1
|
Qureshi YM, Voloshin V, Gleave K, Ranson H, McCall PJ, Covington JA, Towers CE, Towers DP. Discrimination of inherent characteristics of susceptible and resistant strains of Anopheles gambiae by explainable artificial intelligence analysis of flight trajectories. Sci Rep 2025; 15:6759. [PMID: 40000754 PMCID: PMC11862076 DOI: 10.1038/s41598-025-91191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Understanding mosquito behaviours is vital for the development of insecticide-treated nets (ITNs), which have been successfully deployed in sub-Saharan Africa to reduce disease transmission, particularly malaria. However, rising insecticide resistance (IR) among mosquito populations, owing to genetic and behavioural changes, poses a significant challenge. We present a machine learning pipeline that successfully distinguishes between innate IR and insecticide-susceptible (IS) mosquito flight behaviours independent of insecticidal exposure by analysing trajectory data. Data-driven methods are introduced to accommodate common tracking system shortcomings that occur due to mosquito positions being occluded by the bednet or other objects. Trajectories, obtained from room-scale tracking of two IR and two IS strains around a human-baited, untreated bednet, were analysed using features such as velocity, acceleration, and geometric descriptors. Using these features, an XGBoost model achieved a balanced accuracy of 0.743 and a ROC AUC of 0.813 in classifying IR from IS mosquitoes. SHAP analysis helped decipher that IR mosquitoes tend to fly slower with more directed flight paths and lower variability than IS-traits that are likely a fitness advantage by enhancing their ability to respond more quickly to bloodmeal cues. This approach provides valuable insights based on flight behaviour that can reveal the action of interventions and insecticides on mosquito physiology.
Collapse
Affiliation(s)
- Yasser M Qureshi
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
| | - Vitaly Voloshin
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Katherine Gleave
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Hilary Ranson
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Philip J McCall
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | | | - David P Towers
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
2
|
Zhang X, Wang C, Pi X, Li B, Ding Y, Yu H, Sun J, Wang P, Chen Y, Wang Q, Zhang C, Meng X, Chen G, Wang D, Wang Z, Mu Z, Song H, Zhang J, Niu S, Han Z, Ren L. Bionic Recognition Technologies Inspired by Biological Mechanosensory Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418108. [PMID: 39838736 DOI: 10.1002/adma.202418108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Indexed: 01/23/2025]
Abstract
Mechanical information is a medium for perceptual interaction and health monitoring of organisms or intelligent mechanical equipment, including force, vibration, sound, and flow. Researchers are increasingly deploying mechanical information recognition technologies (MIRT) that integrate information acquisition, pre-processing, and processing functions and are expected to enable advanced applications. However, this also poses significant challenges to information acquisition performance and information processing efficiency. The novel and exciting mechanosensory systems of organisms in nature have inspired us to develop superior mechanical information bionic recognition technologies (MIBRT) based on novel bionic materials, structures, and devices to address these challenges. Herein, first bionic strategies for information pre-processing are presented and their importance for high-performance information acquisition is highlighted. Subsequently, design strategies and considerations for high-performance sensors inspired by mechanoreceptors of organisms are described. Then, the design concepts of the neuromorphic devices are summarized in order to replicate the information processing functions of a biological nervous system. Additionally, the ability of MIBRT is investigated to recognize basic mechanical information. Furthermore, further potential applications of MIBRT in intelligent robots, healthcare, and virtual reality are explored with a view to solve a range of complex tasks. Finally, potential future challenges and opportunities for MIBRT are identified from multiple perspectives.
Collapse
Affiliation(s)
- Xiangxiang Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Changguang Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Xiang Pi
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Bo Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Yuechun Ding
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Hexuan Yu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Jialue Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Pinkun Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - You Chen
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Qun Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Changchao Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Xiancun Meng
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Guangjun Chen
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Dakai Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Ze Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Honglie Song
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
3
|
Ma Z, Gong Z, Jiang Y, Wu P, You C, Dong Z, Cao H, Yang Z, Zhao Y, Chen H, Zhang D. Head Horn Enhances Hydrodynamic Perception in Eyeless Cavefish. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406707. [PMID: 39308154 PMCID: PMC11600165 DOI: 10.1002/advs.202406707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Indexed: 11/28/2024]
Abstract
Fish can use hydrodynamic stimuli, decoded by lateral line systems, to explore the surroundings. Eyeless species of the genus Sinocyclocheilus have evolved conspicuous horns on their heads, whereas the specific function of which is still unknown. Meanwhile, the eyeless cavefish exhibits more sophisticated lateral line systems and enhanced behavioral capabilities (for instance rheotaxis), compared with their eyed counterparts. Here, the influence of head horn on the hydrodynamic perception capability is investigated through computational fluid dynamics, particle image velocimetry, and a bioinspired cavefish model integrated with an artificial lateral line system. The results show strong evidence that the head horn structure can enhance the hydrodynamic perception, from aspects of multiple hydrodynamic sensory indicators. It is uncovered as that the head horn renders eyeless cavefish with stronger hydrodynamic stimuli, induced by double-stagnation points near the head, which are perceived by the strengthened lateral line systems. Furthermore, the eyeless cavefish model has ≈17% higher obstacle recognition accuracy and lower cost (time and sensor number) than eyed cavefish model is conceptually demonstrated, by incorporating with machine learning. This study provides novel insights into form-function relationships in eyeless cavefish, in addition paves the way for optimizing sensor arrangement in fish robots and underwater vehicles.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Institute of Bionic and Micro‐Nano SystemsSchool of Mechanical Engineering and AutomationBeihang UniversityBeijing100191China
| | - Zheng Gong
- Institute of Bionic and Micro‐Nano SystemsSchool of Mechanical Engineering and AutomationBeihang UniversityBeijing100191China
| | - Yonggang Jiang
- Institute of Bionic and Micro‐Nano SystemsSchool of Mechanical Engineering and AutomationBeihang UniversityBeijing100191China
- International Research Institute for Multidisciplinary ScienceBeihang UniversityBeijing100191China
| | - Peng Wu
- Artificial Organ Technology LabBio‐manufacturing Research CenterSchool of Mechanical and Electric EngineeringSoochow UniversitySuzhou215021China
| | - Changxin You
- Centre for Artificial Intelligence and RoboticsHong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong999077China
| | - Zihao Dong
- Institute of Bionic and Micro‐Nano SystemsSchool of Mechanical Engineering and AutomationBeihang UniversityBeijing100191China
| | - Hongchao Cao
- Institute of Bionic and Micro‐Nano SystemsSchool of Mechanical Engineering and AutomationBeihang UniversityBeijing100191China
| | - Zhen Yang
- Institute of Bionic and Micro‐Nano SystemsSchool of Mechanical Engineering and AutomationBeihang UniversityBeijing100191China
| | - Yahui Zhao
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Huawei Chen
- Institute of Bionic and Micro‐Nano SystemsSchool of Mechanical Engineering and AutomationBeihang UniversityBeijing100191China
| | - Deyuan Zhang
- Institute of Bionic and Micro‐Nano SystemsSchool of Mechanical Engineering and AutomationBeihang UniversityBeijing100191China
| |
Collapse
|
4
|
Loh YM, Xu YY, Lee TT, Ohashi TS, Zhang YD, Eberl DF, Su MP, Kamikouchi A. Differences in male Aedes aegypti and Aedes albopictus hearing systems facilitate recognition of conspecific female flight tones. iScience 2024; 27:110264. [PMID: 39027372 PMCID: PMC11255862 DOI: 10.1016/j.isci.2024.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
When Aedes albopictus mosquitoes invade regions predominated by Aedes aegypti, either the latter can be displaced or the species can coexist, with potential consequences on disease transmission. Males from both species identify females by listening for her flight sounds. Comparing male hearing systems may provide insight into how hearing could prevent interspecific mating. Here, we show that species-specific differences in female wing beat frequencies are reflected in differences in male ear mechanical tuning frequencies and sound response profiles. Though Aedes albopictus males are attracted to sound, they do not readily display abdominal bending, unlike Aedes aegypti. We observed interspecific differences in male ear mechanical, but not electrical, tuning, suggesting a conserved primary auditory processing pathway. Our work suggests a potential role for hearing in the premating isolation of Aedes aegypti and Aedes albopictus, with implications for predicting future dynamics in their sympatric relationships and our understanding of mosquito acoustic communication.
Collapse
Affiliation(s)
- YuMin M. Loh
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Yifeng Y.J. Xu
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Tai-Ting Lee
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Takuro S. Ohashi
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Yixiao D. Zhang
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Daniel F. Eberl
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Matthew P. Su
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Gong Z, Di W, Jiang Y, Dong Z, Yang Z, Ye H, Zhang H, Liu H, Wei Z, Tu Z, Li D, Xiang J, Ding X, Zhang D, Chen H. Flexible calorimetric flow sensor with unprecedented sensitivity and directional resolution for multiple flight parameter detection. Nat Commun 2024; 15:3091. [PMID: 38600119 PMCID: PMC11006672 DOI: 10.1038/s41467-024-47284-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
The accurate perception of multiple flight parameters, such as the angle of attack, angle of sideslip, and airflow velocity, is essential for the flight control of micro air vehicles, which conventionally rely on arrays of pressure or airflow velocity sensors. Here, we present the estimation of multiple flight parameters using a single flexible calorimetric flow sensor featuring a sophisticated structural design with a suspended array of highly sensitive vanadium oxide thermistors. The proposed sensor achieves an unprecedented velocity resolution of 0.11 mm·s-1 and angular resolution of 0.1°. By attaching the sensor to a wing model, the angles of attack and slip were estimated simultaneously. The triaxial flight velocities and wing vibrations can also be estimated by sensing the relative airflow velocity due to its high sensitivity and fast response. Overall, the proposed sensor has many promising applications in weak airflow sensing and flight control of micro air vehicles.
Collapse
Affiliation(s)
- Zheng Gong
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Weicheng Di
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yonggang Jiang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China.
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, China.
| | - Zihao Dong
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Zhen Yang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
- Zhiyuan Research Institute, Hangzhou, 310013, China
| | - Hong Ye
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Hengrui Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Haoji Liu
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zixing Wei
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhan Tu
- Institute of Unmanned Systems, Beihang University, Beijing, 100191, China
| | - Daochun Li
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
| | - Jinwu Xiang
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xilun Ding
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| |
Collapse
|
6
|
Cribellier A, Camilo LH, Goyal P, Muijres FT. Mosquitoes escape looming threats by actively flying with the bow wave induced by the attacker. Curr Biol 2024; 34:1194-1205.e7. [PMID: 38367617 DOI: 10.1016/j.cub.2024.01.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
To detect and escape looming threats, night-flying insects must rely on other senses than vision alone. Nocturnal mosquitoes can evade looming objects in the dark, but how they achieve this is still unknown. Here, we show how night-active female malaria mosquitoes escape from rapidly looming objects that simulate defensive actions of blood-hosts. First, we quantified the escape performance of flying mosquitoes from an event-triggered mechanical swatter, showing that mosquitoes use swatter-induced airflow to increase their escape success. Secondly, we used high-speed videography and deep-learning-based tracking to analyze escape flights in detail, showing that mosquitoes use banked turns to evade the threat. By combining escape kinematics data with numerical simulations of attacker-induced airflow and a mechanistic movement model, we unraveled how mosquitoes control these banked evasive maneuvers: they actively steer away from the danger, and then passively travel with the bow wave produced by the attacker. Our results demonstrate that night-flying mosquitoes can detect looming objects when visual cues are minimal, suggesting that they use attacker-induced airflow both to detect the danger and as a fluid medium to move with away from the threat. This shows that escape strategies of flying insects are more complex than previous visually induced escape flight studies suggest. As most insects are of similar or smaller sizes than mosquitoes, comparable escape strategies are expected among millions of flying insect species. The here-observed escape maneuvers are distinct from those of mosquitoes escaping from odor-baited traps, thus providing new insights for the development of novel trapping techniques for integrative vector management.
Collapse
Affiliation(s)
- Antoine Cribellier
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands; Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Leonardo Honfi Camilo
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Pulkit Goyal
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Florian T Muijres
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| |
Collapse
|
7
|
Liu F, Zhao Y, Xie N, Wang Y, Liu M, Han Z, Hou T. Bio-inspired, sensitivity-enhanced, bi-directional airflow sensor for turbulence detection. NANOSCALE 2024; 16:4299-4307. [PMID: 38353593 DOI: 10.1039/d3nr03824f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Detecting airflow turbulence precursors promptly is crucial for ensuring flight safety and control. The initial stages of turbulence involve small reverse flows with random velocities and directions, which are not easily detected by existing airflow sensors. In this study, we designed a bionic, sensitivity-enhanced, bi-directional airflow sensor (BSBA) by incorporating bio-inspired circular tip slits and enlarging the central part of the cruciform beam structure. The BSBA exhibits a rapid response time (24.1 ms), high sensitivity (1.36 mV m-1 s-1), consistent detection of forward and backward airflow (correlation coefficient of 0.9854), and a low airflow detection threshold (1 ml). With these features, the proposed sensor can rapidly and accurately measure slight variations in the oscillating airflow, flow field, and contact force. The BSBA also achieves transparent obstacle detection on a quadrotor, even in visually challenging environments, by capturing minute changes in the flow fields produced by the quadrotor when encountering obstacles. The sensor's high sensitivity, consistent bi-directional detection, and fast response give it significant potential for enhancing safety in aircraft control systems.
Collapse
Affiliation(s)
- Fu Liu
- College of Communication Engineering, Jilin University, Changchun 130022, China.
| | - Yufeng Zhao
- College of Communication Engineering, Jilin University, Changchun 130022, China.
| | - Nan Xie
- College of Communication Engineering, Jilin University, Changchun 130022, China.
| | - Yueqiao Wang
- College of Communication Engineering, Jilin University, Changchun 130022, China.
| | - Meihe Liu
- College of Communication Engineering, Jilin University, Changchun 130022, China.
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Jilin University, Changchun 130022, China
| | - Tao Hou
- College of Communication Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
8
|
Panta K, Deng H, Zhang Z, Huang D, Panah A, Cheng B. Touchless underwater wall-distance sensing via active proprioception of a robotic flapper. BIOINSPIRATION & BIOMIMETICS 2024; 19:026009. [PMID: 38252966 DOI: 10.1088/1748-3190/ad2114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
In this work, we explored a bioinspired method for underwater object sensing based on active proprioception. We investigated whether the fluid flows generated by a robotic flapper, while interacting with an underwater wall, can encode the distance information between the wall and the flapper, and how to decode this information using the proprioception within the flapper. Such touchless wall-distance sensing is enabled by the active motion of a flapping plate, which injects self-generated flow to the fluid environment, thus representing a form of active sensing. Specifically, we trained a long short-term memory (LSTM) neural network to predict the wall distance based on the force and torque measured at the base of the flapping plate. In addition, we varied the Rossby number (Ro, or the aspect ratio of the plate) and the dimensionless flapping amplitude (A∗) to investigate how the rotational effects and unsteadiness of self-generated flow respectively affect the accuracy of the wall-distance prediction. Our results show that the median prediction error is within 5% of the plate length for all the wall-distances investigated (up to 40 cm or approximately 2-3 plate lengths depending on theRo); therefore, confirming that the self-generated flow can enable underwater perception. In addition, we show that stronger rotational effects at lowerRolead to higher prediction accuracy, while flow unsteadiness (A∗) only has moderate effects. Lastly, analysis based on SHapley Additive exPlanations (SHAP) indicate that temporal features that are most prominent at stroke reversals likely promotes the wall-distance prediction.
Collapse
Affiliation(s)
- Kundan Panta
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Hankun Deng
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Zhiyu Zhang
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Daning Huang
- Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Azar Panah
- Division of Engineering, Business & Computing (Berks), The Pennsylvania State University, Reading, PA 19610, United States of America
| | - Bo Cheng
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
9
|
Wang Q, Lu Z, Wang D, Wang K. Mechanosensor for Proprioception Inspired by Ultrasensitive Trigger Hairs of Venus Flytrap. CYBORG AND BIONIC SYSTEMS 2024; 5:0065. [PMID: 38268766 PMCID: PMC10807870 DOI: 10.34133/cbsystems.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/05/2023] [Indexed: 01/26/2024] Open
Abstract
Mechanosensors, as the core component of a proprioceptive system, can detect many types of mechanical signals in their surroundings, such as force signals, displacement signals, and vibration signals. It is understandable that the development of an all-new mechanosensory structure that can be widely used is highly desirable. This is because it can markedly improve the detection performance of mechanosensors. Coincidentally, in nature, optimized microscale trigger hairs of Venus flytrap are ingeniously used as a mechanosensory structure. These trigger hairs are utilized for tactile mechanosensilla to efficiently detect external mechanical stimuli. Biological trigger hair-based mechanosensilla offer an all-new bio-inspired strategy. This strategy utilizes the notch structure and variable stiffness to enhance the perceptual performance of mechanosensors. In this study, the structure-performance-application coupling relationship of trigger hair-based mechanosensors is explored through experiment and analysis. An artificial trigger hair-based mechanosensor is developed by mimicking the deformation properties of the Venus flytrap trigger hair. This bio-inspired mechanosensor shows excellent performance in terms of mechanical stability, response time, and sensitivity to mechanical signals.
Collapse
Affiliation(s)
| | | | | | - Kejun Wang
- Jiangsu Provincial Key Laboratory of Advanced Robotics,
Soochow University, Suzhou 215021, P.R. China
| |
Collapse
|
10
|
Dickerson AK, Muijres FT, Pieters R. Using Videography to Study the Biomechanics and Behavior of Freely Moving Mosquitoes. Cold Spring Harb Protoc 2023; 2023:84-89. [PMID: 36167673 DOI: 10.1101/pdb.top107676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Female mosquitoes of most species require a blood meal for egg development. When biting a human host to collect this blood meal, they can spread dangerous diseases such as malaria, yellow fever, or dengue. Researchers use videography to study many aspects of mosquito behavior, including in-flight host-seeking, takeoff, and landing behaviors, as well as probing and blood feeding, and more. Here, we introduce protocols on how to use videography to capture and analyze mosquito movements at high spatial and temporal resolution, in two and three dimensions.
Collapse
Affiliation(s)
- Andrew K Dickerson
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Tennessee 37996, USA
| | - Florian T Muijres
- Department of Experimental Zoology, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Remco Pieters
- Department of Experimental Zoology, Wageningen University, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
11
|
Fluid flow simulation on a Turritella-seashell-like geometry demonstrating its ability as static mixer for inline mixing. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Wang K, Gong S, Zhang Y, Yap LW, Cheng W. Mosquito-inspired design of resistive antennae for ultrasensitive acoustic detection. NANOSCALE 2022; 14:10108-10117. [PMID: 35792598 DOI: 10.1039/d2nr01622b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mosquito antennae are unique one-dimensional (1D) soft auditory systems, enabling highly sensitive and specific detection of the surrounding acoustic signals for routine movement and communications. Here we report on a mosquito-inspired design of a free-standing 1D acoustic sensor, comprising repeating soft joints (cracked Pt film) and rigid segments (non-cracked Pt film). The soft cracked Pt joints serve as highly sensitive resistive sensors to vibrational strains while the rigid segments are insensitive to acoustic pressures. By adjusting the joint positions and densities, we can fine-tune the sensor's acoustic sensing performance. We further designed unevenly spaced soft joints to mimic male and female mosquito antennae, and found that the artificial female antennae can achieve a wide sensing range (∼80 to ∼2000 Hz), ultrahigh sensitivity (19.17 Pa-1), low detection limit (58.4 dB), and fast response (1.14 ms). Finally, we demonstrate the proof-of-concept of an artificial mosquito that can respond to specific frequencies related to real-world events in real time.
Collapse
Affiliation(s)
- Kaixuan Wang
- Department of Chemical & Biological Engineering, Monash University Clayton, Victoria 3800, Australia.
| | - Shu Gong
- Department of Chemical & Biological Engineering, Monash University Clayton, Victoria 3800, Australia.
| | - Yuxin Zhang
- Department of Chemical & Biological Engineering, Monash University Clayton, Victoria 3800, Australia.
| | - Lim Wei Yap
- Department of Chemical & Biological Engineering, Monash University Clayton, Victoria 3800, Australia.
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University Clayton, Victoria 3800, Australia.
| |
Collapse
|
13
|
Rajasekaran K, Bae HD, Bergbreiter S, Yu M. Flow separation sensing on airfoil using a 3D printed biomimetic artificial hair sensor. BIOINSPIRATION & BIOMIMETICS 2022; 17:046003. [PMID: 35349985 DOI: 10.1088/1748-3190/ac61e9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Small-scale unmanned air vehicles require lightweight, compact, and low-power sensors that encompass a variety of sensing modalities to enable flight control and navigation in challenging environments. Flow sensing is one such modality that has attracted much interest in recent years. In this paper, a micro-scale artificial hair sensor is developed to resolve both the direction and magnitude of airflow. The sensor structure employs a high-aspect ratio hair structure and a thin flexible membrane to facilitate the transduction of directional airflow to membrane deflection. The sensor readout is based on capacitive sensing and two pairs of electrodes orthogonal to each other are used to obtain airflow directional information. The sensor structure was fabricated using two-photon polymerization and integration onto a miniature printed circuit board to enable simple measurement. The sensor's responses to static displacement loading from different directions were characterized. The experimental results are in good agreement with the simulation results. Furthermore, the sensor's capability to measure the direction and magnitude of flow was demonstrated. Finally, the sensor was mounted on an airfoil and its ability to detect flow separation was verified.
Collapse
Affiliation(s)
- Keshav Rajasekaran
- University of Maryland, 2181 Glenn L. Martin Hall, College Park, MD 20742, United States of America
| | - Hyung Dae Bae
- Howard University, 2300 Sixth Street NW, Washington, DC 20059, United States of America
| | - Sarah Bergbreiter
- Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| | - Miao Yu
- University of Maryland, 2181 Glenn L. Martin Hall, College Park, MD 20742, United States of America
| |
Collapse
|
14
|
Bio-Inspired Mechano-Sensor Based on the Deformation of Slit Wake. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Internal mechano-sensors, as an indispensable part of the proprioceptive system of intelligent equipment, have attracted enormous research interest because of their extremely crucial role in monitoring machining processes, real-time diagnosis of equipment faults, adaptive motor control and so on. The mechano-sensory structure with signal-transduction function is an important factor in determining the sensing performance of a mechano-sensor. However, contrary to the wide application of the cantilever beam as the sensory structure of external mechano-sensors in order to guarantee their exteroceptive ability, there is still a lack of an effective and widely used sensory structure to significantly improve the sensing performance of internal mechano-sensors. Here, inspired by the scorpion using the specialized slit as the sensory structure of internal mechano-sensilla, the slit is ingeniously used in the design of the engineered internal mechano-sensor. In order to improve the deformability of the slit wake, the hollowed-out design around the slit tail of biological mechano-sensilla is researched. Meanwhile, to mimic the easily deformed flexible cuticular membrane covering the slit, the ultrathin, flexible, crack-based strain sensor is used as the sensing element to cover the controllable slit wake. Based on the coupling deformation of the slit wake, as well as the flexible strain sensor, the slit-based mechano-sensor shows excellent sensing performance to various mechanical signals such as displacement and vibration signals.
Collapse
|
15
|
Zhou J, Lai J, Menda G, Stafstrom JA, Miles CI, Hoy RR, Miles RN. Outsourced hearing in an orb-weaving spider that uses its web as an auditory sensor. Proc Natl Acad Sci U S A 2022; 119:e2122789119. [PMID: 35349337 PMCID: PMC9169088 DOI: 10.1073/pnas.2122789119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/03/2022] [Indexed: 01/07/2023] Open
Abstract
SignificanceThe sense of hearing in all known animals relies on possessing auditory organs that are made up of cellular tissues and constrained by body sizes. We show that hearing in the orb-weaving spider is functionally outsourced to its extended phenotype, the proteinaceous self-manufactured web, and hence processes behavioral controllability. This finding opens new perspectives on animal extended cognition and hearing-the outsourcing and supersizing of auditory function in spiders. This study calls for reinvestigation of the remarkable evolutionary ecology and sensory ecology in spiders-one of the oldest land animals. The sensory modality of outsourced hearing provides a unique model for studying extended and regenerative sensing and presents new design features for inspiring novel acoustic flow detectors.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439
| | - Junpeng Lai
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902
| | - Gil Menda
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Jay A. Stafstrom
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Carol I. Miles
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
| | - Ronald R. Hoy
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Ronald N. Miles
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902
| |
Collapse
|
16
|
Ding R, Hsiao YH, Jia H, Bai S, Chirarattananon P. Passive Wall Tracking for a Rotorcraft With Tilted and Ducted Propellers Using Proximity Effects. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3140821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Runze Ding
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, China
| | - Yi-Hsuan Hsiao
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Huaiyuan Jia
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, China
| | - Songnan Bai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, China
| | | |
Collapse
|
17
|
Somers J, Georgiades M, Su MP, Bagi J, Andrés M, Alampounti A, Mills G, Ntabaliba W, Moore SJ, Spaccapelo R, Albert JT. Hitting the right note at the right time: Circadian control of audibility in Anopheles mosquito mating swarms is mediated by flight tones. SCIENCE ADVANCES 2022; 8:eabl4844. [PMID: 35020428 PMCID: PMC8754303 DOI: 10.1126/sciadv.abl4844] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/12/2021] [Indexed: 05/20/2023]
Abstract
Mating swarms of malaria mosquitoes form every day at sunset throughout the tropical world. They typically last less than 30 minutes. Activity must thus be highly synchronized between the sexes. Moreover, males must identify the few sporadically entering females by detecting the females’ faint flight tones. We show that the Anopheles circadian clock not only ensures a tight synchrony of male and female activity but also helps sharpen the males’ acoustic detection system: By raising their flight tones to 1.5 times the female flight tone, males enhance the audibility of females, specifically at swarm time. Previously reported “harmonic convergence” events are only a random by-product of the mosquitoes’ flight tone variance and not a signature of acoustic interaction between males and females. The flight tones of individual mosquitoes occupy narrow, partly non-overlapping frequency ranges, suggesting that the audibility of individual females varies across males.
Collapse
Affiliation(s)
- Jason Somers
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marcos Georgiades
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Matthew P. Su
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
- Division of Biological Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Judit Bagi
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marta Andrés
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alexandros Alampounti
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gordon Mills
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
| | - Watson Ntabaliba
- Vector Control Product Testing Unit, Ifakara Health Institute, Ifakara, Tanzania
| | - Sarah J. Moore
- Vector Control Product Testing Unit, Ifakara Health Institute, Ifakara, Tanzania
- Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, Centro Universitario di Ricerca sulla Genomica Funzionale (C.U.R.Ge.F), University of Perugia, Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB) Trieste, Italy
| | - Joerg T. Albert
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Corresponding author.
| |
Collapse
|
18
|
Use of a MEMS Differential Pressure Sensor to Detect Ground, Ceiling, and Walls on Small Quadrotors. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3068661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Singh B, Yidris N, Basri AA, Pai R, Ahmad KA. Study of Mosquito Aerodynamics for Imitation as a Small Robot and Flight in a Low-Density Environment. MICROMACHINES 2021; 12:511. [PMID: 34063196 PMCID: PMC8147425 DOI: 10.3390/mi12050511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/28/2022]
Abstract
In terms of their flight and unusual aerodynamic characteristics, mosquitoes have become a new insect of interest. Despite transmitting the most significant infectious diseases globally, mosquitoes are still among the great flyers. Depending on their size, they typically beat at a high flapping frequency in the range of 600 to 800 Hz. Flapping also lets them conceal their presence, flirt, and help them remain aloft. Their long, slender wings navigate between the most anterior and posterior wing positions through a stroke amplitude about 40 to 45°, way different from their natural counterparts (>120°). Most insects use leading-edge vortex for lift, but mosquitoes have additional aerodynamic characteristics: rotational drag, wake capture reinforcement of the trailing-edge vortex, and added mass effect. A comprehensive look at the use of these three mechanisms needs to be undertaken-the pros and cons of high-frequency, low-stroke angles, operating far beyond the normal kinematic boundary compared to other insects, and the impact on the design improvements of miniature drones and for flight in low-density atmospheres such as Mars. This paper systematically reviews these unique unsteady aerodynamic characteristics of mosquito flight, responding to the potential questions from some of these discoveries as per the existing literature. This paper also reviews state-of-the-art insect-inspired robots that are close in design to mosquitoes. The findings suggest that mosquito-based small robots can be an excellent choice for flight in a low-density environment such as Mars.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.Y.); (A.A.B.)
- Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Noorfaizal Yidris
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.Y.); (A.A.B.)
| | - Adi Azriff Basri
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.Y.); (A.A.B.)
| | - Raghuvir Pai
- Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Kamarul Arifin Ahmad
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.Y.); (A.A.B.)
- Aerospace Malaysia Research Centre, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
20
|
Carnaghi M, Belmain SR, Hopkins RJ, Hawkes FM. Multimodal synergisms in host stimuli drive landing response in malaria mosquitoes. Sci Rep 2021; 11:7379. [PMID: 33795798 PMCID: PMC8016827 DOI: 10.1038/s41598-021-86772-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/18/2021] [Indexed: 02/01/2023] Open
Abstract
Anopheles mosquitoes transmit malaria, which affects one-fifth of the world population. A comprehensive understanding of mosquito behaviour is essential for the development of novel tools for vector control and surveillance. Despite abundant research on mosquito behaviour, little is known on the stimuli that drive malaria vectors during the landing phase of host-seeking. Using behavioural assays with a multimodal step approach we quantified both the individual and the combined effect of three host-associated stimuli in eliciting landing in Anopheles coluzzii females. We demonstrated that visual, olfactory and thermal sensory stimuli interact synergistically to increase the landing response. Furthermore, if considering only the final outcome (i.e. landing response), our insect model can bypass the absence of either a thermal or a visual stimulus, provided that at least one of these is presented simultaneously with the olfactory stimuli, suggesting that landing is the result of a flexible but accurate stimuli integration. These results have important implications for the development of mosquito control and surveillance tools.
Collapse
Affiliation(s)
- Manuela Carnaghi
- grid.55594.38Department of Agriculture Health and Environment, Natural Resources Institute, University of Greenwich at Medway, Kent, ME7 4TB UK
| | - Steven R. Belmain
- grid.55594.38Department of Agriculture Health and Environment, Natural Resources Institute, University of Greenwich at Medway, Kent, ME7 4TB UK
| | - Richard J. Hopkins
- grid.55594.38Department of Agriculture Health and Environment, Natural Resources Institute, University of Greenwich at Medway, Kent, ME7 4TB UK
| | - Frances M. Hawkes
- grid.55594.38Department of Agriculture Health and Environment, Natural Resources Institute, University of Greenwich at Medway, Kent, ME7 4TB UK
| |
Collapse
|
21
|
Calkins L, Lingevitch J, Coffin J, McGuire L, Geder J, Kelly M, Zavlanos MM, Sofge D, Lofaro D. Distance Estimation Using Self-Induced Noise of an Aerial Vehicle. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Lai YH, Ma JF, Yang JT. Flight Maneuver of a Damselfly with Phase Modulation of the Wings. Integr Comp Biol 2021; 61:20-36. [PMID: 33710279 DOI: 10.1093/icb/icab007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We developed a numerical model for four-wing self-propulsion to calculate effectively the flight velocity generated with varied wing motions, which satisfactorily verified biological experiments. Through this self-propulsion model, we analyzed the flight velocity of a damselfly (Matrona cyanoptera) at varied phases. The results show that after phase modulation of the wings, the aerodynamic performance of the forewing (FW) is affected by the incoming flow and an effective angle of attack, whereas that of the hindwing (HW) is dominated by the vortex interaction and induced flow generated by the shed vortex of the FW. Cooperating with the flow interaction, in stable flight, the HW in the lead phase has a larger vertical velocity, whereas the FW in the lead phase has a larger horizontal velocity. Regarding the aerodynamic efficiency, the FW in the lead phase has greater horizontal efficiency, whereas the HW in the lead phase has greater vertical efficiency; the overall efficiency does not vary with the phase. This work interprets that a dragonfly adopts the HW in the lead phase to generate a larger lift, thus supporting the larger body weight, whereas a damselfly adopts the FW in the lead phase to have a greater forward velocity, which can supplement the lack of flapping frequency.
Collapse
Affiliation(s)
- Yu-Hsiang Lai
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jui-Fu Ma
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jing-Tang Yang
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Abstract
There are at least eight ways that wings potentially produce sound. Five mechanisms are aerodynamic sounds, created by airflow, and three are structural sound created by interactions of solid surfaces. Animal flight is low Mach (M), meaning all animals move at <30% of the speed of sound. Thus in aerodynamic mechanisms the effects of air compressibility can be ignored, except in mechanism #1. Mechanism #1 is trapped air, in which air approaches or exceeds Mach 1 as it escapes a constriction. This mechanism is hypothetical but likely. #2 is Gutin sound, the aerodynamic reaction to lift and drag. This mechanism is ubiquitous in flight, and generates low frequency sound such as the humming of hummingbirds or insect wing tones. #3 is turbulence-generated atonal whooshing sounds, which are also widespread in animal flight. #4 are whistles, tonal sounds generated by geometry-induced flow feedback. This mechanism is hypothetical. #5 is aeroelastic flutter, sound generated by elasticity-induced feedback that is usually but not always tonal. This is widespread in birds (feathers are predisposed to flutter) but apparently not bats or insects. Mechanism #6 is rubbing sound (including stridulation), created when bird feathers or insect wings slide past each other. Atonal rubbing sounds are widespread in bird flight and insects; tonal stridulation is widespread in insects. #7 is percussion, created when two stiff elements collide and vibrate, and is present in some birds and insects. Mechanism #8 are tymbals and other bistable conformations. These are stiff elements that snap back and forth between two conformations, producing impulsive, atonal sound. Tymbals are widespread in insects but not birds or bats; insect cuticle appears predisposed to form tymbals. There are few examples of bat wing sounds: are bats intrinsically quiet, or just under-studied? These mechanisms, especially Gutin sound, whooshes, and rubbing (#2, #3, and #6) are prominent cues in ordinary flight of all flying animals, and are the "acoustic substrate" available to be converted from an adventitious sound (cue) into a communication signal. For instance, wing sounds have many times evolved into signals that are incorporated into courtship displays. Conversely, these are the sounds selected to be suppressed if quiet flight is selected for. The physical mechanisms that underlie animal sounds provide context for understanding the ways in which signals and cues may evolve.
Collapse
Affiliation(s)
- Christopher J Clark
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
24
|
Dou Z, Madan A, Carlson JS, Chung J, Spoleti T, Dimopoulos G, Cammarato A, Mittal R. Acoustotactic response of mosquitoes in untethered flight to incidental sound. Sci Rep 2021; 11:1884. [PMID: 33479423 PMCID: PMC7820424 DOI: 10.1038/s41598-021-81456-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022] Open
Abstract
Mosquitoes are vectors for some of the most devastating diseases on the planet. Given the centrality of acoustic sensing in the precopulatory behavior of these vectors, the use of an exogenous acoustic stimulus offers the potential of interfering with the courtship behavior of these insects. Previous research on the acoustotactic response of mosquitoes has been conducted on tethered preparations using low-intensity sound stimuli. To quantify differences in acoustotactic responses between mosquitos of distinct sex and species, we examined the effects of incidental sound stimuli on the flight behavior of free-flying male vs. female Aedes aegypti and Anopheles gambiae mosquitoes. The key variables were sound frequency (100–1000 Hz) and intensity (67–103 dB, measured at 12.5 cm from the source), and the acoustotactic response was measured in terms of the relative increase in flight speed in response to the stimulus. The data show, for the first time, significant sex- and species-specific differences in acoustotactic responses. A. aegypti exhibited a greater response to sound stimulus compared to An. gambiae, and the response also extended over a larger range of frequencies. Furthermore, the males of both species displayed a greater acoustotactic response than females, with An. gambiae females exhibiting minimal response to sound.
Collapse
Affiliation(s)
- Zhongwang Dou
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Aditi Madan
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jenny S Carlson
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Chung
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tyler Spoleti
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Rajat Mittal
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
25
|
The Balance Strategy between Structural Safety and Sensing Accuracy Inspired by Slit-Based Mechanical Sensilla. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In engineering, cracks are typically regarded as defects due to enormous stress amplification at tip of the crack. Conversely, scorpion ingeniously utilizes the “risky” near-tip stress field of a crack-shaped slit to accurately detect weak vibration signal without causing catastrophic crack propagation from the slit tip. The present paper focuses on the balance strategy between structural safety and sensing accuracy of slit-based mechanical sensilla. We performed a detailed structural and mechanical property study of tissue around the slit wake utilizing a complementary combination of various experimental methods. The results indicate that there is a special thin surface membrane covering the slit wake and the elastic moduli of the membrane and exoskeleton are 0.562 GPa and 5.829 GPa, respectively. In addition, the ratio of bending stiffness between exoskeleton and membrane tissue is about 8 × 104. The theoretical and simulation analysis show that the surface membrane—with appropriate elastic modulus and bending stiffness—can achieve different forms of deformation with the change of slit width for protecting the mechanosensory structure without sacrificing the sensing accuracy. This finding offers a crucial theoretical basis for the further design of bionic mechanical sensors based on the near-tip stress field of artificial cracks.
Collapse
|
26
|
Liu H. Simulation-based insect-inspired flight systems. CURRENT OPINION IN INSECT SCIENCE 2020; 42:105-109. [PMID: 33068784 DOI: 10.1016/j.cois.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Insects power and control their flight by flapping their wings. By controlling their aerodynamic forces and torques, they can generate precise and agile aerial manoeuvres. From an engineer's perspective, their closed-loop, flight control system depends on an overarching external mechanical 'frame' consisting of wings and thoracic shell, which is actuated by an internal system consisting of flight muscles and a complex nervous system. Insect flights are diverse but robust relying on the integration of different flexible structures including wings, exoskeletal elements, wing-hinges, musculoskeletal elements, and sensors. Computational modelling of biomechanics in insect-inspired flight systems can offer a powerful and feasible tool to unravel a passive and active mechanism (PAM) strategy, that is, how these flexible structures work interactively and complementarily to achieve a systematically efficient and robust flapping-wing dynamics and aerodynamics as well as flight control in various natural environments.
Collapse
Affiliation(s)
- Hao Liu
- Graduate School of Engineering, Chiba University, Japan.
| |
Collapse
|
27
|
Smith NM, Balsalobre JB, Doshi M, Willenberg BJ, Dickerson AK. Landing mosquitoes bounce when engaging a substrate. Sci Rep 2020; 10:15744. [PMID: 32978447 PMCID: PMC7519040 DOI: 10.1038/s41598-020-72462-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022] Open
Abstract
In this experimental study we film the landings of Aedes aegypti mosquitoes to characterize landing behaviors and kinetics, limitations, and the passive physiological mechanics they employ to land on a vertical surface. A typical landing involves 1-2 bounces, reducing inbound momentum by more than half before the mosquito firmly attaches to a surface. Mosquitoes initially approach landing surfaces at 0.1-0.6 m/s, decelerating to zero velocity in approximately 5 ms at accelerations as high as 5.5 gravities. Unlike Dipteran relatives, mosquitoes do not visibly prepare for landing with leg adjustments or body pitching. Instead mosquitoes rely on damping by deforming two forelimbs and buckling of the proboscis, which also serves to distribute the impact force, lessening the potential of detection by a mammalian host. The rebound response of a landing mosquito is well-characterized by a passive mass-spring-damper model which permits the calculation of force across impact velocity. The landing force of the average mosquito in our study is approximately 40 [Formula: see text]N corresponding to an impact velocity of 0.24 m/s. The substrate contact velocity which produces a force perceptible to humans, 0.42 m/s, is above 85% of experimentally observed landing speeds.
Collapse
Affiliation(s)
- Nicholas M Smith
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, USA
| | - Jasmine B Balsalobre
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, USA
| | - Mona Doshi
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, USA
| | - Bradley J Willenberg
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, USA
| | - Andrew K Dickerson
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, USA.
| |
Collapse
|
28
|
Abstract
Mosquitoes' exceptional sensitivity to sound and airflow inspires new collision avoidance technology
Collapse
Affiliation(s)
- John Young
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2610, Australia.
| | - Matthew Garratt
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2610, Australia.
| |
Collapse
|