1
|
Choi I, Lee SH. Locomotion-dependent auditory gating to the parietal cortex guides multisensory decisions. Nat Commun 2025; 16:2308. [PMID: 40055344 PMCID: PMC11889129 DOI: 10.1038/s41467-025-57347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 02/13/2025] [Indexed: 05/13/2025] Open
Abstract
Decision-making in mammals fundamentally relies on integrating multiple sensory inputs, with conflicting information resolved flexibly based on a dominant sensory modality. However, the neural mechanisms underlying state-dependent changes in sensory dominance remain poorly understood. Our study demonstrates that locomotion in mice shifts auditory-dominant decisions toward visual dominance during audiovisual conflicts. Using circuit-specific calcium imaging and optogenetic manipulations, we found that weakened visual representation in the posterior parietal cortex (PPC) leads to auditory-dominant decisions in stationary mice. Prolonged locomotion, however, promotes visual dominance by inhibiting auditory cortical neurons projecting to the PPC (ACPPC). This shift is mediated by secondary motor cortical neurons projecting to the auditory cortex (M2AC), which specifically inhibit ACPPC neurons without affecting auditory cortical projections to the striatum (ACSTR). Our findings reveal the neural circuit mechanisms underlying auditory gating to the association cortex depending on locomotion states, providing insights into the state-dependent changes in sensory dominance during multisensory decision-making.
Collapse
Affiliation(s)
- Ilsong Choi
- Center for Synaptic Brain Dysfunctions, IBS, Daejeon, 34141, Republic of Korea
| | - Seung-Hee Lee
- Center for Synaptic Brain Dysfunctions, IBS, Daejeon, 34141, Republic of Korea.
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Guo H, Kuang S, Gail A. Sensorimotor environment but not task rule reconfigures population dynamics in rhesus monkey posterior parietal cortex. Nat Commun 2025; 16:1116. [PMID: 39900579 PMCID: PMC11791165 DOI: 10.1038/s41467-025-56360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Primates excel at mapping sensory inputs flexibly onto motor outcomes. We asked if the neural dynamics to support context-sensitive sensorimotor mapping generalizes or differs between different behavioral contexts that demand such flexibility. We compared reaching under mirror-reversed vision, a case of adaptation to a modified sensorimotor environment (SE), with anti reaching, a case of applying an abstract task rule (TR). While neural dynamics in monkey posterior parietal cortex show shifted initial states and non-aligned low-dimensional neural subspaces in the SE task, remapping is achieved in overlapping subspaces in the TR task. A recurrent neural network model demonstrates how output constraints mimicking SE and TR tasks are sufficient to generate the two fundamentally different neural computational dynamics. We conclude that sensorimotor remapping to implement an abstract task rule happens within the existing repertoire of neural dynamics, while compensation of perturbed sensory feedback requires exploration of independent neural dynamics in parietal cortex.
Collapse
Affiliation(s)
- Hao Guo
- German Primate Center, Göttingen, Germany
| | - Shenbing Kuang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Alexander Gail
- German Primate Center, Göttingen, Germany.
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Mendoza G, Fonseca E, Merchant H, Gutierrez R. Neuronal Sequences and dynamic coding of water-sucrose categorization in rat gustatory cortices. iScience 2024; 27:111287. [PMID: 39640568 PMCID: PMC11617401 DOI: 10.1016/j.isci.2024.111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
The gustatory system allows us to perceive and distinguish sweetness from water. We studied this phenomenon by recording neural activity in rats' anterior insular (aIC) and orbitofrontal (OFC) cortices while they categorized varying sucrose concentrations against water. Neurons in both aIC and OFC encoded the categorical distinction between sucrose and water rather than specific sucrose concentrations. Notably, aIC encoded this distinction faster than OFC. Conversely, the OFC slightly preceded the aIC in representing choice information, although both cortices encoded the rat's choices in parallel. Further analyses revealed dynamic and sequential encoding of sensory and categorical decisions, forming brief sequences of encoding neurons throughout the trial rather than long-lasting neuronal representations. Our findings, supported by single-cell, population decoding, and principal-component analysis (PCA), demonstrate that gustatory cortices employ neuronal sequences to compute sensorimotor transformations, from taste detection to categorical decisions, and continuously update this process as new taste information emerges using dynamic coding.
Collapse
Affiliation(s)
- Germán Mendoza
- Laboratory of Systems Neurophysiology, Institute of Neurobiology, National Autonomous University of Mexico, Juriquilla Querétaro 76230, Mexico
| | - Esmeralda Fonseca
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
- Laboratory Neurobiology of Appetite, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico
| | - Hugo Merchant
- Laboratory of Systems Neurophysiology, Institute of Neurobiology, National Autonomous University of Mexico, Juriquilla Querétaro 76230, Mexico
| | - Ranier Gutierrez
- Laboratory Neurobiology of Appetite, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico
- Laboratory Neurobiology of Appetite, Centro de Investigación Sobre el Envejecimiento CIE Cinvestav sede Sur, Mexico City, Mexico
| |
Collapse
|
4
|
Peysakhovich B, Zhu O, Tetrick SM, Shirhatti V, Silva AA, Li S, Ibos G, Rosen MC, Johnston WJ, Freedman DJ. Primate superior colliculus is causally engaged in abstract higher-order cognition. Nat Neurosci 2024; 27:1999-2008. [PMID: 39300307 PMCID: PMC12068555 DOI: 10.1038/s41593-024-01744-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
The superior colliculus is an evolutionarily conserved midbrain region that is thought to mediate spatial orienting, including saccadic eye movements and covert spatial attention. Here, we reveal a role for the superior colliculus in higher-order cognition, independent of its role in spatial orienting. We trained rhesus macaques to perform an abstract visual categorization task that involved neither instructed eye movements nor differences in covert attention. We compared neural activity in the superior colliculus and the posterior parietal cortex, a region previously shown to causally contribute to abstract category decisions. The superior colliculus exhibits robust encoding of learned visual categories, which is stronger than in the posterior parietal cortex and arises at a similar latency in the two areas. Moreover, inactivation of the superior colliculus markedly impaired animals' category decisions. These results demonstrate that the primate superior colliculus mediates abstract, higher-order cognitive processes that have traditionally been attributed to the neocortex.
Collapse
Affiliation(s)
| | - Ou Zhu
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | | | - Vinay Shirhatti
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | | | - Sihai Li
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Guilhem Ibos
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
- Institut de Neurosciences de la Timone, Aix-Marseille Université, CNRS, Marseille, France
| | - Matthew C Rosen
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | | | - David J Freedman
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Vivar-Lazo M, Fetsch CR. Neural basis of concurrent deliberation toward a choice and degree of confidence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606833. [PMID: 39149300 PMCID: PMC11326179 DOI: 10.1101/2024.08.06.606833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Decision confidence plays a key role in flexible behavior and (meta)cognition, but its underlying neural mechanisms remain elusive. To uncover the latent dynamics of confidence formation at the level of population activity, we designed a decision task for nonhuman primates that measures choice, reaction time, and confidence with a single eye movement on every trial. Monkey behavior was well fit by a bounded accumulator model instantiating parallel processing of evidence, rejecting a serial model in which the choice is resolved first followed by post-decision accumulation for confidence. Neurons in area LIP reflected concurrent accumulation, exhibiting covariation of choice and confidence signals across the population, and within-trial dynamics consistent with parallel updating at near-zero time lag. The results demonstrate that monkeys can process a single stream of evidence in service of two computational goals simultaneously-a categorical decision and associated level of confidence-and illuminate a candidate neural substrate for this ability.
Collapse
Affiliation(s)
- Miguel Vivar-Lazo
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher R Fetsch
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Sengupta A, Banerjee S, Ganesh S, Grover S, Sridharan D. The right posterior parietal cortex mediates spatial reorienting of attentional choice bias. Nat Commun 2024; 15:6938. [PMID: 39138185 PMCID: PMC11322534 DOI: 10.1038/s41467-024-51283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Attention facilitates behavior by enhancing perceptual sensitivity (sensory processing) and choice bias (decisional weighting) for attended information. Whether distinct neural substrates mediate these distinct components of attention remains unknown. We investigate the causal role of key nodes of the right posterior parietal cortex (rPPC) in the forebrain attention network in sensitivity versus bias control. Two groups of participants performed a cued attention task while we applied either inhibitory, repetitive transcranial magnetic stimulation (n = 28) or 40 Hz transcranial alternating current stimulation (n = 26) to the dorsal rPPC. We show that rPPC stimulation - with either modality - impairs task performance by selectively altering attentional modulation of bias but not sensitivity. Specifically, participants' bias toward the uncued, but not the cued, location reduced significantly following rPPC stimulation - an effect that was consistent across both neurostimulation cohorts. In sum, the dorsal rPPC causally mediates the reorienting of choice bias, one particular component of visual spatial attention.
Collapse
Affiliation(s)
- Ankita Sengupta
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Sanjna Banerjee
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Foundation of Art and Health India, Bangalore, 560066, India
| | - Suhas Ganesh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Verily Life Sciences, San Francisco, CA, 94080, USA
| | - Shrey Grover
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India.
- Department of Computer Science and Automation, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
7
|
Liu Y, Jia H, Sun H, Jia S, Yang Z, Li A, Jiang A, Naya Y, Yang C, Xue S, Li X, Chen B, Zhu J, Zhou C, Li M, Duan X. A high-density 1,024-channel probe for brain-wide recordings in non-human primates. Nat Neurosci 2024; 27:1620-1631. [PMID: 38914829 DOI: 10.1038/s41593-024-01692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/23/2024] [Indexed: 06/26/2024]
Abstract
Large-scale neural population recordings with single-cell resolution across the primate brain remain challenging. Here we introduce the Neuroscroll probe that isolates single neuronal activities simultaneously from 1,024 densely spaced channels that are flexibly distributed across the shank of the probe. The Neuroscroll probe length is easily tunable for individual probes from 10 mm to 90 mm, covering the brain size of non-human primates and humans, and the probes remain intact and functional after repeated bending deformations. The Neuroscroll probes provided reliable recordings from large neural populations with high chronic stability up to 105 weeks in rats. Recording with each Neuroscroll probe yielded hundreds of well-isolated single units simultaneously from multiple brain regions distributed across the entire depth of the rhesus macaque brain. With the thousand simultaneously recorded channels, unprecedented probe length, excellent mechanical stability and flexible recording site distribution, the Neuroscroll probes enable a wide range of new experimental paradigms in system neuroscience studies with great versatility.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Huilin Jia
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Hongji Sun
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Shengyi Jia
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Ziqian Yang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ao Li
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Anqi Jiang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Behavioral and Mental Health, Peking University, Beijing, China
| | - Cen Yang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Shengyuan Xue
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Xiaojian Li
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Bingyan Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Jingjun Zhu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- National Biomedical Imaging Centre, Peking University, Beijing, China
| | - Chenghao Zhou
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Minning Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaojie Duan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- National Biomedical Imaging Centre, Peking University, Beijing, China.
| |
Collapse
|
8
|
Park SB, Lur G. Repeated exposure to multiple concurrent stressors alters visual processing in the adult posterior parietal cortex. Neurobiol Stress 2024; 31:100660. [PMID: 39100726 PMCID: PMC11296072 DOI: 10.1016/j.ynstr.2024.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 08/06/2024] Open
Abstract
Chronic stress is well known to erode cognitive functions. Yet, our understanding of how repeated stress exposure impacts one of the fundamental bases of cognition: sensory processing, remains limited. The posterior parietal cortex (PPC) is a high order visual region, known for its role in visually guided decision making, multimodal integration, attention, and working memory. Here, we used functional measures to determine how repeated exposure to multiple concurrent stressors (RMS) affects sensory processing in the PPC in adult male mice. A longitudinal experimental design, repeatedly surveying the same population of neurons using in vivo two-photon imaging, revealed that RMS disrupts the balanced turnover of visually responsive cells in layer 2/3 of the PPC. Across the population, RMS-induced changes in visual responsiveness followed a bimodal distribution suggesting idiosyncratic stress effects. In cells that maintained their responsiveness across recording sessions, we found that stress reduced visual response magnitudes and feature selectivity. While we did not observe stress-induced elimination of excitatory synapses, noise correlation statistics indicated that RMS altered visual input to the neuronal population. The impact of RMS was restricted to visually evoked responses and was not evident in neuronal activity associated with locomotion onset. Together, our results indicate that despite no apparent synaptic reorganization, stress exposure in adulthood can disrupt sensory processing in the PPC, with the effects showing remarkable individual variation.
Collapse
Affiliation(s)
- Soo Bin Park
- Department of Neurobiology and Behavior, University of California, Irvine, CA USA, 92697
| | - Gyorgy Lur
- Department of Neurobiology and Behavior, University of California, Irvine, CA USA, 92697
| |
Collapse
|
9
|
Joo B, Xu S, Park H, Kim K, Rah JC, Koo JW. Parietal-Frontal Pathway Controls Relapse of Fear Memory in a Novel Context. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100315. [PMID: 38726036 PMCID: PMC11078648 DOI: 10.1016/j.bpsgos.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Background Fear responses significantly affect daily life and shape our approach to uncertainty. However, the potential resurgence of fear in unfamiliar situations poses a significant challenge to exposure-based therapies for maladaptive fear responses. Nonetheless, how novel contextual stimuli are associated with the relapse of extinguished fear remains unknown. Methods Using a context-dependent fear renewal model, the functional circuits and underlying mechanisms of the posterior parietal cortex (PPC) and anterior cingulate cortex (ACC) were investigated using optogenetic, histological, in vivo, and ex vivo electrophysiological and pharmacological techniques. Results We demonstrated that the PPC-to-ACC pathway governs fear relapse in a novel context. We observed enhanced populational calcium activity in the ACC neurons that received projections from the PPC and increased synaptic activity in the basolateral amygdala-projecting PPC-to-ACC neurons upon renewal in a novel context, where excitatory postsynaptic currents amplitudes increased but inhibitory postsynaptic current amplitudes decreased. In addition, we found that parvalbumin-expressing interneurons controlled novel context-dependent fear renewal, which was blocked by the chronic administration of fluoxetine. Conclusions Our findings highlight the PPC-to-ACC pathway in mediating the relapse of extinguished fear in novel contexts, thereby contributing significant insights into the intricate neural mechanisms that govern fear renewal.
Collapse
Affiliation(s)
- Bitna Joo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Shijie Xu
- Medical Research Center, Affiliated Cancer Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Hyungju Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Kipom Kim
- Research Strategy Office, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jong-Cheol Rah
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- Sensory & Motor Systems Neuroscience Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| |
Collapse
|
10
|
Charlton JA, Goris RLT. Abstract deliberation by visuomotor neurons in prefrontal cortex. Nat Neurosci 2024; 27:1167-1175. [PMID: 38684894 PMCID: PMC11156582 DOI: 10.1038/s41593-024-01635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
During visually guided behavior, the prefrontal cortex plays a pivotal role in mapping sensory inputs onto appropriate motor plans. When the sensory input is ambiguous, this involves deliberation. It is not known whether the deliberation is implemented as a competition between possible stimulus interpretations or between possible motor plans. Here we study neural population activity in the prefrontal cortex of macaque monkeys trained to flexibly report perceptual judgments of ambiguous visual stimuli. We find that the population activity initially represents the formation of a perceptual choice before transitioning into the representation of the motor plan. Stimulus strength and prior expectations both bear on the formation of the perceptual choice, but not on the formation of the action plan. These results suggest that prefrontal circuits involved in action selection are also used for the deliberation of abstract propositions divorced from a specific motor plan, thus providing a crucial mechanism for abstract reasoning.
Collapse
Affiliation(s)
- Julie A Charlton
- Center for Perceptual Systems, The University of Texas at Austin, Austin, TX, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Robbe L T Goris
- Center for Perceptual Systems, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
11
|
Laamerad P, Liu LD, Pack CC. Decision-related activity and movement selection in primate visual cortex. SCIENCE ADVANCES 2024; 10:eadk7214. [PMID: 38809984 PMCID: PMC11135405 DOI: 10.1126/sciadv.adk7214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Fluctuations in the activity of sensory neurons often predict perceptual decisions. This connection can be quantified with a metric called choice probability (CP), and there is a longstanding debate about whether CP reflects a causal influence on decisions or an echo of decision-making activity elsewhere in the brain. Here, we show that CP can reflect a third variable, namely, the movement used to indicate the decision. In a standard visual motion discrimination task, neurons in the middle temporal (MT) area of primate cortex responded more strongly during trials that involved a saccade toward their receptive fields. This variability accounted for much of the CP observed across the neuronal population, and it arose through training. Moreover, pharmacological inactivation of MT biased behavioral responses away from the corresponding visual field locations. These results demonstrate that training on a task with fixed sensorimotor contingencies introduces movement-related activity in sensory brain regions and that this plasticity can shape the neural circuitry of perceptual decision-making.
Collapse
Affiliation(s)
- Pooya Laamerad
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Liu D. Liu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | |
Collapse
|
12
|
Xie T, Adamek M, Cho H, Adamo MA, Ritaccio AL, Willie JT, Brunner P, Kubanek J. Graded decisions in the human brain. Nat Commun 2024; 15:4308. [PMID: 38773117 PMCID: PMC11109249 DOI: 10.1038/s41467-024-48342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
Decision-makers objectively commit to a definitive choice, yet at the subjective level, human decisions appear to be associated with a degree of uncertainty. Whether decisions are definitive (i.e., concluding in all-or-none choices), or whether the underlying representations are graded, remains unclear. To answer this question, we recorded intracranial neural signals directly from the brain while human subjects made perceptual decisions. The recordings revealed that broadband gamma activity reflecting each individual's decision-making process, ramped up gradually while being graded by the accumulated decision evidence. Crucially, this grading effect persisted throughout the decision process without ever reaching a definite bound at the time of choice. This effect was most prominent in the parietal cortex, a brain region traditionally implicated in decision-making. These results provide neural evidence for a graded decision process in humans and an analog framework for flexible choice behavior.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Markus Adamek
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Hohyun Cho
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Matthew A Adamo
- Department of Neurosurgery, Albany Medical College, Albany, NY, 12208, USA
| | - Anthony L Ritaccio
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jon T Willie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Peter Brunner
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA.
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA.
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
13
|
Kang JU, Mooshagian E, Snyder LH. Functional organization of posterior parietal cortex circuitry based on inferred information flow. Cell Rep 2024; 43:114028. [PMID: 38581681 PMCID: PMC11090617 DOI: 10.1016/j.celrep.2024.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 02/09/2024] [Accepted: 03/15/2024] [Indexed: 04/08/2024] Open
Abstract
Many studies infer the role of neurons by asking what information can be decoded from their activity or by observing the consequences of perturbing their activity. An alternative approach is to consider information flow between neurons. We applied this approach to the parietal reach region (PRR) and the lateral intraparietal area (LIP) in posterior parietal cortex. Two complementary methods imply that across a range of reaching tasks, information flows primarily from PRR to LIP. This indicates that during a coordinated reach task, LIP has minimal influence on PRR and rules out the idea that LIP forms a general purpose spatial processing hub for action and cognition. Instead, we conclude that PRR and LIP operate in parallel to plan arm and eye movements, respectively, with asymmetric interactions that likely support eye-hand coordination. Similar methods can be applied to other areas to infer their functional relationships based on inferred information flow.
Collapse
Affiliation(s)
- Jung Uk Kang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Eric Mooshagian
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lawrence H Snyder
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
14
|
Bredenberg C, Savin C, Kiani R. Recurrent Neural Circuits Overcome Partial Inactivation by Compensation and Re-learning. J Neurosci 2024; 44:e1635232024. [PMID: 38413233 PMCID: PMC11026338 DOI: 10.1523/jneurosci.1635-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 02/29/2024] Open
Abstract
Technical advances in artificial manipulation of neural activity have precipitated a surge in studying the causal contribution of brain circuits to cognition and behavior. However, complexities of neural circuits challenge interpretation of experimental results, necessitating new theoretical frameworks for reasoning about causal effects. Here, we take a step in this direction, through the lens of recurrent neural networks trained to perform perceptual decisions. We show that understanding the dynamical system structure that underlies network solutions provides a precise account for the magnitude of behavioral effects due to perturbations. Our framework explains past empirical observations by clarifying the most sensitive features of behavior, and how complex circuits compensate and adapt to perturbations. In the process, we also identify strategies that can improve the interpretability of inactivation experiments.
Collapse
Affiliation(s)
- Colin Bredenberg
- Center for Neural Science, New York University, New York, NY 10003
| | - Cristina Savin
- Center for Neural Science, New York University, New York, NY 10003
- Center for Data Science, New York University, New York, NY 10011
| | - Roozbeh Kiani
- Center for Neural Science, New York University, New York, NY 10003
- Department of Psychology, New York University, New York, NY 10003
| |
Collapse
|
15
|
Gherman S, Markowitz N, Tostaeva G, Espinal E, Mehta AD, O'Connell RG, Kelly SP, Bickel S. Intracranial electroencephalography reveals effector-independent evidence accumulation dynamics in multiple human brain regions. Nat Hum Behav 2024; 8:758-770. [PMID: 38366105 DOI: 10.1038/s41562-024-01824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/10/2024] [Indexed: 02/18/2024]
Abstract
Neural representations of perceptual decision formation that are abstracted from specific motor requirements have previously been identified in humans using non-invasive electrophysiology; however, it is currently unclear where these originate in the brain. Here we capitalized on the high spatiotemporal precision of intracranial EEG to localize such abstract decision signals. Participants undergoing invasive electrophysiological monitoring for epilepsy were asked to judge the direction of random-dot stimuli and respond either with a speeded button press (N = 24), or vocally, after a randomized delay (N = 12). We found a widely distributed motor-independent network of regions where high-frequency activity exhibited key characteristics consistent with evidence accumulation, including a gradual buildup that was modulated by the strength of the sensory evidence, and an amplitude that predicted participants' choice accuracy and response time. Our findings offer a new view on the brain networks governing human decision-making.
Collapse
Affiliation(s)
- Sabina Gherman
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
| | - Noah Markowitz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Gelana Tostaeva
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Elizabeth Espinal
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Ashesh D Mehta
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Departments of Neurology and Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Redmond G O'Connell
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Simon P Kelly
- School of Electrical and Electronic Engineering and UCD Centre for Biomedical Engineering, University College Dublin, Dublin, Ireland
| | - Stephan Bickel
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Departments of Neurology and Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.
| |
Collapse
|
16
|
Zhu Z, Kim B, Doudlah R, Chang TY, Rosenberg A. Differential clustering of visual and choice- and saccade-related activity in macaque V3A and CIP. J Neurophysiol 2024; 131:709-722. [PMID: 38478896 PMCID: PMC11305645 DOI: 10.1152/jn.00285.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
Neurons in sensory and motor cortices tend to aggregate in clusters with similar functional properties. Within the primate dorsal ("where") pathway, an important interface between three-dimensional (3-D) visual processing and motor-related functions consists of two hierarchically organized areas: V3A and the caudal intraparietal (CIP) area. In these areas, 3-D visual information, choice-related activity, and saccade-related activity converge, often at the single-neuron level. Characterizing the clustering of functional properties in areas with mixed selectivity, such as these, may help reveal organizational principles that support sensorimotor transformations. Here we quantified the clustering of visual feature selectivity, choice-related activity, and saccade-related activity by performing correlational and parametric comparisons of the responses of well-isolated, simultaneously recorded neurons in macaque monkeys. Each functional domain showed statistically significant clustering in both areas. However, there were also domain-specific differences in the strength of clustering across the areas. Visual feature selectivity and saccade-related activity were more strongly clustered in V3A than in CIP. In contrast, choice-related activity was more strongly clustered in CIP than in V3A. These differences in clustering may reflect the areas' roles in sensorimotor processing. Stronger clustering of visual and saccade-related activity in V3A may reflect a greater role in within-domain processing, as opposed to cross-domain synthesis. In contrast, stronger clustering of choice-related activity in CIP may reflect a greater role in synthesizing information across functional domains to bridge perception and action.NEW & NOTEWORTHY The occipital and parietal cortices of macaque monkeys are bridged by hierarchically organized areas V3A and CIP. These areas support 3-D visual transformations, carry choice-related activity during 3-D perceptual tasks, and possess saccade-related activity. This study quantifies the functional clustering of neuronal response properties within V3A and CIP for each of these domains. The findings reveal domain-specific cross-area differences in clustering that may reflect the areas' roles in sensorimotor processing.
Collapse
Affiliation(s)
- Zikang Zhu
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Byounghoon Kim
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Raymond Doudlah
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ting-Yu Chang
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ari Rosenberg
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
17
|
Jahn CI, Markov NT, Morea B, Daw ND, Ebitz RB, Buschman TJ. Learning attentional templates for value-based decision-making. Cell 2024; 187:1476-1489.e21. [PMID: 38401541 PMCID: PMC11574977 DOI: 10.1016/j.cell.2024.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/18/2023] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Attention filters sensory inputs to enhance task-relevant information. It is guided by an "attentional template" that represents the stimulus features that are currently relevant. To understand how the brain learns and uses templates, we trained monkeys to perform a visual search task that required them to repeatedly learn new attentional templates. Neural recordings found that templates were represented across the prefrontal and parietal cortex in a structured manner, such that perceptually neighboring templates had similar neural representations. When the task changed, a new attentional template was learned by incrementally shifting the template toward rewarded features. Finally, we found that attentional templates transformed stimulus features into a common value representation that allowed the same decision-making mechanisms to deploy attention, regardless of the identity of the template. Altogether, our results provide insight into the neural mechanisms by which the brain learns to control attention and how attention can be flexibly deployed across tasks.
Collapse
Affiliation(s)
- Caroline I Jahn
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA.
| | - Nikola T Markov
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Britney Morea
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| | - R Becket Ebitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Department of Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Timothy J Buschman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Department of Psychology, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
18
|
Jiang Y, He S, Zhang J. Different roles of response covariability and its attentional modulation in the sensory cortex and posterior parietal cortex. Proc Natl Acad Sci U S A 2023; 120:e2216942120. [PMID: 37812698 PMCID: PMC10589615 DOI: 10.1073/pnas.2216942120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/16/2023] [Indexed: 10/11/2023] Open
Abstract
The covariability of neural responses in the neuron population is highly relevant to the information encoding. Cognitive processes, such as attention, are found to modulate the covariability in the visual cortex to improve information encoding, suggesting the computational advantage of covariability modulation in the neural system. However, is the covariability modulation a general mechanism for enhanced information encoding throughout the information processing pathway, or only adopted in certain processing stages, depending on the property of neural representation? Here, with ultrahigh-field MRI, we examined the covariability, which was estimated by noise correlation, in different attention states in the early visual cortex and posterior parietal cortex (PPC) of the human brain, and its relationship to the quality of information encoding. Our results showed that while attention decreased the covariability to improve the stimulus encoding in the early visual cortex, covariability modulation was not observed in the PPC, where covariability had little impact on information encoding. Further, attention promoted the information flow between the early visual cortex and PPC, with an apparent emphasis on a flow from high- to low-dimensional representations, suggesting the existence of a reduction in the dimensionality of neural representation from the early visual cortex to PPC. Finally, the neural response patterns in the PPC could predict the amplitudes of covariability change in the early visual cortex, indicating a top-down control from the PPC to early visual cortex. Our findings reveal the specific roles of the sensory cortex and PPC during attentional modulation of covariability, determined by the complexity and fidelity of the neural representation in each cortical region.
Collapse
Affiliation(s)
- Yong Jiang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- Institute of AI, Hefei Comprehensive National Science Center, Hefei230088, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jiedong Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
19
|
Huang L, Wang J, He Q, Li C, Sun Y, Seger CA, Zhang X. A source for category-induced global effects of feature-based attention in human prefrontal cortex. Cell Rep 2023; 42:113080. [PMID: 37659080 DOI: 10.1016/j.celrep.2023.113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 09/04/2023] Open
Abstract
Global effects of feature-based attention (FBA) are generally limited to stimuli sharing the same or similar features, as hypothesized in the "feature-similarity gain model." Visual perception, however, often reflects categories acquired via experience/learning; whether the global-FBA effect can be induced by the categorized features remains unclear. Here, human subjects were trained to classify motion directions into two discrete categories and perform a classical motion-based attention task. We found a category-induced global-FBA effect in both the middle temporal area (MT+) and frontoparietal areas, where attention to a motion direction globally spread to unattended motion directions within the same category, but not to those in a different category. Effective connectivity analysis showed that the category-induced global-FBA effect in MT+ was derived by feedback from the inferior frontal junction (IFJ). Altogether, our study reveals a category-induced global-FBA effect and identifies a source for this effect in human prefrontal cortex, implying that FBA is of greater ecological significance than previously thought.
Collapse
Affiliation(s)
- Ling Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Jingyi Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Qionghua He
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Chu Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yueling Sun
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Carol A Seger
- School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China; Department of Psychology, Colorado State University, Fort Collins, CO 80523, USA
| | - Xilin Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China.
| |
Collapse
|
20
|
Stine GM, Trautmann EM, Jeurissen D, Shadlen MN. A neural mechanism for terminating decisions. Neuron 2023; 111:2601-2613.e5. [PMID: 37352857 PMCID: PMC10565788 DOI: 10.1016/j.neuron.2023.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/20/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023]
Abstract
The brain makes decisions by accumulating evidence until there is enough to stop and choose. Neural mechanisms of evidence accumulation are established in association cortex, but the site and mechanism of termination are unknown. Here, we show that the superior colliculus (SC) plays a causal role in terminating decisions, and we provide evidence for a mechanism by which this occurs. We recorded simultaneously from neurons in the lateral intraparietal area (LIP) and SC while monkeys made perceptual decisions. Despite similar trial-averaged activity, we found distinct single-trial dynamics in the two areas: LIP displayed drift-diffusion dynamics and SC displayed bursting dynamics. We hypothesized that the bursts manifest a threshold mechanism applied to signals represented in LIP to terminate the decision. Consistent with this hypothesis, SC inactivation produced behavioral effects diagnostic of an impaired threshold sensor and prolonged the buildup of activity in LIP. The results reveal the transformation from deliberation to commitment.
Collapse
Affiliation(s)
- Gabriel M Stine
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric M Trautmann
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA
| | - Danique Jeurissen
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Michael N Shadlen
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
21
|
Kang JU. Information processing in the dorsal pathway: from "where" to "what we do with it". J Neurophysiol 2023; 130:1-4. [PMID: 37283456 PMCID: PMC10292963 DOI: 10.1152/jn.00073.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
Visual processing in the brain has been understood as the ventral and dorsal pathways processing "what" and "where" information, respectively. Mocz et al. (Mocz V, Vaziri-Pashkam M, Chun M, Xu Y. J Cogn Neurosci 34: 2406-2435, 2022), however, report that the two pathways code object features in a parallel manner. These results support that information processing in the dorsal pathway is not strictly limited to "where" and that the two pathways work in parallel to process task-relevant information ("what we do with it").
Collapse
Affiliation(s)
- Jung Uk Kang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
22
|
Zhou Y, Zhu O, Freedman DJ. Posterior Parietal Cortex Plays a Causal Role in Abstract Memory-Based Visual Categorical Decisions. J Neurosci 2023; 43:4315-4328. [PMID: 37137703 PMCID: PMC10255012 DOI: 10.1523/jneurosci.2241-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Neural activity in the lateral intraparietal cortex (LIP) correlates with both sensory evaluation and motor planning underlying visuomotor decisions. We previously showed that LIP plays a causal role in visually-based perceptual and categorical decisions, and preferentially contributes to evaluating sensory stimuli over motor planning. In that study, however, monkeys reported their decisions with a saccade to a colored target associated with the correct motion category or direction. Since LIP is known to play a role in saccade planning, it remains unclear whether LIP's causal role in such decisions extend to decision-making tasks which do not involve saccades. Here, we employed reversible pharmacological inactivation of LIP neural activity while two male monkeys performed delayed match to category (DMC) and delayed match to sample (DMS) tasks. In both tasks, monkeys needed to maintain gaze fixation throughout the trial and report whether a test stimulus was a categorical match or nonmatch to the previous sample stimulus by releasing a touch bar. LIP inactivation impaired monkeys' behavioral performance in both tasks, with deficits in both accuracy and reaction time (RT). Furthermore, we recorded LIP neural activity in the DMC task targeting the same cortical locations as in the inactivation experiments. We found significant neural encoding of the sample category, which was correlated with monkeys' categorical decisions in the DMC task. Taken together, our results demonstrate that LIP plays a generalized role in visual categorical decisions independent of the task-structure and motor response modality.SIGNIFICANCE STATEMENT Neural activity in the lateral intraparietal cortex (LIP) correlates with perceptual and categorical decisions, in addition to its role in mediating saccadic eye movements. Past work found that LIP is causally involved in visual decisions that are rapidly reported by saccades in a reaction time based decision making task. Here we use reversible inactivation of LIP to test whether LIP is also causally involved in visual decisions when reported by hand movements during delayed matching tasks. Here we show that LIP inactivation impaired monkeys' task performance during both memory-based discrimination and categorization tasks. These results demonstrate that LIP plays a generalized role in visual categorical decisions independent of the task-structure and motor response modality.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ou Zhu
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
| | - David J Freedman
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
23
|
Frank SM, Maechler MR, Fogelson SV, Tse PU. Hierarchical categorization learning is associated with representational changes in the dorsal striatum and posterior frontal and parietal cortex. Hum Brain Mapp 2023; 44:3897-3912. [PMID: 37126607 DOI: 10.1002/hbm.26323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/27/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023] Open
Abstract
Learning and recognition can be improved by sorting novel items into categories and subcategories. Such hierarchical categorization is easy when it can be performed according to learned rules (e.g., "if car, then automatic or stick shift" or "if boat, then motor or sail"). Here, we present results showing that human participants acquire categorization rules for new visual hierarchies rapidly, and that, as they do, corresponding hierarchical representations of the categorized stimuli emerge in patterns of neural activation in the dorsal striatum and in posterior frontal and parietal cortex. Participants learned to categorize novel visual objects into a hierarchy with superordinate and subordinate levels based on the objects' shape features, without having been told the categorization rules for doing so. On each trial, participants were asked to report the category and subcategory of the object, after which they received feedback about the correctness of their categorization responses. Participants trained over the course of a one-hour-long session while their brain activation was measured using functional magnetic resonance imaging. Over the course of training, significant hierarchy learning took place as participants discovered the nested categorization rules, as evidenced by the occurrence of a learning trial, after which performance suddenly increased. This learning was associated with increased representational strength of the newly acquired hierarchical rules in a corticostriatal network including the posterior frontal and parietal cortex and the dorsal striatum. We also found evidence suggesting that reinforcement learning in the dorsal striatum contributed to hierarchical rule learning.
Collapse
Affiliation(s)
- Sebastian M Frank
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Marvin R Maechler
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Sergey V Fogelson
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Katz School of Science and Health, Yeshiva University, New York, New York, USA
| | - Peter U Tse
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
24
|
Zahedi A, Artigas SO, Swaboda N, Wiers CE, Görgen K, Park SQ. Neural correlates of changing food choices while bypassing values. Neuroimage 2023; 274:120134. [PMID: 37100103 DOI: 10.1016/j.neuroimage.2023.120134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 04/28/2023] Open
Abstract
Current theories suggest that altering choices requires value modification. To investigate this, normal-weight female participants' food choices and values were tested before and after an approach-avoidance training (AAT), while neural activity was recorded during the choice task using functional magnetic resonance imaging (fMRI). During AAT, participants consistently approached low- while avoiding high-calorie food cues. AAT facilitated low-calorie food choices, leaving food values unchanged. Instead, we observed a shift in indifference points, indicating the decreased contribution of food values in food choices. Training-induced choice shifts were associated with increased activity in the posterior cingulate cortex (PCC). In contrast, the medial PFC activity was not changed. Additionally, PCC grey matter density predicted individual differences in training-induced functional changes, suggesting anatomic predispositions to training impact. Our findings demonstrate neural mechanisms underlying choice modulation independent of valuation-related processes, with substantial theoretical significance for decision-making frameworks and translational implications for health-related decisions resilient to value shifts.
Collapse
Affiliation(s)
- Anoushiravan Zahedi
- Department of Decision Neuroscience & Nutrition, German Institute of Human Nutrition (DIfE), Nuthetal, Germany;; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany;; German Center for Diabetes Research (DZD), Neuherberg, Germany;; Department of Psychology, University of Muenster (Westfaelische Wilhelms-Universitaet Muenster).
| | | | - Nora Swaboda
- Max-Planck-Institute for Human Development, Berlin, Germany
| | - Corinde E Wiers
- Department of Psychiatry and Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kai Görgen
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Germany;; Department of Psychiatry and Psychotherapy, Bernstein Center for Computational Neuroscience, Berlin, Germany;; Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Soyoung Q Park
- Department of Decision Neuroscience & Nutrition, German Institute of Human Nutrition (DIfE), Nuthetal, Germany;; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany;; Department of Psychology, University of Lübeck, Lübeck, Germany;; German Center for Diabetes Research (DZD), Neuherberg, Germany;.
| |
Collapse
|
25
|
Kira S, Safaai H, Morcos AS, Panzeri S, Harvey CD. A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions. Nat Commun 2023; 14:2121. [PMID: 37055431 PMCID: PMC10102117 DOI: 10.1038/s41467-023-37804-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Decision-making requires flexibility to rapidly switch one's actions in response to sensory stimuli depending on information stored in memory. We identified cortical areas and neural activity patterns underlying this flexibility during virtual navigation, where mice switched navigation toward or away from a visual cue depending on its match to a remembered cue. Optogenetics screening identified V1, posterior parietal cortex (PPC), and retrosplenial cortex (RSC) as necessary for accurate decisions. Calcium imaging revealed neurons that can mediate rapid navigation switches by encoding a mixture of a current and remembered visual cue. These mixed selectivity neurons emerged through task learning and predicted the mouse's choices by forming efficient population codes before correct, but not incorrect, choices. They were distributed across posterior cortex, even V1, and were densest in RSC and sparsest in PPC. We propose flexibility in navigation decisions arises from neurons that mix visual and memory information within a visual-parietal-retrosplenial network.
Collapse
Affiliation(s)
- Shinichiro Kira
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Houman Safaai
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ari S Morcos
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | |
Collapse
|
26
|
Berchio C, Annen LC, Bouamoud Y, Micali N. Temporal dynamics of cognitive flexibility in adolescents with anorexia nervosa: A high-density EEG study. Eur J Neurosci 2023; 57:962-980. [PMID: 36683346 DOI: 10.1111/ejn.15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/08/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
Impairment in cognitive flexibility is a core symptom of anorexia nervosa (AN) and is associated with treatment resistance. Nevertheless, studies on the neural basis of cognitive flexibility in adolescent AN are rare. This study aimed to investigate brain networks underlying cognitive flexibility in adolescents with AN. To address this aim, participants performed a Dimensional Change Card Sorting task during high-density electroencephalography (EEG) recording. Anxiety was measured with the State-Trait Anxiety Inventory. Data were collected on 22 girls with AN and 23 controls. Evoked responses were investigated using global-spatial analysis. Adolescents with AN showed greater overall accuracy, fewer switch trial errors and reduced inverse efficiency switch cost relative to controls, although these effects disappeared after adjusting for trait and state anxiety. EEG results indicated augmented early visual orienting processing (P100) and subsequent impaired attentional mechanisms to task switching (P300b) in subjects with AN. During task switching, diminished activations in subjects with AN were identified in the posterior cingulate, calcarine sulcus and cerebellum, and task repetitions induced diminished activations in a network involving the medial prefrontal cortex, and several posterior regions, compared with controls. No significant associations were found between measures of cognitive flexibility and anxiety in the AN group. Findings of this study suggest atypical neural mechanisms underlying cognitive flexibility in adolescents with AN. More importantly, our findings suggest that different behavioural profiles in AN could relate to differences in anxiety levels. Future research should investigate the efficacy of cognitive training to rebalance brain networks of cognitive flexibility in AN.
Collapse
Affiliation(s)
- Cristina Berchio
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucie Clémentine Annen
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ynès Bouamoud
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nadia Micali
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Great Ormond Street Institute of Child Health, University College London, London, UK.,Mental Health Services in the Capital Region of Denmark, Eating Disorders Research Unit, Psychiatric Centre Ballerup, Ballerup, Denmark
| |
Collapse
|
27
|
Latimer KW, Freedman DJ. Low-dimensional encoding of decisions in parietal cortex reflects long-term training history. Nat Commun 2023; 14:1010. [PMID: 36823109 PMCID: PMC9950136 DOI: 10.1038/s41467-023-36554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Neurons in parietal cortex exhibit task-related activity during decision-making tasks. However, it remains unclear how long-term training to perform different tasks over months or even years shapes neural computations and representations. We examine lateral intraparietal area (LIP) responses during a visual motion delayed-match-to-category task. We consider two pairs of male macaque monkeys with different training histories: one trained only on the categorization task, and another first trained to perform fine motion-direction discrimination (i.e., pretrained). We introduce a novel analytical approach-generalized multilinear models-to quantify low-dimensional, task-relevant components in population activity. During the categorization task, we found stronger cosine-like motion-direction tuning in the pretrained monkeys than in the category-only monkeys, and that the pretrained monkeys' performance depended more heavily on fine discrimination between sample and test stimuli. These results suggest that sensory representations in LIP depend on the sequence of tasks that the animals have learned, underscoring the importance of considering training history in studies with complex behavioral tasks.
Collapse
Affiliation(s)
- Kenneth W Latimer
- Department of Neurobiology, University of Chicago, Chicago, IL, USA.
| | - David J Freedman
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
28
|
Abstract
Neural mechanisms of perceptual decision making have been extensively studied in experimental settings that mimic stable environments with repeating stimuli, fixed rules, and payoffs. In contrast, we live in an ever-changing environment and have varying goals and behavioral demands. To accommodate variability, our brain flexibly adjusts decision-making processes depending on context. Here, we review a growing body of research that explores the neural mechanisms underlying this flexibility. We highlight diverse forms of context dependency in decision making implemented through a variety of neural computations. Context-dependent neural activity is observed in a distributed network of brain structures, including posterior parietal, sensory, motor, and subcortical regions, as well as the prefrontal areas classically implicated in cognitive control. We propose that investigating the distributed network underlying flexible decisions is key to advancing our understanding and discuss a path forward for experimental and theoretical investigations.
Collapse
Affiliation(s)
- Gouki Okazawa
- Center for Neural Science, New York University, New York, NY, USA;
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Roozbeh Kiani
- Center for Neural Science, New York University, New York, NY, USA;
- Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|
29
|
Hu J, Konovalov A, Ruff CC. A unified neural account of contextual and individual differences in altruism. eLife 2023; 12:e80667. [PMID: 36752704 PMCID: PMC9908080 DOI: 10.7554/elife.80667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Altruism is critical for cooperation and productivity in human societies but is known to vary strongly across contexts and individuals. The origin of these differences is largely unknown, but may in principle reflect variations in different neurocognitive processes that temporally unfold during altruistic decision making (ranging from initial perceptual processing via value computations to final integrative choice mechanisms). Here, we elucidate the neural origins of individual and contextual differences in altruism by examining altruistic choices in different inequality contexts with computational modeling and electroencephalography (EEG). Our results show that across all contexts and individuals, wealth distribution choices recruit a similar late decision process evident in model-predicted evidence accumulation signals over parietal regions. Contextual and individual differences in behavior related instead to initial processing of stimulus-locked inequality-related value information in centroparietal and centrofrontal sensors, as well as to gamma-band synchronization of these value-related signals with parietal response-locked evidence-accumulation signals. Our findings suggest separable biological bases for individual and contextual differences in altruism that relate to differences in the initial processing of choice-relevant information.
Collapse
Affiliation(s)
- Jie Hu
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
| | - Arkady Konovalov
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Christian C Ruff
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
- University Research Priority Program 'Adaptive Brain Circuits in Development and Learning' (URPP AdaBD), University of ZurichZurichSwitzerland
| |
Collapse
|
30
|
Peysakhovich B, Tetrick SM, Silva AA, Li S, Zhu O, Ibos G, Johnston WJ, Freedman DJ. Primate superior colliculus is engaged in abstract higher-order cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524416. [PMID: 36711713 PMCID: PMC9882166 DOI: 10.1101/2023.01.17.524416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Categorization is a fundamental cognitive process by which the brain assigns stimuli to behaviorally meaningful groups. Investigations of visual categorization in primates have identified a hierarchy of cortical areas that are involved in the transformation of sensory information into abstract category representations. However, categorization behaviors are ubiquitous across diverse animal species, even those without a neocortex, motivating the possibility that subcortical regions may contribute to abstract cognition in primates. One candidate structure is the superior colliculus (SC), an evolutionarily conserved midbrain region that, although traditionally thought to mediate only reflexive spatial orienting, is involved in cognitive tasks that require spatial orienting. Here, we reveal a novel role of the primate SC in abstract, higher-order visual cognition. We compared neural activity in the SC and the posterior parietal cortex (PPC), a region previously shown to causally contribute to category decisions, while monkeys performed a visual categorization task in which they report their decisions with a hand movement. The SC exhibits stronger and shorter-latency category encoding than the PPC, and inactivation of the SC markedly impairs monkeys' category decisions. These results extend SC's established role in spatial orienting to abstract, non-spatial cognition.
Collapse
|
31
|
Yao JD, Zemlianova KO, Hocker DL, Savin C, Constantinople CM, Chung S, Sanes DH. Transformation of acoustic information to sensory decision variables in the parietal cortex. Proc Natl Acad Sci U S A 2023; 120:e2212120120. [PMID: 36598952 PMCID: PMC9926273 DOI: 10.1073/pnas.2212120120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/08/2022] [Indexed: 01/05/2023] Open
Abstract
The process by which sensory evidence contributes to perceptual choices requires an understanding of its transformation into decision variables. Here, we address this issue by evaluating the neural representation of acoustic information in the auditory cortex-recipient parietal cortex, while gerbils either performed a two-alternative forced-choice auditory discrimination task or while they passively listened to identical acoustic stimuli. During task engagement, stimulus identity decoding performance from simultaneously recorded parietal neurons significantly correlated with psychometric sensitivity. In contrast, decoding performance during passive listening was significantly reduced. Principal component and geometric analyses revealed the emergence of low-dimensional encoding of linearly separable manifolds with respect to stimulus identity and decision, but only during task engagement. These findings confirm that the parietal cortex mediates a transition of acoustic representations into decision-related variables. Finally, using a clustering analysis, we identified three functionally distinct subpopulations of neurons that each encoded task-relevant information during separate temporal segments of a trial. Taken together, our findings demonstrate how parietal cortex neurons integrate and transform encoded auditory information to guide sound-driven perceptual decisions.
Collapse
Affiliation(s)
- Justin D. Yao
- Center for Neural Science, New York University, New YorkNY 10003
- Department of Otolaryngology, Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ08901
- Brain Health Institute, Rutgers University, Piscataway, NJ08854
| | | | - David L. Hocker
- Center for Neural Science, New York University, New YorkNY 10003
| | - Cristina Savin
- Center for Neural Science, New York University, New YorkNY 10003
- Neuroscience Institute, New York University Langone School of Medicine, New York, NY10016
- Center for Data Science, New York University, New YorkNY 10011
| | - Christine M. Constantinople
- Center for Neural Science, New York University, New YorkNY 10003
- Neuroscience Institute, New York University Langone School of Medicine, New York, NY10016
| | - SueYeon Chung
- Center for Neural Science, New York University, New YorkNY 10003
- Flatiron Institute, Simons Foundation, New YorkNY 10010
| | - Dan H. Sanes
- Center for Neural Science, New York University, New YorkNY 10003
- Neuroscience Institute, New York University Langone School of Medicine, New York, NY10016
- Department of Psychology, New York University, New YorkNY 10003
- Department of Biology, New York University, New YorkNY 10003
| |
Collapse
|
32
|
Magnetoencephalography recordings reveal the neural mechanisms of auditory contributions to improved visual detection. Commun Biol 2023; 6:12. [PMID: 36604455 PMCID: PMC9816120 DOI: 10.1038/s42003-022-04335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
Sounds enhance the detection of visual stimuli while concurrently biasing an observer's decisions. To investigate the neural mechanisms that underlie such multisensory interactions, we decoded time-resolved Signal Detection Theory sensitivity and criterion parameters from magneto-encephalographic recordings of participants that performed a visual detection task. We found that sounds improved visual detection sensitivity by enhancing the accumulation and maintenance of perceptual evidence over time. Meanwhile, criterion decoding analyses revealed that sounds induced brain activity patterns that resembled the patterns evoked by an actual visual stimulus. These two complementary mechanisms of audiovisual interplay differed in terms of their automaticity: Whereas the sound-induced enhancement in visual sensitivity depended on participants being actively engaged in a detection task, we found that sounds activated the visual cortex irrespective of task demands, potentially inducing visual illusory percepts. These results challenge the classical assumption that sound-induced increases in false alarms exclusively correspond to decision-level biases.
Collapse
|
33
|
Zhou Y, Mohan K, Freedman DJ. Abstract Encoding of Categorical Decisions in Medial Superior Temporal and Lateral Intraparietal Cortices. J Neurosci 2022; 42:9069-9081. [PMID: 36261285 PMCID: PMC9732825 DOI: 10.1523/jneurosci.0017-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 01/05/2023] Open
Abstract
Categorization is an essential cognitive and perceptual process for decision-making and recognition. The posterior parietal cortex, particularly the lateral intraparietal (LIP) area has been suggested to transform visual feature encoding into abstract categorical representations. By contrast, areas closer to sensory input, such as the middle temporal (MT) area, encode stimulus features but not more abstract categorical information during categorization tasks. Here, we compare the contributions of the medial superior temporal (MST) and LIP areas in category computation by recording neuronal activity in both areas from two male rhesus macaques trained to perform a visual motion categorization task. MST is a core motion-processing region interconnected with MT and is often considered an intermediate processing stage between MT and LIP. We show that MST exhibits robust decision-correlated motion category encoding and working memory encoding similar to LIP, suggesting that MST plays a substantial role in cognitive computation, extending beyond its widely recognized role in visual motion processing.SIGNIFICANCE STATEMENT Categorization requires assigning incoming sensory stimuli into behaviorally relevant groups. Previous work found that parietal area LIP shows a strong encoding of the learned category membership of visual motion stimuli, while visual area MT shows strong direction tuning but not category tuning during a motion direction categorization task. Here we show that the medial superior temporal (MST) area, a visual motion-processing region interconnected with both LIP and MT, shows strong visual category encoding similar to that observed in LIP. This suggests that MST plays a greater role in abstract cognitive functions, extending beyond its well known role in visual motion processing.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Krithika Mohan
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
| | - David J Freedman
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
- The University of Chicago Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
34
|
Tang W, Chen S, Xue C, Niu Y, Shao J, Zhu Y. Influence of nuclear power plant interface complexity on user decision-making: an ERP study. ERGONOMICS 2022:1-19. [PMID: 36214560 DOI: 10.1080/00140139.2022.2134590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
ABSTRACUser decision-making concerning critical operations is very important to nuclear power plant (NPP) safety. The NPP interface is the main information source that guides decision-making; thus, a good interface design is essential. Among the interface design factors such as interface complexity, layout and colour, interface complexity (the amount of information in the interface) has the greatest impact on NPP operator decision-making. This paper used the event-related potential (ERP) to evaluate the impact of interface complexity on user decision-making and found interface complexity has a specific range suitable for decision-making. Based on this important finding, a fast and economical method of evaluating NPP interfaces in all design phases was proposed. This method compensates for the shortcomings of traditional methods, such as heuristic evaluation and experimental evaluation, which are inconvenient for evaluating interfaces in initial design phase; it can also be applied to interfaces with similar features in other industrial fields. Practitioner summary: Evaluation of the impact of NPP interface complexity on user decision-making through an ERP experiment revealed a specific range of interface complexity that facilitates user decision-making. Based on this finding, a new, fast and inexpensive interface evaluation method was proposed. Abbreviations: NPP: nuclear power plant, it is a thermal power station in which the heat source is a nuclear reactor; ERP: event-related potential, it is the measured brain response that is the direct result of a specific cognitive, or motor event.
Collapse
Affiliation(s)
- Wenzhe Tang
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Shanguang Chen
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Chengqi Xue
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Yafeng Niu
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Junkai Shao
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Yanfei Zhu
- School of Mechanical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
35
|
Di Luzio P, Tarasi L, Silvanto J, Avenanti A, Romei V. Human perceptual and metacognitive decision-making rely on distinct brain networks. PLoS Biol 2022; 20:e3001750. [PMID: 35944012 PMCID: PMC9362930 DOI: 10.1371/journal.pbio.3001750] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Perceptual decisions depend on the ability to exploit available sensory information in order to select the most adaptive option from a set of alternatives. Such decisions depend on the perceptual sensitivity of the organism, which is generally accompanied by a corresponding level of certainty about the choice made. Here, by use of corticocortical paired associative transcranial magnetic stimulation protocol (ccPAS) aimed at inducing plastic changes, we shaped perceptual sensitivity and metacognitive ability in a motion discrimination task depending on the targeted network, demonstrating their functional dissociation. Neurostimulation aimed at boosting V5/MT+-to-V1/V2 back-projections enhanced motion sensitivity without impacting metacognition, whereas boosting IPS/LIP-to-V1/V2 back-projections increased metacognitive efficiency without impacting motion sensitivity. This double-dissociation provides causal evidence of distinct networks for perceptual sensitivity and metacognitive ability in humans.
Collapse
Affiliation(s)
- Paolo Di Luzio
- Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Luca Tarasi
- Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Juha Silvanto
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Vincenzo Romei
- Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
36
|
Seideman JA, Stanford TR, Salinas E. A conflict between spatial selection and evidence accumulation in area LIP. Nat Commun 2022; 13:4463. [PMID: 35915096 PMCID: PMC9343639 DOI: 10.1038/s41467-022-32209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
The lateral intraparietal area (LIP) contains spatially selective neurons that help guide eye movements and, according to numerous studies, do so by accumulating sensory evidence in favor of one choice (e.g., look left) or another (look right). To examine this functional link, we trained two monkeys on an urgent motion discrimination task, a task with which the evolution of both the recorded neuronal activity and the subject's choice can be tracked millisecond by millisecond. We found that while choice accuracy increased steeply with increasing sensory evidence, at the same time, the LIP selection signal became progressively weaker, as if it hindered performance. This effect was consistent with the transient deployment of spatial attention to disparate locations away from the relevant sensory cue. The results demonstrate that spatial selection in LIP is dissociable from, and may even conflict with, evidence accumulation during informed saccadic choices.
Collapse
Affiliation(s)
- Joshua A Seideman
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA
| | - Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA.
| |
Collapse
|
37
|
Zhang Z, Yin C, Yang T. Evidence accumulation occurs locally in the parietal cortex. Nat Commun 2022; 13:4426. [PMID: 35907908 PMCID: PMC9339004 DOI: 10.1038/s41467-022-32210-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Decision making often entails evidence accumulation, a process that is represented by neural activities in a network of multiple brain areas. Yet, it has not been identified where exactly the accumulation originates. We reason that a candidate brain area should both represent evidence accumulation and information that is used to compute evidence. Therefore, we designed a two-stage probabilistic reasoning task in which the evidence for accumulation had to be first determined from sensory signals orthogonal to decisions. With a linear encoding model, we decomposed the responses of posterior parietal neurons to each stimulus into an early and a late component that represented two dissociable stages of decision making. The former reflected the transformation from sensory inputs to accumulable evidence, and the latter reflected the accumulation of evidence and the formation of decisions. The presence of both computational stages indicates that evidence accumulation signal in the parietal cortex is computed locally.
Collapse
Affiliation(s)
- Zhewei Zhang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoqun Yin
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tianming Yang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
38
|
Arlt C, Barroso-Luque R, Kira S, Bruno CA, Xia N, Chettih SN, Soares S, Pettit NL, Harvey CD. Cognitive experience alters cortical involvement in goal-directed navigation. eLife 2022; 11:76051. [PMID: 35735909 PMCID: PMC9259027 DOI: 10.7554/elife.76051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Neural activity in the mammalian cortex has been studied extensively during decision tasks, and recent work aims to identify under what conditions cortex is actually necessary for these tasks. We discovered that mice with distinct cognitive experiences, beyond sensory and motor learning, use different cortical areas and neural activity patterns to solve the same navigation decision task, revealing past learning as a critical determinant of whether cortex is necessary for goal-directed navigation. We used optogenetics and calcium imaging to study the necessity and neural activity of multiple cortical areas in mice with different training histories. Posterior parietal cortex and retrosplenial cortex were mostly dispensable for accurate performance of a simple navigation task. In contrast, these areas were essential for the same simple task when mice were previously trained on complex tasks with delay periods or association switches. Multiarea calcium imaging showed that, in mice with complex-task experience, single-neuron activity had higher selectivity and neuron–neuron correlations were weaker, leading to codes with higher task information. Therefore, past experience is a key factor in determining whether cortical areas have a causal role in goal-directed navigation.
Collapse
Affiliation(s)
- Charlotte Arlt
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | | - Shinichiro Kira
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Carissa A Bruno
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Ningjing Xia
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Selmaan N Chettih
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Sofia Soares
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Noah L Pettit
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | |
Collapse
|
39
|
Jeurissen D, Shushruth S, El-Shamayleh Y, Horwitz GD, Shadlen MN. Deficits in decision-making induced by parietal cortex inactivation are compensated at two timescales. Neuron 2022; 110:1924-1931.e5. [PMID: 35421328 PMCID: PMC9233071 DOI: 10.1016/j.neuron.2022.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/03/2022] [Accepted: 03/12/2022] [Indexed: 01/11/2023]
Abstract
Perceptual decisions arise through the transformation of samples of evidence into a commitment to a proposition or plan of action. Such transformation is thought to involve cortical circuits capable of computation over timescales associated with working memory, attention, and planning. Neurons in the lateral intraparietal area (LIP) play a role in these functions, and much of what is known about the neurobiology of decision-making has been influenced by studies of LIP and its network of connections. However, the causal role of LIP remains controversial. In this study, we used pharmacological and chemogenetic methods to inactivate LIP in one brain hemisphere of four rhesus monkeys. This inactivation produced biases in decisions, but the effects dissipated despite persistent neural inactivation, implying compensation by unaffected areas. Compensation occurred rapidly within an experimental session and more gradually across sessions. These findings resolve disparate studies and inform the interpretation of focal perturbations of brain function.
Collapse
Affiliation(s)
- Danique Jeurissen
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
| | - S Shushruth
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA.
| | - Yasmine El-Shamayleh
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Gregory D Horwitz
- Department of Physiology & Biophysics, Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Michael N Shadlen
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA; Kavli Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
40
|
Zhang X, Qiu Y, Li J, Jia C, Liao J, Chen K, Qiu L, Yuan Z, Huang R. Neural correlates of transitive inference: An SDM meta-analysis on 32 fMRI studies. Neuroimage 2022; 258:119354. [PMID: 35659997 DOI: 10.1016/j.neuroimage.2022.119354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022] Open
Abstract
Transitive inference (TI) is a critical capacity involving the integration of relevant information into prior knowledge structure for drawing novel inferences on unobserved relationships. To date, the neural correlates of TI remain unclear due to the small sample size and heterogeneity of various experimental tasks from individual studies. Here, the meta-analysis on 32 fMRI studies was performed to detect brain activation patterns of TI and its three paradigms (spatial inference, hierarchical inference, and associative inference). We found the hippocampus, prefrontal cortex (PFC), putamen, posterior parietal cortex (PPC), retrosplenial cortex (RSC), supplementary motor area (SMA), precentral gyrus (PreCG), and median cingulate cortex (MCC) were engaged in TI. Specifically, the RSC was implicated in the associative inference, whereas PPC, SMA, PreCG, and MCC were implicated in the hierarchical inference. In addition, the hierarchical inference and associative inference both evoked activation in the hippocampus, medial PFC, and PCC. Although the meta-analysis on spatial inference did not generate a reliable result due to insufficient amount of investigations, the present work still offers a new insight for better understanding the neural basis underlying TI.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Yidan Qiu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Jinhui Li
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Chuchu Jia
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Jiajun Liao
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Kemeng Chen
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Lixin Qiu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China.
| | - Ruiwang Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
41
|
Goldring AB, Cooke DF, Pineda CR, Recanzone GH, Krubitzer LA. Functional characterization of the fronto-parietal reaching and grasping network: reversible deactivation of M1 and areas 2, 5, and 7b in awake behaving monkeys. J Neurophysiol 2022; 127:1363-1387. [PMID: 35417261 PMCID: PMC9109808 DOI: 10.1152/jn.00279.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
In the present investigation, we examined the role of different cortical fields in the fronto-parietal reaching and grasping network in awake, behaving macaque monkeys. This network is greatly expanded in primates compared to other mammals and coevolved with glabrous hands with opposable thumbs and the extraordinary dexterous behaviors employed by a number of primates, including humans. To examine this, we reversibly deactivated the primary motor area (M1), anterior parietal area 2, and posterior parietal areas 5L and 7b individually while monkeys were performing two types of reaching and grasping tasks. Reversible deactivation was accomplished with small microfluidic thermal regulators abutting specifically targeted cortical areas. Placement of these devices in the different cortical fields was confirmed post hoc in histologically processed tissue. Our results indicate that the different areas examined form a complex network of motor control that is overlapping. However, several consistent themes emerged that suggest the independent roles that motor cortex, area 2, area 7b, and area 5L play in the motor planning and execution of reaching and grasping movements. Area 5L is involved in the early stages and area 7b the later stages of a reaching and grasping movement, motor cortex is involved in all aspects of the execution of the movement, and area 2 provides proprioceptive feedback throughout the movement. We discuss our results in the context of previous studies that explored the fronto-parietal network, the overlapping (but also independent) functions of different nodes of this network, and the rapid compensatory plasticity of this network.NEW & NOTEWORTHY This is the first study to directly compare the results of cooling different portions of the fronto-parietal reaching and grasping network (motor cortex, anterior and posterior parietal cortex) in the same animals and the first to employ a complex, bimanual reaching and grasping task that is ethologically relevant. Whereas cooling area 7b or area 5L evoked deficits at distinct task phases, cooling M1 evoked a general set of deficits and cooling area 2 evoked proprioceptive deficits.
Collapse
Affiliation(s)
- Adam B Goldring
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| | - Dylan F Cooke
- Center for Neuroscience, University of California, Davis, California
- Department of Biomedical Physiology and Kinesiology (BPK), Simon Fraser University, Burnaby, British Columbia, Canada
| | - Carlos R Pineda
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| | - Gregg H Recanzone
- Center for Neuroscience, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Leah A Krubitzer
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| |
Collapse
|
42
|
Ashwood ZC, Roy NA, Stone IR, Urai AE, Churchland AK, Pouget A, Pillow JW. Mice alternate between discrete strategies during perceptual decision-making. Nat Neurosci 2022; 25:201-212. [PMID: 35132235 PMCID: PMC8890994 DOI: 10.1038/s41593-021-01007-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022]
Abstract
Classical models of perceptual decision-making assume that subjects use a single, consistent strategy to form decisions, or that decision-making strategies evolve slowly over time. Here we present new analyses suggesting that this common view is incorrect. We analyzed data from mouse and human decision-making experiments and found that choice behavior relies on an interplay among multiple interleaved strategies. These strategies, characterized by states in a hidden Markov model, persist for tens to hundreds of trials before switching, and often switch multiple times within a session. The identified decision-making strategies were highly consistent across mice and comprised a single 'engaged' state, in which decisions relied heavily on the sensory stimulus, and several biased states in which errors frequently occurred. These results provide a powerful alternate explanation for 'lapses' often observed in rodent behavioral experiments, and suggest that standard measures of performance mask the presence of major changes in strategy across trials.
Collapse
Affiliation(s)
- Zoe C Ashwood
- Deptartment of Computer Science, Princeton University, Princeton, NJ, USA.
- Princeton Neuroscience Institute, Princeton, NJ, USA.
| | | | - Iris R Stone
- Princeton Neuroscience Institute, Princeton, NJ, USA
| | - Anne E Urai
- Cognitive Psychology Unit, Leiden University, Leiden, Netherlands
| | - Anne K Churchland
- David Geffen School of Medicine, The University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexandre Pouget
- Faculty of Medicine & Deptartment of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Princeton, NJ, USA.
- Department of Psychology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
43
|
Gupta A, Bansal R, Alashwal H, Kacar AS, Balci F, Moustafa AA. Neural Substrates of the Drift-Diffusion Model in Brain Disorders. Front Comput Neurosci 2022; 15:678232. [PMID: 35069160 PMCID: PMC8776710 DOI: 10.3389/fncom.2021.678232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Abstract
Many studies on the drift-diffusion model (DDM) explain decision-making based on a unified analysis of both accuracy and response times. This review provides an in-depth account of the recent advances in DDM research which ground different DDM parameters on several brain areas, including the cortex and basal ganglia. Furthermore, we discuss the changes in DDM parameters due to structural and functional impairments in several clinical disorders, including Parkinson's disease, Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorders, Obsessive-Compulsive Disorder (OCD), and schizophrenia. This review thus uses DDM to provide a theoretical understanding of different brain disorders.
Collapse
Affiliation(s)
- Ankur Gupta
- CNRS UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France
| | - Rohini Bansal
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hany Alashwal
- College of Information Technology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anil Safak Kacar
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Fuat Balci
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ahmed A. Moustafa
- School of Psychology & Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, NSW, Australia
- School of Psychology, Faculty of Society and Design, Bond University, Robina, QLD, Australia
- Faculty of Health Sciences, Department of Human Anatomy and Physiology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
44
|
Abstract
Navigating by path integration requires continuously estimating one's self-motion. This estimate may be derived from visual velocity and/or vestibular acceleration signals. Importantly, these senses in isolation are ill-equipped to provide accurate estimates, and thus visuo-vestibular integration is an imperative. After a summary of the visual and vestibular pathways involved, the crux of this review focuses on the human and theoretical approaches that have outlined a normative account of cue combination in behavior and neurons, as well as on the systems neuroscience efforts that are searching for its neural implementation. We then highlight a contemporary frontier in our state of knowledge: understanding how velocity cues with time-varying reliabilities are integrated into an evolving position estimate over prolonged time periods. Further, we discuss how the brain builds internal models inferring when cues ought to be integrated versus segregated-a process of causal inference. Lastly, we suggest that the study of spatial navigation has not yet addressed its initial condition: self-location.
Collapse
Affiliation(s)
- Jean-Paul Noel
- Center for Neural Science, New York University, New York, NY 10003, USA;
| | - Dora E Angelaki
- Center for Neural Science, New York University, New York, NY 10003, USA;
- Tandon School of Engineering, New York University, New York, NY 11201, USA
| |
Collapse
|
45
|
Contò F, Edwards G, Tyler S, Parrott D, Grossman E, Battelli L. Attention network modulation via tRNS correlates with attention gain. eLife 2021; 10:e63782. [PMID: 34826292 PMCID: PMC8626087 DOI: 10.7554/elife.63782] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Transcranial random noise stimulation (tRNS) can enhance vision in the healthy and diseased brain. Yet, the impact of multi-day tRNS on large-scale cortical networks is still unknown. We investigated the impact of tRNS coupled with behavioral training on resting-state functional connectivity and attention. We trained human subjects for 4 consecutive days on two attention tasks, while receiving tRNS over the intraparietal sulci, the middle temporal areas, or Sham stimulation. We measured resting-state functional connectivity of nodes of the dorsal and ventral attention network (DVAN) before and after training. We found a strong behavioral improvement and increased connectivity within the DVAN after parietal stimulation only. Crucially, behavioral improvement positively correlated with connectivity measures. We conclude changes in connectivity are a marker for the enduring effect of tRNS upon behavior. Our results suggest that tRNS has strong potential to augment cognitive capacity in healthy individuals and promote recovery in the neurological population.
Collapse
Affiliation(s)
- Federica Contò
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
| | - Grace Edwards
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Department of Psychology, Harvard UniversityCambridgeUnited States
| | - Sarah Tyler
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Butte CollegeOrovilleUnited States
| | - Danielle Parrott
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
| | - Emily Grossman
- Department of Cognitive Sciences, University of California, IrvineIrvineUnited States
| | - Lorella Battelli
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
- Department of Psychology, Harvard UniversityCambridgeUnited States
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel, Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
46
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
47
|
Neural representations of ensemble coding in the occipital and parietal cortices. Neuroimage 2021; 245:118680. [PMID: 34718139 DOI: 10.1016/j.neuroimage.2021.118680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 11/23/2022] Open
Abstract
The human visual system is able to extract summary statistics from sets of similar items, but the underlying neural mechanism remains poorly understood. Using functional magnetic resonance imaging (fMRI) and an encoding model, we examined how the neural representation of ensemble coding is constructed by manipulating the task-relevance of ensemble features. We found a gradual increase in orientation-selective responses to the mean orientation of multiple stimuli along the visual hierarchy only when these orientations were task-relevant. Such responses to the ensemble orientation were present in the extrastriate area, V3, even when the mean orientation was not task-relevant, indicating that the ensemble representation can co-exist with the task-relevant individual feature representation. Ensemble orientations were also represented in frontal regions, but those representations were robust only when each mean orientation was linked to a motor response dimension. Together, our findings suggest that the neural representation of the ensemble percept is formed by pooling signals at multiple levels of the visual processing stream.
Collapse
|
48
|
Zhou Y, Rosen MC, Swaminathan SK, Masse NY, Zhu O, Freedman DJ. Distributed functions of prefrontal and parietal cortices during sequential categorical decisions. eLife 2021; 10:e58782. [PMID: 34491201 PMCID: PMC8423442 DOI: 10.7554/elife.58782] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Comparing sequential stimuli is crucial for guiding complex behaviors. To understand mechanisms underlying sequential decisions, we compared neuronal responses in the prefrontal cortex (PFC), the lateral intraparietal (LIP), and medial intraparietal (MIP) areas in monkeys trained to decide whether sequentially presented stimuli were from matching (M) or nonmatching (NM) categories. We found that PFC leads M/NM decisions, whereas LIP and MIP appear more involved in stimulus evaluation and motor planning, respectively. Compared to LIP, PFC showed greater nonlinear integration of currently visible and remembered stimuli, which correlated with the monkeys' M/NM decisions. Furthermore, multi-module recurrent networks trained on the same task exhibited key features of PFC and LIP encoding, including nonlinear integration in the PFC-like module, which was causally involved in the networks' decisions. Network analysis found that nonlinear units have stronger and more widespread connections with input, output, and within-area units, indicating putative circuit-level mechanisms for sequential decisions.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Neurobiology, The University of ChicagoChicagoUnited States
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
| | - Matthew C Rosen
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | | | - Nicolas Y Masse
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Ou Zhu
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - David J Freedman
- Department of Neurobiology, The University of ChicagoChicagoUnited States
- Neuroscience Institute, The University of ChicagoChicagoUnited States
| |
Collapse
|
49
|
Taylor JE, Cortese A, Barron HC, Pan X, Sakagami M, Zeithamova D. How do we generalize? NEURONS, BEHAVIOR, DATA ANALYSIS, AND THEORY 2021; 1:001c.27687. [PMID: 36282996 PMCID: PMC7613724 DOI: 10.51628/001c.27687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Humans and animals are able to generalize or transfer information from previous experience so that they can behave appropriately in novel situations. What mechanisms-computations, representations, and neural systems-give rise to this remarkable ability? The members of this Generative Adversarial Collaboration (GAC) come from a range of academic backgrounds but are all interested in uncovering the mechanisms of generalization. We started out this GAC with the aim of arbitrating between two alternative conceptual accounts: (1) generalization stems from integration of multiple experiences into summary representations that reflect generalized knowledge, and (2) generalization is computed on-the-fly using separately stored individual memories. Across the course of this collaboration, we found that-despite using different terminology and techniques, and although some of our specific papers may provide evidence one way or the other-we in fact largely agree that both of these broad accounts (as well as several others) are likely valid. We believe that future research and theoretical synthesis across multiple lines of research is necessary to help determine the degree to which different candidate generalization mechanisms may operate simultaneously, operate on different scales, or be employed under distinct conditions. Here, as the first step, we introduce some of these candidate mechanisms and we discuss the issues currently hindering better synthesis of generalization research. Finally, we introduce some of our own research questions that have arisen over the course of this GAC, that we believe would benefit from future collaborative efforts.
Collapse
Affiliation(s)
- Jessica Elizabeth Taylor
- The Department of Decoded Neurofeedback, Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Aurelio Cortese
- The Department of Decoded Neurofeedback, Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Institute of Cognitive Neuroscience, University College London, UK
| | - Helen C Barron
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK
| | - Xiaochuan Pan
- Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai, China
| | | | | |
Collapse
|
50
|
Kim HE, Kwon JH, Kim JJ. Neural Correlates of Garment Fit and Purchase Intention in the Consumer Decision-Making Process and the Influence of Product Presentation. Front Neurosci 2021; 15:609004. [PMID: 34447291 PMCID: PMC8384177 DOI: 10.3389/fnins.2021.609004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
In today’s competitive e-commerce markets, it is crucial to promote product satisfaction and to quickly identify purchase intention in decision-making consumers. The present investigation examined the relationship between perceived garment fit and purchase intention, together with how product presentation methods (mannequin versus self-model) contribute to decision-making processes of clothing. Thirty-nine female volunteers were scanned using fMRI while performing an online shopping task. In Part 1, univariate analysis was conducted between garment fit and product presentation factors to assess their effects on purchase deliberation. In Part 2, univariate, multivariate pattern, and psychophysiological interaction analyses were carried out to examine the predictive ability of fit evaluation and product presentation on purchase intention. First, garment fit × product presentation interaction effects on purchase deliberation were observed in the frontopolar cortex, superior frontal gyrus, anterior cingulate cortex, and posterior cingulate cortex. Part 2 demonstrated neural signals of the dorsomedial prefrontal cortex, premotor cortex, supplementary motor area, superior parietal lobule, supramarginal gyrus, superior temporal sulcus, fusiform gyrus, and insula to distinguish subsequent purchase intentions. Overall, the findings denote directed exploration, visual and action processing as key neural processes in decision-making that uniquely reflect garment fit and product presentation type during purchase deliberation. Additionally, with respect to the effects of purchase intention on product evaluation, the evidence conveys that mental interactions with products and social cognition are fundamental processes that capture subsequent purchase intention at the product evaluation stage.
Collapse
Affiliation(s)
- Hesun Erin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon Hee Kwon
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Jin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|