1
|
Duan W, Lu P, Xu Z, Wang J, Lu Y, Wang M, Paller KA, Axmacher N, Wang L. Awake reactivation of cortical memory traces predicts subsequent memory retrieval. Prog Neurobiol 2025; 250:102778. [PMID: 40381829 DOI: 10.1016/j.pneurobio.2025.102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/30/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Brief periods of rest after learning facilitate consolidation of new memories. Memory reactivation and hippocampal-cortical dialogue have been proposed as candidate mechanisms supporting consolidation. However, the study of these mechanisms has mostly concerned sleep-based consolidation. Whether and how awake reactivation can selectively consolidate cortical memory traces to guide subsequent behavior requires more human electrophysiological evidence. This study addressed these issues by utilizing intracranial electroencephalography (iEEG) recordings from 11 patients with drug-resistant epilepsy, who learned a set of object-location associations. Using representational similarity analysis, we found that, among the multiple cortical memory traces of object-location associations for the same object generated through several rounds of learning, the association corresponding to memory traces with stronger cortical activation during wakeful rest was more likely to be retrieved later. Awake reactivation of cortical memory trace was accompanied by increased hippocampal ripple rates and enhanced theta-band hippocampal-cortical communication, with hippocampal interactions with cortical regions within the default mode network preceding cortical reactivation. Together, these results suggest that awake reactivation of cortical memory trace during post-learning rest supports memory consolidation, predicting subsequent recall.
Collapse
Affiliation(s)
- Wei Duan
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Lu
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhansheng Xu
- Faculty of Psychology, Tianjin Normal University, Tianjin, China; Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Jing Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yue Lu
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Mengyang Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ken A Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, USA
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Liang Wang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Oláh G, Lákovics R, Shapira S, Leibner Y, Szücs A, Csajbók ÉA, Barzó P, Molnár G, Segev I, Tamás G. Accelerated signal propagation speed in human neocortical dendrites. eLife 2025; 13:RP93781. [PMID: 40272114 PMCID: PMC12021416 DOI: 10.7554/elife.93781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.
Collapse
Affiliation(s)
- Gáspár Oláh
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Rajmund Lákovics
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Sapir Shapira
- Edmond and Lily Safra center for Brain Sciences, The Hebrew University of JerusalemJerusalemIsrael
| | - Yonatan Leibner
- Edmond and Lily Safra center for Brain Sciences, The Hebrew University of JerusalemJerusalemIsrael
| | - Attila Szücs
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd UniversityBudapestHungary
| | - Éva Adrienn Csajbók
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Pál Barzó
- Department of Neurosurgery, University of SzegedSzegedHungary
| | - Gábor Molnár
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Idan Segev
- Edmond and Lily Safra center for Brain Sciences, The Hebrew University of JerusalemJerusalemIsrael
| | - Gábor Tamás
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| |
Collapse
|
3
|
Zhang D, Kleen JK. Dissociating physiological ripples and epileptiform discharges with vision transformers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.11.648468. [PMID: 40364911 PMCID: PMC12073830 DOI: 10.1101/2025.04.11.648468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Two frequently studied bursts of neural activity in the hippocampus are normal physiological ripples and abnormal interictal epileptiform discharges (IEDs). While they are different waveforms, IEDs are notoriously picked up as false positives when using typical automated ripples detectors which are prone to sharp edge artifacts. This has created challenges for studying ripples and IEDs independently. We leveraged recent advances in computer vision on time-frequency feature representations to enable more comprehensive and objective dissociation of these phenomena. We retrospectively evaluated human intracranial recordings from 46 hippocampal depth electrode sites among 17 patients with focal epilepsy, the majority of whom had a seizure-onset zone/network involving the hippocampus. We implemented a common human ripple detection algorithm and broadband spectrograms of all detected "ripple candidates" were projected into low-dimensional space. We segmented them using k-means to infer pseudo-labels for probable ripples and probable IEDs. Independently, human expert IED labels were manually annotated for comparison. State-of-the-art vision transformer models were implemented on individual spectrograms to approach ripple vs. IED dissociation as an image classification problem. We detected 31,847 ripple/IED candidates, and a median 3.9% per patient (range: 0-47.2%) were IEDs based on expert label overlap. Low-dimensional projection of spectrograms separated canonical IEDs vs. ripples better than raw or ripple-filtered waveforms. Canonical ripple and IED candidates emerged at opposite poles with a continuous landscape of intermediates in between. A binary vision transformer model trained on expert-labeled IED vs. non-IED candidate spectrograms with 5-fold cross-validation showed a mean area under the curve (AUC) of 0.970 and mean precision-recall curve of 0.694, both significantly above chance. To evaluate generalizability, we implemented a leave-one-patient-out cross-validation approach, in which training on pseudo-labels and testing on expert-labeled data demonstrated near-expert performance (mean AUC 0.966 across patients, range 0.892-0.997). Transformer-derived attention maps revealed that models were tuned to triangle-like edge artifact spatial features in the spectrograms. Model-derived probabilities (i.e. of being an IED) for all candidates demonstrated continuous transitions between ripples vs. IEDs, as opposed to binary clustering. The delineation between ripples and IEDs appears best represented as a gradient (i.e. not binary) due to physiological ripple features overlapping with sharpened and/or high frequency pathophysiological IED features. Vision transformers nevertheless perform virtually at human expert levels in dissociating these phenomena by leveraging time-frequency spatial features enabled by neural data spectrograms. Such tools applied to spectrotemporal representations may augment comprehensive investigations in cognitive neurophysiology and epileptiform signal biomarker optimization for closed-loop applications.
Collapse
|
4
|
Mishra A, Akkol S, Espinal E, Markowitz N, Tostaeva G, Freund E, Mehta AD, Bickel S. Hippocampal and cortical high-frequency oscillations orchestrate human semantic networks during word list memory. iScience 2025; 28:112171. [PMID: 40235588 PMCID: PMC11999489 DOI: 10.1016/j.isci.2025.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 04/17/2025] Open
Abstract
Episodic memory requires the precise coordination between the hippocampus and distributed cortical regions. This may be facilitated by bursts of brain activity called high-frequency oscillations (HFOs). We hypothesized that HFOs activate specific networks during memory retrieval and aimed to describe the electrophysiological properties of HFO-associated activity. To study this, we recorded intracranial electroencephalography while human participants performed a list learning task. Hippocampal HFOs (hHFOs) increased during encoding and retrieval, and these increases correlated with memory performance. During retrieval, hHFOs demonstrated activation of semantic processing regions that were previously active during encoding. This consisted of broadband high-frequency activity (HFA) and cortical HFOs. HFOs in the anterior temporal lobe, a major semantic hub, co-occurred with hHFOs, particularly during retrieval. These coincident HFOs were associated with greater cortical HFA and cortical theta bursts. Hence, HFOs may support synchronization of activity across distributed nodes of the hippocampal-cortical memory network.
Collapse
Affiliation(s)
- Akash Mishra
- Northwell, New Hyde Park, NY, USA
- Departments of Neurosurgery and Neurology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Serdar Akkol
- Northwell, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Elizabeth Espinal
- Northwell, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Noah Markowitz
- Northwell, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Gelana Tostaeva
- Northwell, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Elisabeth Freund
- Northwell, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Ashesh D. Mehta
- Northwell, New Hyde Park, NY, USA
- Departments of Neurosurgery and Neurology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Stephan Bickel
- Northwell, New Hyde Park, NY, USA
- Departments of Neurosurgery and Neurology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| |
Collapse
|
5
|
Veselic S, Muller TH, Gutierrez E, Behrens TEJ, Hunt LT, Butler JL, Kennerley SW. A cognitive map for value-guided choice in the ventromedial prefrontal cortex. Cell 2025:S0092-8674(25)00388-5. [PMID: 40262608 DOI: 10.1016/j.cell.2025.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/18/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
The prefrontal cortex (PFC) is crucial for economic decision-making. However, how PFC value representations facilitate flexible decisions remains unknown. We reframe economic decision-making as a navigation process through a cognitive map of choice values. We found rhesus macaques represented choices as navigation trajectories in a value space using a grid-like code. This occurred in ventromedial PFC (vmPFC) local field potential theta frequency across two datasets. vmPFC neurons deployed the same grid-like code and encoded chosen value. However, both signals depended on theta phase: occurring on theta troughs but on separate theta cycles. Finally, we found sharp-wave ripples-a key signature of planning and flexible behavior-in vmPFC. Thus, vmPFC utilizes cognitive map-based computations to organize and compare values, suggesting an alternative architecture for economic choice in PFC.
Collapse
Affiliation(s)
- Sebastijan Veselic
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK.
| | - Timothy H Muller
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| | - Elena Gutierrez
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Institute of Neurology, Department of Clinical and Movement Neurosciences, University College London, London WC1N 3BG, UK
| | - Timothy E J Behrens
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK; Sainsbury Wellcome Centre for Neural Circuits and Behaviour College, University College London, London W1T 4JG, UK
| | - Laurence T Hunt
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - James L Butler
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| | - Steven W Kennerley
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Institute of Neurology, Department of Clinical and Movement Neurosciences, University College London, London WC1N 3BG, UK
| |
Collapse
|
6
|
Sundby KK, Vaz AP, Wittig JH, Jackson SN, Inati SK, Zaghloul KA. Attention to memory content enhances single-unit spike sequence fidelity in the human anterior temporal lobe. Curr Biol 2025; 35:1085-1094.e5. [PMID: 39965574 PMCID: PMC11903144 DOI: 10.1016/j.cub.2025.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/23/2024] [Accepted: 01/23/2025] [Indexed: 02/20/2025]
Abstract
Attention aids in prioritizing information relevant to our present goals. For example, attention may augment sensory processing by modulating neural activity for low-level features of the attended items. Attention can also prioritize the contents of memory, facilitating our ability to remember some pieces of information while ignoring others. Here, we examine how using attention to modulate the contents of memory affects temporally organized sequences of neuronal spiking in the human anterior temporal lobe. These spike sequences represent higher-level semantic information and occur repeatedly and consistently as participants process and encode words into memory. Our results demonstrate that attention deployed to prioritize words for memory increases the consistency of these spike sequences. Further, retroactively cueing words elicits the replay of these sequences. Our data, therefore, suggest that paying attention to prioritizing semantic content for memory may improve the temporal organization of neural spiking representations of semantic information in the anterior temporal lobe.
Collapse
Affiliation(s)
- Kelsey K Sundby
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex P Vaz
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John H Wittig
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha N Jackson
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara K Inati
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Maslarova A, Shin JN, Navas-Olive A, Vöröslakos M, Hamer H, Doerfler A, Henin S, Buzsáki G, Liu A. Spatiotemporal Patterns Differentiate Hippocampal Sharp-Wave Ripples from Interictal Epileptiform Discharges in Mice and Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636758. [PMID: 39975118 PMCID: PMC11839046 DOI: 10.1101/2025.02.06.636758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hippocampal sharp-wave ripples (SPW-Rs) are high-frequency oscillations critical for memory consolidation in mammals. Despite extensive characterization in rodents, their application as biomarkers to track and treat memory dysfunction in humans is limited by coarse spatial sampling, interference from interictal epileptiform discharges (IEDs), and lack of consensus on human SPW-R localization and morphology. We demonstrate that mouse and human hippocampal ripples share spatial, spectral and temporal features, which are clearly distinct from IEDs. In 1024-channel hippocampal recordings from APP/PS1 mice, SPW-Rs were distinguishable from IEDs by their narrow localization to the CA1 pyramidal layer, narrowband frequency peaks, and multiple ripple cycles on the unfiltered local field potential. In epilepsy patients, ripples showed similar narrowband frequency peaks and visible ripple cycles in CA1 and the subiculum but were absent in the dentate gyrus. Conversely, IEDs showed a broad spatial extent and wide-band frequency power. We introduce a semi-automated, human ripple detection toolbox ("ripmap") selecting optimal detection channels and separating event waveforms by low-dimensional embedding. Our approach improves ripple detection accuracy, providing a firm foundation for future human memory research.
Collapse
|
8
|
Cheng H, Brown JW. Replay as a Basis for Backpropagation Through Time in the Brain. Neural Comput 2025; 37:403-436. [PMID: 39787418 DOI: 10.1162/neco_a_01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 10/14/2024] [Indexed: 01/12/2025]
Abstract
How episodic memories are formed in the brain is a continuing puzzle for the neuroscience community. The brain areas that are critical for episodic learning (e.g., the hippocampus) are characterized by recurrent connectivity and generate frequent offline replay events. The function of the replay events is a subject of active debate. Recurrent connectivity, computational simulations show, enables sequence learning when combined with a suitable learning algorithm such as backpropagation through time (BPTT). BPTT, however, is not biologically plausible. We describe here, for the first time, a biologically plausible variant of BPTT in a reversible recurrent neural network, R2N2, that critically leverages offline replay to support episodic learning. The model uses forward and backward offline replay to transfer information between two recurrent neural networks, a cache and a consolidator, that perform rapid one-shot learning and statistical learning, respectively. Unlike replay in standard BPTT, this architecture requires no artificial external memory store. This approach outperforms existing solutions like random feedback local online learning and reservoir network. It also accounts for the functional significance of hippocampal replay events. We demonstrate the R2N2 network properties using benchmark tests from computer science and simulate the rodent delayed alternation T-maze task.
Collapse
Affiliation(s)
- Huzi Cheng
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, U.S.A.
| | - Joshua W Brown
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, U.S.A.
| |
Collapse
|
9
|
Wang Y, Jian B, Ling Y, Pan Z, Liu F, Hou Y, Huo F, Hou X. Bioinspired Nanofluidic Circuits with Integrating Excitatory and Inhibitory Synapses. NANO LETTERS 2025; 25:2298-2306. [PMID: 39829024 DOI: 10.1021/acs.nanolett.4c05583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Brain neural networks intricately integrate excitatory and inhibitory synaptic potentials to modulate the generation or suppression of action potentials, laying the foundation for neuronal computation. Although bioinspired nanofluidic systems have replicated some synaptic functions, complete integration of postsynaptic potentials remains unachieved. In this work, the developed ion concentration gradient nanofluidic memristor (ICGNM) modulates memristive effects through ion concentration gradient adjustments and exhibits synaptic plasticity phenomena, including paired-pulse facilitation, paired-pulse depression, and spike-rate-dependent plasticity. Furthermore, by incorporation of ICGNMs as the memristive elements into the classic Hodgkin-Huxley model, the action potential generation is replicated. In addition to simulating nanofluidic spiking, these ICGNMs are also employed in a bioinspired nanofluidic circuit to simulate the integration of excitatory and inhibitory synaptic signals, which is highly analogous to the signal integration in actual neural circuits. This work represents a new step toward ionic computing in solution with bioinspired nanofluidic circuits.
Collapse
Affiliation(s)
- Yanqiong Wang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Bin Jian
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Yixin Ling
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhe Pan
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Faliang Liu
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Yaqi Hou
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Fengwei Huo
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
- Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
Griffin S, Khanna P, Choi H, Thiesen K, Novik L, Morecraft RJ, Ganguly K. Ensemble reactivations during brief rest drive fast learning of sequences. Nature 2025; 638:1034-1042. [PMID: 39814880 DOI: 10.1038/s41586-024-08414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 11/14/2024] [Indexed: 01/18/2025]
Abstract
During motor learning, breaks in practice are known to facilitate behavioural optimizations. Although this process has traditionally been studied over long breaks that last hours to days1-6, recent studies in humans have demonstrated that rapid performance gains during early motor sequence learning are most pronounced after very brief breaks lasting seconds to minutes7-10. However, the precise causal neural mechanisms that facilitate performance gains after brief breaks remain poorly understood. Here we recorded neural ensemble activity in the motor cortex of macaques while they performed a visuomotor sequence learning task interspersed with brief breaks. We found that task-related neural cofiring patterns were reactivated during brief breaks. The rate and content of reactivations predicted the magnitude and pattern of subsequent performance gains. Of note, we found that performance gains and reactivations were positively correlated with cortical ripples (80-120 Hz oscillations) but anti-correlated with β bursts (13-30 Hz oscillations), which ultimately dominated breaks after the fast learning phase plateaued. We then applied 20 Hz epidural alternating current stimulation (ACS) to motor cortex, which reduced reactivation rates in a phase-specific and dose-dependent manner. Notably, 20 Hz ACS also eliminated performance gains. Overall, our results indicate that the reactivations of task ensembles during brief breaks are causal drivers of subsequent performance gains. β bursts compete with this process, possibly to support stable performance.
Collapse
Affiliation(s)
- Sandon Griffin
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Preeya Khanna
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Hoseok Choi
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Katherina Thiesen
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Lisa Novik
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Robert J Morecraft
- Laboratory of Neurological Sciences, Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, USA
| | - Karunesh Ganguly
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- California National Primate Research Center, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
11
|
Mallory CS, Widloski J, Foster DJ. The time course and organization of hippocampal replay. Science 2025; 387:541-548. [PMID: 39883781 DOI: 10.1126/science.ads4760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/02/2024] [Indexed: 02/01/2025]
Abstract
The mechanisms by which the brain replays neural activity sequences remain unknown. Recording from large ensembles of hippocampal place cells in freely behaving rats, we observed that replay content is strictly organized over multiple timescales and governed by self-avoidance. After movement cessation, replays avoided the animal's previous path for 3 seconds. Chains of replays avoided self-repetition over a shorter timescale. We used a continuous attractor model of neural activity to demonstrate that neuronal fatigue both generates replay sequences and produces self-avoidance over the observed timescales. In addition, replay of past experience became predominant later into the stopping period, in a manner requiring cortical input. These results indicate a mechanism for replay generation that unexpectedly constrains which sequences can be produced across time.
Collapse
Affiliation(s)
- Caitlin S Mallory
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| | - John Widloski
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| | - David J Foster
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
12
|
van der Molen T, Spaeth A, Chini M, Hernandez S, Kaurala GA, Schweiger HE, Duncan C, McKenna S, Geng J, Lim M, Bartram J, Dendukuri A, Zhang Z, Gonzalez-Ferrer J, Bhaskaran-Nair K, Blauvelt LJ, Harder CR, Petzold LR, Alam El Din DM, Laird J, Schenke M, Smirnova L, Colquitt BM, Mostajo-Radji MA, Hansma PK, Teodorescu M, Hierlemann A, Hengen KB, Hanganu-Opatz IL, Kosik KS, Sharf T. Protosequences in brain organoids model intrinsic brain states Authors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.29.573646. [PMID: 38234832 PMCID: PMC10793448 DOI: 10.1101/2023.12.29.573646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Neuronal firing sequences are thought to be the basic building blocks of neural coding and information broadcasting within the brain. However, when sequences emerge during neurodevelopment remains unknown. We demonstrate that structured firing sequences are present in spontaneous activity of human and murine brain organoids and ex vivo neonatal brain slices from the murine somatosensory cortex. We observed a balance between temporally rigid and flexible firing patterns that are emergent phenomena in human and murine brain organoids and early postnatal murine somatosensory cortex, but not in primary dissociated cortical cultures. Our findings suggest that temporal sequences do not arise in an experience-dependent manner, but are rather constrained by an innate preconfigured architecture established during neurogenesis. These findings highlight the potential for brain organoids to further explore how exogenous inputs can be used to refine neuronal circuits and enable new studies into the genetic mechanisms that govern assembly of functional circuitry during early human brain development.
Collapse
Affiliation(s)
- Tjitse van der Molen
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Alex Spaeth
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sebastian Hernandez
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gregory A. Kaurala
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hunter E. Schweiger
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Cole Duncan
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sawyer McKenna
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jinghui Geng
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Max Lim
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julian Bartram
- Department of Biosystems Science and Engineering, ETH Zürich, Klingelbergstrasse 48, 4056 Basel, Switzerland
| | - Aditya Dendukuri
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Zongren Zhang
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106
| | - Jesus Gonzalez-Ferrer
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kiran Bhaskaran-Nair
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lon J. Blauvelt
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Cole R.K. Harder
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Linda R. Petzold
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Dowlette-Mary Alam El Din
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jason Laird
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD 21205, USA
| | - Maren Schenke
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bradley M. Colquitt
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Paul K. Hansma
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106
| | - Mircea Teodorescu
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Klingelbergstrasse 48, 4056 Basel, Switzerland
| | - Keith B. Hengen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ileana L. Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tal Sharf
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
13
|
Mittermaier FX, Kalbhenn T, Xu R, Onken J, Faust K, Sauvigny T, Thomale UW, Kaindl AM, Holtkamp M, Grosser S, Fidzinski P, Simon M, Alle H, Geiger JRP. Membrane potential states gate synaptic consolidation in human neocortical tissue. Nat Commun 2024; 15:10340. [PMID: 39668146 PMCID: PMC11638263 DOI: 10.1038/s41467-024-53901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Synaptic mechanisms that contribute to human memory consolidation remain largely unexplored. Consolidation critically relies on sleep. During slow wave sleep, neurons exhibit characteristic membrane potential oscillations known as UP and DOWN states. Coupling of memory reactivation to these slow oscillations promotes consolidation, though the underlying mechanisms remain elusive. Here, we performed axonal and multineuron patch-clamp recordings in acute human brain slices, obtained from neurosurgeries, to show that sleep-like UP and DOWN states modulate axonal action potentials and temporarily enhance synaptic transmission between neocortical pyramidal neurons. Synaptic enhancement by UP and DOWN state sequences facilitates recruitment of postsynaptic action potentials, which in turn results in long-term stabilization of synaptic strength. In contrast, synapses undergo lasting depression if presynaptic neurons fail to recruit postsynaptic action potentials. Our study offers a mechanistic explanation for how coupling of neural activity to slow waves can cause synaptic consolidation, with potential implications for brain stimulation strategies targeting memory performance.
Collapse
Affiliation(s)
- Franz X Mittermaier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Thilo Kalbhenn
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Ran Xu
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich W Thomale
- Pediatric Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pawel Fidzinski
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Matthias Simon
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Jörg R P Geiger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany.
| |
Collapse
|
14
|
Garagnani M. On the ability of standard and brain-constrained deep neural networks to support cognitive superposition: a position paper. Cogn Neurodyn 2024; 18:3383-3400. [PMID: 39712129 PMCID: PMC11655761 DOI: 10.1007/s11571-023-10061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2024] Open
Abstract
The ability to coactivate (or "superpose") multiple conceptual representations is a fundamental function that we constantly rely upon; this is crucial in complex cognitive tasks requiring multi-item working memory, such as mental arithmetic, abstract reasoning, and language comprehension. As such, an artificial system aspiring to implement any of these aspects of general intelligence should be able to support this operation. I argue here that standard, feed-forward deep neural networks (DNNs) are unable to implement this function, whereas an alternative, fully brain-constrained class of neural architectures spontaneously exhibits it. On the basis of novel simulations, this proof-of-concept article shows that deep, brain-like networks trained with biologically realistic Hebbian learning mechanisms display the spontaneous emergence of internal circuits (cell assemblies) having features that make them natural candidates for supporting superposition. Building on previous computational modelling results, I also argue that, and offer an explanation as to why, in contrast, modern DNNs trained with gradient descent are generally unable to co-activate their internal representations. While deep brain-constrained neural architectures spontaneously develop the ability to support superposition as a result of (1) neurophysiologically accurate learning and (2) cortically realistic between-area connections, backpropagation-trained DNNs appear to be unsuited to implement this basic cognitive operation, arguably necessary for abstract thinking and general intelligence. The implications of this observation are briefly discussed in the larger context of existing and future artificial intelligence systems and neuro-realistic computational models.
Collapse
Affiliation(s)
- Max Garagnani
- Department of Computing, Goldsmiths – University of London, London, UK
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
15
|
Dickey CW, Verzhbinsky IA, Kajfez S, Rosen BQ, Gonzalez CE, Chauvel PY, Cash SS, Pati S, Halgren E. Thalamic spindles and Up states coordinate cortical and hippocampal co-ripples in humans. PLoS Biol 2024; 22:e3002855. [PMID: 39561183 PMCID: PMC11575773 DOI: 10.1371/journal.pbio.3002855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/20/2024] [Indexed: 11/21/2024] Open
Abstract
In the neocortex, ~90 Hz ripples couple to ~12 Hz sleep spindles on the ~1 Hz Down-to-Up state transition during non-rapid eye movement sleep. This conjunction of sleep waves is critical for the consolidation of memories into long-term storage. The widespread co-occurrences of ripples ("co-ripples") may integrate information across the neocortex and hippocampus to facilitate consolidation. While the thalamus synchronizes spindles and Up states in the cortex for memory, it is not known whether it may also organize co-ripples. Using human intracranial recordings during NREM sleep, we investigated whether cortico-cortical co-ripples and hippocampo-cortical co-ripples are either: (1) driven by directly projected thalamic ripples; or (2) coordinated by propagating thalamic spindles or Up states. We found ripples in the anterior and posterior thalamus, with similar characteristics as hippocampal and cortical ripples, including having a center frequency of ~90 Hz and coupling to local spindles on the Down-to-Up state transition. However, thalamic ripples rarely co-occur or phase-lock with cortical or hippocampal ripples. By contrast, spindles and Up states that propagate from the thalamus strongly coordinate co-ripples in the cortex and hippocampus. Thus, thalamo-cortical spindles and Up states, rather than thalamic ripples, may provide input facilitating spatially distributed co-rippling that integrates information for memory consolidation during sleep in humans.
Collapse
Affiliation(s)
- Charles W. Dickey
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Medical Scientist Training Program, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, United States of America
| | - Ilya A. Verzhbinsky
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Medical Scientist Training Program, University of California San Diego, La Jolla, California, United States of America
| | - Sophie Kajfez
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Burke Q. Rosen
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Christopher E. Gonzalez
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Patrick Y. Chauvel
- Aix-Marseille Université, Marseille, France
- INSERM, Institut de Neurosciences des Systèmes UMR 1106, Marseille, France
- APHM (Assistance Publique–Hôpitaux de Marseille), Timone Hospital, Marseille, France
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sandipan Pati
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Eric Halgren
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, United States of America
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
16
|
Xie W, Wittig JH, Chapeton JI, El-Kalliny M, Jackson SN, Inati SK, Zaghloul KA. Neuronal sequences in population bursts encode information in human cortex. Nature 2024; 635:935-942. [PMID: 39415012 DOI: 10.1038/s41586-024-08075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
Neural coding has traditionally been examined through changes in firing rates and latencies in response to different stimuli1-5. However, populations of neurons can also exhibit transient bursts of spiking activity, wherein neurons fire in a specific temporal order or sequence6-8. The human brain may utilize these neuronal sequences within population bursts to efficiently represent information9-12, thereby complementing the well-known neural code based on spike rate or latency. Here we examined this possibility by recording the spiking activity of populations of single units in the human anterior temporal lobe as eight participants performed a visual categorization task. We find that population spiking activity organizes into bursts during the task. The temporal order of spiking across the activated units within each burst varies across stimulus categories, creating unique stereotypical sequences for individual categories as well as for individual exemplars within a category. The information conveyed by the temporal order of spiking activity is separable from and complements the information conveyed by the units' spike rates or latencies following stimulus onset. Collectively, our data provide evidence that the human brain contains a complementary code based on the neuronal sequence within bursts of population spiking to represent information.
Collapse
Affiliation(s)
- Weizhen Xie
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA.
- Department of Psychology, University of Maryland, College Park, MD, USA.
| | - John H Wittig
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Julio I Chapeton
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Mostafa El-Kalliny
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Samantha N Jackson
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Sara K Inati
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Tacikowski P, Kalender G, Ciliberti D, Fried I. Human hippocampal and entorhinal neurons encode the temporal structure of experience. Nature 2024; 635:160-167. [PMID: 39322671 PMCID: PMC11540853 DOI: 10.1038/s41586-024-07973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Extracting the underlying temporal structure of experience is a fundamental aspect of learning and memory that allows us to predict what is likely to happen next. Current knowledge about the neural underpinnings of this cognitive process in humans stems from functional neuroimaging research1-5. As these methods lack direct access to the neuronal level, it remains unknown how this process is computed by neurons in the human brain. Here we record from single neurons in individuals who have been implanted with intracranial electrodes for clinical reasons, and show that human hippocampal and entorhinal neurons gradually modify their activity to encode the temporal structure of a complex image presentation sequence. This representation was formed rapidly, without providing specific instructions to the participants, and persisted when the prescribed experience was no longer present. Furthermore, the structure recovered from the population activity of hippocampal-entorhinal neurons closely resembled the structural graph defining the sequence, but at the same time, also reflected the probability of upcoming stimuli. Finally, learning of the sequence graph was related to spontaneous, time-compressed replay of individual neurons' activity corresponding to previously experienced graph trajectories. These findings demonstrate that neurons in the hippocampus and entorhinal cortex integrate the 'what' and 'when' information to extract durable and predictive representations of the temporal structure of human experience.
Collapse
Affiliation(s)
- Pawel Tacikowski
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Güldamla Kalender
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Davide Ciliberti
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
18
|
Phan AT, Xie W, Chapeton JI, Inati SK, Zaghloul KA. Dynamic patterns of functional connectivity in the human brain underlie individual memory formation. Nat Commun 2024; 15:8969. [PMID: 39419972 PMCID: PMC11487248 DOI: 10.1038/s41467-024-52744-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Remembering our everyday experiences involves dynamically coordinating information distributed across different brain regions. Investigating how momentary fluctuations in connectivity in the brain are relevant for episodic memory formation, however, has been challenging. Here we leverage the high temporal precision of intracranial EEG to examine sub-second changes in functional connectivity in the human brain as 20 participants perform a paired associates verbal memory task. We first identify potential functional connections by selecting electrode pairs across the neocortex that exhibit strong correlations with a consistent time delay across random recording segments. We then find that successful memory formation during the task involves dynamic sub-second changes in functional connectivity that are specific to each word pair. These patterns of dynamic changes are reinstated when participants successfully retrieve the word pairs from memory. Therefore, our data provide direct evidence that specific patterns of dynamic changes in human brain connectivity are associated with successful memory formation.
Collapse
Affiliation(s)
- Audrey T Phan
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Weizhen Xie
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Julio I Chapeton
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Sara K Inati
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Mishra A, Tostaeva G, Nentwich M, Espinal E, Markowitz N, Winfield J, Freund E, Gherman S, Mehta AD, Bickel S. Motifs of human hippocampal and cortical high frequency oscillations structure processing and memory of naturalistic stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617305. [PMID: 39416218 PMCID: PMC11483033 DOI: 10.1101/2024.10.08.617305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The discrete events of our narrative experience are organized by the neural substrate that underlies episodic memory. This narrative process is segmented into discrete units by event boundaries. This permits a replay process that acts to consolidate each event into a narrative memory. High frequency oscillations (HFOs) are a potential mechanism for synchronizing neural activity during these processes. Here, we use intracranial recordings from participants viewing and freely recalling a naturalistic stimulus. We show that hippocampal HFOs increase following event boundaries and that coincident hippocampal-cortical HFOs (co-HFOs) occur in cortical regions previously shown to underlie event segmentation (inferior parietal, precuneus, lateral occipital, inferior frontal cortices). We also show that event-specific patterns of co-HFOs that occur during event viewing re-occur following the subsequent three event boundaries (in decaying fashion) and also during recall. This is consistent with models that support replay as a mechanism for memory consolidation. Hence, HFOs may coordinate activity across brain regions serving widespread event segmentation, encode naturalistic memory, and bind representations to assemble memory of a coherent, continuous experience.
Collapse
|
20
|
Hahn MA, Lendner JD, Anwander M, Slama KSJ, Knight RT, Lin JJ, Helfrich RF. A tradeoff between efficiency and robustness in the hippocampal-neocortical memory network during human and rodent sleep. Prog Neurobiol 2024; 242:102672. [PMID: 39369838 DOI: 10.1016/j.pneurobio.2024.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Sleep constitutes a brain state of disengagement from the external world that supports memory consolidation and restores cognitive resources. The precise mechanisms how sleep and its varied stages support information processing remain largely unknown. Synaptic scaling models imply that daytime learning accumulates neural information, which is then consolidated and downregulated during sleep. Currently, there is a lack of in-vivo data from humans and rodents that elucidate if, and how, sleep renormalizes information processing capacities. From an information-theoretical perspective, a consolidation process should entail a reduction in neural pattern variability over the course of a night. Here, in a cross-species intracranial study, we identify a tradeoff in the neural population code during sleep where information coding efficiency is higher in the neocortex than in hippocampal archicortex in humans than in rodents as well as during wakefulness compared to sleep. Critically, non-REM sleep selectively reduces information coding efficiency through pattern repetition in the neocortex in both species, indicating a transition to a more robust information coding regime. Conversely, the coding regime in the hippocampus remained consistent from wakefulness to non-REM sleep. These findings suggest that new information could be imprinted to the long-term mnemonic storage in the neocortex through pattern repetition during sleep. Lastly, our results show that task engagement increased coding efficiency, while medically-induced unconsciousness disrupted the population code. In sum, these findings suggest that neural pattern variability could constitute a fundamental principle underlying cognitive engagement and memory formation, while pattern repetition reflects robust coding, possibly underlying the consolidation process.
Collapse
Affiliation(s)
- Michael A Hahn
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, Otfried-Müller Str. 27, Tübingen 72076, Germany.
| | - Janna D Lendner
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, Otfried-Müller Str. 27, Tübingen 72076, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, Hoppe-Seyler-Str 3, Tübingen 72076, Germany
| | - Matthias Anwander
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, Otfried-Müller Str. 27, Tübingen 72076, Germany
| | - Katarina S J Slama
- Department of Psychology and the Helen Wills Neuroscience Institute, UC Berkeley, 130 Barker Hall, Berkeley, CA 94720, USA
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, UC Berkeley, 130 Barker Hall, Berkeley, CA 94720, USA
| | - Jack J Lin
- Department of Neurology, UC Davis, 3160 Folsom Blvd, Sacramento, CA 95816, USA; Center for Mind and Brain, UC Davis, 267 Cousteau Pl, Davis, CA 95618, USA
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, Otfried-Müller Str. 27, Tübingen 72076, Germany.
| |
Collapse
|
21
|
Zavecz Z, Janacsek K, Simor P, Cohen MX, Nemeth D. Similarity of brain activity patterns during learning and subsequent resting state predicts memory consolidation. Cortex 2024; 179:168-190. [PMID: 39197408 DOI: 10.1016/j.cortex.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024]
Abstract
Spontaneous reactivation of brain activity from learning to a subsequent off-line period has been implicated as a neural mechanism underlying memory consolidation. However, similarities in brain activity may also emerge as a result of individual, trait-like characteristics. Here, we introduced a novel approach for analyzing continuous electroencephalography (EEG) data to investigate learning-induced changes as well as trait-like characteristics in brain activity underlying memory consolidation. Thirty-one healthy young adults performed a learning task, and their performance was retested after a short (∼1 h) delay. Consolidation of two distinct types of information (serial-order and probability) embedded in the task were tested to reveal similarities in functional networks that uniquely predict the changes in the respective memory performance. EEG was recorded during learning and pre- and post-learning rest periods. To investigate brain activity associated with consolidation, we quantified similarities in EEG functional connectivity between learning and pre-learning rest (baseline similarity) and learning and post-learning rest (post-learning similarity). While comparable patterns of these two could indicate trait-like similarities, changes from baseline to post-learning similarity could indicate learning-induced changes, possibly spontaneous reactivation. Higher learning-induced changes in alpha frequency connectivity (8.5-9.5 Hz) were associated with better consolidation of serial-order information, particularly for long-range connections across central and parietal sites. The consolidation of probability information was associated with learning-induced changes in delta frequency connectivity (2.5-3 Hz) specifically for more local, short-range connections. Furthermore, there was a substantial overlap between the baseline and post-learning similarities and their associations with consolidation performance, suggesting robust (trait-like) differences in functional connectivity networks underlying memory processes.
Collapse
Affiliation(s)
- Zsófia Zavecz
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Department of Psychology, University of Cambridge, Cambridge, United Kingdom.
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, University of Greenwich, London, United Kingdom.
| | - Peter Simor
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Michael X Cohen
- Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dezso Nemeth
- INSERM, Université Claude Bernard Lyon 1, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France; NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Department of Education and Psychology, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
22
|
Garrett JC, Verzhbinsky IA, Kaestner E, Carlson C, Doyle WK, Devinsky O, Thesen T, Halgren E. Binding of cortical functional modules by synchronous high-frequency oscillations. Nat Hum Behav 2024; 8:1988-2002. [PMID: 39134741 DOI: 10.1038/s41562-024-01952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 07/09/2024] [Indexed: 08/21/2024]
Abstract
Whether high-frequency phase-locked oscillations facilitate integration ('binding') of information across widespread cortical areas is controversial. Here we show with intracranial electroencephalography that cortico-cortical co-ripples (~100-ms-long ~90 Hz oscillations) increase during reading and semantic decisions, at the times and co-locations when and where binding should occur. Fusiform wordform areas co-ripple with virtually all language areas, maximally from 200 to 400 ms post-word-onset. Semantically specified target words evoke strong co-rippling between wordform, semantic, executive and response areas from 400 to 800 ms, with increased co-rippling between semantic, executive and response areas prior to correct responses. Co-ripples were phase-locked at zero lag over long distances (>12 cm), especially when many areas were co-rippling. General co-activation, indexed by non-oscillatory high gamma, was mainly confined to early latencies in fusiform and earlier visual areas, preceding co-ripples. These findings suggest that widespread synchronous co-ripples may assist the integration of multiple cortical areas for sustained periods during cognition.
Collapse
Affiliation(s)
- Jacob C Garrett
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Ilya A Verzhbinsky
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Chad Carlson
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Werner K Doyle
- Department of Neurosurgery, New York University Langone School of Medicine, New York, NY, USA
| | - Orrin Devinsky
- Department of Neurology, New York University Langone School of Medicine, New York, NY, USA
| | - Thomas Thesen
- Department of Medical Education, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Eric Halgren
- Departments of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
23
|
Kucewicz MT, Cimbalnik J, Garcia-Salinas JS, Brazdil M, Worrell GA. High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams? Brain 2024; 147:2966-2982. [PMID: 38743818 PMCID: PMC11370809 DOI: 10.1093/brain/awae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Despite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected in the human mesial temporal lobe and neocortical intracranial recordings spanning gamma/epsilon (60-150 Hz), ripple (80-250 Hz) and higher frequency ranges. Separate from other non-oscillatory activities, these brief electrophysiological oscillations of distinct duration, frequency and amplitude are thought to be generated by coordinated spiking of neuronal ensembles within volumes as small as a single cortical column. Although the exact origins, mechanisms and physiological roles in health and disease remain elusive, they have been associated with human memory consolidation and cognitive processing. Recent studies suggest their involvement in encoding and recall of episodic memory with a possible role in the formation and reactivation of memory traces. High frequency oscillations are detected during encoding, throughout maintenance, and right before recall of remembered items, meeting a basic definition for an engram activity. The temporal coordination of high frequency oscillations reactivated across cortical and subcortical neural networks is ideally suited for integrating multimodal memory representations, which can be replayed and consolidated during states of wakefulness and sleep. High frequency oscillations have been shown to reflect coordinated bursts of neuronal assembly firing and offer a promising substrate for tracking and modulation of the hypothetical electrophysiological engram.
Collapse
Affiliation(s)
- Michal T Kucewicz
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Bioelectronics, Neurophysiology and Engineering Laboratory, Mayo Clinic, Departments of Neurology and Biomedical Engineering & Physiology, Mayo Clinic, Rochester, MN 55902, USA
| | - Jan Cimbalnik
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Department of Biomedical Engineering, St. Anne’s University Hospital in Brno & International Clinical Research Center, Brno 602 00, Czech Republic
- Brno Epilepsy Center, 1th Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, member of the ERN-EpiCARE, Brno 602 00, Czech Republic
| | - Jesus S Garcia-Salinas
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Milan Brazdil
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Brno Epilepsy Center, 1th Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, member of the ERN-EpiCARE, Brno 602 00, Czech Republic
- Behavioural and Social Neuroscience Research Group, CEITEC—Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Gregory A Worrell
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Bioelectronics, Neurophysiology and Engineering Laboratory, Mayo Clinic, Departments of Neurology and Biomedical Engineering & Physiology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
24
|
Rueda-Castro V, Azofeifa JD, Chacon J, Caratozzolo P. Bridging minds and machines in Industry 5.0: neurobiological approach. Front Hum Neurosci 2024; 18:1427512. [PMID: 39257699 PMCID: PMC11384584 DOI: 10.3389/fnhum.2024.1427512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction In transitioning from Industry 4.0 to the forthcoming Industry 5.0, this research explores the fusion of the humanistic view and technological developments to redefine Continuing Engineering Education (CEE). Industry 5.0 introduces concepts like biomanufacturing and human-centricity, embodying the integration of sustainability and resiliency principles in CEE, thereby shaping the upskilling and reskilling initiatives for the future workforce. The interaction of sophisticated concepts such as Human-Machine Interface and Brain-Computer Interface (BCI) forms a conceptual bridge toward the approaching Fifth Industrial Revolution, allowing one to understand human beings and the impact of their biological development across diverse and changing workplace settings. Methods Our research is based on recent studies into Knowledge, Skills, and Abilities taxonomies, linking these elements with dynamic labor market profiles. This work intends to integrate a biometric perspective to conceptualize and describe how cognitive abilities could be represented by linking a Neuropsychological test and a biometric assessment. We administered the brief Neuropsychological Battery in Spanish (Neuropsi Breve). At the same time, 15 engineering students used the Emotiv insight device that allowed the EEG recollection to measure performance metrics such as attention, stress, engagement, and excitement. Results The findings of this research illustrate a methodology that allowed the first approach to the cognitive abilities of engineering students to be from neurobiological and behavioral perspectives. Additionally, two profiles were extracted from the results. The first illustrates the Neuropsi test areas, its most common mistakes, and its performance ratings regarding the students' sample. The second profile shows the interaction between the EEG and Neuropsi test, showing engineering students' cognitive and emotional states based on biometric levels. Discussions The study demonstrates the potential of integrating neurobiological assessment into engineering education, highlighting a significant advancement in addressing the skills requirements of Industry 5.0. The results suggest that obtaining a comprehensive understanding of students' cognitive abilities is possible, and educational interventions can be adapted by combining neuropsychological approaches with EEG data collection. In the future, it is essential to refine these evaluation methods further and explore their applicability in different engineering disciplines. Additionally, it is necessary to investigate the long-term impact of these methods on workforce preparation and performance.
Collapse
Affiliation(s)
| | - Jose Daniel Azofeifa
- Institute for the Future of Education, Tecnologico de Monterrey, Monterrey, Mexico
| | - Julian Chacon
- School of Engineering and Sciences, Tecnologico de Monterrey, Mexico City, Mexico
| | - Patricia Caratozzolo
- Institute for the Future of Education, Tecnologico de Monterrey, Monterrey, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Mexico City, Mexico
| |
Collapse
|
25
|
Diamond JM, Chapeton JI, Xie W, Jackson SN, Inati SK, Zaghloul KA. Focal seizures induce spatiotemporally organized spiking activity in the human cortex. Nat Commun 2024; 15:7075. [PMID: 39152115 PMCID: PMC11329741 DOI: 10.1038/s41467-024-51338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Epileptic seizures are debilitating because of the clinical symptoms they produce. These symptoms, in turn, may stem directly from disruptions in neural coding. Recent evidence has suggested that the specific temporal order, or sequence, of spiking across a population of cortical neurons may encode information. Here, we investigate how seizures disrupt neuronal spiking sequences in the human brain by recording multi-unit activity from the cerebral cortex in five male participants undergoing monitoring for seizures. We find that pathological discharges during seizures are associated with bursts of spiking activity across a population of cortical neurons. These bursts are organized into highly consistent and stereotyped temporal sequences. As the seizure evolves, spiking sequences diverge from the sequences observed at baseline and become more spatially organized. The direction of this spatial organization matches the direction of the ictal discharges, which spread over the cortex as traveling waves. Our data therefore suggest that seizures can entrain cortical spiking sequences by changing the spatial organization of neuronal firing, providing a possible mechanism by which seizures create symptoms.
Collapse
Affiliation(s)
- Joshua M Diamond
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julio I Chapeton
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weizhen Xie
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| | - Samantha N Jackson
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara K Inati
- Clinical Epilepsy Section, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
Garrett JC, Verzhbinsky IA, Kaestner E, Carlson C, Doyle WK, Devinsky O, Thesen T, Halgren E. Binding of cortical functional modules by synchronous high frequency oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.20.541597. [PMID: 37292795 PMCID: PMC10245928 DOI: 10.1101/2023.05.20.541597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Whether high-frequency phase-locked oscillations facilitate integration ('binding') of information across widespread cortical areas is controversial. Here we show with intracranial EEG that cortico-cortical co-ripples (~100ms long ~90Hz oscillations) increase during reading and semantic decisions, at the times and co-locations when and where binding should occur. Fusiform wordform areas co-ripple with virtually all language areas, maximally from 200-400ms post-word-onset. Semantically-specified target words evoke strong co-rippling between wordform, semantic, executive and response areas from 400-800ms, with increased co-rippling between semantic, executive and response areas prior to correct responses. Co-ripples were phase-locked at zero-lag over long distances (>12cm), especially when many areas were co-rippling. General co-activation, indexed by non-oscillatory high gamma, was mainly confined to early latencies in fusiform and earlier visual areas, preceding co-ripples. These findings suggest that widespread synchronous co-ripples may assist the integration of multiple cortical areas for sustained periods during cognition.
Collapse
|
27
|
Blanco I, Caccavano A, Wu JY, Vicini S, Glasgow E, Conant K. Coupling of Sharp Wave Events between Zebrafish Hippocampal and Amygdala Homologs. J Neurosci 2024; 44:e1467232024. [PMID: 38508712 PMCID: PMC11044098 DOI: 10.1523/jneurosci.1467-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
The mammalian hippocampus exhibits spontaneous sharp wave events (1-30 Hz) with an often-present superimposed fast ripple oscillation (120-220 Hz) to form a sharp wave ripple (SWR) complex. During slow-wave sleep or quiet restfulness, SWRs result from the sequential spiking of hippocampal cell assemblies initially activated during learned or imagined experiences. Additional cortical/subcortical areas exhibit SWR events that are coupled to hippocampal SWRs, and studies in mammals suggest that coupling may be critical for the consolidation and recall of specific memories. In the present study, we have examined juvenile male and female zebrafish and show that SWR events are intrinsically generated and maintained within the telencephalon and that their hippocampal homolog, the anterodorsolateral lobe (ADL), exhibits SW events with ∼9% containing an embedded ripple (SWR). Single-cell calcium imaging coupled to local field potential recordings revealed that ∼10% of active cells in the dorsal telencephalon participate in any given SW event. Furthermore, fluctuations in cholinergic tone modulate SW events consistent with mammalian studies. Moreover, the basolateral amygdala (BLA) homolog exhibits SW events with ∼5% containing an embedded ripple. Computing the SW peak coincidence difference between the ADL and BLA showed bidirectional communication. Simultaneous coupling occurred more frequently within the same hemisphere, and in coupled events across hemispheres, the ADL more commonly preceded BLA. Together, these data suggest conserved mechanisms across species by which SW and SWR events are modulated, and memories may be transferred and consolidated through regional coupling.
Collapse
Affiliation(s)
- Ismary Blanco
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| | - Adam Caccavano
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| | - Jian-Young Wu
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
- Departments of Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
- Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057
| | - Eric Glasgow
- Oncology, Georgetown University Medical Center, Washington, DC 20057
| | - Katherine Conant
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
- Departments of Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| |
Collapse
|
28
|
Staresina BP. Coupled sleep rhythms for memory consolidation. Trends Cogn Sci 2024; 28:339-351. [PMID: 38443198 DOI: 10.1016/j.tics.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
How do passing moments turn into lasting memories? Sheltered from external tasks and distractions, sleep constitutes an optimal state for the brain to reprocess and consolidate previous experiences. Recent work suggests that consolidation is governed by the intricate interaction of slow oscillations (SOs), spindles, and ripples - electrophysiological sleep rhythms that orchestrate neuronal processing and communication within and across memory circuits. This review describes how sequential SO-spindle-ripple coupling provides a temporally and spatially fine-tuned mechanism to selectively strengthen target memories across hippocampal and cortical networks. Coupled sleep rhythms might be harnessed not only to enhance overnight memory retention, but also to combat memory decline associated with healthy ageing and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
29
|
Slutsky I. Linking activity dyshomeostasis and sleep disturbances in Alzheimer disease. Nat Rev Neurosci 2024; 25:272-284. [PMID: 38374463 DOI: 10.1038/s41583-024-00797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The presymptomatic phase of Alzheimer disease (AD) starts with the deposition of amyloid-β in the cortex and begins a decade or more before the emergence of cognitive decline. The trajectory towards dementia and neurodegeneration is shaped by the pathological load and the resilience of neural circuits to the effects of this pathology. In this Perspective, I focus on recent advances that have uncovered the vulnerability of neural circuits at early stages of AD to hyperexcitability, particularly when the brain is in a low-arousal states (such as sleep and anaesthesia). Notably, this hyperexcitability manifests before overt symptoms such as sleep and memory deficits. Using the principles of control theory, I analyse the bidirectional relationship between homeostasis of neuronal activity and sleep and propose that impaired activity homeostasis during sleep leads to hyperexcitability and subsequent sleep disturbances, whereas sleep disturbances mitigate hyperexcitability via negative feedback. Understanding the interplay among activity homeostasis, neuronal excitability and sleep is crucial for elucidating the mechanisms of vulnerability to and resilience against AD pathology and for identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
30
|
Kunz L, Staresina BP, Reinacher PC, Brandt A, Guth TA, Schulze-Bonhage A, Jacobs J. Ripple-locked coactivity of stimulus-specific neurons and human associative memory. Nat Neurosci 2024; 27:587-599. [PMID: 38366143 PMCID: PMC10917673 DOI: 10.1038/s41593-023-01550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/11/2023] [Indexed: 02/18/2024]
Abstract
Associative memory enables the encoding and retrieval of relations between different stimuli. To better understand its neural basis, we investigated whether associative memory involves temporally correlated spiking of medial temporal lobe (MTL) neurons that exhibit stimulus-specific tuning. Using single-neuron recordings from patients with epilepsy performing an associative object-location memory task, we identified the object-specific and place-specific neurons that represented the separate elements of each memory. When patients encoded and retrieved particular memories, the relevant object-specific and place-specific neurons activated together during hippocampal ripples. This ripple-locked coactivity of stimulus-specific neurons emerged over time as the patients' associative learning progressed. Between encoding and retrieval, the ripple-locked timing of coactivity shifted, suggesting flexibility in the interaction between MTL neurons and hippocampal ripples according to behavioral demands. Our results are consistent with a cellular account of associative memory, in which hippocampal ripples coordinate the activity of specialized cellular populations to facilitate links between stimuli.
Collapse
Affiliation(s)
- Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tim A Guth
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
31
|
Sakon JJ, Halpern DJ, Schonhaut DR, Kahana MJ. Human Hippocampal Ripples Signal Encoding of Episodic Memories. J Neurosci 2024; 44:e0111232023. [PMID: 38233218 PMCID: PMC10883616 DOI: 10.1523/jneurosci.0111-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
Direct human brain recordings have confirmed the presence of high-frequency oscillatory events, termed ripples, during awake behavior. While many prior studies have focused on medial temporal lobe (MTL) ripples during memory retrieval, here we investigate ripples during memory encoding. Specifically, we ask whether ripples during encoding predict whether and how memories are subsequently recalled. Detecting ripples from MTL electrodes implanted in 116 neurosurgical participants (n = 61 male) performing a verbal episodic memory task, we find that encoding ripples do not distinguish recalled from not recalled items in any MTL region, even as high-frequency activity during encoding predicts recall in these same regions. Instead, hippocampal ripples increase during encoding of items that subsequently lead to recall of temporally and semantically associated items during retrieval, a phenomenon known as clustering. This subsequent clustering effect arises specifically when hippocampal ripples co-occur during encoding and retrieval, suggesting that ripples mediate both encoding and reinstatement of episodic memories.
Collapse
Affiliation(s)
- John J Sakon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| | - David J Halpern
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel R Schonhaut
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
32
|
Schieferstein N, Schwalger T, Lindner B, Kempter R. Intra-ripple frequency accommodation in an inhibitory network model for hippocampal ripple oscillations. PLoS Comput Biol 2024; 20:e1011886. [PMID: 38377147 PMCID: PMC10923461 DOI: 10.1371/journal.pcbi.1011886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/08/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Hippocampal ripple oscillations have been implicated in important cognitive functions such as memory consolidation and planning. Multiple computational models have been proposed to explain the emergence of ripple oscillations, relying either on excitation or inhibition as the main pacemaker. Nevertheless, the generating mechanism of ripples remains unclear. An interesting dynamical feature of experimentally measured ripples, which may advance model selection, is intra-ripple frequency accommodation (IFA): a decay of the instantaneous ripple frequency over the course of a ripple event. So far, only a feedback-based inhibition-first model, which relies on delayed inhibitory synaptic coupling, has been shown to reproduce IFA. Here we use an analytical mean-field approach and numerical simulations of a leaky integrate-and-fire spiking network to explain the mechanism of IFA. We develop a drift-based approximation for the oscillation dynamics of the population rate and the mean membrane potential of interneurons under strong excitatory drive and strong inhibitory coupling. For IFA, the speed at which the excitatory drive changes is critical. We demonstrate that IFA arises due to a speed-dependent hysteresis effect in the dynamics of the mean membrane potential, when the interneurons receive transient, sharp wave-associated excitation. We thus predict that the IFA asymmetry vanishes in the limit of slowly changing drive, but is otherwise a robust feature of the feedback-based inhibition-first ripple model.
Collapse
Affiliation(s)
- Natalie Schieferstein
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Tilo Schwalger
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Institute for Mathematics, Technische Universität Berlin, Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Kempter
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neurosciences, Berlin, Germany
| |
Collapse
|
33
|
Zhang H, Skelin I, Ma S, Paff M, Mnatsakanyan L, Yassa MA, Knight RT, Lin JJ. Awake ripples enhance emotional memory encoding in the human brain. Nat Commun 2024; 15:215. [PMID: 38172140 PMCID: PMC10764865 DOI: 10.1038/s41467-023-44295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Enhanced memory for emotional experiences is hypothesized to depend on amygdala-hippocampal interactions during memory consolidation. Here we show using intracranial recordings from the human amygdala and the hippocampus during an emotional memory encoding and discrimination task increased awake ripples after encoding of emotional, compared to neutrally-valenced stimuli. Further, post-encoding ripple-locked stimulus similarity is predictive of later memory discrimination. Ripple-locked stimulus similarity appears earlier in the amygdala than in hippocampus and mutual information analysis confirms amygdala influence on hippocampal activity. Finally, the joint ripple-locked stimulus similarity in the amygdala and hippocampus is predictive of correct memory discrimination. These findings provide electrophysiological evidence that post-encoding ripples enhance memory for emotional events.
Collapse
Affiliation(s)
- Haoxin Zhang
- Department of Neurology, University of California Irvine, Irvine, 92603, CA, USA.
- Department of Biomedical Engineering, University of California Irvine, Irvine, 92603, CA, USA.
| | - Ivan Skelin
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, M5T 1M8, Canada
- Department Center for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, M5G 2A2, Canada
| | - Shiting Ma
- Department of Neurology, University of California Irvine, Irvine, 92603, CA, USA
| | - Michelle Paff
- Department of Neurosurgery, University of California Irvine, Irvine, 92603, CA, USA
| | - Lilit Mnatsakanyan
- Department of Neurology, University of California Irvine, Irvine, 92603, CA, USA
| | - Michael A Yassa
- Department of Neurology, University of California Irvine, Irvine, 92603, CA, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, 92697, CA, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, 92697, CA, USA
| | - Robert T Knight
- Department of Psychology, University of California Berkeley, Berkeley, 94720, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, 94720, CA, USA
| | - Jack J Lin
- Department of Neurology, School of Medicine, University of California Davis, Sacramento, 95817, CA, USA.
- Center for Mind and Brain, University of California Davis, Davis, 95618, CA, USA.
| |
Collapse
|
34
|
Verzhbinsky IA, Rubin DB, Kajfez S, Bu Y, Kelemen JN, Kapitonava A, Williams ZM, Hochberg LR, Cash SS, Halgren E. Co-occurring ripple oscillations facilitate neuronal interactions between cortical locations in humans. Proc Natl Acad Sci U S A 2024; 121:e2312204121. [PMID: 38157452 PMCID: PMC10769862 DOI: 10.1073/pnas.2312204121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2024] Open
Abstract
How the human cortex integrates ("binds") information encoded by spatially distributed neurons remains largely unknown. One hypothesis suggests that synchronous bursts of high-frequency oscillations ("ripples") contribute to binding by facilitating integration of neuronal firing across different cortical locations. While studies have demonstrated that ripples modulate local activity in the cortex, it is not known whether their co-occurrence coordinates neural firing across larger distances. We tested this hypothesis using local field-potentials and single-unit firing from four 96-channel microelectrode arrays in the supragranular cortex of 3 patients. Neurons in co-rippling locations showed increased short-latency co-firing, prediction of each other's firing, and co-participation in neural assemblies. Effects were similar for putative pyramidal and interneurons, during non-rapid eye movement sleep and waking, in temporal and Rolandic cortices, and at distances up to 16 mm (the longest tested). Increased co-prediction during co-ripples was maintained when firing-rate changes were equated, indicating that it was not secondary to non-oscillatory activation. Co-rippling enhanced prediction was strongly modulated by ripple phase, supporting the most common posited mechanism for binding-by-synchrony. Co-ripple enhanced prediction is reciprocal, synergistic with local upstates, and further enhanced when multiple sites co-ripple, supporting re-entrant facilitation. Together, these results support the hypothesis that trans-cortical co-occurring ripples increase the integration of neuronal firing of neurons in different cortical locations and do so in part through phase-modulation rather than unstructured activation.
Collapse
Affiliation(s)
- Ilya A. Verzhbinsky
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA92093
- Medical Scientist Training Program, University of California San Diego, La Jolla, CA92093
| | - Daniel B. Rubin
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA02114
| | - Sophie Kajfez
- Department of Radiology, University of California San Diego, La Jolla, CA92093
| | - Yiting Bu
- Department of Neurosciences, University of California San Diego, La Jolla, CA92093
| | - Jessica N. Kelemen
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA02114
| | - Anastasia Kapitonava
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA02114
| | - Ziv M. Williams
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA02114
| | - Leigh R. Hochberg
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA02114
- Center for Neurorestoration and Neurotechnology, Department of Veterans Affairs, Providence, RI02908
- Carney Institute for Brain Science and School of Engineering, Brown University, Providence, RI02912
| | - Sydney S. Cash
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA02114
| | - Eric Halgren
- Department of Radiology, University of California San Diego, La Jolla, CA92093
- Department of Neurosciences, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
35
|
Young ME, Spencer-Salmon C, Mosher C, Tamang S, Rajan K, Rudebeck PH. Temporally specific patterns of neural activity in interconnected corticolimbic structures during reward anticipation. Neuron 2023; 111:3668-3682.e5. [PMID: 37586366 PMCID: PMC10840822 DOI: 10.1016/j.neuron.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/25/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Functional neuroimaging studies indicate that interconnected parts of the subcallosal anterior cingulate cortex (ACC), striatum, and amygdala play a fundamental role in affect in health and disease. Yet, although the patterns of neural activity engaged in the striatum and amygdala during affective processing are well established, especially during reward anticipation, less is known about subcallosal ACC. Here, we recorded neural activity in non-human primate subcallosal ACC and compared this with interconnected parts of the basolateral amygdala and rostromedial striatum while macaque monkeys performed reward-based tasks. Applying multiple analysis approaches, we found that neurons in subcallosal ACC and rostromedial striatum preferentially signal anticipated reward using short bursts of activity that form temporally specific patterns. By contrast, the basolateral amygdala uses a mixture of both temporally specific and more sustained patterns of activity to signal anticipated reward. Thus, dynamic patterns of neural activity across populations of neurons are engaged in affect, especially in subcallosal ACC.
Collapse
Affiliation(s)
- Megan E Young
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Camille Spencer-Salmon
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Clayton Mosher
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sarita Tamang
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Kanaka Rajan
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Peter H Rudebeck
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
36
|
Varma MM, Yu R. A spontaneous neural replay account for involuntary autobiographical memories and déjà vu experiences. Behav Brain Sci 2023; 46:e380. [PMID: 37961766 DOI: 10.1017/s0140525x23000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Barzykowski and Moulin argue both involuntary autobiographical memories and déjà vu experiences rely on the same involuntary memory retrieval processes but their underlying neurological basis remains unclear. We propose spontaneous neural replay in the default mode network (DMN) and hippocampus as the basis for involuntary autobiographical memories, whereas for déjà vu experiences such transient activation is limited to the DMN.
Collapse
Affiliation(s)
- Mohith M Varma
- Department of Management, School of Business, Hong Kong Baptist University, Hong Kong, S.A.R. China
| | - Rongjun Yu
- Department of Management, School of Business, Hong Kong Baptist University, Hong Kong, S.A.R. China
| |
Collapse
|
37
|
Andelman-Gur MM, Fried I. Consciousness: a neurosurgical perspective. Acta Neurochir (Wien) 2023; 165:2729-2735. [PMID: 37594639 DOI: 10.1007/s00701-023-05738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Neurosurgeons are in a unique position to shed light on the neural basis for consciousness, not only by their clinical care of patients with compromised states of consciousness, but also by employing neurostimulation and neuronal recordings through intracranial electrodes in awake surgical patients, as well as during stages of sleep and anethesia. In this review, we discuss several aspects of consciousness, i.e., perception, memory, and willed actions, studied by electrical stimulation and single neuron recordings in the human brain. We demonstrate how specific neuronal activity underlie the emergence of concepts, memories, and intentions in human consciousness. We discuss the representation of specific conscious content by temporal lobe neurons and present the discovery of "concept cells" and the encoding and retrieval of memories by neurons in the medial temporal lobe. We review prefrontal and parietal neuronal activation that precedes conscious intentions to act. Taken together with other studies in the field, these findings suggest that specific conscious experience may arise from stochastic fluctuations of neuronal activity, reaching a dynamic threshold. Advances in brain recording and stimulation technology coupled with the rapid rise in artificial intelligence are likely to increase the amount and analysis capabilities of data obtained from the human brain, thereby improving the decoding of conscious and preconscious states and open new horizons for modulation of human cognitive functions such as memory and volition.
Collapse
Affiliation(s)
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, 300 Stein Plaza, Ste. 562, Los Angeles, CA, USA.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
38
|
Soula M, Maslarova A, Harvey RE, Valero M, Brandner S, Hamer H, Fernández‐Ruiz A, Buzsáki G. Interictal epileptiform discharges affect memory in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 2023; 120:e2302676120. [PMID: 37590406 PMCID: PMC10450667 DOI: 10.1073/pnas.2302676120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023] Open
Abstract
Interictal epileptiform discharges (IEDs) are transient abnormal electrophysiological events commonly observed in epilepsy patients but are also present in other neurological diseases, such as Alzheimer's disease (AD). Understanding the role IEDs have on the hippocampal circuit is important for our understanding of the cognitive deficits seen in epilepsy and AD. We characterize and compare the IEDs of human epilepsy patients from microwire hippocampal recording with those of AD transgenic mice with implanted multilayer hippocampal silicon probes. Both the local field potential features and firing patterns of pyramidal cells and interneurons were similar in the mouse and human. We found that as IEDs emerged from the CA3-1 circuits, they recruited pyramidal cells and silenced interneurons, followed by post-IED suppression. IEDs suppressed the incidence and altered the properties of physiological sharp-wave ripples, altered their physiological properties, and interfered with the replay of place field sequences in a maze. In addition, IEDs in AD mice inversely correlated with daily memory performance. Together, our work implies that IEDs may present a common and epilepsy-independent phenomenon in neurodegenerative diseases that perturbs hippocampal-cortical communication and interferes with memory.
Collapse
Affiliation(s)
- Marisol Soula
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY10016
| | - Anna Maslarova
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY10016
- Department of Neurosurgery, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, 91054Erlangen, Germany
| | - Ryan E. Harvey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY14853
| | - Manuel Valero
- Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, Barcelona08003, Spain
| | - Sebastian Brandner
- Department of Neurosurgery, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, 91054Erlangen, Germany
| | - Hajo Hamer
- Department of Neurology, Epilepsy Center, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, 91054Erlangen, Germany
| | | | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY10016
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY10016
- Department of Neurology, Langone Medical Center, New York University, New York, NY10016
| |
Collapse
|
39
|
Vaz AP, Wittig JH, Inati SK, Zaghloul KA. Backbone spiking sequence as a basis for preplay, replay, and default states in human cortex. Nat Commun 2023; 14:4723. [PMID: 37550285 PMCID: PMC10406814 DOI: 10.1038/s41467-023-40440-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
Sequences of spiking activity have been heavily implicated as potential substrates of memory formation and retrieval across many species. A parallel line of recent evidence also asserts that sequential activity may arise from and be constrained by pre-existing network structure. Here we reconcile these two lines of research in the human brain by measuring single unit spiking sequences in the temporal lobe cortex as participants perform an episodic memory task. We find the presence of an average backbone spiking sequence identified during pre-task rest that is stable over time and different cognitive states. We further demonstrate that these backbone sequences are composed of both rigid and flexible sequence elements, and that flexible elements within these sequences serve to promote memory specificity when forming and retrieving new memories. These results support the hypothesis that pre-existing network dynamics serve as a scaffold for ongoing neural activity in the human cortex.
Collapse
Affiliation(s)
- Alex P Vaz
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - John H Wittig
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara K Inati
- Office of the Clinical Director, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
40
|
Kurki SN, Ala-Kurikka T, Lipponen A, Pospelov AS, Rolova T, Koistinaho J, Voipio J, Kaila K. A brain cytokine-independent switch in cortical activity marks the onset of sickness behavior triggered by acute peripheral inflammation. J Neuroinflammation 2023; 20:176. [PMID: 37507711 PMCID: PMC10375675 DOI: 10.1186/s12974-023-02851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Systemic inflammation triggers protective as well as pro-inflammatory responses in the brain based on neuronal and/or cytokine signaling, and it associates with acutely and protractedly disrupted cognition. However, the multiple mechanisms underlying the peripheral-central inflammatory signaling are still not fully characterized. We used intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) in freely moving mice with chronically implanted electrodes for recording of local field potentials (LFP) and electrocorticography (ECoG) in the hippocampus and neocortex, respectively. We show here that a sudden switch in the mode of network activity occurred in both areas starting at 10-15 min after the LPS injection, simultaneously with a robust change from exploration to sickness behavior. This switch in cortical mode commenced before any elevations in pro-inflammatory cytokines IL-1β, TNFα, CCL2 or IL-6 were detected in brain tissue. Thereafter, this mode dominated cortical activity for the recording period of 3 h, except for a partial and transient recovery around 40 min post-LPS. These effects were closely paralleled by changes in ECoG spectral entropy. Continuous recordings for up to 72 h showed a protracted attenuation in hippocampal activity, while neocortical activity recovered after 48 h. The acute sickness behavior recovered by 72 h post-LPS. Notably, urethane (1.3 mg/kg) administered prior to LPS blocked the early effect of LPS on cortical activity. However, experiments under urethane anesthesia which were started 24 h post-LPS (with neuroinflammation fully developed before application of urethane) showed that both theta-supratheta and fast gamma CA1 activity were reduced, DG delta activity was increased, and sharp-wave ripples were abolished. Finally, we observed that experimental compensation of inflammation-induced hypothermia 24-48 h post-LPS promoted seizures and status epilepticus; and that LPS decreased the threshold of kainate-provoked seizures beyond the duration of acute sickness behavior indicating post-acute inflammatory hyperexcitability. Taken together, the strikingly fast development and initial independence of brain cytokines of the LPS-induced cortical mode, its spectral characteristics and simultaneity in hippocampus and neocortex, as well as inhibition by pre-applied urethane, strongly suggest that the underlying mechanisms are based on activation of the afferent vagus nerve and its mainly cholinergic ascending projections to higher brain areas.
Collapse
Affiliation(s)
- Samu N Kurki
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland.
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Tommi Ala-Kurikka
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Arto Lipponen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Alexey S Pospelov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juha Voipio
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland
| | - Kai Kaila
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Chen B, Tan H, Ding M, Liu L, Wang S, Peng X, Tian H, Jiang J, Gao J, Huang W, Li H, Ye Y, Wang F, Wilson DA, Tu Y, Peng F. Nanorobot-Mediated Synchronized Neuron Activation. ACS NANO 2023; 17:13826-13839. [PMID: 37449804 DOI: 10.1021/acsnano.3c03575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Interactions between active materials lead to collective behavior and even intelligence beyond the capability of individuals. Such behaviors are prevalent in nature and can be observed in animal colonies, providing these species with diverse capacities for communication and cooperation. In artificial systems, however, collective intelligence systems interacting with biological entities remains unexplored. Herein, we describe black (B)-TiO2@N/Au nanorobots interacting through photocatalytic pure water splitting-induced electrophoresis that exhibit periodic swarming oscillations under programmed near-infrared light. The periodic chemical-electric field generated by the oscillating B-TiO2@N/Au nanorobot swarm leads to local neuron activation in vitro. The field oscillations and neurotransmission from synchronized neurons further trigger the resonance oscillation of neuron populations without synaptic contact (about 2 mm spacing), in different ways from normal neuron oscillation requiring direct contact. We envision that the oscillating nanorobot swarm platforms will shed light on contactless communication of neurons and offer tools to explore interactions between neurons.
Collapse
Affiliation(s)
- Bin Chen
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haixin Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Miaomiao Ding
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lu Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui 323020, China
| | - Xiuyun Peng
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui 323020, China
| | - Hao Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiamiao Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junbin Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weichang Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huaan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yicheng Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fei Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherland
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
42
|
van Schalkwijk FJ, Weber J, Hahn MA, Lendner JD, Inostroza M, Lin JJ, Helfrich RF. An evolutionary conserved division-of-labor between archicortical and neocortical ripples organizes information transfer during sleep. Prog Neurobiol 2023:102485. [PMID: 37353109 DOI: 10.1016/j.pneurobio.2023.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Systems-level memory consolidation during sleep depends on the temporally precise interplay between cardinal sleep oscillations. Specifically, hippocampal ripples constitute a key substrate of the hippocampal-neocortical dialogue underlying memory formation. Recently, it became evident that ripples are not unique to archicortex, but constitute a wide-spread neocortical phenomenon. To date, little is known about the morphological similarities between archi- and neocortical ripples. Moreover, it remains undetermined if neocortical ripples fulfill distinct functional roles. Leveraging intracranial recordings from the human medial temporal lobe (MTL) and neocortex during sleep, our results reveal region-specific functional specializations, albeit a near-uniform morphology. While MTL ripples synchronize the memory network to trigger directional MTL-to-neocortical information flow, neocortical ripples reduce information flow to minimize interference. At the population level, MTL ripples confined population dynamics to a low-dimensional subspace, while neocortical ripples diversified the population response; thus, constituting an effective mechanism to functionally uncouple the MTL-neocortical network. Critically, we replicated the key findings in rodents, where the same division-of-labor between archi- and neocortical ripples was evident. In sum, these results uncover an evolutionary preserved mechanism where the precisely coordinated interplay between MTL and neocortical ripples temporally segregates MTL information transfer from subsequent neocortical processing during sleep.
Collapse
Affiliation(s)
- Frank J van Schalkwijk
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| | - Jan Weber
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany; International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, Germany.
| | - Michael A Hahn
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| | - Janna D Lendner
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen; Hoppe-Seyler-Str 3, 72076 Tübingen, Germany.
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
| | - Jack J Lin
- Department of Neurology, University of California, Davis, 4860 Y St., Sacramento, CA 95817, USA; The Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA.
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| |
Collapse
|
43
|
Verzhbinsky IA, Rubin DB, Kajfez S, Bu Y, Kelemen JN, Kapitonava A, Williams ZM, Hochberg LR, Cash SS, Halgren E. Co-occurring ripple oscillations facilitate neuronal interactions between cortical locations in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541588. [PMID: 37292943 PMCID: PMC10245779 DOI: 10.1101/2023.05.20.541588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synchronous bursts of high frequency oscillations ('ripples') are hypothesized to contribute to binding by facilitating integration of neuronal firing across cortical locations. We tested this hypothesis using local field-potentials and single-unit firing from four 96-channel microelectrode arrays in supragranular cortex of 3 patients. Neurons in co-rippling locations showed increased short-latency co-firing, prediction of each-other's firing, and co-participation in neural assemblies. Effects were similar for putative pyramidal and interneurons, during NREM sleep and waking, in temporal and Rolandic cortices, and at distances up to 16mm. Increased co-prediction during co-ripples was maintained when firing-rate changes were equated, and were strongly modulated by ripple phase. Co-ripple enhanced prediction is reciprocal, synergistic with local upstates, and further enhanced when multiple sites co-ripple. Together, these results support the hypothesis that trans-cortical co-ripples increase the integration of neuronal firing of neurons in different cortical locations, and do so in part through phase-modulation rather than unstructured activation.
Collapse
Affiliation(s)
- Ilya A. Verzhbinsky
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Medical Scientist Training Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel B. Rubin
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Sophie Kajfez
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Yiting Bu
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jessica N. Kelemen
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anastasia Kapitonava
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ziv M. Williams
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114
- Program in Neuroscience, Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA 02115
| | - Leigh R. Hochberg
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
- Center for Neurorestoration and Neurotechnology, Department of Veterans Affairs, Providence, RI 02908, USA
- Carney Institute for Brain Science and School of Engineering, Brown University, Providence, RI 02912, USA
| | - Sydney S. Cash
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Eric Halgren
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
44
|
Eisenkolb VM, Held LM, Utzschmid A, Lin XX, Krieg SM, Meyer B, Gempt J, Jacob SN. Human acute microelectrode array recordings with broad cortical access, single-unit resolution, and parallel behavioral monitoring. Cell Rep 2023; 42:112467. [PMID: 37141095 DOI: 10.1016/j.celrep.2023.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/06/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
There are vast gaps in our understanding of the organization and operation of the human nervous system at the level of individual neurons and their networks. Here, we report reliable and robust acute multichannel recordings using planar microelectrode arrays (MEAs) implanted intracortically in awake brain surgery with open craniotomies that grant access to large parts of the cortical hemisphere. We obtained high-quality extracellular neuronal activity at the microcircuit, local field potential level and at the cellular, single-unit level. Recording from the parietal association cortex, a region rarely explored in human single-unit studies, we demonstrate applications on these complementary spatial scales and describe traveling waves of oscillatory activity as well as single-neuron and neuronal population responses during numerical cognition, including operations with uniquely human number symbols. Intraoperative MEA recordings are practicable and can be scaled up to explore cellular and microcircuit mechanisms of a wide range of human brain functions.
Collapse
Affiliation(s)
- Viktor M Eisenkolb
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Lisa M Held
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Alexander Utzschmid
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Xiao-Xiong Lin
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Simon N Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
45
|
Duan QT, Dai L, Wang LK, Shi XJ, Chen X, Liao X, Zhang CQ, Yang H. Hippocampal ripples correlate with memory performance in humans. Brain Res 2023; 1810:148370. [PMID: 37080267 DOI: 10.1016/j.brainres.2023.148370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Memory performance evaluation has generally been based on behavioral tests in the past decades. However, its neural correlates remain largely unknown, particularly in humans. Here we addressed this question using intracranial electroencephalography in patients with refractory epilepsy, performing an episodic memory test. We used the presurgical Wechsler Memory Scale (WMS) test to assess the memory performance of each patient. We found that hippocampal ripples significantly exhibited a transient increase during visual stimulation or before verbal recall. This increase in hippocampal ripples positively correlated with memory performance. By contrast, memory performance is negatively correlated with hippocampal interictal epileptic discharges (IEDs) or epileptic ripples in the memory task. However, these correlations were not present during quiet wakefulness. Thus, our findings uncover the neural correlates of memory performance in addition to traditional behavioral tests.
Collapse
Affiliation(s)
- Qing-Tian Duan
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Lu Dai
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Lu-Kang Wang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xian-Jun Shi
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| |
Collapse
|
46
|
McFadyen J, Dolan RJ. Spatiotemporal Precision of Neuroimaging in Psychiatry. Biol Psychiatry 2023; 93:671-680. [PMID: 36376110 DOI: 10.1016/j.biopsych.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 12/23/2022]
Abstract
Aberrant patterns of cognition, perception, and behavior seen in psychiatric disorders are thought to be driven by a complex interplay of neural processes that evolve at a rapid temporal scale. Understanding these dynamic processes in vivo in humans has been hampered by a trade-off between spatial and temporal resolutions inherent to current neuroimaging technology. A recent trend in psychiatric research has been the use of high temporal resolution imaging, particularly magnetoencephalography, often in conjunction with sophisticated machine learning decoding techniques. Developments here promise novel insights into the spatiotemporal dynamics of cognitive phenomena, including domains relevant to psychiatric illnesses such as reward and avoidance learning, memory, and planning. This review considers recent advances afforded by exploiting this increased spatiotemporal precision, with specific reference to applications that seek to drive a mechanistic understanding of psychopathology and the realization of preclinical translation.
Collapse
Affiliation(s)
- Jessica McFadyen
- UCL Max Planck Centre for Computational Psychiatry and Ageing Research and Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Raymond J Dolan
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
47
|
Chen ZS, Wilson MA. How our understanding of memory replay evolves. J Neurophysiol 2023; 129:552-580. [PMID: 36752404 PMCID: PMC9988534 DOI: 10.1152/jn.00454.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Memory reactivations and replay, widely reported in the hippocampus and cortex across species, have been implicated in memory consolidation, planning, and spatial and skill learning. Technological advances in electrophysiology, calcium imaging, and human neuroimaging techniques have enabled neuroscientists to measure large-scale neural activity with increasing spatiotemporal resolution and have provided opportunities for developing robust analytic methods to identify memory replay. In this article, we first review a large body of historically important and representative memory replay studies from the animal and human literature. We then discuss our current understanding of memory replay functions in learning, planning, and memory consolidation and further discuss the progress in computational modeling that has contributed to these improvements. Next, we review past and present analytic methods for replay analyses and discuss their limitations and challenges. Finally, looking ahead, we discuss some promising analytic methods for detecting nonstereotypical, behaviorally nondecodable structures from large-scale neural recordings. We argue that seamless integration of multisite recordings, real-time replay decoding, and closed-loop manipulation experiments will be essential for delineating the role of memory replay in a wide range of cognitive and motor functions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
48
|
Flesch T, Saxe A, Summerfield C. Continual task learning in natural and artificial agents. Trends Neurosci 2023; 46:199-210. [PMID: 36682991 PMCID: PMC10914671 DOI: 10.1016/j.tins.2022.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 01/21/2023]
Abstract
How do humans and other animals learn new tasks? A wave of brain recording studies has investigated how neural representations change during task learning, with a focus on how tasks can be acquired and coded in ways that minimise mutual interference. We review recent work that has explored the geometry and dimensionality of neural task representations in neocortex, and computational models that have exploited these findings to understand how the brain may partition knowledge between tasks. We discuss how ideas from machine learning, including those that combine supervised and unsupervised learning, are helping neuroscientists understand how natural tasks are learned and coded in biological brains.
Collapse
Affiliation(s)
- Timo Flesch
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Andrew Saxe
- Gatsby Computational Neuroscience Unit & Sainsbury Wellcome Centre, UCL, London, UK.
| | | |
Collapse
|
49
|
Soula M, Maslarova A, Harvey RE, Valero M, Brandner S, Hamer H, Fernández-Ruiz A, Buzsáki G. Interictal epileptiform discharges affect memory in an Alzheimer's Disease mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528683. [PMID: 36824810 PMCID: PMC9949089 DOI: 10.1101/2023.02.15.528683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Interictal epileptiform discharges (IEDs) are transient abnormal electrophysiological events commonly observed in epilepsy patients but are also present in other neurological disease, such as Alzheimer's Disease (AD). Understanding the role IEDs have on the hippocampal circuit is important for our understanding of the cognitive deficits seen in epilepsy and AD. We characterize and compare the IEDs of human epilepsy patients from microwire hippocampal recording with those of AD transgenic mice with implanted multi-layer hippocampal silicon probes. Both the local field potential features and firing patterns of pyramidal cells and interneurons were similar in mouse and human. We found that as IEDs emerged from the CA3-1 circuits, they recruited pyramidal cells and silenced interneurons, followed by post-IED suppression. IEDs suppressed the incidence and altered the properties of physiological sharp-wave ripples (SPW-Rs), altered their physiological properties, and interfered with the replay of place field sequences in a maze. In addition, IEDs in AD mice inversely correlated with daily memory performance. Together, our work implicates that IEDs may present a common and epilepsy-independent phenomenon in neurodegenerative diseases that perturbs hippocampal-cortical communication and interferes with memory. Significant Statement Prevalence of neurodegenerative diseases and the number of people with dementia is increasing steadily. Therefore, novel treatment strategies for learning and memory disorders are urgently necessary. IEDs, apart from being a surrogate for epileptic brain regions, have also been linked to cognitive decline. Here we report that IEDs in human epilepsy patients and AD mouse models have similar local field potential characteristics and associated firing patterns of pyramidal cells and interneurons. Mice with more IEDs displayed fewer hippocampal SPW-Rs, poorer replay of spatial trajectories, and decreased memory performance. IED suppression is an unexplored target to treat cognitive dysfunction in neurodegenerative diseases.
Collapse
|
50
|
Riquelme JL, Hemberger M, Laurent G, Gjorgjieva J. Single spikes drive sequential propagation and routing of activity in a cortical network. eLife 2023; 12:e79928. [PMID: 36780217 PMCID: PMC9925052 DOI: 10.7554/elife.79928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/19/2022] [Indexed: 02/14/2023] Open
Abstract
Single spikes can trigger repeatable firing sequences in cortical networks. The mechanisms that support reliable propagation of activity from such small events and their functional consequences remain unclear. By constraining a recurrent network model with experimental statistics from turtle cortex, we generate reliable and temporally precise sequences from single spike triggers. We find that rare strong connections support sequence propagation, while dense weak connections modulate propagation reliability. We identify sections of sequences corresponding to divergent branches of strongly connected neurons which can be selectively gated. Applying external inputs to specific neurons in the sparse backbone of strong connections can effectively control propagation and route activity within the network. Finally, we demonstrate that concurrent sequences interact reliably, generating a highly combinatorial space of sequence activations. Our results reveal the impact of individual spikes in cortical circuits, detailing how repeatable sequences of activity can be triggered, sustained, and controlled during cortical computations.
Collapse
Affiliation(s)
- Juan Luis Riquelme
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Mike Hemberger
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
| | - Gilles Laurent
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
| | - Julijana Gjorgjieva
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| |
Collapse
|