas located on opposite sides of the Hh molecule can interact directly and simultaneously with two heparan sulfate (HS) chains to temporarily cross-link the chains. Mutated Hh lacking one fully functional binding site still binds HS but shows reduced HS cross-linking. This, in turn, impairs Hhs ability to switch between both chains in vitro and results in striking Hh gradient hypomorphs in vivo. The speed and propensity of direct Hh switching between HS therefore shapes the Hh gradient, revealing a scalable design principle in morphogen-patterned tissues.
Collapse
|
31
|
Douceau S, Deutsch Guerrero T, Ferent J. Establishing Hedgehog Gradients during Neural Development. Cells 2023; 12:225. [PMID: 36672161 PMCID: PMC9856818 DOI: 10.3390/cells12020225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023] Open
Abstract
A morphogen is a signaling molecule that induces specific cellular responses depending on its local concentration. The concept of morphogenic gradients has been a central paradigm of developmental biology for decades. Sonic Hedgehog (Shh) is one of the most important morphogens that displays pleiotropic functions during embryonic development, ranging from neuronal patterning to axon guidance. It is commonly accepted that Shh is distributed in a gradient in several tissues from different origins during development; however, how these gradients are formed and maintained at the cellular and molecular levels is still the center of a great deal of research. In this review, we first explored all of the different sources of Shh during the development of the nervous system. Then, we detailed how these sources can distribute Shh in the surrounding tissues via a variety of mechanisms. Finally, we addressed how disrupting Shh distribution and gradients can induce severe neurodevelopmental disorders and cancers. Although the concept of gradient has been central in the field of neurodevelopment since the fifties, we also describe how contemporary leading-edge techniques, such as organoids, can revisit this classical model.
Collapse
Affiliation(s)
- Sara Douceau
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Tanya Deutsch Guerrero
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Julien Ferent
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| |
Collapse
|
32
|
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
33
|
Periodic inhibition of Erk activity drives sequential somite segmentation. Nature 2023; 613:153-159. [PMID: 36517597 PMCID: PMC9846577 DOI: 10.1038/s41586-022-05527-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/04/2022] [Indexed: 12/23/2022]
Abstract
Sequential segmentation creates modular body plans of diverse metazoan embryos1-4. Somitogenesis establishes the segmental pattern of the vertebrate body axis. A molecular segmentation clock in the presomitic mesoderm sets the pace of somite formation4. However, how cells are primed to form a segment boundary at a specific location remains unclear. Here we developed precise reporters for the clock and double-phosphorylated Erk (ppErk) gradient in zebrafish. We show that the Her1-Her7 oscillator drives segmental commitment by periodically lowering ppErk, therefore projecting its oscillation onto the ppErk gradient. Pulsatile inhibition of the ppErk gradient can fully substitute for the role of the clock, and kinematic clock waves are dispensable for sequential segmentation. The clock functions upstream of ppErk, which in turn enables neighbouring cells to discretely establish somite boundaries in zebrafish5. Molecularly divergent clocks and morphogen gradients were identified in sequentially segmenting species3,4,6-8. Our findings imply that versatile clocks may establish sequential segmentation in diverse species provided that they inhibit gradients.
Collapse
|
34
|
Formosa-Jordan P, Landrein B. Quantifying Gene Expression Domains in Plant Shoot Apical Meristems. Methods Mol Biol 2023; 2686:537-551. [PMID: 37540376 DOI: 10.1007/978-1-0716-3299-4_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The shoot apical meristem is the plant tissue that produces the plant aerial organs such as flowers and leaves. To better understand how the shoot apical meristem develops and adapts to the environment, imaging developing shoot meristems expressing fluorescence reporters through laser confocal microscopy is becoming increasingly important. Yet, there are not many computational pipelines enabling a systematic and high-throughput characterization of the produced microscopy images. This chapter provides a simple method to analyze 3D images obtained through laser scanning microscopy and quantitatively characterize radially or axially symmetric 3D fluorescence domains expressed in a tissue or organ by a reporter. Then, it presents different computational pipelines aiming at performing high-throughput quantitative image analysis of gene expression in plant inflorescence and floral meristems. This methodology has notably enabled the quantitative characterization of how stem cells respond to environmental perturbations in the Arabidopsis thaliana inflorescence meristem and will open new avenues in the use of quantitative analysis of gene expression in shoot apical meristems. Overall, the presented methodology provides a simple framework to analyze quantitatively gene expression domains from 3D confocal images at the tissue and organ level, which can be applied to shoot meristems and other organs and tissues.
Collapse
Affiliation(s)
- Pau Formosa-Jordan
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Science (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | - Benoit Landrein
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
| |
Collapse
|
35
|
Wang S, Garcia-Ojalvo J, Elowitz MB. Periodic spatial patterning with a single morphogen. Cell Syst 2022; 13:1033-1047.e7. [PMID: 36435178 DOI: 10.1016/j.cels.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/13/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022]
Abstract
During multicellular development, periodic spatial patterning systems generate repetitive structures, such as digits, vertebrae, and teeth. Turing patterning provides a foundational paradigm for understanding such systems. The simplest Turing systems are believed to require at least two morphogens to generate periodic patterns. Here, using mathematical modeling, we show that a simpler circuit, including only a single diffusible morphogen, is sufficient to generate long-range, spatially periodic patterns that propagate outward from transient initiating perturbations and remain stable after the perturbation is removed. Furthermore, an additional bistable intracellular feedback or operation on a growing cell lattice can make patterning robust to noise. Together, these results show that a single morphogen can be sufficient for robust spatial pattern formation and should provide a foundation for engineering pattern formation in the emerging field of synthetic developmental biology.
Collapse
Affiliation(s)
- Sheng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
36
|
Ghuloum FI, Johnson CA, Riobo-Del Galdo NA, Amer MH. From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling. Mater Today Bio 2022; 17:100502. [PMID: 36457847 PMCID: PMC9707069 DOI: 10.1016/j.mtbio.2022.100502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue patterning is the result of complex interactions between transcriptional programs and various mechanical cues that modulate cell behaviour and drive morphogenesis. Vertebrate Hedgehog signalling plays key roles in embryogenesis and adult tissue homeostasis, and is central to skeletal development and the osteogenic differentiation of mesenchymal stem cells. The expression of several components of the Hedgehog signalling pathway have been reported to be mechanically regulated in mesodermal tissue patterning and osteogenic differentiation in response to external stimulation. Since a number of bone developmental defects and skeletal diseases, such as osteoporosis, are directly linked to aberrant Hedgehog signalling, a better knowledge of the regulation of Hedgehog signalling in the mechanosensitive bone marrow-residing mesenchymal stromal cells will present novel avenues for modelling these diseases and uncover novel opportunities for extracellular matrix-targeted therapies. In this review, we present a brief overview of the key molecular players involved in Hedgehog signalling and the basic concepts of mechanobiology, with a focus on bone development and regeneration. We also highlight the correlation between the activation of the Hedgehog signalling pathway in response to mechanical cues and osteogenesis in bone marrow-derived mesenchymal stromal cells. Finally, we propose different tissue engineering strategies to apply the expanding knowledge of 3D material-cell interactions in the modulation of Hedgehog signalling in vitro for fundamental and translational research applications.
Collapse
Affiliation(s)
- Fatmah I. Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Colin A. Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
37
|
Li X, Gordon PJ, Gaynes JA, Fuller AW, Ringuette R, Santiago CP, Wallace V, Blackshaw S, Li P, Levine EM. Lhx2 is a progenitor-intrinsic modulator of Sonic Hedgehog signaling during early retinal neurogenesis. eLife 2022; 11:e78342. [PMID: 36459481 PMCID: PMC9718532 DOI: 10.7554/elife.78342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
An important question in organogenesis is how tissue-specific transcription factors interact with signaling pathways. In some cases, transcription factors define the context for how signaling pathways elicit tissue- or cell-specific responses, and in others, they influence signaling through transcriptional regulation of signaling components or accessory factors. We previously showed that during optic vesicle patterning, the Lim-homeodomain transcription factor Lhx2 has a contextual role by linking the Sonic Hedgehog (Shh) pathway to downstream targets without regulating the pathway itself. Here, we show that during early retinal neurogenesis in mice, Lhx2 is a multilevel regulator of Shh signaling. Specifically, Lhx2 acts cell autonomously to control the expression of pathway genes required for efficient activation and maintenance of signaling in retinal progenitor cells. The Shh co-receptors Cdon and Gas1 are candidate direct targets of Lhx2 that mediate pathway activation, whereas Lhx2 directly or indirectly promotes the expression of other pathway components important for activation and sustained signaling. We also provide genetic evidence suggesting that Lhx2 has a contextual role by linking the Shh pathway to downstream targets. Through these interactions, Lhx2 establishes the competence for Shh signaling in retinal progenitors and the context for the pathway to promote early retinal neurogenesis. The temporally distinct interactions between Lhx2 and the Shh pathway in retinal development illustrate how transcription factors and signaling pathways adapt to meet stage-dependent requirements of tissue formation.
Collapse
Affiliation(s)
- Xiaodong Li
- Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashvilleUnited States
| | - Patrick J Gordon
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
| | - John A Gaynes
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
| | - Alexandra W Fuller
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Randy Ringuette
- Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Valerie Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health NetworkTorontoCanada
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Pulin Li
- Whitehead Institute of Biomedical Research, Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Edward M Levine
- Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashvilleUnited States
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
38
|
Creating artificial signaling gradients to spatially pattern engineered tissues. Curr Opin Biotechnol 2022; 78:102810. [PMID: 36182872 DOI: 10.1016/j.copbio.2022.102810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
Artificially constructing a fully-fledged tissue - comprising multiple cell types whose identities and spatial arrangements reflect those of a native tissue - remains daunting. There has been impressive progress in generating three-dimensional cell cultures (often dubbed 'organoids') from stem cells. However, it is critical to appreciate that not all such three-dimensional cultures will intrinsically self-organize to spontaneously recreate native tissue architecture. Instead, most tissues in vivo are exogenously patterned by extracellular signaling gradients emanating from organizer cells located outside the tissue. Innovations to impose artificial signaling gradients - using microfluidics, optogenetics, or introducing organizer cells - could thus prove decisive to create spatially patterned tissues in vitro. Additionally, unified terminology to describe these tissue-like simulacra as 'aggregates', 'spheroids', or 'organoids' will be critical for the field.
Collapse
|
39
|
Abstract
Metazoan embryos develop from a single cell into three-dimensional structured organisms while groups of genetically identical cells attain specialized identities. Cells of the developing embryo both create and accurately interpret morphogen gradients to determine their positions and make specific decisions in response. Here, we first cover intellectual roots of morphogen and positional information concepts. Focusing on animal embryos, we then provide a review of current understanding on how morphogen gradients are established and how their spans are controlled. Lastly, we cover how gradients evolve in time and space during development, and how they encode information to control patterning. In sum, we provide a list of patterning principles for morphogen gradients and review recent advances in quantitative methodologies elucidating information provided by morphogens.
Collapse
Affiliation(s)
- M. Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ertuğrul M. Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
40
|
Lu J, Şimşek E, Silver A, You L. Advances and challenges in programming pattern formation using living cells. Curr Opin Chem Biol 2022; 68:102147. [PMID: 35472832 PMCID: PMC9158282 DOI: 10.1016/j.cbpa.2022.102147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
Spatial patterning of cell populations is a ubiquitous phenomenon in nature. Patterns occur at various length and time scales and exhibit immense diversity. In addition to offering a deeper understanding of the emergence of patterns in nature, the ability to program synthetic patterns using living cells has the potential for broad applications. To date, however, progress in engineering pattern formation has been hampered by technical challenges. In this Review, we discuss recent advances in programming pattern formation in terms of biological insights, experimental and computational tool development, and potential applications.
Collapse
Affiliation(s)
- Jia Lu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Emrah Şimşek
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Anita Silver
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27708, USA.
| |
Collapse
|
41
|
Young TL, Whisenhunt KN, LaMartina SM, Hewitt AW, Mackey DA, Tompson SW. Sonic Hedgehog Intron Variant Associated With an Unusual Pediatric Cortical Cataract. Invest Ophthalmol Vis Sci 2022; 63:25. [PMID: 35749127 PMCID: PMC9234370 DOI: 10.1167/iovs.63.6.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To identify the genetic basis of an unusual pediatric cortical cataract demonstrating autosomal dominant inheritance in a large European–Australian pedigree. Methods DNA from four affected individuals were exome sequenced utilizing a NimbleGen SeqCap EZ Exome V3 kit and HiSeq 2500. DNA from 12 affected and four unaffected individuals were genotyped using Human OmniExpress-24 BeadChips. Multipoint linkage and haplotyping were performed (Superlink-Online SNP). DNA from one affected individual and his unaffected father were whole-genome sequenced on a HiSeq X Ten system. Rare small insertions/deletions and single-nucleotide variants (SNVs) were identified in the disease-linked region (Golden Helix SVS). Combined Annotation Dependent Depletion (CADD) analysis predicted variant deleteriousness. Putative enhancer function and variant effects were determined using the Dual-Glo Luciferase Assay system. Results Linkage mapping identified a 6.23-centimorgan support interval at chromosome 7q36. A co-segregating haplotype refined the critical region to 6.03 Mbp containing 21 protein-coding genes. Whole-genome sequencing uncovered 114 noncoding variants from which CADD predicted one was highly deleterious, a novel substitution within intron-1 of the sonic hedgehog signaling molecule (SHH) gene. ENCODE data suggested this site was a putative enhancer, subsequently confirmed by luciferase reporter assays with variant-associated gene overexpression. Conclusions In a large pedigree, we have identified a SHH intron variant that co-segregates with an unusual pediatric cortical cataract phenotype. SHH is important for lens formation, and mutations in its receptor (PTCH1) cause syndromic cataract. Our data implicate increased function of an enhancer important for SHH expression primarily within developing eye tissues.
Collapse
Affiliation(s)
- Terri L Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Kristina N Whisenhunt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Sarah M LaMartina
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Eye Department, Royal Hobart Hospital, University of Tasmania, Hobart, Tasmania, Australia
| | - David A Mackey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Eye Department, Royal Hobart Hospital, University of Tasmania, Hobart, Tasmania, Australia
| | - Stuart W Tompson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
42
|
Su CJ, Murugan A, Linton JM, Yeluri A, Bois J, Klumpe H, Langley MA, Antebi YE, Elowitz MB. Ligand-receptor promiscuity enables cellular addressing. Cell Syst 2022; 13:408-425.e12. [PMID: 35421362 PMCID: PMC10897978 DOI: 10.1016/j.cels.2022.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 11/08/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
In multicellular organisms, secreted ligands selectively activate, or "address," specific target cell populations to control cell fate decision-making and other processes. Key cell-cell communication pathways use multiple promiscuously interacting ligands and receptors, provoking the question of how addressing specificity can emerge from molecular promiscuity. To investigate this issue, we developed a general mathematical modeling framework based on the bone morphogenetic protein (BMP) pathway architecture. We find that promiscuously interacting ligand-receptor systems allow a small number of ligands, acting in combinations, to address a larger number of individual cell types, defined by their receptor expression profiles. Promiscuous systems outperform seemingly more specific one-to-one signaling architectures in addressing capability. Combinatorial addressing extends to groups of cell types, is robust to receptor expression noise, grows more powerful with increases in the number of receptor variants, and is maximized by specific biochemical parameter relationships. Together, these results identify design principles governing cellular addressing by ligand combinations.
Collapse
Affiliation(s)
- Christina J Su
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Arvind Murugan
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - James M Linton
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Akshay Yeluri
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Justin Bois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Heidi Klumpe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Matthew A Langley
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yaron E Antebi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
43
|
Davies JA. Synthetic Morphogenesis: introducing IEEE journal readers to programming living mammalian cells to make structures. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2022; 110:688-707. [PMID: 36590991 PMCID: PMC7614003 DOI: 10.1109/jproc.2021.3137077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Synthetic morphogenesis is a new engineering discipline, in which cells are genetically engineered to make designed shapes and structures. At least in this early phase of the field, devices tend to make use of natural shape-generating processes that operate in embryonic development, but invoke them artificially at times and in orders of a technologist's choosing. This requires construction of genetic control, sequencing and feedback systems that have close parallels to electronic design, which is one reason the field may be of interest to readers of IEEE journals. The other reason is that synthetic morphogenesis allows the construction of two-way interfaces, especially opto-genetic and opto-electronic, between the living and the electronic, allowing unprecedented information flow and control between the two types of 'machine'. This review introduces synthetic morphogenesis, illustrates what has been achieved, drawing parallels wherever possible between biology and electronics, and looks forward to likely next steps and challenges to be overcome.
Collapse
Affiliation(s)
- Jamie A Davies
- Professor of Experimental Anatomy at the University of Edinburgh, UK, and a member of the Centre for Mammalian Synthetic Biology at that University
| |
Collapse
|
44
|
Hayashida K, Aquino RS, Park PW. Coreceptor Functions of Cell Surface Heparan Sulfate Proteoglycans. Am J Physiol Cell Physiol 2022; 322:C896-C912. [PMID: 35319900 PMCID: PMC9109798 DOI: 10.1152/ajpcell.00050.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Receptor-ligand interactions play an important role in many biological processes by triggering specific cellular responses. These interactions are frequently regulated by coreceptors that facilitate, alter, or inhibit signaling. Coreceptors work in parallel with other specific and accessory molecules to coordinate receptor-ligand interactions. Cell surface heparan sulfate proteoglycans (HSPGs) function as unique coreceptors because they can bind to many ligands and receptors through their HS and core protein motifs. Cell surface HSPGs are typically expressed in abundance of the signaling receptors and, thus, are capable of mediating the initial binding of ligands to the cell surface. HSPG coreceptors do not possess kinase domains or intrinsic enzyme activities and, for the most part, binding to cell surface HSPGs does not directly stimulate intracellular signaling. Because of these features, cell surface HSPGs primarily function as coreceptors for many receptor-ligand interactions. Given that cell surface HSPGs are widely conserved, they likely serve fundamental functions to preserve basic physiological processes. Indeed, cell surface HSPGs can support specific cellular interactions with growth factors, morphogens, chemokines, extracellular matrix (ECM) components, and microbial pathogens and their secreted virulence factors. Through these interactions, HSPG coreceptors regulate cell adhesion, proliferation, migration and differentiation, and impact the onset, progression, and outcome of pathophysiological processes, such as development, tissue repair, inflammation, infection, and tumorigenesis. This review seeks to provide an overview of the various mechanisms of how cell surface HSPGs function as coreceptors.
Collapse
Affiliation(s)
- Kazutaka Hayashida
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Rafael S Aquino
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Pyong Woo Park
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
45
|
Aydin O, Passaro AP, Raman R, Spellicy SE, Weinberg RP, Kamm RD, Sample M, Truskey GA, Zartman J, Dar RD, Palacios S, Wang J, Tordoff J, Montserrat N, Bashir R, Saif MTA, Weiss R. Principles for the design of multicellular engineered living systems. APL Bioeng 2022; 6:010903. [PMID: 35274072 PMCID: PMC8893975 DOI: 10.1063/5.0076635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell-cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the "black box" of living cells.
Collapse
Affiliation(s)
| | - Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, USA
| | - Ritu Raman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Robert P. Weinberg
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts 02115, USA
| | | | - Matthew Sample
- Center for Ethics and Law in the Life Sciences, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Roy D. Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sebastian Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jesse Tordoff
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | | | - M. Taher A. Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ron Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
46
|
Protease-controlled secretion and display of intercellular signals. Nat Commun 2022; 13:912. [PMID: 35177637 PMCID: PMC8854555 DOI: 10.1038/s41467-022-28623-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
To program intercellular communication for biomedicine, it is crucial to regulate the secretion and surface display of signaling proteins. If such regulations are at the protein level, there are additional advantages, including compact delivery and direct interactions with endogenous signaling pathways. Here we create a modular, generalizable design called Retained Endoplasmic Cleavable Secretion (RELEASE), with engineered proteins retained in the endoplasmic reticulum and displayed/secreted in response to specific proteases. The design allows functional regulation of multiple synthetic and natural proteins by synthetic protease circuits to realize diverse signal processing capabilities, including logic operation and threshold tuning. By linking RELEASE to additional sensing and processing circuits, we can achieve elevated protein secretion in response to "undruggable" oncogene KRAS mutants. RELEASE should enable the local, programmable delivery of intercellular cues for a broad variety of fields such as neurobiology, cancer immunotherapy and cell transplantation.
Collapse
|
47
|
Regulation of FGF-2, FGF-18 and Transcription Factor Activity by Perlecan in the Maturational Development of Transitional Rudiment and Growth Plate Cartilages and in the Maintenance of Permanent Cartilage Homeostasis. Int J Mol Sci 2022; 23:ijms23041934. [PMID: 35216048 PMCID: PMC8872392 DOI: 10.3390/ijms23041934] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to highlight the roles of perlecan in the regulation of the development of the rudiment developmental cartilages and growth plate cartilages, and also to show how perlecan maintains permanent articular cartilage homeostasis. Cartilage rudiments are transient developmental templates containing chondroprogenitor cells that undergo proliferation, matrix deposition, and hypertrophic differentiation. Growth plate cartilage also undergoes similar changes leading to endochondral bone formation, whereas permanent cartilage is maintained as an articular structure and does not undergo maturational changes. Pericellular and extracellular perlecan-HS chains interact with growth factors, morphogens, structural matrix glycoproteins, proteases, and inhibitors to promote matrix stabilization and cellular proliferation, ECM remodelling, and tissue expansion. Perlecan has mechanotransductive roles in cartilage that modulate chondrocyte responses in weight-bearing environments. Nuclear perlecan may modulate chromatin structure and transcription factor access to DNA and gene regulation. Snail-1, a mesenchymal marker and transcription factor, signals through FGFR-3 to promote chondrogenesis and maintain Acan and type II collagen levels in articular cartilage, but prevents further tissue expansion. Pre-hypertrophic growth plate chondrocytes also express high Snail-1 levels, leading to cessation of Acan and CoI2A1 synthesis and appearance of type X collagen. Perlecan differentially regulates FGF-2 and FGF-18 to maintain articular cartilage homeostasis, rudiment and growth plate cartilage growth, and maturational changes including mineralization, contributing to skeletal growth.
Collapse
|
48
|
Liu L, Nemashkalo A, Rezende L, Jung JY, Chhabra S, Guerra MC, Heemskerk I, Warmflash A. Nodal is a short-range morphogen with activity that spreads through a relay mechanism in human gastruloids. Nat Commun 2022; 13:497. [PMID: 35079017 PMCID: PMC8789905 DOI: 10.1038/s41467-022-28149-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Morphogens are signaling molecules that convey positional information and dictate cell fates during development. Although ectopic expression in model organisms suggests that morphogen gradients form through diffusion, little is known about how morphogen gradients are created and interpreted during mammalian embryogenesis due to the combined difficulties of measuring endogenous morphogen levels and observing development in utero. Here we take advantage of a human gastruloid model to visualize endogenous Nodal protein in living cells, during specification of germ layers. We show that Nodal is extremely short range so that Nodal protein is limited to the immediate neighborhood of source cells. Nodal activity spreads through a relay mechanism in which Nodal production induces neighboring cells to transcribe Nodal. We further show that the Nodal inhibitor Lefty, while biochemically capable of long-range diffusion, also acts locally to control the timing of Nodal spread and therefore of mesoderm differentiation during patterning. Our study establishes a paradigm for tissue patterning by an activator-inhibitor pair.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Luisa Rezende
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Ji Yoon Jung
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Sapna Chhabra
- Department of Biosciences, Rice University, Houston, TX, USA
- Developmental Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | | | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
49
|
Nakamura K, Tanaka W, Sada K, Kubota R, Aoyama T, Urayama K, Hamachi I. Phototriggered Spatially Controlled Out-of-Equilibrium Patterns of Peptide Nanofibers in a Self-Sorting Double Network Hydrogel. J Am Chem Soc 2021; 143:19532-19541. [PMID: 34767720 DOI: 10.1021/jacs.1c09172] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Out-of-equilibrium patterns arising from diffusion processes are ubiquitous in nature, although they have not been fully exploited for the design of artificial materials. Here, we describe the formation of phototriggered out-of-equilibrium patterns using photoresponsive peptide-based nanofibers in a self-sorting double network hydrogel. Light irradiation using a photomask followed by thermal incubation induced the spatially controlled condensation of peptide nanofibers. According to confocal images and spectroscopic analyses, metastable nanofibers photodecomposed in the irradiated areas, where thermodynamically stable nanofibers reconstituted and condensed with a supply of monomers from the nonirradiated areas. These supramolecular events were regulated by light and diffusion to facilitate the creation of unique out-of-equilibrium patterns, including two lines from a one-line photomask and a line pattern of a protein immobilized in the hydrogel.
Collapse
Affiliation(s)
- Keisuke Nakamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kei Sada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuma Aoyama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Kenji Urayama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.,JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
50
|
Guo Y, Nitzan M, Brenner MP. Programming cell growth into different cluster shapes using diffusible signals. PLoS Comput Biol 2021; 17:e1009576. [PMID: 34748539 PMCID: PMC8601629 DOI: 10.1371/journal.pcbi.1009576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/18/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Advances in genetic engineering technologies have allowed the construction of artificial genetic circuits, which have been used to generate spatial patterns of differential gene expression. However, the question of how cells can be programmed, and how complex the rules need to be, to achieve a desired tissue morphology has received less attention. Here, we address these questions by developing a mathematical model to study how cells can collectively grow into clusters with different structural morphologies by secreting diffusible signals that can influence cellular growth rates. We formulate how growth regulators can be used to control the formation of cellular protrusions and how the range of achievable structures scales with the number of distinct signals. We show that a single growth inhibitor is insufficient for the formation of multiple protrusions but may be achieved with multiple growth inhibitors, and that other types of signals can regulate the shape of protrusion tips. These examples illustrate how our approach could potentially be used to guide the design of regulatory circuits for achieving a desired target structure.
Collapse
Affiliation(s)
- Yipei Guo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- Program in Biophysics, Harvard University, Boston, Massachusetts, United States of America
- * E-mail:
| | - Mor Nitzan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Michael P. Brenner
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|