1
|
Tenjo-Castaño F, Rout SS, Dey S, Montoya G. Unlocking the potential of CRISPR-associated transposons: from structural to functional insights. Trends Genet 2025:S0168-9525(25)00080-0. [PMID: 40393858 DOI: 10.1016/j.tig.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 05/22/2025]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated transposons (CASTs) are emerging genome-editing tools that enable RNA-guided DNA integration without inducing double-strand breaks (DSBs). Unlike CRISPR-associated (Cas) nucleases, CASTs use transposon machinery to insert large DNA segments with high precision, potentially reducing off-target effects and bypassing DNA damage responses. CASTs are categorized into classes 1 and 2, each employing distinct mechanisms for DNA targeting and integration. Recent structural insights have elucidated how CASTs recognize target sites, recruit transposases, and mediate insertion. These advances position CASTs as promising tools for genome engineering in bacteria and possibly in mammalian cells. Key challenges remain in enhancing efficiency and specificity, particularly for therapeutic use. Ongoing research aims to evolve CAST systems for precise, large-scale genome editing in human cells.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Sweta Suman Rout
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Sanjay Dey
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark.
| |
Collapse
|
2
|
Banta AB, Cuellar RA, Nadig N, Davis BC, Peters JM. The promise of CRISPR-associated transposons for bacterial functional genomics. Curr Opin Microbiol 2025; 83:102563. [PMID: 39631148 PMCID: PMC11830528 DOI: 10.1016/j.mib.2024.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
CRISPR-associated transposons (CASTs) are naturally occurring amalgamations of CRISPR-Cas machinery and Tn7-like transposons that direct site-specific integration of transposon DNA via programmable guide RNAs. Although the mechanisms of CAST-based transposition have been well studied at the molecular and structural level, CASTs have yet to be broadly applied to bacterial genome engineering and systematic gene phenotyping (i.e. functional genomics) - likely due to their relatively recent discovery. Here, we describe the function and applications of CASTs, focusing on well-characterized systems, including the type I-F CAST from Vibrio cholerae (VcCAST) and type V-K CAST from Scytonema hofmanni (ShCAST). Further, we discuss the potentially transformative impact of targeted transposition on bacterial functional genomics by proposing genome-scale extensions of existing CAST tools.
Collapse
Affiliation(s)
- Amy B Banta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rodrigo A Cuellar
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Nischala Nadig
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bryce C Davis
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jason M Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA; Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Karbalaei-Heidari HR, Budisa N. Advanced and Safe Synthetic Microbial Chassis with Orthogonal Translation System Integration. ACS Synth Biol 2024; 13:2992-3002. [PMID: 39151168 DOI: 10.1021/acssynbio.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Through the use of CRISPR-assisted transposition, we have engineered a safe Escherichia coli chassis that integrates an orthogonal translation system (OTS) directly into the chromosome. This approach circumvents the limitations and genetic instability associated with conventional plasmid vectors. Precision in genome modification is crucial for the top-down creation of synthetic cells, especially in the orthogonalization of vital cellular processes, such as metabolism and protein translation. Here, we targeted multiple loci in the E. coli chromosome to integrate the OTS simultaneously, creating a synthetic auxotrophic chassis with an altered genetic code to establish a reliable, robust, and safe synthetic protein producer. Our OTS-integrated chassis enabled the site-specific incorporation of m-oNB-Dopa through in-frame amber stop codon readthrough. This allowed for the expression of advanced underwater bioglues containing Dopa-Lysine motifs, which are crucial for wound healing and tissue regeneration. Additionally, we have enhanced the expression process by incorporating scaffold-stabilizing fluoroprolines into bioglues, utilizing our chassis, which has been modified through metabolic engineering (i.e., by introducing proline auxotrophy). We also engineered a synthetic auxotroph reliant on caged Dopa, creating a genetic barrier (genetic firewall) between the synthetic cells and their surroundings, thereby boosting their stability and safety.
Collapse
Affiliation(s)
- Hamid Reza Karbalaei-Heidari
- Laboratory for Chemical Synthetic Biology and Xenobiology, Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2
| | - Nediljko Budisa
- Laboratory for Chemical Synthetic Biology and Xenobiology, Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|
4
|
Hsieh SC, Peters JE. Natural and Engineered Guide RNA-Directed Transposition with CRISPR-Associated Tn7-Like Transposons. Annu Rev Biochem 2024; 93:139-161. [PMID: 38598855 PMCID: PMC11406308 DOI: 10.1146/annurev-biochem-030122-041908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated nuclease) defense systems have been naturally coopted for guide RNA-directed transposition on multiple occasions. In all cases, cooption occurred with diverse elements related to the bacterial transposon Tn7. Tn7 tightly controls transposition; the transposase is activated only when special targets are recognized by dedicated target-site selection proteins. Tn7 and the Tn7-like elements that coopted CRISPR-Cas systems evolved complementary targeting pathways: one that recognizes a highly conserved site in the chromosome and a second pathway that targets mobile plasmids capable of cell-to-cell transfer. Tn7 and Tn7-like elements deliver a single integration into the site they recognize and also control the orientation of the integration event, providing future potential for use as programmable gene-integration tools. Early work has shown that guide RNA-directed transposition systems can be adapted to diverse hosts, even within microbial communities, suggesting great potential for engineering these systems as powerful gene-editing tools.
Collapse
Affiliation(s)
- Shan-Chi Hsieh
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
5
|
Chang CW, Truong VA, Pham NN, Hu YC. RNA-guided genome engineering: paradigm shift towards transposons. Trends Biotechnol 2024; 42:970-985. [PMID: 38443218 DOI: 10.1016/j.tibtech.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
CRISPR-Cas systems revolutionized the genome engineering field but need to induce double-strand breaks (DSBs) and may be difficult to deliver due to their large protein size. Tn7-like transposons such as CRISPR-associated transposons (CASTs) can be repurposed for RNA-guided DSB-free integration, and obligate mobile element guided activity (OMEGA) proteins of the IS200/IS605 transposon family have been developed as hypercompact RNA-guided genome editing tools. CASTs and OMEGA are exciting, innovative genome engineering tools that can improve the precision and efficiency of editing. This review explores the recent developments and uses of CASTs and OMEGA in genome editing across prokaryotic and eukaryotic cells. The pros and cons of these transposon-based systems are deliberated in comparison to other CRISPR systems.
Collapse
Affiliation(s)
- Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Vy Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Nam Ngoc Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
6
|
Yap ZL, Rahman ASMZ, Hogan AM, Levin DB, Cardona ST. A CRISPR-Cas-associated transposon system for genome editing in Burkholderia cepacia complex species. Appl Environ Microbiol 2024; 90:e0069924. [PMID: 38869300 PMCID: PMC11267881 DOI: 10.1128/aem.00699-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Genome editing in non-model bacteria is important to understand gene-to-function links that may differ from those of model microorganisms. Although species of the Burkholderia cepacia complex (Bcc) have great biotechnological capacities, the limited genetic tools available to understand and mitigate their pathogenic potential hamper their utilization in industrial applications. To broaden the genetic tools available for Bcc species, we developed RhaCAST, a targeted DNA insertion platform based on a CRISPR-associated transposase driven by a rhamnose-inducible promoter. We demonstrated the utility of the system for targeted insertional mutagenesis in the Bcc strains B. cenocepacia K56-2 and Burkholderia multivorans ATCC17616. We showed that the RhaCAST system can be used for loss- and gain-of-function applications. Importantly, the selection marker could be excised and reused to allow iterative genetic manipulation. The RhaCAST system is faster, easier, and more adaptable than previous insertional mutagenesis tools available for Bcc species and may be used to disrupt pathogenicity elements and insert relevant genetic modules, enabling Bcc biotechnological applications. IMPORTANCE Species of the Burkholderia cepacia complex (Bcc) have great biotechnological potential but are also opportunistic pathogens. Genetic manipulation of Bcc species is necessary to understand gene-to-function links. However, limited genetic tools are available to manipulate Bcc, hindering our understanding of their pathogenic traits and their potential in biotechnological applications. We developed a genetic tool based on CRISPR-associated transposase to increase the genetic tools available for Bcc species. The genetic tool we developed in this study can be used for loss and gain of function in Bcc species. The significance of our work is in expanding currently available tools to manipulate Bcc.
Collapse
Affiliation(s)
- Zhong Ling Yap
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Andrew M. Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David B. Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Silvia T. Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Gelsinger DR, Vo PLH, Klompe SE, Ronda C, Wang HH, Sternberg SH. Bacterial genome engineering using CRISPR-associated transposases. Nat Protoc 2024; 19:752-790. [PMID: 38216671 DOI: 10.1038/s41596-023-00927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/02/2023] [Indexed: 01/14/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated transposases have the potential to transform the technology landscape for kilobase-scale genome engineering, by virtue of their ability to integrate large genetic payloads with high accuracy, easy programmability and no requirement for homologous recombination machinery. These transposons encode efficient, CRISPR RNA-guided transposases that execute genomic insertions in Escherichia coli at efficiencies approaching ~100%. Moreover, they generate multiplexed edits when programmed with multiple guides, and function robustly in diverse Gram-negative bacterial species. Here we present a detailed protocol for engineering bacterial genomes using CRISPR-associated transposase (CAST) systems, including guidelines on the available vectors, customization of guide RNAs and DNA payloads, selection of common delivery methods, and genotypic analysis of integration events. We further describe a computational CRISPR RNA design algorithm to avoid potential off-targets, and a CRISPR array cloning pipeline for performing multiplexed DNA insertions. The method presented here allows the isolation of clonal strains containing a novel genomic integration event of interest within 1-2 weeks using available plasmid constructs and standard molecular biology techniques.
Collapse
Affiliation(s)
- Diego Rivera Gelsinger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Phuc Leo H Vo
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
- Vertex Pharmaceuticals, Inc, Boston, MA, USA
| | - Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Carlotta Ronda
- Department of Systems Biology, Columbia University, New York, NY, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Schmitz M, Querques I. DNA on the move: mechanisms, functions and applications of transposable elements. FEBS Open Bio 2024; 14:13-22. [PMID: 38041553 PMCID: PMC10761935 DOI: 10.1002/2211-5463.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023] Open
Abstract
Transposons are mobile genetic elements that have invaded all domains of life by moving between and within their host genomes. Due to their mobility (or transposition), transposons facilitate horizontal gene transfer in bacteria and foster the evolution of new molecular functions in prokaryotes and eukaryotes. As transposition can lead to detrimental genomic rearrangements, organisms have evolved a multitude of molecular strategies to control transposons, including genome defense mechanisms provided by CRISPR-Cas systems. Apart from their biological impacts on genomes, DNA transposons have been leveraged as efficient gene insertion vectors in basic research, transgenesis and gene therapy. However, the close to random insertion profile of transposon-based tools limits their programmability and safety. Despite recent advances brought by the development of CRISPR-associated genome editing nucleases, a strategy for efficient insertion of large, multi-kilobase transgenes at user-defined genomic sites is currently challenging. The discovery and experimental characterization of bacterial CRISPR-associated transposons (CASTs) led to the attractive hypothesis that these systems could be repurposed as programmable, site-specific gene integration technologies. Here, we provide a broad overview of the molecular mechanisms underpinning DNA transposition and of its biological and technological impact. The second focus of the article is to describe recent mechanistic and functional analyses of CAST transposition. Finally, current challenges and desired future advances of CAST-based genome engineering applications are briefly discussed.
Collapse
Affiliation(s)
| | - Irma Querques
- Department of BiochemistryUniversity of ZurichSwitzerland
- Max Perutz Labs, Vienna Biocenter Campus (VBC)Austria
- Department of Structural and Computational Biology, Center for Molecular BiologyUniversity of ViennaAustria
| |
Collapse
|
9
|
Tenjo-Castaño F, Montoya G, Carabias A. Transposons and CRISPR: Rewiring Gene Editing. Biochemistry 2023; 62:3521-3532. [PMID: 36130724 PMCID: PMC10734217 DOI: 10.1021/acs.biochem.2c00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Indexed: 11/30/2022]
Abstract
CRISPR-Cas is driving a gene editing revolution because of its simple reprogramming. However, off-target effects and dependence on the double-strand break repair pathways impose important limitations. Because homology-directed repair acts primarily in actively dividing cells, many of the current gene correction/replacement approaches are restricted to a minority of cell types. Furthermore, current approaches display low efficiency upon insertion of large DNA cargos (e.g., sequences containing multiple gene circuits with tunable functionalities). Recent research has revealed new links between CRISPR-Cas systems and transposons providing new scaffolds that might overcome some of these limitations. Here, we comment on two new transposon-associated RNA-guided mechanisms considering their potential as new gene editing solutions. Initially, we focus on a group of small RNA-guided endonucleases of the IS200/IS605 family of transposons, which likely evolved into class 2 CRISPR effector nucleases (Cas9s and Cas12s). We explore the diversity of these nucleases (named OMEGA, obligate mobile element-guided activity) and analyze their similarities with class 2 gene editors. OMEGA nucleases can perform gene editing in human cells and constitute promising candidates for the design of new compact RNA-guided platforms. Then, we address the co-option of the RNA-guided activity of different CRISPR effector nucleases by a specialized group of Tn7-like transposons to target transposon integration. We describe the various mechanisms used by these RNA-guided transposons for target site selection and integration. Finally, we assess the potential of these new systems to circumvent some of the current gene editing challenges.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| | - Arturo Carabias
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| |
Collapse
|
10
|
George JT, Acree C, Park JU, Kong M, Wiegand T, Pignot YL, Kellogg EH, Greene EC, Sternberg SH. Mechanism of target site selection by type V-K CRISPR-associated transposases. Science 2023; 382:eadj8543. [PMID: 37972161 PMCID: PMC10771339 DOI: 10.1126/science.adj8543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/23/2023] [Indexed: 11/19/2023]
Abstract
CRISPR-associated transposases (CASTs) repurpose nuclease-deficient CRISPR effectors to catalyze RNA-guided transposition of large genetic payloads. Type V-K CASTs offer potential technology advantages but lack accuracy, and the molecular basis for this drawback has remained elusive. Here, we reveal that type V-K CASTs maintain an RNA-independent, "untargeted" transposition pathway alongside RNA-dependent integration, driven by the local availability of TnsC filaments. Using cryo-electron microscopy, single-molecule experiments, and high-throughput sequencing, we found that a minimal, CRISPR-less transpososome preferentially directs untargeted integration at AT-rich sites, with additional local specificity imparted by TnsB. By exploiting this knowledge, we suppressed untargeted transposition and increased type V-K CAST specificity up to 98.1% in cells without compromising on-target integration efficiency. These findings will inform further engineering of CAST systems for accurate, kilobase-scale genome engineering applications.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Christopher Acree
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Muwen Kong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yanis Luca Pignot
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Elizabeth H. Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
11
|
Wang S, Gabel C, Siddique R, Klose T, Chang L. Molecular mechanism for Tn7-like transposon recruitment by a type I-B CRISPR effector. Cell 2023; 186:4204-4215.e19. [PMID: 37557170 PMCID: PMC11027886 DOI: 10.1016/j.cell.2023.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/23/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Tn7-like transposons have co-opted CRISPR-Cas systems to facilitate the movement of their own DNA. These CRISPR-associated transposons (CASTs) are promising tools for programmable gene knockin. A key feature of CASTs is their ability to recruit Tn7-like transposons to nuclease-deficient CRISPR effectors. However, how Tn7-like transposons are recruited by diverse CRISPR effectors remains poorly understood. Here, we present the cryo-EM structure of a recruitment complex comprising the Cascade complex, TniQ, TnsC, and the target DNA in the type I-B CAST from Peltigera membranacea cyanobiont 210A. Target DNA recognition by Cascade induces conformational changes in Cas6 and primes TniQ recruitment through its C-terminal domain. The N-terminal domain of TniQ is bound to the seam region of the TnsC spiral heptamer. Our findings provide insights into the diverse mechanisms for the recruitment of Tn7-like transposons to CRISPR effectors and will aid in the development of CASTs as gene knockin tools.
Collapse
Affiliation(s)
- Shukun Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Clinton Gabel
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Romana Siddique
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
12
|
George JT, Acree C, Park JU, Kong M, Wiegand T, Pignot YL, Kellogg EH, Greene EC, Sternberg SH. Mechanism of target site selection by type V-K CRISPR-associated transposases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.548620. [PMID: 37503092 PMCID: PMC10370016 DOI: 10.1101/2023.07.14.548620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Unlike canonical CRISPR-Cas systems that rely on RNA-guided nucleases for target cleavage, CRISPR-associated transposases (CASTs) repurpose nuclease-deficient CRISPR effectors to facilitate RNA-guided transposition of large genetic payloads. Type V-K CASTs offer several potential upsides for genome engineering, due to their compact size, easy programmability, and unidirectional integration. However, these systems are substantially less accurate than type I-F CASTs, and the molecular basis for this difference has remained elusive. Here we reveal that type V-K CASTs undergo two distinct mobilization pathways with remarkably different specificities: RNA-dependent and RNA-independent transposition. Whereas RNA-dependent transposition relies on Cas12k for accurate target selection, RNA-independent integration events are untargeted and primarily driven by the local availability of TnsC filaments. The cryo-EM structure of the untargeted complex reveals a TnsB-TnsC-TniQ transpososome that encompasses two turns of a TnsC filament and otherwise resembles major architectural aspects of the Cas12k-containing transpososome. Using single-molecule experiments and genome-wide meta-analyses, we found that AT-rich sites are preferred substrates for untargeted transposition and that the TnsB transposase also imparts local specificity, which collectively determine the precise insertion site. Knowledge of these motifs allowed us to direct untargeted transposition events to specific hotspot regions of a plasmid. Finally, by exploiting TnsB's preference for on-target integration and modulating the availability of TnsC, we suppressed RNA-independent transposition events and increased type V-K CAST specificity up to 98.1%, without compromising the efficiency of on-target integration. Collectively, our results reveal the importance of dissecting target site selection mechanisms and highlight new opportunities to leverage CAST systems for accurate, kilobase-scale genome engineering applications.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Christopher Acree
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Present address: Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212, USA
| | - Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Future address: Department of Structural Biology. St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Muwen Kong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yanis Luca Pignot
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Present address: Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Elizabeth H. Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Future address: Department of Structural Biology. St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
13
|
Zeng T, Yin J, Liu Z, Li Z, Zhang Y, Lv Y, Lu ML, Luo M, Chen M, Xiao Y. Mechanistic insights into transposon cleavage and integration by TnsB of ShCAST system. Cell Rep 2023; 42:112698. [PMID: 37379212 DOI: 10.1016/j.celrep.2023.112698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/02/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
The type V-K CRISPR-associated transposons (CASTs) allow RNA-guided DNA integration and have great potential as a programmable site-specific gene insertion tool. Although all core components have been independently characterized structurally, the mechanism of how the transposase TnsB associates with AAA+ ATPase TnsC and catalyzes donor DNA cleavage and integration remains ambiguous. In this study, we demonstrate that TniQ-dCas9 fusion can direct site-specific transposition by TnsB/TnsC in ShCAST. TnsB is a 3'-5' exonuclease that specifically cleaves donor DNA at the end of the terminal repeats and integrates the left end prior to the right end. The nucleotide preference and the cleavage site of TnsB are markedly different from those of the well-documented MuA. We also find that TnsB/TnsC association is enhanced in a half-integration state. Overall, our results provide valuable insights into the mechanism and application expansion of CRISPR-mediated site-specific transposition by TnsB/TnsC.
Collapse
Affiliation(s)
- Ting Zeng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Yin
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ziwen Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhaoxing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Lv
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mei-Ling Lu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Min Luo
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Meirong Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China.
| |
Collapse
|
14
|
Gelsinger DR, Vo PLH, Klompe SE, Ronda C, Wang H, Sternberg SH. Bacterial genome engineering using CRISPR RNA-guided transposases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533263. [PMID: 36993567 PMCID: PMC10055292 DOI: 10.1101/2023.03.18.533263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
CRISPR-associated transposons (CASTs) have the potential to transform the technology landscape for kilobase-scale genome engineering, by virtue of their ability to integrate large genetic payloads with high accuracy, easy programmability, and no requirement for homologous recombination machinery. These transposons encode efficient, CRISPR RNA-guided transposases that execute genomic insertions in E. coli at efficiencies approaching ~100%, generate multiplexed edits when programmed with multiple guides, and function robustly in diverse Gram-negative bacterial species. Here we present a detailed protocol for engineering bacterial genomes using CAST systems, including guidelines on the available homologs and vectors, customization of guide RNAs and DNA payloads, selection of common delivery methods, and genotypic analysis of integration events. We further describe a computational crRNA design algorithm to avoid potential off-targets and CRISPR array cloning pipeline for DNA insertion multiplexing. Starting from available plasmid constructs, the isolation of clonal strains containing a novel genomic integration event-of-interest can be achieved in 1 week using standard molecular biology techniques.
Collapse
Affiliation(s)
- Diego R Gelsinger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Phuc Leo H Vo
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Carlotta Ronda
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Harris Wang
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Park JU, Tsai AWL, Chen TH, Peters JE, Kellogg EH. Mechanistic details of CRISPR-associated transposon recruitment and integration revealed by cryo-EM. Proc Natl Acad Sci U S A 2022; 119:e2202590119. [PMID: 35914146 PMCID: PMC9371665 DOI: 10.1073/pnas.2202590119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022] Open
Abstract
CRISPR-associated transposons (CASTs) are Tn7-like elements that are capable of RNA-guided DNA integration. Although structural data are known for nearly all core transposition components, the transposase component, TnsB, remains uncharacterized. Using cryo-electron microscopy (cryo-EM) structure determination, we reveal the conformation of TnsB during transposon integration for the type V-K CAST system from Scytonema hofmanni (ShCAST). Our structure of TnsB is a tetramer, revealing strong mechanistic relationships with the overall architecture of RNaseH transposases/integrases in general, and in particular the MuA transposase from bacteriophage Mu. However, key structural differences in the C-terminal domains indicate that TnsB's tetrameric architecture is stabilized by a different set of protein-protein interactions compared with MuA. We describe the base-specific interactions along the TnsB binding site, which explain how different CAST elements can function on cognate mobile elements independent of one another. We observe that melting of the 5' nontransferred strand of the transposon end is a structural feature stabilized by TnsB and furthermore is crucial for donor-DNA integration. Although not observed in the TnsB strand-transfer complex, the C-terminal end of TnsB serves a crucial role in transposase recruitment to the target site. The C-terminal end of TnsB adopts a short, structured 15-residue "hook" that decorates TnsC filaments. Unlike full-length TnsB, C-terminal fragments do not appear to stimulate filament disassembly using two different assays, suggesting that additional interactions between TnsB and TnsC are required for redistributing TnsC to appropriate targets. The structural information presented here will help guide future work in modifying these important systems as programmable gene integration tools.
Collapse
Affiliation(s)
- Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Amy Wei-Lun Tsai
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Tiffany H Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Elizabeth H Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
16
|
Klompe SE, Jaber N, Beh LY, Mohabir JT, Bernheim A, Sternberg SH. Evolutionary and mechanistic diversity of Type I-F CRISPR-associated transposons. Mol Cell 2022; 82:616-628.e5. [PMID: 35051352 PMCID: PMC8849592 DOI: 10.1016/j.molcel.2021.12.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023]
Abstract
Canonical CRISPR-Cas systems utilize RNA-guided nucleases for targeted cleavage of foreign nucleic acids, whereas some nuclease-deficient CRISPR-Cas complexes have been repurposed to direct the insertion of Tn7-like transposons. Here, we established a bioinformatic and experimental pipeline to comprehensively explore the diversity of Type I-F CRISPR-associated transposons. We report DNA integration for 20 systems and identify a highly active subset that exhibits complete orthogonality in transposon DNA mobilization. We reveal the modular nature of CRISPR-associated transposons by exploring the horizontal acquisition of targeting modules and by characterizing a system that encodes both a programmable, RNA-dependent pathway, and a fixed, RNA-independent pathway. Finally, we analyzed transposon-encoded cargo genes and found the striking presence of anti-phage defense systems, suggesting a role in transmitting innate immunity between bacteria. Collectively, this study substantially advances our biological understanding of CRISPR-associated transposon function and expands the suite of RNA-guided transposases for programmable, large-scale genome engineering.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- CRISPR-Cas Systems
- Clustered Regularly Interspaced Short Palindromic Repeats
- DNA Transposable Elements/genetics
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli/genetics
- Escherichia coli/immunology
- Escherichia coli/metabolism
- Evolution, Molecular
- Gene Editing
- Gene Expression Regulation, Bacterial
- Genetic Variation
- Immunity, Innate
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Transposases/genetics
- Transposases/metabolism
Collapse
Affiliation(s)
- Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Nora Jaber
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Leslie Y Beh
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jason T Mohabir
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Aude Bernheim
- French National Institute of Health and Medical Research (INSERM), University of Paris, Paris, France
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
17
|
Yang J, Yang J, Zhang Y, Yang S, Zhang J, Jiang Y, Yang S. CRISPR-Associated Transposase System Can Insert Multiple Copies of Donor DNA into the Same Target Locus. CRISPR J 2021; 4:789-798. [PMID: 34847728 DOI: 10.1089/crispr.2021.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The CRISPR-associated transposase system enables site-specific DNA integration on the genome independent of homologous recombination. Previous studies have demonstrated that the type V-K CRISPR-associated Tn7-like transposase system from Scytonema hofmanni and the type I-F system from Vibrio cholerae have strong target immunity like Tn7, and therefore two or more copies of the donor DNA would not be inserted into the same target location in theory. In this paper, we report that the type I-F system can insert multiple donor copies into one site, which was identified and confirmed by single-strain identification and high-throughput sequencing. This result is beneficial for our application of multicopy chromosomal integration by CRISPR-associated transposases, allowing more donor insertions into the chromosome. This unexpected result shows that the target immunity mechanism of this system has not been fully understood. Attention should be paid to the possibility of multiple insertions and their effects in related research.
Collapse
Affiliation(s)
- Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, People's Republic of China
| | - Jiawei Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, People's Republic of China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yiwen Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, People's Republic of China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Siqi Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, People's Republic of China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jieze Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, People's Republic of China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Xiao R, Wang S, Han R, Li Z, Gabel C, Mukherjee IA, Chang L. Structural basis of target DNA recognition by CRISPR-Cas12k for RNA-guided DNA transposition. Mol Cell 2021; 81:4457-4466.e5. [PMID: 34450043 PMCID: PMC8571069 DOI: 10.1016/j.molcel.2021.07.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
The type V-K CRISPR-Cas system, featured by Cas12k effector with a naturally inactivated RuvC domain and associated with Tn7-like transposon for RNA-guided DNA transposition, is a promising tool for precise DNA insertion. To reveal the mechanism underlying target DNA recognition, we determined a cryoelectron microscopy (cryo-EM) structure of Cas12k from cyanobacteria Scytonema hofmanni in complex with a single guide RNA (sgRNA) and a double-stranded target DNA. Coupled with mutagenesis and in vitro DNA transposition assay, our results revealed mechanisms for the recognition of the GGTT protospacer adjacent motif (PAM) sequence and the structural elements of Cas12k critical for RNA-guided DNA transposition. These structural and mechanistic insights should aid in the development of type V-K CRISPR-transposon systems as tools for genome editing.
Collapse
Affiliation(s)
- Renjian Xiao
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Shukun Wang
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Ruijie Han
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Zhuang Li
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Clinton Gabel
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Indranil Arun Mukherjee
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
19
|
Yang S, Zhang Y, Xu J, Zhang J, Zhang J, Yang J, Jiang Y, Yang S. Orthogonal CRISPR-associated transposases for parallel and multiplexed chromosomal integration. Nucleic Acids Res 2021; 49:10192-10202. [PMID: 34478496 PMCID: PMC8464060 DOI: 10.1093/nar/gkab752] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
Cell engineering is commonly limited to the serial manipulation of a single gene or locus. The recently discovered CRISPR-associated transposases (CASTs) could manipulate multiple sets of genes to achieve predetermined cell diversity, with orthogonal CASTs being able to manipulate them in parallel. Here, a novel CAST from Pseudoalteromonas translucida KMM520 (PtrCAST) was characterized without a protospacer adjacent motif (PAM) preference which can achieve a high insertion efficiency for larger cargo and multiplexed transposition and tolerate mismatches out of 4-nucleotide seed sequence. More importantly, PtrCAST operates orthogonally with CAST from Vibrio cholerae Tn6677 (VchCAST), though both belonging to type I-F3. The two CASTs were exclusively active on their respective mini-Tn substrate with their respective crRNAs that target the corresponding 5 and 2 loci in one Escherichia coli cell. The multiplexed orthogonal MUCICAT (MUlticopy Chromosomal Integration using CRISPR-Associated Transposases) is a powerful tool for cell programming and appears promising with applications in synthetic biology.
Collapse
Affiliation(s)
| | | | - Jiaqi Xu
- Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, China
| | - Jiao Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieze Zhang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Jiang
- Shanghai Taoyusheng Biotechnology Co., Ltd, Shanghai 200032, China
| | - Sheng Yang
- To whom correspondence should be addressed. Tel: +86 21 54924173;
| |
Collapse
|
20
|
Chen W, Ren ZH, Tang N, Chai G, Zhang H, Zhang Y, Ma J, Wu Z, Shen X, Huang X, Luo GZ, Ji Q. Targeted genetic screening in bacteria with a Cas12k-guided transposase. Cell Rep 2021; 36:109635. [PMID: 34469724 DOI: 10.1016/j.celrep.2021.109635] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/26/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Microbes employ sophisticated cellular networks encoded by complex genomes to rapidly adapt to changing environments. High-throughput genome engineering methods are valuable tools for functionally profiling genotype-phenotype relationships and understanding the complexity of cellular networks. However, current methods either rely on special homologous recombination systems and are thus applicable in only limited bacterial species or can generate only nonspecific mutations and thus require extensive subsequent screening. Here, we report a site-specific transposon-assisted genome engineering (STAGE) method that allows high-throughput Cas12k-guided mutagenesis in various microorganisms, such as Pseudomonas aeruginosa and Klebsiella pneumoniae. Exploiting the powerful STAGE technique, we construct a site-specific transposon mutant library that focuses on all possible transcription factors (TFs) in P. aeruginosa, enabling the comprehensive identification of essential genes and antibiotic-resistance-related factors. Given its broad host range activity and easy programmability, this method can be widely adapted to diverse microbial species for rapid genome engineering and strain evolution.
Collapse
Affiliation(s)
- Weizhong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ze-Hui Ren
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Na Tang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoshi Chai
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Hongyuan Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaowei Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xia Shen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Guangzhou Laboratory, Guangzhou 510120, China
| | - Guan-Zheng Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China.
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; Guangzhou Laboratory, Guangzhou 510120, China.
| |
Collapse
|
21
|
Park JU, Tsai AWL, Mehrotra E, Petassi MT, Hsieh SC, Ke A, Peters JE, Kellogg EH. Structural basis for target site selection in RNA-guided DNA transposition systems. Science 2021; 373:768-774. [PMID: 34385391 DOI: 10.1126/science.abi8976] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022]
Abstract
CRISPR-associated transposition systems allow guide RNA-directed integration of a single DNA cargo in one orientation at a fixed distance from a programmable target sequence. We used cryo-electron microscopy (cryo-EM) to define the mechanism that underlies this process by characterizing the transposition regulator, TnsC, from a type V-K CRISPR-transposase system. In this scenario, polymerization of adenosine triphosphate-bound TnsC helical filaments could explain how polarity information is passed to the transposase. TniQ caps the TnsC filament, representing a universal mechanism for target information transfer in Tn7/Tn7-like elements. Transposase-driven disassembly establishes delivery of the element only to unused protospacers. Finally, TnsC transitions to define the fixed point of insertion, as revealed by structures with the transition state mimic ADP•AlF3 These mechanistic findings provide the underpinnings for engineering CRISPR-associated transposition systems for research and therapeutic applications.
Collapse
Affiliation(s)
- Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Amy Wei-Lun Tsai
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Eshan Mehrotra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michael T Petassi
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Shan-Chi Hsieh
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
| | - Elizabeth H Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
22
|
Vo PLH, Acree C, Smith ML, Sternberg SH. Unbiased profiling of CRISPR RNA-guided transposition products by long-read sequencing. Mob DNA 2021; 12:13. [PMID: 34103093 PMCID: PMC8188705 DOI: 10.1186/s13100-021-00242-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
Bacterial transposons propagate through either non-replicative (cut-and-paste) or replicative (copy-and-paste) pathways, depending on how the mobile element is excised from its donor source. In the well-characterized E. coli transposon Tn7, a heteromeric TnsA-TnsB transposase directs cut-and-paste transposition by cleaving both strands at each transposon end during the excision step. Whether a similar pathway is involved for RNA-guided transposons, in which CRISPR-Cas systems confer DNA target specificity, has not been determined. Here, we apply long-read, population-based whole-genome sequencing (WGS) to unambiguously resolve transposition products for two evolutionarily distinct transposon types that employ either Cascade or Cas12k for RNA-guided DNA integration. Our results show that RNA-guided transposon systems lacking functional TnsA primarily undergo copy-and-paste transposition, generating cointegrate products that comprise duplicated transposon copies and genomic insertion of the vector backbone. Finally, we report natural and engineered transposon variants encoding a TnsAB fusion protein, revealing a novel strategy for achieving RNA-guided transposition with fewer molecular components.
Collapse
Affiliation(s)
- Phuc Leo H Vo
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - Christopher Acree
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
23
|
Vo PLH, Ronda C, Klompe SE, Chen EE, Acree C, Wang HH, Sternberg SH. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat Biotechnol 2021; 39:480-489. [PMID: 33230293 PMCID: PMC10583764 DOI: 10.1038/s41587-020-00745-y] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/29/2023]
Abstract
Existing technologies for site-specific integration of kilobase-sized DNA sequences in bacteria are limited by low efficiency, a reliance on recombination, the need for multiple vectors, and challenges in multiplexing. To address these shortcomings, we introduce a substantially improved version of our previously reported Tn7-like transposon from Vibrio cholerae, which uses a Type I-F CRISPR-Cas system for programmable, RNA-guided transposition. The optimized insertion of transposable elements by guide RNA-assisted targeting (INTEGRATE) system achieves highly accurate and marker-free DNA integration of up to 10 kilobases at ~100% efficiency in bacteria. Using multi-spacer CRISPR arrays, we achieved simultaneous multiplexed insertions in three genomic loci and facile, multi-loci deletions by combining orthogonal integrases and recombinases. Finally, we demonstrated robust function in biomedically and industrially relevant bacteria and achieved target- and species-specific integration in a complex bacterial community. This work establishes INTEGRATE as a versatile tool for multiplexed, kilobase-scale genome engineering.
Collapse
Affiliation(s)
- Phuc Leo H Vo
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Carlotta Ronda
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Ethan E Chen
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Christopher Acree
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
24
|
Petassi MT, Hsieh SC, Peters JE. Guide RNA Categorization Enables Target Site Choice in Tn7-CRISPR-Cas Transposons. Cell 2020; 183:1757-1771.e18. [PMID: 33271061 PMCID: PMC7770071 DOI: 10.1016/j.cell.2020.11.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023]
Abstract
CRISPR-Cas defense systems have been coopted multiple times in nature for guide RNA-directed transposition by Tn7-like elements. Prototypic Tn7 uses dedicated proteins for two targeting pathways: one targeting a neutral and conserved attachment site in the chromosome and a second directing transposition into mobile plasmids facilitating cell-to-cell transfer. We show that Tn7-CRISPR-Cas elements evolved a system of guide RNA categorization to accomplish the same two-pathway lifestyle. Multiple mechanisms allow functionally distinct guide RNAs for transposition: a conventional system capable of acquiring guide RNAs to new plasmid and phage targets and a second providing long-term memory for access to chromosomal sites upon entry into a new host. Guide RNAs are privatized to be recognized only by the transposon-adapted system via sequence specialization, mismatch tolerance, and selective regulation to avoid toxic self-targeting by endogenous CRISPR-Cas defense systems. This information reveals promising avenues to engineer guide RNAs for enhanced CRISPR-Cas functionality for genome modification.
Collapse
Affiliation(s)
- Michael T Petassi
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Shan-Chi Hsieh
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
25
|
Strecker J, Ladha A, Makarova KS, Koonin EV, Zhang F. Response to Comment on "RNA-guided DNA insertion with CRISPR-associated transposases". Science 2020; 368:368/6495/eabb2920. [PMID: 32499411 DOI: 10.1126/science.abb2920] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Rice et al suggest that the CRISPR-associated transposase ShCAST system could lead to additional insertion products beyond simple integration of the donor. We clarify the outcomes of ShCAST-mediated insertions in Escherichia coli, which consist of both simple insertions and integration of the donor plasmid. This latter outcome can be avoided by use of a 5' nicked DNA donor.
Collapse
Affiliation(s)
- Jonathan Strecker
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alim Ladha
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. .,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|