1
|
Xiao J, Hu G, Zhou X, Zheng Y, Li J. TIDGN: A Transfer Learning Framework for Predicting Interactions of Intrinsically Disordered Proteins with High Conformational Dynamics. J Chem Inf Model 2025. [PMID: 40360271 DOI: 10.1021/acs.jcim.5c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Interactions between intrinsically disordered proteins (IDPs) are crucial for biological processes, such as intracellular liquid-liquid phase separation (LLPS). Experiments (e.g., NMR) and simulations used to study IDP interactions encounter a variety of difficulties, highlighting the necessity to develop relevant machine learning methods. However, reliable machine learning methods face the challenge resulting from the scarcity of available training data. In this work, we propose a transfer learning-based invariant geometric dynamic graph model, named TIDGN, for predicting IDP interactions. The model consists of a pretraining task module and a downstream task module. The pretraining task module learns the dynamic structural encoding of IDP monomers, which is then used by the downstream task module for interaction site prediction. The IDP monomer structure data set and the IDP interaction event data set are constructed using all-atom molecular dynamics (MD) simulations. The transfer learning strategy effectively enhances the model's performance. Both homotypic interactions and heterotypic interactions between two IDPs are considered in this work. Interestingly, TIDGN performs well for the heterotypic interaction prediction. Additionally, the feature ablation analysis emphasizes the importance of invariant geometric graph features. Taken together, our work demonstrates that the integration of transfer learning and the invariant geometric graph network offers a promising approach for addressing data scarcity challenges of IDP interaction prediction.
Collapse
Affiliation(s)
- Jing Xiao
- School of Physics, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guorong Hu
- School of Physics, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xiaozhou Zhou
- School of Physics, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuchuan Zheng
- School of Physics, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jingyuan Li
- School of Physics, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
2
|
Chen R, Grill S, Lin B, Saiduddin M, Lehmann R. Origin and establishment of the germline in Drosophila melanogaster. Genetics 2025; 229:iyae217. [PMID: 40180587 PMCID: PMC12005264 DOI: 10.1093/genetics/iyae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/09/2024] [Indexed: 04/05/2025] Open
Abstract
The continuity of a species depends on germ cells. Germ cells are different from all the other cell types of the body (somatic cells) as they are solely destined to develop into gametes (sperm or egg) to create the next generation. In this review, we will touch on 4 areas of embryonic germ cell development in Drosophila melanogaster: the assembly and function of germplasm, which houses the determinants for germ cell specification and fate and the mitochondria of the next generation; the process of pole cell formation, which will give rise to primordial germ cells (PGCs); the specification of pole cells toward the PGC fate; and finally, the migration of PGCs to the somatic gonadal precursors, where they, together with somatic gonadal precursors, form the embryonic testis and ovary.
Collapse
Affiliation(s)
- Ruoyu Chen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Vilcek Institute of Graduate Studies, Department of Cell Biology, NYU School of Medicine, New York University, New York, NY 10016, USA
| | - Sherilyn Grill
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Benjamin Lin
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mariyah Saiduddin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Vilcek Institute of Graduate Studies, Department of Cell Biology, NYU School of Medicine, New York University, New York, NY 10016, USA
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Boccalini M, Berezovska Y, Bussi G, Paloni M, Barducci A. Exploring RNA destabilization mechanisms in biomolecular condensates through atomistic simulations. Proc Natl Acad Sci U S A 2025; 122:e2425261122. [PMID: 40203038 PMCID: PMC12012522 DOI: 10.1073/pnas.2425261122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025] Open
Abstract
Biomolecular condensates are currently recognized to play a key role in organizing cellular space and in orchestrating biochemical processes. Despite an increasing interest in characterizing their internal organization at the molecular scale, not much is known about how the densely crowded environment within these condensates affects the structural properties of recruited macromolecules. Here, we adopted explicit-solvent all-atom simulations based on a combination of enhanced sampling approaches to investigate how the conformational ensemble of an RNA hairpin is reshaped in a highly concentrated peptide solution that mimics the interior of a biomolecular condensate. Our simulations indicate that RNA structure is greatly perturbed by this distinctive physico-chemical environment, which weakens RNA secondary structure and promotes extended nonnative conformations. The resulting high-resolution picture reveals that RNA unfolding is driven by the effective solvation of nucleobases through hydrogen bonding and stacking interactions with surrounding peptides. This solvent effect can be modulated by the amino acid composition of the model condensate as proven by the differential RNA behavior observed in the case of arginine-rich and lysine-rich peptides.
Collapse
Affiliation(s)
- Matteo Boccalini
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier34090, France
| | - Yelyzaveta Berezovska
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier34090, France
| | - Giovanni Bussi
- Molecular and Statistical Biophysics, Scuola Internazionale Superiore di Studi Avanzati, Trieste34136, Italy
| | - Matteo Paloni
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier34090, France
- Department of Chemical Engineering, Thomas Young Centre, University College London, LondonWC1E 7JE, United Kingdom
| | - Alessandro Barducci
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier34090, France
| |
Collapse
|
4
|
Arnold E, Cohn D, Bose E, Klingler D, Wolfe G, Jones A. Investigating the interplay between RNA structural dynamics and RNA chemical probing experiments. Nucleic Acids Res 2025; 53:gkaf290. [PMID: 40239995 PMCID: PMC12000872 DOI: 10.1093/nar/gkaf290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Small molecule chemical probes that covalently bond atoms of flexible nucleotides are widely employed in RNA structure determination. Atomistic molecular dynamic (MD) simulations recently suggested that RNA-probe binding can be cooperative, leading to measured reactivities that differ from expected trends as probe concentrations are varied. Here, we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE), dimethyl sulfate (DMS) chemical probing, and nuclear magnetic resonance (NMR) spectroscopy to explore the relationship between RNA structural dynamics and chemical probe reactivity. Our NMR chemical exchange experiments revealed that SHAPE-reactive base-paired nucleotides exhibit high imino proton exchange rates. Additionally, we find that as the concentration of a probe increases, some nucleotides' modification rates shift unexpectedly. For instance, some base-paired nucleotides that are unreactive at one probe concentration become reactive at another, often corresponding with a shift in the modification rate of the complementary nucleotide. We believe this effect can be harnessed to infer pairing interactions. Lastly, our results suggest that the overmodification of an RNA can impact its conformational dynamics, leading to modulations in the structural ensembles representing the RNA's fold. Our findings suggest an intricate interplay between RNA conformational dynamics and chemical probing reactivity.
Collapse
Affiliation(s)
- Ethan B Arnold
- Department of Chemistry, New York University, 31 Washington Place, NY 10003, United States
| | - Daniel Cohn
- Department of Chemistry, New York University, 31 Washington Place, NY 10003, United States
| | - Emma Bose
- Department of Chemistry, New York University, 31 Washington Place, NY 10003, United States
| | - David Klingler
- Department of Chemistry, New York University, 31 Washington Place, NY 10003, United States
| | - Gregory Wolfe
- Department of Physics, New York University, 726 Broadway, NY 10003, United States
| | - Alisha N Jones
- Department of Chemistry, New York University, 31 Washington Place, NY 10003, United States
| |
Collapse
|
5
|
Huang Z, Liu Z, Chen L, Liu Y, Yan G, Ni Y, Yan Q, He W, Liu J, Luo S, Xie J. Liquid-liquid phase separation in cell physiology and cancer biology: recent advances and therapeutic implications. Front Oncol 2025; 15:1540427. [PMID: 40231263 PMCID: PMC11994588 DOI: 10.3389/fonc.2025.1540427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) is a pivotal biophysical phenomenon that plays a critical role in cellular organization and has garnered significant attention in the fields of molecular mechanism and pathophysiology of cancer. This dynamic process involves the spontaneous segregation of biomolecules, primarily proteins and nucleic acids, into condensed, liquid-like droplets under specific conditions. LLPS drives the formation of biomolecular condensates, which are crucial for various cellular functions. Increasing evidences link alterations in LLPS to the onset and progression of various diseases, particularly cancer. This review explores the diverse roles of LLPS in cancer, highlighting its underlying molecular mechanisms and far-reaching implications. We examine how dysregulated LLPS contributes to cancer development by influencing key processes such as genomic instability, metabolism, and immune evasion. Furthermore, we discuss emerging therapeutic strategies aimed at modulating LLPS, underscoring their potential to revolutionize cancer treatment.
Collapse
Affiliation(s)
- Ziyuan Huang
- Department of Urology, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, China
- Computational Medicine and Epidemiology Laboratory (CMEL), Guangdong Medical University, Zhanjiang, China
| | - Zimeng Liu
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Lieqian Chen
- Department of Urology, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, China
| | - Yanlin Liu
- Computational Medicine and Epidemiology Laboratory (CMEL), Guangdong Medical University, Zhanjiang, China
| | - Gaofei Yan
- Department of Clinical Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yizheng Ni
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Qiuxia Yan
- Department of Urology, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, China
| | - Wenqian He
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Junhong Liu
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Shufang Luo
- Department of Critical Care Medicine, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jindong Xie
- Department of Urology, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, China
| |
Collapse
|
6
|
Majumder S, Pal D. rCGMM: A Coarse-Grained Force Field Embedding Elastic Network for Studying Small Noncoding RNA Dynamics. J Phys Chem B 2025; 129:3159-3170. [PMID: 40101117 DOI: 10.1021/acs.jpcb.4c07286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Short noncoding RNA molecules play significant roles in catalysis, biological regulation, and disease pathways. Their assessment through sequence-based approaches has been a challenge, compounded by the significant structural flexibility accrued from six free backbone torsions per nucleotide. To efficiently study the structure and dynamics of an extensive repertoire of these molecules in a high throughput mode, we have built a coarse-grained force field using one, two, three, and four pseudoatoms to represent the phosphate, sugar, pyrimidines, and purines, respectively. The Boltzmann inversion method was applied to structures of 5 piRNA, 8 miRNA, and 13 siRNA from the Nucleic Acid Database (NDB) to estimate the initial force field parameters and iteratively optimized through 1 μs molecular dynamics run by comparing against an equivalent all-atom simulation using the CHARMM36 force field. We applied an elastic net to model the hydrogen bond network stabilizing the local structure for double-stranded cases. A spine using pseudoatoms was calculated for the same from the coarse-grain beads, and all beads within a threshold radial distance were constrained using soft distance potentials. Lennard-Jones and Coulomb's potential function modeled the nonbonded interaction. Benchmarks on 26 molecules compared through root-mean-square deviation graphs against all-atom simulation show close concurrence for single- and double-stranded small noncoding RNA molecules. The rCGMM force field is available for download at https://github.com/majumderS/rCGMM.
Collapse
Affiliation(s)
- Subhasree Majumder
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru 560 012, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru 560 012, India
| |
Collapse
|
7
|
Vidal Ceballos A, Geissmann A, Favaro DC, Deshpande P, Elbaum-Garfinkle S. RNA guanine content and G-quadruplex structure tune the phase behavior and material properties of biomolecular condensates. Sci Rep 2025; 15:9295. [PMID: 40102453 PMCID: PMC11920403 DOI: 10.1038/s41598-025-88499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
RNA binding proteins (RBPs) are enriched in phase separated biomolecular assemblies across cell types. These RBPs often harbor arginine-glycine rich RGG motifs, which can drive phase separation, and can preferentially interact with RNA G-quadruplex (G4) structures, particularly in the neuron. Increasing evidence underscores the important role that RNA sequence and structure play in contributing to the form and function of protein condensates, however, less is known about the role of G4 RNAs and their interaction with RGG domains specifically. In this study we focused on the model protein, Fragile X mental retardation protein (FMRP), to investigate how G4-containing RNA sequences impact the phase behavior and material properties of condensates. FMRP is implicated in the development of Fragile X Syndrome, and is enriched in neuronal granules where it is thought to aid in mRNA trafficking and translational control. Here, we examined RNA sequences with increasing G content and G4 propensity in complex with the RGG-containing low complexity region (LCR) of FMRP. We found, that while increasing G content triggers aggregation of poly-arginine, all RNA sequences supported phase separation into liquid droplets with FMRP-LCR. Combining microrheology, and fluorescence recovery after photobleaching, we measured a moderate increase in viscosity and decrease in dynamics for increasing G-content, and detected no measurable increase in elasticity as a function of G4 structure. Additionally, we found that while methylation of FMRP decreased RNA binding affinity, this modification did not impact condensate material properties suggesting that RNA sequence/structure can play a greater role than binding affinity in determining the emergent properties of condensates. Together, this work lends much needed insight into the ways in which G-rich RNA sequences tune the assembly, dynamics and material properties of protein/RNA condensates and/or granules.
Collapse
Affiliation(s)
- Alfredo Vidal Ceballos
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
| | - Anna Geissmann
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Denize C Favaro
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
| | - Priyasha Deshpande
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Shana Elbaum-Garfinkle
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA.
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Ph.D. Program in Biology, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
8
|
Li S, Chen J. Driving Forces of RNA Condensation Revealed through Coarse-Grained Modeling with Explicit Mg 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.17.624048. [PMID: 39605385 PMCID: PMC11601354 DOI: 10.1101/2024.11.17.624048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
RNAs are major drivers of phase separation in the formation of biomolecular condensates, and can undergo protein-free phase separation in the presence of divalent ions or crowding agents. Much remains to be understood regarding how the complex interplay of base stacking, base pairing, electrostatics, ion interactions, and particularly structural propensities governs RNA phase behavior. Here we develop an intermediate resolution model for condensates of RNAs (iConRNA) that can capture key local and long-range structure features of dynamic RNAs and simulate their spontaneous phase transitions with Mg2+. Representing each nucleotide using 6-7 beads, iConRNA accurately captures base stacking and pairing and includes explicit Mg2+. The model does not only reproduce major conformational properties of poly(rA) and poly(rU), but also correctly folds small structured RNAs and predicts their melting temperatures. With an effective model of explicit Mg2+, iConRNA successfully recapitulates experimentally observed lower critical solution temperature phase separation of poly(rA) and triplet repeats, and critically, the nontrivial dependence of phase transitions on RNA sequence, length, concentration, and Mg2+ level. Further mechanistic analysis reveals a key role of RNA folding in modulating phase separation as well as its temperature and ion dependence, besides other driving forces such as Mg2+-phosphate interactions, base stacking, and base pairing. These studies also support iConRNA as a powerful tool for direct simulation of RNA-driven phase transitions, enabling molecular studies of how RNA conformational dynamics and its response to complex condensate environment control the phase behavior and condensate material properties. SIGNIFICANCE STATEMENT Dynamic RNAs and proteins are major drivers of biomolecular phase separation that has been recently discovered to underlie numerous biological processes and be involved in many human diseases. Molecular simulation has an indispensable role to play in dissecting the driving forces and regulation of biomolecular phase separation. The current work describes a high-resolution coarse-grained RNA model that is capable of describing the structure dynamics and complex sequence, concentration, temperature and ion dependent phase transitions of flexible RNAs. The study further reveals a central role of RNA folding in coordinating Mg2+-phosphate interactions, base stacking, and base pairing to drive phase separation, paving the road for studies of RNA-mediated phase separation in relevant biological contexts.
Collapse
Affiliation(s)
- Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Qu T, Zhang C, Lu X, Dai J, He X, Li W, Han L, Yin D, Zhang E. 8q24 derived ZNF252P promotes tumorigenesis by driving phase separation to activate c-Myc mediated feedback loop. Nat Commun 2025; 16:1986. [PMID: 40011431 PMCID: PMC11865308 DOI: 10.1038/s41467-025-56879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
As a well-known cancer risk region, the 8q24 locus is frequently amplified in a variety of solid tumors. Here we identify a pseudogene-derived oncogenic lncRNA, ZNF252P, which is upregulated in a variety of cancer types by copy number gain as well as c-Myc-mediated transcriptional activation. Mechanistically, ZNF252P binds and drives "phase separation" of HNRNPK and ILF3 protein in the nucleus and cytoplasm, respectively, to transcriptionally and posttranscriptionally activate c-Myc, thus forming a c-Myc/ZNF252P/c-Myc positive feedback loop. These findings expand the understanding of the relationship between genomic instability in the 8q24 region and tumorigenesis and clarify a regulatory mechanism involved in transcription and posttranscription from the perspective of RNA-mediated nuclear and cytoplasmic protein phase separation, which sheds light on the dialogue with the driver oncogene c-Myc. The pivotal regulatory axis of ZNF252P/c-Myc has potential as a promising biomarker and therapeutic target in cancer development.
Collapse
Affiliation(s)
- Tianyu Qu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chang Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiyi Lu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jiali Dai
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xuezhi He
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Liang Han
- Department of Oncology, Xuzhou Central Hospital, Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, PR China.
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China.
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
10
|
Ding C, Chen G, Luan S, Gao R, Fan Y, Zhang Y, Wang X, Li G, Foda MF, Yan J, Li X. Simultaneous profiling of chromatin-associated RNA at targeted DNA loci and RNA-RNA Interactions through TaDRIM-seq. Nat Commun 2025; 16:1500. [PMID: 39929795 PMCID: PMC11811046 DOI: 10.1038/s41467-024-53534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/09/2024] [Indexed: 02/13/2025] Open
Abstract
Eukaryotic genomes are extensively transcribed into various types of RNAs, many of which are physically associated with chromatin in cis at their transcription sites or in trans to other genomic loci. Emerging roles have been uncovered for these chromatin-associated RNAs (caRNAs) in gene regulation and genome organization, yet they remain challenging to interrogate. Here, we present TaDRIM-seq, a technique employing Protein G (PG)-Tn5-targeted DNA elements and in situ proximity ligation to concurrently probe caRNAs across diverse genomic regions as well as global RNA-RNA interactions within intact nuclei. Notably, this approach diminishes required cell inputs, minimizes hands-on time compared to established methodologies, and is compatible in both mammalian cells and plants. Using this technique, we identify extensive caRNAs at DNA anchor regions associated with chromatin loops and reveal diurnal variation in RNA-DNA and RNA-RNA connectivity networks within rice.
Collapse
Affiliation(s)
- Cheng Ding
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoting Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Shiping Luan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Runxin Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yudong Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaoting Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Mohamed F Foda
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh13736, Egypt
| | - Jiapei Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
11
|
Wang T, Hu Q, Fronhofer S, Pollack L. Nucleotide-specific RNA conformations and dynamics within ribonucleoprotein condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636987. [PMID: 39975191 PMCID: PMC11839098 DOI: 10.1101/2025.02.06.636987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Ribonucleoprotein (RNP) condensates have distinct physiological and pathological significance, but the structure of RNA within them is not well understood. Using contrast-variation solution X-ray scattering, which discerns only the RNA structures within protein-RNA complexes, alongside ensemble-based structural modeling we characterize the conformational changes of flexible poly-A, poly-U and poly-C single stranded RNA as it interacts with polybasic peptides, eventually forming condensed coacervate mixtures. At high salt concentrations, where macromolecular association is weak, we probe association events that precede the formation of liquid-like droplets. Structural changes occur in RNA that reflect charge screening by the peptides as well as π - π interactions of the bases with basic residues. At lower salt concentrations, where association is enhanced, poly-A RNA within phase separated RNP mixtures exhibit a broad scattering peak, suggesting subtle ordering. Coarse-grained molecular dynamics simulations are used to elucidate the nucleotide-specific dynamics within RNP condensates. While adenine-rich condensates behave like stable semidilute solutions, uracil-rich RNA condensates appear to be compositionally fluctuating. This approach helps understand how RNA sequence contributes to the molecular grammar of RNA-protein phase separation.
Collapse
Affiliation(s)
- Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Qingyue Hu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Scout Fronhofer
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Trussina IREA, Hartmann A, Desroches Altamirano C, Natarajan J, Fischer CM, Aleksejczuk M, Ausserwöger H, Knowles TPJ, Schlierf M, Franzmann TM, Alberti S. G3BP-driven RNP granules promote inhibitory RNA-RNA interactions resolved by DDX3X to regulate mRNA translatability. Mol Cell 2025; 85:585-601.e11. [PMID: 39729994 DOI: 10.1016/j.molcel.2024.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/08/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024]
Abstract
Ribonucleoprotein (RNP) granules have been linked to translation regulation and disease, but their assembly and regulatory mechanisms are not well understood. Here, we show that the RNA-binding protein G3BP1 preferentially interacts with unfolded RNA, driving the assembly of RNP granule-like condensates that establish RNA-RNA interactions. These RNA-RNA interactions limit the mobility and translatability of sequestered mRNAs and stabilize the condensates. The DEAD-box RNA helicase DDX3X attenuates RNA-RNA interactions inside RNP granule-like condensates, rendering the condensates dynamic and enabling mRNA translation. Importantly, disease-associated and catalytically inactive DDX3X variants fail to resolve such RNA-RNA interactions. Inhibiting DDX3X in cultured cells accelerates RNP granule assembly and delays their disassembly, indicating that RNA-RNA interactions contribute to RNP granule stability in cells. Our findings reveal how RNP granules generate inhibitory RNA-RNA interactions that are modulated by DEAD-box RNA helicases to ensure RNA availability and translatability.
Collapse
Affiliation(s)
- Irmela R E A Trussina
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany
| | - Andreas Hartmann
- B CUBE Center for Molecular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany
| | | | - Janani Natarajan
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany
| | - Charlotte M Fischer
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, UK
| | - Marta Aleksejczuk
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany
| | - Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michael Schlierf
- B CUBE Center for Molecular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden 01307 Saxony, Germany
| | - Titus M Franzmann
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany
| | - Simon Alberti
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden 01307 Saxony, Germany.
| |
Collapse
|
13
|
Mahendran TS, Wadsworth GM, Singh A, Gupta R, Banerjee PR. Biomolecular Condensates Can Enhance Homotypic RNA Clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.11.598371. [PMID: 38915678 PMCID: PMC11195159 DOI: 10.1101/2024.06.11.598371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Intracellular aggregation of repeat expanded RNA has been implicated in many neurological disorders. Here, we study the role of biomolecular condensates on irreversible RNA clustering. We find that physiologically relevant, and disease-associated repeat RNAs spontaneously undergo an age-dependent percolation transition inside multi-component protein-nucleic acid condensates to form nanoscale clusters. Homotypic RNA clusters drive the emergence of multiphasic condensate structures, with an RNA-rich solid core surrounded by an RNA-depleted fluid shell. The timescale of the RNA clustering, which accompanies a liquid-to-solid transition of biomolecular condensates, is determined by the sequence features, stability of RNA secondary structure, and repeat length. Importantly, G3BP1, the core scaffold of stress granules, introduces heterotypic buffering to homotypic RNA-RNA interactions and impedes intra-condensate RNA clustering in an ATP-independent manner. Our work suggests that biomolecular condensates can act as sites for RNA aggregation. It also highlights the functional role of RNA-binding proteins in suppressing aberrant RNA phase transitions.
Collapse
Affiliation(s)
- Tharun Selvam Mahendran
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Gable M. Wadsworth
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Anurag Singh
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Ritika Gupta
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Priya R. Banerjee
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| |
Collapse
|
14
|
Lambert GS, Maldonado RJK, Parent LJ. Role of the Psi Packaging Signal and Dimerization Initiation Sequence in the Organization of Rous Sarcoma Virus Gag-gRNA Co-Condensates. Viruses 2025; 17:97. [PMID: 39861886 PMCID: PMC11769450 DOI: 10.3390/v17010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Retroviral genome selection and virion assembly remain promising targets for novel therapeutic intervention. Recent studies have demonstrated that the Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type-1 (HIV-1) undergo nuclear trafficking, colocalize with nascent genomic viral RNA (gRNA) at transcription sites, may interact with host transcription factors, and display biophysical properties characteristic of biomolecular condensates. In the present work, we utilized a controlled in vitro condensate assay and advanced imaging approaches to investigate the effects of interactions between RSV Gag condensates and viral and nonviral RNAs on condensate abundance and organization. We observed that the psi (Ψ) packaging signal and the dimerization initiation sequence (DIS) had stabilizing effects on RSV Gag condensates, while RNAs lacking these features promoted or antagonized condensation, depending on local protein concentration and condensate architecture. An RNA containing Ψ, DIS, and the dimerization linkage structure (DLS) that is capable of stable dimer formation was observed to act as a bridge between RSV Gag condensates. These observations suggest additional, condensate-related roles for Gag-Ψ binding, gRNA dimerization, and Gag dimerization/multimerization in gRNA selection and packaging, representing a significant step forward in our understanding of how these interactions collectively facilitate efficient genome packaging.
Collapse
Affiliation(s)
- Gregory S. Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (G.S.L.); (R.J.K.M.)
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (G.S.L.); (R.J.K.M.)
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (G.S.L.); (R.J.K.M.)
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
15
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
16
|
Scholl D, Boyd T, Latham AP, Salazar A, Khan A, Boeynaems S, Holehouse AS, Lander GC, Sali A, Park D, Deniz AA, Lasker K. Cellular Function of a Biomolecular Condensate Is Determined by Its Ultrastructure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630454. [PMID: 39763716 PMCID: PMC11703246 DOI: 10.1101/2024.12.27.630454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Biomolecular condensates play key roles in the spatiotemporal regulation of cellular processes. Yet, the relationship between atomic features and condensate function remains poorly understood. We studied this relationship using the polar organizing protein Z (PopZ) as a model system, revealing how its material properties and cellular function depend on its ultrastructure. We revealed PopZ's hierarchical assembly into a filamentous condensate by integrating cryo-electron tomography, biochemistry, single-molecule techniques, and molecular dynamics simulations. The helical domain drives filamentation and condensation, while the disordered domain inhibits them. Phase-dependent conformational changes prevent interfilament contacts in the dilute phase and expose client binding sites in the dense phase. These findings establish a multiscale framework that links molecular interactions and condensate ultrastructure to macroscopic material properties that drive cellular function.
Collapse
Affiliation(s)
- Daniel Scholl
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tumara Boyd
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew P. Latham
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alexandra Salazar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Asma Khan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for Infectious Disease Imaging, National Institutes of Health, Clinical Center, 10 Center Drive, Bethesda, MD 20892, USA
| | - Steven Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA
- Center for Alzheimer’s and Neurodegenerative Diseases (CAND), Texas Children’s Hospital, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX 77030, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Donghyun Park
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Keren Lasker
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
17
|
Sun YM, Zhu SX, Chen XT, Pan Q, An Y, Chen TQ, Huang HJ, Pu KJ, Lian JY, Zhao WL, Wang WT, Chen YQ. lncRNAs maintain the functional phase state of nucleolar prion-like protein to facilitate rRNA processing. Mol Cell 2024; 84:4878-4895.e10. [PMID: 39579766 DOI: 10.1016/j.molcel.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/17/2024] [Accepted: 10/25/2024] [Indexed: 11/25/2024]
Abstract
Liquid-to-solid phase transition of proteins with prion-like domains (PLDs) has been associated with neurodegenerative diseases and aging. High protein concentration is one important aspect triggering the transition; however, several prion-like proteins, including fibrillarin (FBL), an important phase-separated protein in the nucleolus for pre-rRNA processing, show relatively high expression levels in certain cells, especially cancer cells, without obvious phase transitions and growth arrest. How cells maintain prion-like protein proteostasis is still unknown. Here, we attempt to answer the question, with FBL as an example. We find that lncRNA DNAJC3-AS1 can buffer the behavior of FBL condensation and maintain the state and function of fibrillar component/dense fibrillar component (FC/DFC) units in human cell lines through two mechanisms, not only facilitating FBL condensation but also inhibiting excessive aggregation by binding multiple PLDs and partially blocking their interactions. We propose that lncRNAs could supply buffered systems to sustain functional phase states of prion-like proteins.
Collapse
Affiliation(s)
- Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shun-Xin Zhu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-Tong Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Pan
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan An
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tian-Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Heng-Jing Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ke-Jia Pu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun-Yi Lian
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wen-Long Zhao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
18
|
Geisterfer ZM, Jalihal AP, Cole SJ, Gladfelter AS. Condensates act as translation hubs to coordinate multinucleate cell growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628219. [PMID: 39763723 PMCID: PMC11702524 DOI: 10.1101/2024.12.12.628219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Coordination between growth and division is a fundamental feature of cells. In many syncytia, cell growth must couple with multiple nuclear divisions in one cytoplasm. In the fungus, Ashbya gossypii, cell-cycle progression and hyphal elongation require condensates formed by the protein Whi3 in complex with distinct mRNA species. We hypothesized the condensates may act through local translation regulation and find that Whi3 target mRNAs show distinct spatial biases in translation in vivo. Whi3-RNA condensates can both promote and repress RNA translation in an RNA- and condensate size-dependent manner in vitro. Interestingly, we observe a sub-condensate enrichment of translation that is tunable by RNA valency and protein phospho-state. Together, these data suggest that Whi3 condensates generate a continuum of translation states, resulting in asynchronous nuclear divisions coordinated with growth. This local regulation requires a minimal complement of molecular components at the nano scale to support global coordination at the cell scale.
Collapse
Affiliation(s)
| | | | - Sierra J. Cole
- Department of Cell Biology, Duke University, Durham, NC 27710
- Department of Biochemistry and Biophysics, UNC Chapel Hill, NC 27517
| | | |
Collapse
|
19
|
Seim I, Zhang V, Jalihal AP, Stormo BM, Cole SJ, Ekena J, Nguyen HT, Thirumalai D, Gladfelter AS. RNA encodes physical information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627970. [PMID: 39713325 PMCID: PMC11661273 DOI: 10.1101/2024.12.11.627970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Most amino acids are encoded by multiple codons, making the genetic code degenerate. Synonymous mutations affect protein translation and folding, but their impact on RNA itself is often neglected. We developed a genetic algorithm that introduces synonymous mutations to control the diversity of structures sampled by an mRNA. The behavior of the designed mRNAs reveals a physical code layered in the genetic code. We find that mRNA conformational heterogeneity directs physical properties and functional outputs of RNA-protein complexes and biomolecular condensates. The role of structure and disorder of proteins in biomolecular condensates is well appreciated, but we find that RNA conformational heterogeneity is equally important. This feature of RNA enables both evolution and engineers to build cellular structures with specific material and responsive properties.
Collapse
Affiliation(s)
- Ian Seim
- Duke University, Department of Cell Biology, Durham, NC
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Vita Zhang
- Duke University, Department of Cell Biology, Durham, NC
| | | | | | | | - Joanne Ekena
- Duke University, Department of Cell Biology, Durham, NC
| | | | | | | |
Collapse
|
20
|
Aierken D, Joseph JA. Accelerated Simulations Reveal Physicochemical Factors Governing Stability and Composition of RNA Clusters. J Chem Theory Comput 2024; 20:10209-10222. [PMID: 39505326 PMCID: PMC11603615 DOI: 10.1021/acs.jctc.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Under certain conditions, RNA repeat sequences phase separate, yielding protein-free biomolecular condensates. Importantly, RNA repeat sequences have also been implicated in neurological disorders, such as Huntington's disease. Thus, mapping repeat sequences to their phase behavior, functions, and dysfunctions is an active area of research. However, despite several advances, it remains challenging to characterize the RNA phase behavior at a submolecular resolution. Here, we have implemented a residue-resolution coarse-grained model in LAMMPS─that incorporates both the RNA sequence and structure─to study the clustering propensities of protein-free RNA systems. Importantly, we achieve a multifold speedup in the simulation time compared to previous work. Leveraging this efficiency, we study the clustering propensity of all 20 nonredundant trinucleotide repeat sequences. Our results align with findings from experiments, emphasizing that canonical base-pairing and G-U wobble pairs play dominant roles in regulating cluster formation of RNA repeat sequences. Strikingly, we find strong entropic contributions to the stability and composition of RNA clusters, which is demonstrated for single-component RNA systems as well as binary mixtures of trinucleotide repeats. Additionally, we investigate the clustering behaviors of trinucleotide (odd) repeats and their quadranucleotide (even) counterparts. We observe that odd repeats exhibit stronger clustering tendencies, attributed to the presence of consecutive base pairs in their sequences that are disrupted in even repeat sequences. Altogether, our work extends the set of computational tools for probing RNA cluster formation at submolecular resolution and uncovers physicochemical principles that govern the stability and composition of the resulting clusters.
Collapse
Affiliation(s)
- Dilimulati Aierken
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn−Darling
Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Jerelle A. Joseph
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn−Darling
Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
21
|
Wang C, Kilgore HR, Latham AP, Zhang B. Nonspecific Yet Selective Interactions Contribute to Small Molecule Condensate Binding. J Chem Theory Comput 2024; 20:10247-10258. [PMID: 39534915 DOI: 10.1021/acs.jctc.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Biomolecular condensates are essential in various cellular processes, and their misregulation has been demonstrated to underlie disease. Small molecules that modulate condensate stability and material properties offer promising therapeutic approaches, but mechanistic insights into their interactions with condensates remain largely lacking. We employ a multiscale approach to enable long-time, equilibrated all-atom simulations of various condensate-ligand systems. Systematic characterization of the ligand binding poses reveals that condensates can form diverse and heterogeneous chemical environments with one or multiple chains to bind small molecules. Unlike traditional protein-ligand interactions, these chemical environments are dominated by nonspecific hydrophobic interactions. Nevertheless, the chemical environments feature unique amino acid compositions and physicochemical properties that favor certain small molecules over others, resulting in varied ligand partitioning coefficients within condensates. Notably, different condensates share similar sets of chemical environments but at different populations. This population shift drives ligand selectivity toward specific condensates. Our approach can enhance the interpretation of experimental screening data and may assist in the rational design of small molecules targeting specific condensates.
Collapse
Affiliation(s)
- Cong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Henry R Kilgore
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, California 94143, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Li X, Syed I, Zhang Z, Adhikari R, Tang D, Ko S, Liu Z, Chen1 L. CELF2 promotes tau exon 10 inclusion via hinge domain-mediated nuclear condensation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621395. [PMID: 39553957 PMCID: PMC11566031 DOI: 10.1101/2024.11.02.621395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Alternative splicing is a fundamental process that contributes to the functional diversity and complexity of proteins. The regulation of each alternative splicing event involves the coordinated action of multiple RNA-binding proteins, creating a diverse array of alternatively spliced products. Dysregulation of alternative splicing is associated with various diseases, including neurodegeneration. Here we demonstrate that CELF2, a splicing regulator and a GWAS-identified risk factor for Alzheimer's disease, binds to mRNAs associated with neurodegenerative diseases, with a specific interaction observed in the intron adjacent to exon 10 on Tau mRNA. Loss of CELF2 in the mouse brain results in a decreased inclusion of Tau exon 10, leading to a reduced 4R:3R ratio. Further exploration shows that the hinge domain of CELF2 possesses an intrinsically disordered region (IDR), which mediates CELF2 condensation and function. The functionality of IDR in regulating CELF2 function is underscored by its substitutability with IDRs from FUS and TAF15. Using TurboID we identified proteins that interact with CELF2 through its IDR. We revealed that CELF2 co-condensate with NOVA2 and SFPQ, which coordinate with CELF2 to regulate the alternative splicing of Tau exon 10. A negatively charged residue within the IDR (D388), which is conserved among CELF proteins, is critical for CELF2 condensate formation, interactions with NOVA2 and SFPQ, and function in regulating tau exon 10 splicing. Our data allow us to propose that CELF2 regulates Tau alternative splicing by forming condensates through its IDR with other splicing factors, and that the composition of the proteins within the condensates determines the outcomes of alternative splicing events.
Collapse
Affiliation(s)
- Xin Li
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ishana Syed
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhao Zhang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Rashmi Adhikari
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Dan Tang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - SuHyuk Ko
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lizhen Chen1
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
23
|
Liang T, Dong Y, Cheng I, Wen P, Li F, Liu F, Wu Q, Ren E, Liu P, Li H, Gu Z. In situ formation of biomolecular condensates as intracellular drug reservoirs for augmenting chemotherapy. Nat Biomed Eng 2024; 8:1469-1482. [PMID: 39271933 DOI: 10.1038/s41551-024-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/10/2024] [Indexed: 09/15/2024]
Abstract
Biomolecular condensates, which arise from liquid-liquid phase separation within cells, may provide a means of enriching and prolonging the retention of small-molecule drugs within cells. Here we report a method for the controlled in situ formation of biomolecular condensates as reservoirs for the enrichment and retention of chemotherapeutics in cancer cells, and show that the approach can be leveraged to enhance antitumour efficacies in mice with drug-resistant tumours. The method involves histones as positively charged proteins and doxorubicin-intercalated DNA strands bioorthogonally linked via a click-to-release reaction between trans-cyclooctene and tetrazine groups. The reaction temporarily impaired the phase separation of histones in vitro, favoured the initiation of liquid-liquid phase separation within cells and led to the formation of biomolecular condensates that were sufficiently large to be retained within tumour cells. The controlled formation of biomolecular condensates as drug reservoirs within cells may offer new options for boosting the efficacies of cancer therapies.
Collapse
Affiliation(s)
- Tingxizi Liang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuxiang Dong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Irina Cheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ping Wen
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fengqin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qing Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - En Ren
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hongjun Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Jalihal AP, Geisterfer ZM, Gladfelter AS. RNAs kiss and translate in germ granules. Nat Cell Biol 2024; 26:1828-1829. [PMID: 39354133 DOI: 10.1038/s41556-024-01502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Affiliation(s)
- Ameya P Jalihal
- Department of Cell Biology, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
25
|
Bose M, Rankovic B, Mahamid J, Ephrussi A. An architectural role of specific RNA-RNA interactions in oskar granules. Nat Cell Biol 2024; 26:1934-1942. [PMID: 39354131 PMCID: PMC11567897 DOI: 10.1038/s41556-024-01519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/04/2024] [Indexed: 10/03/2024]
Abstract
Ribonucleoprotein (RNP) granules are membraneless condensates that organize the intracellular space by compartmentalization of specific RNAs and proteins. Studies have shown that RNA tunes the phase behaviour of RNA-binding proteins, but the role of intermolecular RNA-RNA interactions in RNP granules in vivo remains less explored. Here we determine the role of a sequence-specific RNA-RNA kissing-loop interaction in assembly of mesoscale oskar RNP granules in the female Drosophila germline. We show that a two-nucleotide mutation that disrupts kissing-loop-mediated oskar messenger RNA dimerization impairs condensate formation in vitro and oskar granule assembly in the developing oocyte, leading to defective posterior localization of the RNA and abrogation of oskar-associated processing bodies upon nutritional stress. This specific trans RNA-RNA interaction acts synergistically with the scaffold RNA-binding protein, Bruno, in driving condensate assembly. Our study highlights the architectural contribution of an mRNA and its specific secondary structure and tertiary interactions to the formation of an RNP granule that is essential for embryonic development.
Collapse
Affiliation(s)
- Mainak Bose
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Branislava Rankovic
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
26
|
Tants JN, Schlundt A. The role of structure in regulatory RNA elements. Biosci Rep 2024; 44:BSR20240139. [PMID: 39364891 PMCID: PMC11499389 DOI: 10.1042/bsr20240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/05/2024] Open
Abstract
Regulatory RNA elements fulfill functions such as translational regulation, control of transcript levels, and regulation of viral genome replication. Trans-acting factors (i.e., RNA-binding proteins) bind the so-called cis elements and confer functionality to the complex. The specificity during protein-RNA complex (RNP) formation often exploits the structural plasticity of RNA. Functional integrity of cis-trans pairs depends on the availability of properly folded RNA elements, and RNA conformational transitions can cause diseases. Knowledge of RNA structure and the conformational space is needed for understanding complex formation and deducing functional effects. However, structure determination of RNAs under in vivo conditions remains challenging. This review provides an overview of structured eukaryotic and viral RNA cis elements and discusses the effect of RNA structural equilibria on RNP formation. We showcase implications of RNA structural changes for diseases, outline strategies for RNA structure-based drug targeting, and summarize the methodological toolbox for deciphering RNA structures.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| |
Collapse
|
27
|
Haller CJ, Acker J, Arguello AE, Borodavka A. Phase separation and viral factories: unveiling the physical processes supporting RNA packaging in dsRNA viruses. Biochem Soc Trans 2024; 52:2101-2112. [PMID: 39324618 PMCID: PMC11555692 DOI: 10.1042/bst20231304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Understanding of the physicochemical properties and functions of biomolecular condensates has rapidly advanced over the past decade. More recently, many RNA viruses have been shown to form cytoplasmic replication factories, or viroplasms, via phase separation of their components, akin to numerous cellular membraneless organelles. Notably, diverse viruses from the Reoviridae family containing 10-12 segmented double-stranded RNA genomes induce the formation of viroplasms in infected cells. Little is known about the inner workings of these membraneless cytoplasmic inclusions and how they may support stoichiometric RNA assembly in viruses with segmented RNA genomes, raising questions about the roles of phase separation in coordinating viral genome packaging. Here, we discuss how the molecular composition of viroplasms determines their properties, highlighting the interplay between RNA structure, RNA remodelling, and condensate self-organisation. Advancements in RNA structural probing and theoretical modelling of condensates can reveal the mechanisms through which these ribonucleoprotein complexes support the selective enrichment and stoichiometric assembly of distinct viral RNAs.
Collapse
Affiliation(s)
- Cyril J. Haller
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
| | - Julia Acker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
| | - A. Emilia Arguello
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
| | - Alexander Borodavka
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
- Department of Biochemistry, University of Cambridge, Cambridge, U.K
| |
Collapse
|
28
|
Sahoo BR, Deng X, Wong EL, Clark N, Yang H, Subramanian V, Guzman BB, Harris SE, Dehury B, Miyashita E, Hoff JD, Kocaman V, Saito H, Dominguez D, Plavec J, Bardwell JCA. Visualizing liquid-liquid phase transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.09.561572. [PMID: 39554013 PMCID: PMC11565804 DOI: 10.1101/2023.10.09.561572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Liquid-liquid phase condensation governs a wide range of protein-protein and protein-RNA interactions in vivo and drives the formation of membrane-less compartments such as the nucleolus and stress granules. We have a broad overview of the importance of multivalency and protein disorder in driving liquid-liquid phase transitions. However, the large and complex nature of key proteins and RNA components involved in forming condensates such as stress granules has inhibited a detailed understanding of how condensates form and the structural interactions that take place within them. In this work, we focused on the small human SERF2 protein. We show here that SERF2 contributes to the formation of stress granules. We also show that SERF2 specifically interacts with non-canonical tetrahelical RNA structures called G-quadruplexes, structures which have previously been linked to stress granule formation. The excellent biophysical amenability of both SERF2 and RNA G4 quadruplexes has allowed us to obtain a high-resolution visualization of the multivalent protein-RNA interactions involved in liquid-liquid phase transitions. Our visualization has enabled us to characterize the role that protein disorder plays in these transitions, identify the specific contacts involved, and describe how these interactions impact the structural dynamics of the components involved in liquid-liquid phase transitions, thus enabling a detailed understanding of the structural transitions involved in early stages of ribonucleoprotein condensate formation.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Xiexiong Deng
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Ee Lin Wong
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Nathan Clark
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Harry Yang
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | | | - Bryan B Guzman
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC-27514, USA
| | - Sarah E Harris
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC-27514, USA
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal-576104, India
| | - Emi Miyashita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto-6068507, Japan
| | - J Damon Hoff
- Department of Biophysics, University of Michigan, Ann Arbor, MI-48109, USA
| | - Vojč Kocaman
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Hirohide Saito
- Center for iPS Cell Research and Application, Kyoto University, Kyoto-6068507, Japan
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC-27514, USA
| | - Janez Plavec
- National Institute of Chemistry, Ljubljana, Slovenia
| | - James C A Bardwell
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| |
Collapse
|
29
|
Wadsworth GM, Srinivasan S, Lai LB, Datta M, Gopalan V, Banerjee PR. RNA-driven phase transitions in biomolecular condensates. Mol Cell 2024; 84:3692-3705. [PMID: 39366355 PMCID: PMC11604179 DOI: 10.1016/j.molcel.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
RNAs and RNA-binding proteins can undergo spontaneous or active condensation into phase-separated liquid-like droplets. These condensates are cellular hubs for various physiological processes, and their dysregulation leads to diseases. Although RNAs are core components of many cellular condensates, the underlying molecular determinants for the formation, regulation, and function of ribonucleoprotein condensates have largely been studied from a protein-centric perspective. Here, we highlight recent developments in ribonucleoprotein condensate biology with a particular emphasis on RNA-driven phase transitions. We also present emerging future directions that might shed light on the role of RNA condensates in spatiotemporal regulation of cellular processes and inspire bioengineering of RNA-based therapeutics.
Collapse
Affiliation(s)
- Gable M Wadsworth
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Sukanya Srinivasan
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Lien B Lai
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Moulisubhro Datta
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Priya R Banerjee
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
30
|
Wu P, Li Y. Prion-like Proteins in Plants: Key Regulators of Development and Environmental Adaptation via Phase Separation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2666. [PMID: 39339640 PMCID: PMC11435361 DOI: 10.3390/plants13182666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Prion-like domains (PrLDs), a unique type of low-complexity domain (LCD) or intrinsically disordered region (IDR), have been shown to mediate protein liquid-liquid phase separation (LLPS). Recent research has increasingly focused on how prion-like proteins (PrLPs) regulate plant growth, development, and stress responses. This review provides a comprehensive overview of plant PrLPs. We analyze the structural features of PrLPs and the mechanisms by which PrLPs undergo LLPS. Through gene ontology (GO) analysis, we highlight the diverse molecular functions of PrLPs and explore how PrLPs influence plant development and stress responses via phase separation. Finally, we address unresolved questions about PrLP regulatory mechanisms, offering prospects for future research.
Collapse
Affiliation(s)
- Peisong Wu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China;
| | - Yihao Li
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China;
- Center for Biological Science and Technology, Guangdong Zhuhai–Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
31
|
Chattaraj A, Baltaci Z, Chung S, Mayer BJ, Loew LM, Ditlev JA. Measurement of solubility product reveals the interplay of oligomerization and self-association for defining condensate formation. Mol Biol Cell 2024; 35:ar122. [PMID: 39046778 PMCID: PMC11449392 DOI: 10.1091/mbc.e24-01-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Cellular condensates often consist of 10s to 100s of distinct interacting molecular species. Because of the complexity of these interactions, predicting the point at which they will undergo phase separation is daunting. Using experiments and computation, we therefore studied a simple model system consisting of polySH3 and polyPRM designed for pentavalent heterotypic binding. We tested whether the peak solubility product, or the product of the dilute phase concentration of each component, is a predictive parameter for the onset of phase separation. Titrating up equal total concentrations of each component showed that the maximum solubility product does approximately coincide with the threshold for phase separation in both experiments and models. However, we found that measurements of dilute phase concentration include small oligomers and monomers; therefore, a quantitative comparison of the experiments and models required inclusion of small oligomers in the model analysis. Even with the inclusion of small polyPRM and polySH3 oligomers, models did not predict experimental results. This led us to perform dynamic light scattering experiments, which revealed homotypic binding of polyPRM. Addition of this interaction to our model recapitulated the experimentally observed asymmetry. Thus, comparing experiments with simulation reveals that the solubility product can be predictive of the interactions underlying phase separation, even if small oligomers and low affinity homotypic interactions complicate the analysis.
Collapse
Affiliation(s)
- Aniruddha Chattaraj
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Zeynep Baltaci
- Program in Molecular Medicine, Toronto, ON M5G 1E8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Steve Chung
- Program in Molecular Medicine, Toronto, ON M5G 1E8, Canada
| | - Bruce J. Mayer
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
- Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Leslie M. Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Jonathon A. Ditlev
- Program in Molecular Medicine, Toronto, ON M5G 1E8, Canada
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1E8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
32
|
Li Y, Dong B. Exploring liquid-liquid phase separation-related diagnostic biomarkers in osteoarthritis based on machine learning algorithms and experiment. Immunobiology 2024; 229:152825. [PMID: 38997894 DOI: 10.1016/j.imbio.2024.152825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/05/2024] [Accepted: 06/08/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage degeneration and joint inflammation. Liquid-liquid phase separation (LLPS), a biophysical process involved in cellular organization, has recently gained attention in OA research. However, the relationship between LLPS and OA remains poorly understood. METHODS We analyzed gene expression data from the GSE48556 dataset to identify LLPS-related genes associated with OA. Differential expression analysis, enrichment analyses, and machine learning algorithms were employed to explore the functional significance of LLPS-related genes in OA and then construct a diagnostic model for OA. In addition, IL-1β as a pro-inflammatory factor to establish an in vitro OA model, and the protein expression levels of OA biomarkers were detected by western blot. RESULTS A total of 145 LLPS-related genes were screened in OA samples. Enrichment analyses revealed these genes were mainly enriched in mRNA metabolic processes, cytoplasmic granules, and insulin resistance. Four characteristic genes for OA were selected by using machine learning algorithms, including ADRB2, H3F3B, GNL3L, and PELO. These genes showed satisfactory diagnostic values. Furthermore, there were association between these biomarkers and immune cells, including T cells CD8 and monocytes. In vitro experiments showed that IL-1β stimulation significantly inhibited the cell viability of chondrocytes and enhanced the levels of pro-inflammatory factors, that could mimic the inflammatory state of OA. The expression levels of GNL3L and H3F3B proteins in IL-1β group were obviously lower than those in control group, while levels of ADRB2 and PELO were higher, which was consistent with the results of bioinformatics analysis. CONCLUSION Our study identifies LLPS-related genes as potential diagnostic biomarkers for OA. These findings provide insights into the molecular mechanisms underlying OA pathogenesis and offer opportunities for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yue Li
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Bo Dong
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China.
| |
Collapse
|
33
|
Giudice J, Jiang H. Splicing regulation through biomolecular condensates and membraneless organelles. Nat Rev Mol Cell Biol 2024; 25:683-700. [PMID: 38773325 PMCID: PMC11843573 DOI: 10.1038/s41580-024-00739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Biomolecular condensates, sometimes also known as membraneless organelles (MLOs), can form through weak multivalent intermolecular interactions of proteins and nucleic acids, a process often associated with liquid-liquid phase separation. Biomolecular condensates are emerging as sites and regulatory platforms of vital cellular functions, including transcription and RNA processing. In the first part of this Review, we comprehensively discuss how alternative splicing regulates the formation and properties of condensates, and conversely the roles of biomolecular condensates in splicing regulation. In the second part, we focus on the spatial connection between splicing regulation and nuclear MLOs such as transcriptional condensates, splicing condensates and nuclear speckles. We then discuss key studies showing how splicing regulation through biomolecular condensates is implicated in human pathologies such as neurodegenerative diseases, different types of cancer, developmental disorders and cardiomyopathies, and conclude with a discussion of outstanding questions pertaining to the roles of condensates and MLOs in splicing regulation and how to experimentally study them.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
34
|
Ahmed R, Liang M, Hudson RP, Rangadurai AK, Huang SK, Forman-Kay JD, Kay LE. Atomic resolution map of the solvent interactions driving SOD1 unfolding in CAPRIN1 condensates. Proc Natl Acad Sci U S A 2024; 121:e2408554121. [PMID: 39172789 PMCID: PMC11363255 DOI: 10.1073/pnas.2408554121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Biomolecules can be sequestered into membrane-less compartments, referred to as biomolecular condensates. Experimental and computational methods have helped define the physical-chemical properties of condensates. Less is known about how the high macromolecule concentrations in condensed phases contribute "solvent" interactions that can remodel the free-energy landscape of other condensate-resident proteins, altering thermally accessible conformations and, in turn, modulating function. Here, we use solution NMR spectroscopy to obtain atomic resolution insights into the interactions between the immature form of superoxide dismutase 1 (SOD1), which can mislocalize and aggregate in stress granules, and the RNA-binding protein CAPRIN1, a component of stress granules. NMR studies of CAPRIN1:SOD1 interactions, focused on both unfolded and folded SOD1 states in mixed phase and demixed CAPRIN1-based condensates, establish that CAPRIN1 shifts the SOD1 folding equilibrium toward the unfolded state through preferential interactions with the unfolded ensemble, with little change to the structure of the folded conformation. Key contacts between CAPRIN1 and the H80-H120 region of unfolded SOD1 are identified, as well as SOD1 interaction sites near both the arginine-rich and aromatic-rich regions of CAPRIN1. Unfolding of immature SOD1 in the CAPRIN1 condensed phase is shown to be coupled to aggregation, while a more stable zinc-bound, dimeric form of SOD1 is less susceptible to unfolding when solvated by CAPRIN1. Our work underscores the impact of the condensate solvent environment on the conformational states of resident proteins and supports the hypothesis that ALS mutations that decrease metal binding or dimerization function as drivers of aggregation in condensates.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - Mingyang Liang
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Rhea P. Hudson
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - Atul K. Rangadurai
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - Shuya Kate Huang
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - Lewis E. Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| |
Collapse
|
35
|
Stormo BM, McLaughlin GA, Jalihal AP, Frederick LK, Cole SJ, Seim I, Dietrich FS, Chilkoti A, Gladfelter AS. Intrinsically disordered sequences can tune fungal growth and the cell cycle for specific temperatures. Curr Biol 2024; 34:3722-3734.e7. [PMID: 39089255 PMCID: PMC11372857 DOI: 10.1016/j.cub.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/16/2024] [Accepted: 07/02/2024] [Indexed: 08/03/2024]
Abstract
Temperature can impact every reaction essential to a cell. For organisms that cannot regulate their own temperature, adapting to temperatures that fluctuate unpredictably and on variable timescales is a major challenge. Extremes in the magnitude and frequency of temperature changes are increasing across the planet, raising questions as to how the biosphere will respond. To examine mechanisms of adaptation to temperature, we collected wild isolates from different climates of the fungus Ashbya gossypii, which has a compact genome of only ∼4,600 genes. We found control of the nuclear division cycle and polarized morphogenesis, both critical processes for fungal growth, were temperature sensitive and varied among the isolates. The phenotypes were associated with naturally varying sequences within the glutamine-rich region (QRR) IDR of an RNA-binding protein called Whi3. This protein regulates both nuclear division and polarized growth via its ability to form biomolecular condensates. In cells and in cell-free reconstitution assays, we found that temperature tunes the properties of Whi3-based condensates. Exchanging Whi3 sequences between isolates was sufficient to rescue temperature-sensitive phenotypes, and specifically, a heptad repeat sequence within the QRR confers temperature-sensitive behavior. Together, these data demonstrate that sequence variation in the size and composition of an IDR can promote cell adaptation to growth at specific temperature ranges. These data demonstrate the power of IDRs as tuning knobs for rapid adaptation to environmental fluctuations.
Collapse
Affiliation(s)
- Benjamin M Stormo
- Duke University, Department of Cell Biology, 308 Research Drive, Durham, NC 27705, USA
| | - Grace A McLaughlin
- Duke University, Department of Cell Biology, 308 Research Drive, Durham, NC 27705, USA; University of North Carolina-Chapel Hill, Department of Biology, 120 South Road, Chapel Hill, NC 27599, USA
| | - Ameya P Jalihal
- Duke University, Department of Cell Biology, 308 Research Drive, Durham, NC 27705, USA
| | - Logan K Frederick
- University of North Carolina-Chapel Hill, Department of Biology, 120 South Road, Chapel Hill, NC 27599, USA
| | - Sierra J Cole
- Duke University, Department of Cell Biology, 308 Research Drive, Durham, NC 27705, USA; University of North Carolina-Chapel Hill, Department of Biochemistry and Biophysics, 120 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Ian Seim
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Fred S Dietrich
- Duke University, Department of Molecular Genetics and Microbiology, 213 Research Drive, Durham, NC 27710, USA
| | - Ashutosh Chilkoti
- Duke University, Department of Biomedical Engineering, 101 Science Drive, Durham, NC 27705, USA
| | - Amy S Gladfelter
- Duke University, Department of Cell Biology, 308 Research Drive, Durham, NC 27705, USA.
| |
Collapse
|
36
|
Zhang B, Wang C, Kilgore H, Latham A. Non-specific yet selective interactions contribute to small molecule condensate partitioning behavior. RESEARCH SQUARE 2024:rs.3.rs-4784242. [PMID: 39184067 PMCID: PMC11343289 DOI: 10.21203/rs.3.rs-4784242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biomolecular condensates are essential in various cellular processes, and their misregulation has been demonstrated to be underly disease. Small molecules that modulate condensate stability and material properties offer promising therapeutic approaches, but mechanistic insights into their interactions with condensates remain largely lacking. We employ a multiscale approach to enable long-time, equilibrated all-atom simulations of various condensate-ligand systems. Systematic characterization of the ligand binding poses reveals that condensates can form diverse and heterogeneous chemical environments with one or multiple chains to bind small molecules. Unlike traditional protein-ligand interactions, these chemical environments are dominated by non-specific hydrophobic interactions. Nevertheless, the chemical environments feature unique amino acid compositions and physicochemical properties that favor certain small molecules over others, resulting in varied ligand partitioning coefficients within condensates. Notably, different condensates share similar sets of chemical environments but at different populations. This population shift drives ligand selectivity towards specific condensates. Our approach can enhance the interpretation of experimental screening data and may assist in the rational design of small molecules targeting specific condensates.
Collapse
|
37
|
Chen F, Jacobs WM. Emergence of Multiphase Condensates from a Limited Set of Chemical Building Blocks. J Chem Theory Comput 2024. [PMID: 39078082 DOI: 10.1021/acs.jctc.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Biomolecules composed of a limited set of chemical building blocks can colocalize into distinct, spatially segregated compartments known as biomolecular condensates. While many condensates are known to form spontaneously via phase separation, it has been unclear how immiscible condensates with precisely controlled molecular compositions assemble from a small number of chemical building blocks. We address this question by establishing a connection between the specificity of biomolecular interactions and the thermodynamic stability of coexisting condensates. By computing the minimum interaction specificity required to assemble condensates with target molecular compositions, we show how to design heteropolymer mixtures that produce compositionally complex condensates by using only a small number of monomer types. Our results provide insight into how compositional specificity arises in naturally occurring multicomponent condensates and demonstrate a rational algorithm for engineering complex artificial condensates from simple chemical building blocks.
Collapse
Affiliation(s)
- Fan Chen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - William M Jacobs
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
38
|
Rangadurai AK, Ruetz L, Ahmed R, Lo K, Tollinger M, Forman-Kay JD, Kreutz C, Kay LE. Phase Separation Modulates the Thermodynamics and Kinetics of RNA Hybridization. J Am Chem Soc 2024; 146:19686-19689. [PMID: 38991204 DOI: 10.1021/jacs.4c06530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Biomolecular condensates can influence cellular function in a number of ways, including by changing the structural dynamics and conformational equilibria of the molecules partitioned within them. Here we use methyl transverse relaxation optimized spectroscopy (methyl-TROSY) NMR in conjunction with 2'-O-methyl labeling of RNA to characterize the thermodynamics and kinetics of RNA-RNA base pairing in condensates formed by the C-terminal intrinsically disordered region of CAPRIN1, an RNA-binding protein involved in RNA transport, translation, and stability. CAPRIN1 condensates destabilize RNA-RNA base pairing, resulting from a ∼270-fold decrease and a concomitant ∼15-fold increase in the on- and off-rates for duplex formation, respectively. The ∼30-fold slower diffusion of RNA single strands within the condensed phase partially accounts for the reduced on-rate, but the further ∼9-fold reduction likely reflects shedding of CAPRIN1 chains that are interacting with the RNA prior to hybridization. Our study emphasizes the important role of protein solvation in modulating nucleic acid recognition processes inside condensates.
Collapse
Affiliation(s)
- Atul K Rangadurai
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Lisa Ruetz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Rashik Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Kristen Lo
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Julie D Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
39
|
Geng Y, Liu C, Xu N, Suen MC, Miao H, Xie Y, Zhang B, Chen X, Song Y, Wang Z, Cai Q, Zhu G. Crystal structure of a tetrameric RNA G-quadruplex formed by hexanucleotide repeat expansions of C9orf72 in ALS/FTD. Nucleic Acids Res 2024; 52:7961-7970. [PMID: 38860430 PMCID: PMC11260476 DOI: 10.1093/nar/gkae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
The abnormal GGGGCC hexanucleotide repeat expansions (HREs) in C9orf72 cause the fatal neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal dementia. The transcribed RNA HREs, short for r(G4C2)n, can form toxic RNA foci which sequestrate RNA binding proteins and impair RNA processing, ultimately leading to neurodegeneration. Here, we determined the crystal structure of r(G4C2)2, which folds into a parallel tetrameric G-quadruplex composed of two four-layer dimeric G-quadruplex via 5'-to-5' stacking in coordination with a K+ ion. Notably, the two C bases locate at 3'- end stack on the outer G-tetrad with the assistance of two additional K+ ions. The high-resolution structure reported here lays a foundation in understanding the mechanism of neurological toxicity of RNA HREs. Furthermore, the atomic details provide a structural basis for the development of potential therapeutic agents against the fatal neurodegenerative diseases ALS/FTD.
Collapse
Affiliation(s)
- Yanyan Geng
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Changdong Liu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong, China
| | - Naining Xu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong, China
| | - Monica Ching Suen
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong, China
| | - Haitao Miao
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yuanyuan Xie
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bingchang Zhang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xueqin Chen
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yuanjian Song
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qixu Cai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Guang Zhu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Crawford RA, Eastham M, Pool MR, Ashe MP. Orchestrated centers for the production of proteins or "translation factories". WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1867. [PMID: 39048533 DOI: 10.1002/wrna.1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The mechanics of how proteins are generated from mRNA is increasingly well understood. However, much less is known about how protein production is coordinated and orchestrated within the crowded intracellular environment, especially in eukaryotic cells. Recent studies suggest that localized sites exist for the coordinated production of specific proteins. These sites have been termed "translation factories" and roles in protein complex formation, protein localization, inheritance, and translation regulation have been postulated. In this article, we review the evidence supporting the translation of mRNA at these sites, the details of their mechanism of formation, and their likely functional significance. Finally, we consider the key uncertainties regarding these elusive structures in cells. This article is categorized under: Translation Translation > Mechanisms RNA Export and Localization > RNA Localization Translation > Regulation.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew Eastham
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Martin R Pool
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
41
|
Prestwood PR, Yang M, Lewis GV, Balaratnam S, Yazdani K, Schneekloth JS. Competitive Microarray Screening Reveals Functional Ligands for the DHX15 RNA G-Quadruplex. ACS Med Chem Lett 2024; 15:814-821. [PMID: 38894923 PMCID: PMC11181508 DOI: 10.1021/acsmedchemlett.3c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 06/21/2024] Open
Abstract
RNAs are increasingly considered valuable therapeutic targets, and the development of methods to identify and validate both RNA targets and ligands is more important than ever. Here, we utilized a bioinformatic approach to identify a hairpin-containing RNA G-quadruplex (rG4) in the 5' untranslated region (5' UTR) of DHX15 mRNA. By using a novel competitive small molecule microarray (SMM) approach, we identified a compound that specifically binds to the DHX15 rG4 (K D = 12.6 ± 1.0 μM). This rG4 directly impacts translation of a DHX15 reporter mRNA in vitro, and binding of our compound (F1) to the structure inhibits translation up to 57% (IC50 = 22.9 ± 3.8 μM). This methodology allowed us to identify and target the mRNA of a cancer-relevant helicase with no known inhibitors. Our target identification method and the novelty of our screening approach make our work informative for future development of novel small molecule cancer therapeutics for RNA targets.
Collapse
Affiliation(s)
- Peri R. Prestwood
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Mo Yang
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Grace V. Lewis
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Sumirtha Balaratnam
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Kamyar Yazdani
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - John S. Schneekloth
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
42
|
Kodan N, Hussaini R, Weber SC, Kondev J, Mohapatra L. Transcription templated assembly of the nucleolus in the C. elegans embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597440. [PMID: 38895351 PMCID: PMC11185672 DOI: 10.1101/2024.06.06.597440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The nucleolus is a multicomponent structure made of RNA and proteins that serves as the site of ribosome biogenesis within the nucleus. It has been extensively studied as a prototype of a biomolecular condensate whose assembly is driven by phase separation. While the steady-state size of the nucleolus is quantitatively accounted for by the thermodynamics of phase separation, we show that experimental measurements of the assembly dynamics are inconsistent with a simple model of a phase-separating system relaxing to its equilibrium state. Instead, we show that the dynamics are well described by a model in which the transcription of ribosomal RNA actively drives nucleolar assembly. We find that our model of active transcription-templated assembly quantitatively accounts for the rapid kinetics observed in early embryos at different developmental stages, and for different RNAi perturbations of embryo size. Our model predicts a scaling of the time to assembly with the volume of the nucleus to the one-third power, which is confirmed by experimental data. Our study highlights the role of active processes such as transcription in controlling the placement and timing of assembly of membraneless organelles.
Collapse
Affiliation(s)
- Nishant Kodan
- School of Physics and Astronomy, College of Science, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Rabeya Hussaini
- Department of Physics, New York University, New York, NY 10003, USA
| | - Stephanie C Weber
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
- Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Lishibanya Mohapatra
- School of Physics and Astronomy, College of Science, Rochester Institute of Technology, Rochester, NY 14623, USA
| |
Collapse
|
43
|
Zacco E, Broglia L, Kurihara M, Monti M, Gustincich S, Pastore A, Plath K, Nagakawa S, Cerase A, Sanchez de Groot N, Tartaglia GG. RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding. Chem Rev 2024; 124:4734-4777. [PMID: 38579177 PMCID: PMC11046439 DOI: 10.1021/acs.chemrev.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 04/07/2024]
Abstract
This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.
Collapse
Affiliation(s)
- Elsa Zacco
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Laura Broglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Misuzu Kurihara
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michele Monti
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Stefano Gustincich
- Central
RNA Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Annalisa Pastore
- UK
Dementia Research Institute at the Maurice Wohl Institute of King’s
College London, London SE5 9RT, U.K.
| | - Kathrin Plath
- Department
of Biological Chemistry, David Geffen School
of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shinichi Nagakawa
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Andrea Cerase
- Blizard
Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, U.K.
- Unit
of Cell and developmental Biology, Department of Biology, Università di Pisa, 56123 Pisa, Italy
| | - Natalia Sanchez de Groot
- Unitat
de Bioquímica, Departament de Bioquímica i Biologia
Molecular, Universitat Autònoma de
Barcelona, 08193 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
- Catalan
Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
44
|
Gasior KI, Cogan NG. Untangling the Molecular Interactions Underlying Intracellular Phase Separation Using Combined Global Sensitivity Analyses. Bull Math Biol 2024; 86:60. [PMID: 38641666 PMCID: PMC11543755 DOI: 10.1007/s11538-024-01288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
Liquid-liquid phase separation is an intracellular mechanism by which molecules, usually proteins and RNAs, interact and then rapidly demix from the surrounding matrix to form membrane-less compartments necessary for cellular function. Occurring in both the cytoplasm and the nucleus, properties of the resulting droplets depend on a variety of characteristics specific to the molecules involved, such as valency, density, and diffusion within the crowded environment. Capturing these complexities in a biologically relevant model is difficult. To understand the nuanced dynamics between proteins and RNAs as they interact and form droplets, as well as the impact of these interactions on the resulting droplet properties, we turn to sensitivity analysis. In this work, we examine a previously published mathematical model of two RNA species competing for the same protein-binding partner. We use the combined analyses of Morris Method and Sobol' sensitivity analysis to understand the impact of nine molecular parameters, subjected to three different initial conditions, on two observable LLPS outputs: the time of phase separation and the composition of the droplet field. Morris Method is a screening method capable of highlighting the most important parameters impacting a given output, while the variance-based Sobol' analysis can quantify both the importance of a given parameter, as well as the other model parameters it interacts with, to produce the observed phenomena. Combining these two techniques allows Morris Method to identify the most important dynamics and circumvent the large computational expense associated with Sobol', which then provides more nuanced information about parameter relationships. Together, the results of these combined methodologies highlight the complicated protein-RNA relationships underlying both the time of phase separation and the composition of the droplet field. Sobol' sensitivity analysis reveals that observed spatial and temporal dynamics are due, at least in part, to high-level interactions between multiple (3+) parameters. Ultimately, this work discourages using a single measurement to extrapolate the value of any single rate or parameter value, while simultaneously establishing a framework in which to analyze and assess the impact of these small-scale molecular interactions on large-scale droplet properties.
Collapse
Affiliation(s)
- Kelsey I Gasior
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA.
| | - Nicholas G Cogan
- Department of Mathematics, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
45
|
Jung J, Tan C, Sugita Y. GENESIS CGDYN: large-scale coarse-grained MD simulation with dynamic load balancing for heterogeneous biomolecular systems. Nat Commun 2024; 15:3370. [PMID: 38643169 PMCID: PMC11032353 DOI: 10.1038/s41467-024-47654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
Residue-level coarse-grained (CG) molecular dynamics (MD) simulation is widely used to investigate slow biological processes that involve multiple proteins, nucleic acids, and their complexes. Biomolecules in a large simulation system are distributed non-uniformly, limiting computational efficiency with conventional methods. Here, we develop a hierarchical domain decomposition scheme with dynamic load balancing for heterogeneous biomolecular systems to keep computational efficiency even after drastic changes in particle distribution. These schemes are applied to the dynamics of intrinsically disordered protein (IDP) droplets. During the fusion of two droplets, we find that the changes in droplet shape correlate with the mixing of IDP chains. Additionally, we simulate large systems with multiple IDP droplets, achieving simulation sizes comparable to those observed in microscopy. In our MD simulations, we directly observe Ostwald ripening, a phenomenon where small droplets dissolve and their molecules redeposit into larger droplets. These methods have been implemented in CGDYN of the GENESIS software, offering a tool for investigating mesoscopic biological processes using the residue-level CG models.
Collapse
Affiliation(s)
- Jaewoon Jung
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Cheng Tan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan.
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
46
|
Lee M, Moon HC, Jeong H, Kim DW, Park HY, Shin Y. Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions. Nat Commun 2024; 15:3216. [PMID: 38622120 PMCID: PMC11018775 DOI: 10.1038/s41467-024-47442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Biomolecular condensates, often assembled through phase transition mechanisms, play key roles in organizing diverse cellular activities. The material properties of condensates, ranging from liquid droplets to solid-like glasses or gels, are key features impacting the way resident components associate with one another. However, it remains unclear whether and how different material properties would influence specific cellular functions of condensates. Here, we combine optogenetic control of phase separation with single-molecule mRNA imaging to study relations between phase behaviors and functional performance of condensates. Using light-activated condensation, we show that sequestering target mRNAs into condensates causes translation inhibition. Orthogonal mRNA imaging reveals highly transient nature of interactions between individual mRNAs and condensates. Tuning condensate composition and material property towards more solid-like states leads to stronger translational repression, concomitant with a decrease in molecular mobility. We further demonstrate that β-actin mRNA sequestration in neurons suppresses spine enlargement during chemically induced long-term potentiation. Our work highlights how the material properties of condensates can modulate functions, a mechanism that may play a role in fine-tuning the output of condensate-driven cellular activities.
Collapse
Affiliation(s)
- Min Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea
| | - Hyungseok C Moon
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Hyeonjeong Jeong
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA
| | - Dong Wook Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea.
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA.
| | - Yongdae Shin
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea.
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea.
| |
Collapse
|
47
|
Wang X, Li P, Wang R, Gao X. PseUpred-ELPSO Is an Ensemble Learning Predictor with Particle Swarm Optimizer for Improving the Prediction of RNA Pseudouridine Sites. BIOLOGY 2024; 13:248. [PMID: 38666860 PMCID: PMC11048358 DOI: 10.3390/biology13040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
RNA pseudouridine modification exists in different RNA types of many species, and it has a significant role in regulating the expression of biological processes. To understand the functional mechanisms for RNA pseudouridine sites, the accurate identification of pseudouridine sites in RNA sequences is essential. Although several fast and inexpensive computational methods have been proposed, the challenge of improving recognition accuracy and generalization still exists. This study proposed a novel ensemble predictor called PseUpred-ELPSO for improved RNA pseudouridine site prediction. After analyzing the nucleotide composition preferences between RNA pseudouridine site sequences, two feature representations were determined and fed into the stacking ensemble framework. Then, using five tree-based machine learning classifiers as base classifiers, 30-dimensional RNA profiles are constructed to represent RNA sequences, and using the PSO algorithm, the weights of the RNA profiles were searched to further enhance the representation. A logistic regression classifier was used as a meta-classifier to complete the final predictions. Compared to the most advanced predictors, the performance of PseUpred-ELPSO is superior in both cross-validation and the independent test. Based on the PseUpred-ELPSO predictor, a free and easy-to-operate web server has been established, which will be a powerful tool for pseudouridine site identification.
Collapse
Affiliation(s)
- Xiao Wang
- School of Computer Science and Technology, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450002, China; (X.W.); (P.L.)
- Henan Provincial Key Laboratory of Data Intelligence for Food Safety, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450002, China
| | - Pengfei Li
- School of Computer Science and Technology, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450002, China; (X.W.); (P.L.)
| | - Rong Wang
- School of Electronic Information, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450002, China;
| | - Xu Gao
- National Supercomputing Center in Zhengzhou, School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
48
|
Roy PS. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Ind Eng Chem Res 2024; 63:5414-5487. [DOI: 10.1021/acs.iecr.3c03830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Partha Sarathi Roy
- Division of Pharmaceutical Sciences, Health Sciences Building, University of Missouri─Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, United States
- Department of Pharmaceutics/Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd., Stockton, California 95211, United States
| |
Collapse
|
49
|
Guo D, Xiong Y, Fu B, Sha Z, Li B, Wu H. Liquid-Liquid phase separation in bacteria. Microbiol Res 2024; 281:127627. [PMID: 38262205 DOI: 10.1016/j.micres.2024.127627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Cells are the essential building blocks of living organisms, responsible for carrying out various biochemical reactions and performing specific functions. In eukaryotic cells, numerous membrane organelles have evolved to facilitate these processes by providing specific spatial locations. In recent years, it has also been discovered that membraneless organelles play a crucial role in the subcellular organization of bacteria, which are single-celled prokaryotic microorganisms characterized by their simple structure and small size. These membraneless organelles in bacteria have been found to undergo Liquid-Liquid phase separation (LLPS), a molecular mechanism that allows for their assembly. Through extensive research, the occurrence of LLPS and its role in the spatial organization of bacteria have been better understood. Various biomacromolecules have been identified to exhibit LLPS properties in different bacterial species. LLPS which is introduced into synthetic biology applies to bacteria has important implications, and three recent research reports have shed light on its potential applications in this field. Overall, this review investigates the molecular mechanisms of LLPS occurrence and its significance in bacteria while also considering the future prospects of implementing LLPS in synthetic biology.
Collapse
Affiliation(s)
- Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Bohao Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
50
|
Schieweck R, Götz M. Pan-cellular organelles and suborganelles-from common functions to cellular diversity? Genes Dev 2024; 38:98-114. [PMID: 38485267 PMCID: PMC10982711 DOI: 10.1101/gad.351337.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.
Collapse
Affiliation(s)
- Rico Schieweck
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, 38123 Povo, Italy;
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany;
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| |
Collapse
|