1
|
López-Cobo S, Fuentealba JR, Gueguen P, Bonté PE, Tsalkitzi K, Chacón I, Glauzy S, Bohineust A, Biquand A, Silva L, Gouveia Z, Goudot C, Perez F, Saitakis M, Amigorena S. SUV39H1 Ablation Enhances Long-term CAR T Function in Solid Tumors. Cancer Discov 2024; 14:120-141. [PMID: 37934001 DOI: 10.1158/2159-8290.cd-22-1350] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Failure of adoptive T-cell therapies in patients with cancer is linked to limited T-cell expansion and persistence, even in memory-prone 41BB-(BBz)-based chimeric antigen receptor (CAR) T cells. We show here that BBz-CAR T-cell stem/memory differentiation and persistence can be enhanced through epigenetic manipulation of the histone 3 lysine 9 trimethylation (H3K9me3) pathway. Inactivation of the H3K9 trimethyltransferase SUV39H1 enhances BBz-CAR T cell long-term persistence, protecting mice against tumor relapses and rechallenges in lung and disseminated solid tumor models up to several months after CAR T-cell infusion. Single-cell transcriptomic (single-cell RNA sequencing) and chromatin opening (single-cell assay for transposase accessible chromatin) analyses of tumor-infiltrating CAR T cells show early reprogramming into self-renewing, stemlike populations with decreased expression of dysfunction genes in all T-cell subpopulations. Therefore, epigenetic manipulation of H3K9 methylation by SUV39H1 optimizes the long-term functional persistence of BBz-CAR T cells, limiting relapses, and providing protection against tumor rechallenges. SIGNIFICANCE Limited CAR T-cell expansion and persistence hinders therapeutic responses in solid cancer patients. We show that targeting SUV39H1 histone methyltransferase enhances 41BB-based CAR T-cell long-term protection against tumor relapses and rechallenges by increasing stemness/memory differentiation. This opens a safe path to enhancing adoptive cell therapies for solid tumors. See related article by Jain et al., p. 142. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
- Sheila López-Cobo
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Jaime R Fuentealba
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Paul Gueguen
- Department of Oncology, UNIL CHUV and Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Kyriaki Tsalkitzi
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Mnemo Therapeutics, Paris, France
| | - Irena Chacón
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Salomé Glauzy
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | | | | | - Lisseth Silva
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Zelia Gouveia
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Christel Goudot
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Michael Saitakis
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Mnemo Therapeutics, Paris, France
| | - Sebastian Amigorena
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Mnemo Therapeutics, Paris, France
| |
Collapse
|
2
|
Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, Cheng Q, Luo P, Zhang Y, Han X. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther 2023; 8:200. [PMID: 37179335 PMCID: PMC10182360 DOI: 10.1038/s41392-023-01451-2] [Citation(s) in RCA: 282] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Infection susceptibility, poor vaccination efficacy, age-related disease onset, and neoplasms are linked to innate and adaptive immune dysfunction that accompanies aging (known as immunosenescence). During aging, organisms tend to develop a characteristic inflammatory state that expresses high levels of pro-inflammatory markers, termed inflammaging. This chronic inflammation is a typical phenomenon linked to immunosenescence and it is considered the major risk factor for age-related diseases. Thymic involution, naïve/memory cell ratio imbalance, dysregulated metabolism, and epigenetic alterations are striking features of immunosenescence. Disturbed T-cell pools and chronic antigen stimulation mediate premature senescence of immune cells, and senescent immune cells develop a proinflammatory senescence-associated secretory phenotype that exacerbates inflammaging. Although the underlying molecular mechanisms remain to be addressed, it is well documented that senescent T cells and inflammaging might be major driving forces in immunosenescence. Potential counteractive measures will be discussed, including intervention of cellular senescence and metabolic-epigenetic axes to mitigate immunosenescence. In recent years, immunosenescence has attracted increasing attention for its role in tumor development. As a result of the limited participation of elderly patients, the impact of immunosenescence on cancer immunotherapy is unclear. Despite some surprising results from clinical trials and drugs, it is necessary to investigate the role of immunosenescence in cancer and other age-related diseases.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Qimeng Liang
- Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 4500052, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Quon S, Yu B, Russ BE, Tsyganov K, Nguyen H, Toma C, Heeg M, Hocker JD, Milner JJ, Crotty S, Pipkin ME, Turner SJ, Goldrath AW. DNA architectural protein CTCF facilitates subset-specific chromatin interactions to limit the formation of memory CD8 + T cells. Immunity 2023; 56:959-978.e10. [PMID: 37040762 PMCID: PMC10265493 DOI: 10.1016/j.immuni.2023.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Although the importance of genome organization for transcriptional regulation of cell-fate decisions and function is clear, the changes in chromatin architecture and how these impact effector and memory CD8+ T cell differentiation remain unknown. Using Hi-C, we studied how genome configuration is integrated with CD8+ T cell differentiation during infection and investigated the role of CTCF, a key chromatin remodeler, in modulating CD8+ T cell fates through CTCF knockdown approaches and perturbation of specific CTCF-binding sites. We observed subset-specific changes in chromatin organization and CTCF binding and revealed that weak-affinity CTCF binding promotes terminal differentiation of CD8+ T cells through the regulation of transcriptional programs. Further, patients with de novo CTCF mutations had reduced expression of the terminal-effector genes in peripheral blood lymphocytes. Therefore, in addition to establishing genome architecture, CTCF regulates effector CD8+ T cell heterogeneity through altering interactions that regulate the transcription factor landscape and transcriptome.
Collapse
Affiliation(s)
- Sara Quon
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bingfei Yu
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brendan E Russ
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kirill Tsyganov
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hongtuyet Nguyen
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Clara Toma
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maximilian Heeg
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - James D Hocker
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - J Justin Milner
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Stephen J Turner
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Kranz E, Kuhlmann CJ, Chan J, Kim PY, Chen ISY, Kamata M. Efficient derivation of chimeric-antigen receptor-modified TSCM cells. Front Immunol 2022; 13:877682. [PMID: 35967430 PMCID: PMC9366550 DOI: 10.3389/fimmu.2022.877682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Chimeric-antigen receptor (CAR) T-cell immunotherapy employs autologous-T cells modified with an antigen-specific CAR. Current CAR-T manufacturing processes tend to yield products dominated by effector T cells and relatively small proportions of long-lived memory T cells. Those few cells are a so-called stem cell memory T (TSCM) subset, which express naïve T-cell markers and are capable of self-renewal and oligopotent differentiation into effector phenotypes. Increasing the proportion of this subset may lead to more effective therapies by improving CAR-T persistence; however, there is currently no standardized protocol for the effective generation of CAR-TSCM cells. Here we present a simplified protocol enabling efficient derivation of gene-modified TSCM cells: Stimulation of naïve CD8+ T cells with only soluble anti-CD3 antibody and culture with IL-7 and IL-15 was sufficient for derivation of CD8+ T cells harboring TSCM phenotypes and oligopotent capabilities. These in-vitro expanded TSCM cells were engineered with CARs targeting the HIV-1 envelope protein as well as the CD19 molecule and demonstrated effector activity both in vitro and in a xenograft mouse model. This simple protocol for the derivation of CAR-TSCM cells may facilitate improved adoptive immunotherapy.
Collapse
Affiliation(s)
- Emiko Kranz
- Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Charles J. Kuhlmann
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joshua Chan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Patrick Y. Kim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Irvin S. Y. Chen
- Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Masakazu Kamata
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Masakazu Kamata,
| |
Collapse
|
5
|
Wong WK, Yin B, Lam CYK, Huang Y, Yan J, Tan Z, Wong SHD. The Interplay Between Epigenetic Regulation and CD8 + T Cell Differentiation/Exhaustion for T Cell Immunotherapy. Front Cell Dev Biol 2022; 9:783227. [PMID: 35087832 PMCID: PMC8787221 DOI: 10.3389/fcell.2021.783227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Effective immunotherapy treats cancers by eradicating tumourigenic cells by activated tumour antigen-specific and bystander CD8+ T-cells. However, T-cells can gradually lose cytotoxicity in the tumour microenvironment, known as exhaustion. Recently, DNA methylation, histone modification, and chromatin architecture have provided novel insights into epigenetic regulations of T-cell differentiation/exhaustion, thereby controlling the translational potential of the T-cells. Thus, developing strategies to govern epigenetic switches of T-cells dynamically is critical to maintaining the effector function of antigen-specific T-cells. In this mini-review, we 1) describe the correlation between epigenetic states and T cell phenotypes; 2) discuss the enzymatic factors and intracellular/extracellular microRNA imprinting T-cell epigenomes that drive T-cell exhaustion; 3) highlight recent advances in epigenetic interventions to rescue CD8+ T-cell functions from exhaustion. Finally, we express our perspective that regulating the interplay between epigenetic changes and transcriptional programs provides translational implications of current immunotherapy for cancer treatments.
Collapse
Affiliation(s)
- Wai Ki Wong
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Ching Ying Katherine Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Zhiwu Tan
- AIDS Institute and Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
6
|
Funk CR, Wang S, Chen KZ, Waller A, Sharma A, Edgar CL, Gupta VA, Chandrakasan S, Zoine JT, Fedanov A, Raikar SS, Koff JL, Flowers CR, Coma S, Pachter JA, Ravindranathan S, Spencer HT, Shanmugam M, Waller EK. PI3Kδ/γ inhibition promotes human CART cell epigenetic and metabolic reprogramming to enhance antitumor cytotoxicity. Blood 2022; 139:523-537. [PMID: 35084470 PMCID: PMC8796652 DOI: 10.1182/blood.2021011597] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Current limitations in using chimeric antigen receptor T(CART) cells to treat patients with hematological cancers include limited expansion and persistence in vivo that contribute to cancer relapse. Patients with chronic lymphocytic leukemia (CLL) have terminally differentiated T cells with an exhausted phenotype and experience low complete response rates after autologous CART therapy. Because PI3K inhibitor therapy is associated with the development of T-cell-mediated autoimmunity, we studied the effects of inhibiting the PI3Kδ and PI3Kγ isoforms during the manufacture of CART cells prepared from patients with CLL. Dual PI3Kδ/γ inhibition normalized CD4/CD8 ratios and maximized the number of CD8+ T-stem cell memory, naive, and central memory T-cells with dose-dependent decreases in expression of the TIM-3 exhaustion marker. CART cells manufactured with duvelisib (Duv-CART cells) showed significantly increased in vitro cytotoxicity against CD19+ CLL targets caused by increased frequencies of CD8+ CART cells. Duv-CART cells had increased expression of the mitochondrial fusion protein MFN2, with an associated increase in the relative content of mitochondria. Duv-CART cells exhibited increased SIRT1 and TCF1/7 expression, which correlated with epigenetic reprograming of Duv-CART cells toward stem-like properties. After transfer to NOG mice engrafted with a human CLL cell line, Duv-CART cells expressing either a CD28 or 41BB costimulatory domain demonstrated significantly increased in vivo expansion of CD8+ CART cells, faster elimination of CLL, and longer persistence. Duv-CART cells significantly enhanced survival of CLL-bearing mice compared with conventionally manufactured CART cells. In summary, exposure of CART to a PI3Kδ/γ inhibitor during manufacturing enriched the CART product for CD8+ CART cells with stem-like qualities and enhanced efficacy in eliminating CLL in vivo.
Collapse
Affiliation(s)
- Christopher Ronald Funk
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Shuhua Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Kevin Z Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Alexandra Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Aditi Sharma
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Claudia L Edgar
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Vikas A Gupta
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | | | - Jaquelyn T Zoine
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA
| | - Andrew Fedanov
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA
| | - Sunil S Raikar
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA
| | - Jean L Koff
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Christopher R Flowers
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX; and
| | | | | | - Sruthi Ravindranathan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - H Trent Spencer
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
7
|
Ren H, Cao K, Wang M. A Correlation Between Differentiation Phenotypes of Infused T Cells and Anti-Cancer Immunotherapy. Front Immunol 2021; 12:745109. [PMID: 34603332 PMCID: PMC8479103 DOI: 10.3389/fimmu.2021.745109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
T-cell therapy, usually with ex-vivo expansion, is very promising to treat cancer. Differentiation status of infused T cells is a crucial parameter for their persistence and antitumor immunity. Key phenotypic molecules are effective and efficient to analyze differentiation status. Differentiation status is crucial for T cell exhaustion, in-vivo lifespan, antitumor immunity, and even antitumor pharmacological interventions. Strategies including cytokines, Akt, Wnt and Notch signaling, epigenetics, and metabolites have been developed to produce less differentiated T cells. Clinical trials have shown better clinical outcomes from infusion of T cells with less differentiated phenotypes. CD27+, CCR7+ and CD62L+ have been the most clinically relevant phenotypic molecules, while Tscm and Tcm the most clinically relevant subtypes. Currently, CD27+, CD62L+ and CCR7+ are recommended in the differentiation phenotype to evaluate strategies of enhancing stemness. Future studies may discover highly clinically relevant differentiation phenotypes for specific T-cell production methods or specific subtypes of cancer patients, with the advantages of precision medicine.
Collapse
Affiliation(s)
- Hao Ren
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Kunkun Cao
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Mingjun Wang
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| |
Collapse
|
8
|
Akbari B, Ghahri-Saremi N, Soltantoyeh T, Hadjati J, Ghassemi S, Mirzaei HR. Epigenetic strategies to boost CAR T cell therapy. Mol Ther 2021; 29:2640-2659. [PMID: 34365035 DOI: 10.1016/j.ymthe.2021.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has led to a paradigm shift in cancer immunotherapy, but still several obstacles limit CAR T cell efficacy in cancers. Advances in high-throughput technologies revealed new insights into the role that epigenetic reprogramming plays in T cells. Mechanistic studies as well as comprehensive epigenome maps revealed an important role for epigenetic remodeling in T cell differentiation. These modifications shape the overall immune response through alterations in T cell phenotype and function. Here, we outline how epigenetic modifications in CAR T cells can overcome barriers limiting CAR T cell effectiveness, particularly in immunosuppressive tumor microenvironments. We also offer our perspective on how selected epigenetic modifications can boost CAR T cells to ultimately improve the efficacy of CAR T cell therapy.
Collapse
Affiliation(s)
- Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran.
| |
Collapse
|
9
|
Kimmel GJ, Locke FL, Altrock PM. The roles of T cell competition and stochastic extinction events in chimeric antigen receptor T cell therapy. Proc Biol Sci 2021; 288:20210229. [PMID: 33757357 PMCID: PMC8059581 DOI: 10.1098/rspb.2021.0229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a remarkably effective immunotherapy that relies on in vivo expansion of engineered CAR T cells, after lymphodepletion (LD) by chemotherapy. The quantitative laws underlying this expansion and subsequent tumour eradication remain unknown. We develop a mathematical model of T cell-tumour cell interactions and demonstrate that expansion can be explained by immune reconstitution dynamics after LD and competition among T cells. CAR T cells rapidly grow and engage tumour cells but experience an emerging growth rate disadvantage compared to normal T cells. Since tumour eradication is deterministically unstable in our model, we define cure as a stochastic event, which, even when likely, can occur at variable times. However, we show that variability in timing is largely determined by patient variability. While cure events impacted by these fluctuations occur early and are narrowly distributed, progression events occur late and are more widely distributed in time. We parameterized our model using population-level CAR T cell and tumour data over time and compare our predictions with progression-free survival rates. We find that therapy could be improved by optimizing the tumour-killing rate and the CAR T cells' ability to adapt, as quantified by their carrying capacity. Our tumour extinction model can be leveraged to examine why therapy works in some patients but not others, and to better understand the interplay of deterministic and stochastic effects on outcomes. For example, our model implies that LD before a second CAR T injection is necessary.
Collapse
Affiliation(s)
- Gregory J Kimmel
- Department of Integrated Mathematical Oncology, Research Institute, Tampa, FL, USA
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Research Institute, Tampa, FL, USA
| | - Philipp M Altrock
- Department of Integrated Mathematical Oncology, Research Institute, Tampa, FL, USA.,Department of Blood and Marrow Transplant and Cellular Immunotherapy, Research Institute, Tampa, FL, USA.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
10
|
Kiuchi M, Onodera A, Kokubo K, Ichikawa T, Morimoto Y, Kawakami E, Takayama N, Eto K, Koseki H, Hirahara K, Nakayama T. The Cxxc1 subunit of the Trithorax complex directs epigenetic licensing of CD4+ T cell differentiation. J Exp Med 2021; 218:211672. [PMID: 33433611 PMCID: PMC7808308 DOI: 10.1084/jem.20201690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Different dynamics of gene expression are observed during cell differentiation. In T cells, genes that are turned on early or turned off and stay off have been thoroughly studied. However, genes that are initially turned off but then turned on again after stimulation has ceased have not been defined; they are obviously important, especially in the context of acute versus chronic inflammation. Using the Th1/Th2 differentiation paradigm, we found that the Cxxc1 subunit of the Trithorax complex directs transcription of genes initially down-regulated by TCR stimulation but up-regulated again in a later phase. The late up-regulation of these genes was impaired either by prolonged TCR stimulation or Cxxc1 deficiency, which led to decreased expression of Trib3 and Klf2 in Th1 and Th2 cells, respectively. Loss of Cxxc1 resulted in enhanced pathogenicity in allergic airway inflammation in vivo. Thus, Cxxc1 plays essential roles in the establishment of a proper CD4+ T cell immune system via epigenetic control of a specific set of genes.
Collapse
Affiliation(s)
- Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,Institute for Global Prominent Research, Chiba University, Chuo-ku, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Tomomi Ichikawa
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Yuki Morimoto
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Eiryo Kawakami
- Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Medical Sciences Innovation Hub Program, RIKEN, Yokohama, Kanagawa, Japan
| | - Naoya Takayama
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koji Eto
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Haruhiko Koseki
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Chiba, Japan
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The utilization of genetically modified T cells to therapeutically target to various previously incurable diseases such, as cancer, has expanded exponentially in recent years. This success now provides the motivating force in applying the same technology for incurable infectious diseases including HIV. The common bottleneck in gene therapy continues to be at the level of gene delivery. Although present approaches adapt the cell to the delivery technology, emerging techniques now focus on leaving cells in their phenotypically resting state. In doing so, engraftment and proliferation potential are retained and in turn increase the efficacy of this approach at a lowered cost. This review will outline the main efforts of gene delivery using viral vectors or nonviral vectors and challenges moving forward not only in resting T cells, but also in other resting immune cells including hematopoietic stem cells. RECENT FINDINGS In focusing on HIV cure efforts using gene therapy, progress on solving the challenges of gene delivery will be described for both viral and nonviral vectors. Advances in the basic virology of lentiviruses have led to the proposal of many next generation lentiviral vector platforms for resting immune cells. Moreover, we will also highlight the progress made in nonviral approaches using nanotechnology as alternatives and/or synergistic technologies to be used alongside lentiviral platforms. SUMMARY The innovative approaches described in these recent studies, particularly those using the natural mechanisms employed by HIV to enhance for example virus entry or virus latency, will enable future optimization of gene delivery platforms and therapeutics, which will importantly, provide a pathway toward translation into clinical practice.
Collapse
|
12
|
Goronzy JJ, Hu B, Kim C, Jadhav RR, Weyand CM. Epigenetics of T cell aging. J Leukoc Biol 2018; 104:691-699. [PMID: 29947427 PMCID: PMC6162101 DOI: 10.1002/jlb.1ri0418-160r] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
T cells are a heterogeneous population of cells that differ in their differentiation stages. Functional states are reflected in the epigenome that confers stability in cellular identity and is therefore important for naïve as well as memory T cell function. In many cellular systems, changes in chromatin structure due to alterations in histone expression, histone modifications and DNA methylation are characteristic of the aging process and cause or at least contribute to cellular dysfunction in senescence. Here, we review the epigenetic changes in T cells that occur with age and discuss them in the context of canonical epigenetic marks in aging model systems as well as recent findings of chromatin accessibility changes in T cell differentiation. Remarkably, transcription factor networks driving T cell differentiation account for many of the age-associated modifications in chromatin structures suggesting that loss of quiescence and activation of differentiation pathways are major components of T cell aging.
Collapse
Affiliation(s)
- Jörg J. Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Bin Hu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Rohit R. Jadhav
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Cornelia M. Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| |
Collapse
|
13
|
Yi F, Frazzette N, Cruz AC, Klebanoff CA, Siegel RM. Beyond Cell Death: New Functions for TNF Family Cytokines in Autoimmunity and Tumor Immunotherapy. Trends Mol Med 2018; 24:642-653. [PMID: 29880309 DOI: 10.1016/j.molmed.2018.05.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
Originally discovered as an inducer of apoptosis, the TNF-family receptor Fas (CD95, APO-1, TNFRSF6) has more recently been found to have functions beyond cell death, including T cell co-stimulation and promoting terminal differentiation of CD4+ and CD8+ T cells. Other TNF family members also discovered as apoptosis inducers, such as TRAIL (APO-2L, TNFSF10), can promote inflammation through caspase-8. Surprisingly, non-apoptotic signaling through Fas can protect from the autoimmunity seen in Fas deficiency independently from the cell death inducing functions of the receptor. Non-apoptotic Fas signaling can induce tumor cell growth and migration, and impair the efficacy of T cell adoptive immunotherapy. Blocking of non-apoptotic functions of these receptors may be a novel strategy to regulate autoimmunity and inflammation, and enhance antitumor immunity.
Collapse
Affiliation(s)
- Fei Yi
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas Frazzette
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony C Cruz
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065 USA; Parker Institute for Cancer Immunotherapy, MSKCC, New York, NY, 10065 USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Abstract
Upon stimulation, small numbers of naive CD8+ T cells proliferate and differentiate into a variety of memory and effector cell types. CD8+ T cells can persist for years and kill tumour cells and virally infected cells. The functional and phenotypic changes that occur during CD8+ T cell differentiation are well characterized, but the epigenetic states that underlie these changes are incompletely understood. Here, we review the epigenetic processes that direct CD8+ T cell differentiation and function. We focus on epigenetic modification of DNA and associated histones at genes and their regulatory elements. We also describe structural changes in chromatin organization that affect gene expression. Finally, we examine the translational potential of epigenetic interventions to improve CD8+ T cell function in individuals with chronic infections and cancer.
Collapse
Affiliation(s)
- Amanda N Henning
- Center for Cell-Based Therapy, National Cancer Institute (NCI)
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Nicholas P Restifo
- Center for Cell-Based Therapy, National Cancer Institute (NCI)
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
15
|
Vizcardo R, Klemen ND, Islam SMR, Gurusamy D, Tamaoki N, Yamada D, Koseki H, Kidder BL, Yu Z, Jia L, Henning AN, Good ML, Bosch-Marce M, Maeda T, Liu C, Abdullaev Z, Pack S, Palmer DC, Stroncek DF, Ito F, Flomerfelt FA, Kruhlak MJ, Restifo NP. Generation of Tumor Antigen-Specific iPSC-Derived Thymic Emigrants Using a 3D Thymic Culture System. Cell Rep 2018; 22:3175-3190. [PMID: 29562175 PMCID: PMC5930030 DOI: 10.1016/j.celrep.2018.02.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 01/04/2023] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived T cells may provide future therapies for cancer patients, but those generated by current methods, such as the OP9/DLL1 system, have shown abnormalities that pose major barriers for clinical translation. Our data indicate that these iPSC-derived CD8 single-positive T cells are more like CD4+CD8+ double-positive T cells than mature naive T cells because they display phenotypic markers of developmental arrest and an innate-like phenotype after stimulation. We developed a 3D thymic culture system to avoid these aberrant developmental fates, generating a homogeneous subset of CD8αβ+ antigen-specific T cells, designated iPSC-derived thymic emigrants (iTEs). iTEs exhibit phenotypic and functional similarities to naive T cells both in vitro and in vivo, including the capacity for expansion, memory formation, and tumor suppression. These data illustrate the limitations of current methods and provide a tool to develop the next generation of iPSC-based antigen-specific immunotherapies.
Collapse
Affiliation(s)
- Raul Vizcardo
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Nicholas D Klemen
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - S M Rafiqul Islam
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Devikala Gurusamy
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Naritaka Tamaoki
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Daisuke Yamada
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa 230-0045, Japan
| | - Benjamin L Kidder
- Department of Oncology and Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhiya Yu
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Li Jia
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Amanda N Henning
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Meghan L Good
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Marta Bosch-Marce
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Takuya Maeda
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Zied Abdullaev
- Experimental Pathology Laboratory, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Svetlana Pack
- Experimental Pathology Laboratory, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Douglas C Palmer
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - David F Stroncek
- Department of Transfusion Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Fumito Ito
- Department of Surgical Oncology, Roswell Park Cancer Center, Buffalo, NY 14263, USA; Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Francis A Flomerfelt
- Experimental Transplantation and Immunology Branch, NIH Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Michael J Kruhlak
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nicholas P Restifo
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|