1
|
Glaeser RM. Commonsense and common nonsense opinions: PROSPECTS for further reducing beam damage in electron microscopy of radiation-sensitive specimens. Ultramicroscopy 2025; 271:114118. [PMID: 40023013 DOI: 10.1016/j.ultramic.2025.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/15/2025] [Indexed: 03/04/2025]
Abstract
Biological molecules are easily damaged by high-energy electrons, thus limiting the exposures that can be used to image such specimens by electron microscopy. It is argued here that many-electron, volume-plasmon excitations, which promptly transition into multiple types of single-electron ionization and excitation events, seem to be the predominant cause of damage in such materials. Although reducing the rate at which primary radiolysis occurs would allow one to record images that were much less noisy, many novel proposals for achieving this are unlikely to be realized in the near future, while others are manifestly ill-founded. As a result, the most realistic option currently is to more effectively use the available "budget" of electron exposure, i.e. to further improve the "dose efficiency" by which images are recorded. While progress in that direction is currently under way for both "conventional" (i.e. fixed-beam) and scanning EM, the former is expected to set a high standard for the latter to surpass.
Collapse
Affiliation(s)
- Robert M Glaeser
- Department of Molecular and Cell Biology, University of California, Berkeley CA 94720, USA.
| |
Collapse
|
2
|
Nicolas WJ, Gillman C, Weaver SJ, Clabbers MTB, Shiriaeva A, Her AS, Martynowycz MW, Gonen T. Comprehensive microcrystal electron diffraction sample preparation for cryo-EM. Nat Protoc 2025; 20:1275-1309. [PMID: 39706914 DOI: 10.1038/s41596-024-01088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/09/2024] [Indexed: 12/23/2024]
Abstract
Microcrystal electron diffraction (MicroED) has advanced structural methods across a range of sample types, from small molecules to proteins. This cryogenic electron microscopy (cryo-EM) technique involves the continuous rotation of small 3D crystals in the electron beam, while a high-speed camera captures diffraction data in the form of a movie. The crystal structure is subsequently determined by using established X-ray crystallographic software. MicroED is a technique still under development, and hands-on expertise in sample preparation, data acquisition and processing is not always readily accessible. This comprehensive guide on MicroED sample preparation addresses commonly used methods for various sample categories, including room temperature solid-state small molecules and soluble and membrane protein crystals. Beyond detailing the steps of sample preparation for new users, and because every crystal requires unique growth and sample-preparation conditions, this resource provides instructions and optimization strategies for MicroED sample preparation. The protocol is suitable for users with expertise in biochemistry, crystallography, general cryo-EM and crystallography data processing. MicroED experiments, from sample vitrification to final structure, can take anywhere from one workday to multiple weeks, especially when cryogenic focused ion beam milling is involved.
Collapse
Affiliation(s)
- William J Nicolas
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Cody Gillman
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Sara J Weaver
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Max T B Clabbers
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Anna Shiriaeva
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Ampon Sae Her
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael W Martynowycz
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Chen X, Wang L, Xie J, Nowak JS, Luo B, Zhang C, Jia G, Zou J, Huang D, Glatt S, Yang Y, Su Z. RNA sample optimization for cryo-EM analysis. Nat Protoc 2025; 20:1114-1157. [PMID: 39548288 DOI: 10.1038/s41596-024-01072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
RNAs play critical roles in most biological processes. Although the three-dimensional (3D) structures of RNAs primarily determine their functions, it remains challenging to experimentally determine these 3D structures due to their conformational heterogeneity and intrinsic dynamics. Cryogenic electron microscopy (cryo-EM) has recently played an emerging role in resolving dynamic conformational changes and understanding structure-function relationships of RNAs including ribozymes, riboswitches and bacterial and viral noncoding RNAs. A variety of methods and pipelines have been developed to facilitate cryo-EM structure determination of challenging RNA targets with small molecular weights at subnanometer to near-atomic resolutions. While a wide range of conditions have been used to prepare RNAs for cryo-EM analysis, correlations between the variables in these conditions and cryo-EM visualizations and reconstructions remain underexplored, which continue to hinder optimizations of RNA samples for high-resolution cryo-EM structure determination. Here we present a protocol that describes rigorous screenings and iterative optimizations of RNA preparation conditions that facilitate cryo-EM structure determination, supplemented by cryo-EM data processing pipelines that resolve RNA dynamics and conformational changes and RNA modeling algorithms that generate atomic coordinates based on moderate- to high-resolution cryo-EM density maps. The current protocol is designed for users with basic skills and experience in RNA biochemistry, cryo-EM and RNA modeling. The expected time to carry out this protocol may range from 3 days to more than 3 weeks, depending on the many variables described in the protocol. For particularly challenging RNA targets, this protocol could also serve as a starting point for further optimizations.
Collapse
Affiliation(s)
- Xingyu Chen
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Wang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Xie
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jakub S Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yang Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Dickerson JL, Naydenova K, Peet MJ, Wilson H, Nandy B, McMullan G, Morrison R, Russo CJ. Reducing the effects of radiation damage in cryo-EM using liquid helium temperatures. Proc Natl Acad Sci U S A 2025; 122:e2421538122. [PMID: 40261934 PMCID: PMC12054821 DOI: 10.1073/pnas.2421538122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/28/2025] [Indexed: 04/24/2025] Open
Abstract
The physical limit in determining the atomic structure of biological molecules is radiation damage. In electron cryomicroscopy, there have been numerous attempts to reduce the effects of radiation damage by cooling the specimen beyond liquid-nitrogen temperatures, yet all failed to realize the potential improvement for single-particle structure determination. We have identified the physical causes of information loss at liquid-helium temperatures, and overcome them using a combination of nanoscale electron beam illumination and a gold specimen support with 100 nm diameter holes. This combination allowed structure determination where every frame in the exposure contained more information than was available with cryomicroscopy at liquid-nitrogen temperatures, matching expectations from crystal diffraction. Since a 100 nm hole is smaller than the field of view of a typical micrograph, the edges of the foil are directly visible in each micrograph. Protein molecules that are degraded tend to aggregate at the edges of foil holes and can constitute a significant fraction of the micrograph. This and the need for minimal water-foil irradiation will both be important to consider as new cryomicroscopes and specimen supports are developed for imaging molecules at extremely low temperatures where the effects of radiation damage are reduced.
Collapse
Affiliation(s)
- Joshua L. Dickerson
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Katerina Naydenova
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Mathew J. Peet
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Hugh Wilson
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Biplob Nandy
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Greg McMullan
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Robert Morrison
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Christopher J. Russo
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
5
|
Patwardhan A, Henderson R, Russo CJ. Extending the reach of single-particle cryoEM. Curr Opin Struct Biol 2025:103005. [PMID: 40038020 DOI: 10.1016/j.sbi.2025.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 03/06/2025]
Abstract
Molecular structure determination using electron cryomicroscopy (cryoEM) is poised in early 2025 to surpass X-ray crystallography as the most used method for experimentally determining new structures. But the technique has not reached the physical limits set by radiation damage and the signal-to-noise ratio in individual images of molecules. By examining these limits and comparing the number and resolution of structures determined versus molecular weight, we identify opportunities for extending the application of single-particle cryoEM. This will help guide technology development to continue the exponential growth of structural biology.
Collapse
|
6
|
Zheng L, Xu J, Wang W, Gao X, Zhao C, Guo W, Sun L, Cheng H, Meng F, Chen B, Sun W, Jia X, Zhou X, Wu K, Liu Z, Ding F, Liu N, Wang HW, Peng H. Self-assembled superstructure alleviates air-water interface effect in cryo-EM. Nat Commun 2024; 15:7300. [PMID: 39181869 PMCID: PMC11344764 DOI: 10.1038/s41467-024-51696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Cryo-electron microscopy (cryo-EM) has been widely used to reveal the structures of proteins at atomic resolution. One key challenge is that almost all proteins are predominantly adsorbed to the air-water interface during standard cryo-EM specimen preparation. The interaction of proteins with air-water interface will significantly impede the success of reconstruction and achievable resolution. Here, we highlight the critical role of impenetrable surfactant monolayers in passivating the air-water interface problems, and develop a robust effective method for high-resolution cryo-EM analysis, by using the superstructure GSAMs which comprises surfactant self-assembled monolayers (SAMs) and graphene membrane. The GSAMs works well in enriching the orientations and improving particle utilization ratio of multiple proteins, facilitating the 3.3-Å resolution reconstruction of a 100-kDa protein complex (ACE2-RBD), which shows strong preferential orientation using traditional specimen preparation protocol. Additionally, we demonstrate that GSAMs enables the successful determinations of small proteins (<100 kDa) at near-atomic resolution. This study expands the understanding of SAMs and provides a key to better control the interaction of protein with air-water interface.
Collapse
Affiliation(s)
- Liming Zheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weihua Wang
- China Academy of Aerospace Science and Innovation, Beijing, 100088, China
| | - Xiaoyin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chao Zhao
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China.
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518103, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Weijun Guo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Luzhao Sun
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Hang Cheng
- Shuimu BioSciences Ltd, Beijing, 100089, China
| | - Fanhao Meng
- Shuimu BioSciences Ltd, Beijing, 100089, China
| | - Buhang Chen
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Weiyu Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Jia
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiong Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Kai Wu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhongfan Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Feng Ding
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518103, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Biological Sciences, The University of Hong Kong, Hong Kong, 999077, China.
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Hailin Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Beijing Graphene Institute (BGI), Beijing, 100095, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Zhu D, Cao W, Li J, Wu C, Cao D, Zhang X. Correction of preferred orientation-induced distortion in cryo-electron microscopy maps. SCIENCE ADVANCES 2024; 10:eadn0092. [PMID: 39058771 DOI: 10.1126/sciadv.adn0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/06/2024] [Indexed: 07/28/2024]
Abstract
Reconstruction maps of cryo-electron microscopy (cryo-EM) exhibit distortion when the cryo-EM dataset is incomplete, usually caused by unevenly distributed orientations. Prior efforts had been attempted to address this preferred orientation problem using tilt-collection strategy and modifications to grids or to air-water interfaces. However, these approaches often require time-consuming experiments, and the effect was always protein dependent. Here, we developed a procedure containing removing misaligned particles and an iterative reconstruction method based on signal-to-noise ratio of Fourier component to correct this distortion by recovering missing data using a purely computational algorithm. This procedure called signal-to-noise ratio iterative reconstruction method (SIRM) was applied on incomplete datasets of various proteins to fix distortion in cryo-EM maps and to a more isotropic resolution. In addition, SIRM provides a better reference map for further reconstruction refinements, resulting in an improved alignment, which ultimately improves map quality and benefits model building.
Collapse
Affiliation(s)
- Dongjie Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Weili Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Junxi Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Chunling Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Duanfang Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
8
|
Liu N, Wang HW. Graphene in cryo-EM specimen optimization. Curr Opin Struct Biol 2024; 86:102823. [PMID: 38688075 DOI: 10.1016/j.sbi.2024.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/16/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
Specimen preparation is a critical but challenging step in high-resolution cryogenic electron microscopy (cryo-EM) structural analysis of macromolecules. In the past decade, graphene has gained much recognition as the supporting substrate to optimize cryo-EM specimen preparation. It improves macromolecule embedding in ice, reduces beam-induced motion, while imposing negligible background noise. Various types of graphene-coated cryo-EM grids were implemented to improve the robustness and efficiency of specimen preparation. Graphene functionalization by different means has been proved specifically useful in addressing challenges related to the air-water interface (AWI), such as preferential orientation and sample denaturation. Graphene sandwich specimen preparation sets a new direction to explore in cryo-EM analysis of biological specimens. In this review, we discuss the current challenges and future prospects of graphene application in cryo-EM analysis of macromolecules.
Collapse
Affiliation(s)
- Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Hale VL, Hooker J, Russo CJ, Löwe J. Honeycomb gold specimen supports enabling orthogonal focussed ion beam-milling of elongated cells for cryo-ET. J Struct Biol 2024; 216:108097. [PMID: 38772448 PMCID: PMC7616276 DOI: 10.1016/j.jsb.2024.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
Cryo-focussed ion beam (FIB)-milling is a powerful technique that opens up thick, cellular specimens to high-resolution structural analysis by electron cryotomography (cryo-ET). FIB-milled lamellae can be produced from cells on grids, or cut from thicker, high-pressure frozen specimens. However, these approaches can put geometrical constraints on the specimen that may be unhelpful, particularly when imaging structures within the cell that have a very defined orientation. For example, plunge frozen rod-shaped bacteria orient parallel to the plane of the grid, yet the Z-ring, a filamentous structure of the tubulin-like protein FtsZ and the key organiser of bacterial division, runs around the circumference of the cell such that it is perpendicular to the imaging plane. It is therefore difficult or impractical to image many complete rings with current technologies. To circumvent this problem, we have fabricated monolithic gold specimen supports with a regular array of cylindrical wells in a honeycomb geometry, which trap bacteria in a vertical orientation. These supports, which we call "honeycomb gold discs", replace standard EM grids and when combined with FIB-milling enable the production of lamellae containing cross-sections through cells. The resulting lamellae are more stable and resistant to breakage and charging than conventional lamellae. The design of the honeycomb discs can be modified according to need and so will also enable cryo-ET and cryo-EM imaging of other specimens in otherwise difficult to obtain orientations.
Collapse
Affiliation(s)
| | - James Hooker
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
10
|
Cheng A, Yu Y. Recent advances in data collection for Cryo-EM methods. Curr Opin Struct Biol 2024; 86:102795. [PMID: 38484552 DOI: 10.1016/j.sbi.2024.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/21/2024] [Indexed: 05/19/2024]
Abstract
Methods of transmission electron microscopy (TEM) are typically used to resolve structures of vitrified biological specimens using both single particle analysis (SPA) and tomographic methods and use both conventional as well as scanning transmission modes of data collection. Automation of data collection for each method has been developed to different levels of convenience for the users. Automation of methods using the conventional TEM mode has progressed the furthest. Beam-image shift strategies first used in data collection for SPA were shown to be equally valuable for cryo-electron tomography (cryo-ET). Machine learning methods have been applied for target selection and for planning optimal paths of data collection for SPA. These methods also enabled automated screening. Apertures matching the square shape of cameras have been recently described. Some progress has also been made in the automation of cryo applications of scanning TEM, promising an increase of throughput and potential for further improvement.
Collapse
Affiliation(s)
- Anchi Cheng
- Chan Zuckerberg Institute for Advanced Biological Imaging (CZ Imaging Institute), 3400 Bridge Parkway, Redwood City CA 94065, USA.
| | - Yue Yu
- Chan Zuckerberg Institute for Advanced Biological Imaging (CZ Imaging Institute), 3400 Bridge Parkway, Redwood City CA 94065, USA
| |
Collapse
|
11
|
Premageetha GT, Vinothkumar KR, Bose S. Exploring advances in single particle CryoEM with apoferritin: From blobs to true atomic resolution. Int J Biochem Cell Biol 2024; 169:106536. [PMID: 38307321 DOI: 10.1016/j.biocel.2024.106536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Deciphering the three-dimensional structures of macromolecules is of paramount importance for gaining insights into their functions and roles in human health and disease. Single particle cryoEM has emerged as a powerful technique that enables direct visualization of macromolecules and their complexes, and through subsequent averaging, achieve near atomic-level resolution. A major breakthrough was recently achieved with the determination of the apoferritin structure at true atomic resolution. In this review, we discuss the latest technological innovations across the entire single-particle workflow, which have been instrumental in driving the resolution revolution and in transforming cryoEM as a mainstream technique in structural biology. We illustrate these advancements using apoferritin as an example that has served as an excellent benchmark sample for assessing emerging technologies. We further explore whether the existing technology can routinely generate atomic structures of dynamic macromolecules that more accurately represent real-world samples, the limitations in the workflow, and the current approaches employed to overcome them.
Collapse
Affiliation(s)
- Gowtham ThambraRajan Premageetha
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Post, Bangalore 560065, India; Manipal Academy of Higher Education, Tiger Circle Road, Manipal, Karnataka 576104, India.
| | - Kutti R Vinothkumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Post, Bangalore 560065, India
| | - Sucharita Bose
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Post, Bangalore 560065, India.
| |
Collapse
|
12
|
Dickerson JL, Leahy E, Peet MJ, Naydenova K, Russo CJ. Accurate magnification determination for cryoEM using gold. Ultramicroscopy 2024; 256:113883. [PMID: 38008055 PMCID: PMC10782223 DOI: 10.1016/j.ultramic.2023.113883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023]
Abstract
Determining the correct magnified pixel size of single-particle cryoEM micrographs is necessary to maximize resolution and enable accurate model building. Here we describe a simple and rapid procedure for determining the absolute magnification in an electron cryomicroscope to a precision of <0.5%. We show how to use the atomic lattice spacings of crystals of thin and readily available test specimens, such as gold, as an absolute reference to determine magnification for both room temperature and cryogenic imaging. We compare this method to other commonly used methods, and show that it provides comparable accuracy in spite of its simplicity. This magnification calibration method provides a definitive reference quantity for data analysis and processing, simplifies the combination of multiple datasets from different microscopes and detectors, and improves the accuracy with which the contrast transfer function of the microscope can be determined. We also provide an open source program, magCalEM, which can be used to accurately estimate the magnified pixel size of a cryoEM dataset ex post facto.
Collapse
Affiliation(s)
- Joshua L Dickerson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Erin Leahy
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mathew J Peet
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Katerina Naydenova
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher J Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
13
|
Xu J, Gao X, Zheng L, Jia X, Xu K, Ma Y, Wei X, Liu N, Peng H, Wang HW. Graphene sandwich-based biological specimen preparation for cryo-EM analysis. Proc Natl Acad Sci U S A 2024; 121:e2309384121. [PMID: 38252835 PMCID: PMC10835136 DOI: 10.1073/pnas.2309384121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
High-quality specimen preparation plays a crucial role in cryo-electron microscopy (cryo-EM) structural analysis. In this study, we have developed a reliable and convenient technique called the graphene sandwich method for preparing cryo-EM specimens. This method involves using two layers of graphene films that enclose macromolecules on both sides, allowing for an appropriate ice thickness for cryo-EM analysis. The graphene sandwich helps to mitigate beam-induced charging effect and reduce particle motion compared to specimens prepared using the traditional method with graphene support on only one side, therefore improving the cryo-EM data quality. These advancements may open new opportunities to expand the use of graphene in the field of biological electron microscopy.
Collapse
Affiliation(s)
- Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Xiaoyin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Liming Zheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Xia Jia
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Kui Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yuwei Ma
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing100871, China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing100871, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Hailin Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
- Beijing Graphene Institute, Beijing100095, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| |
Collapse
|
14
|
Bick T, Dominiak PM, Wendler P. Exploiting the full potential of cryo-EM maps. BBA ADVANCES 2024; 5:100113. [PMID: 38292063 PMCID: PMC10825613 DOI: 10.1016/j.bbadva.2024.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
The Coulomb potential maps generated by electron microscopy (EM) experiments contain not only information about the position but also about the charge state of the atom. This feature of EM maps allows the identification of specific ions and the protonation state of amino acid side chains in the sample. Here, we summarize qualitative observations of charges in EM maps, discuss the difficulties in interpreting the charge in Coulomb potential maps with respect to distinguishing it from radiation damage, and outline considerations to implement the correct charge in fitting algorithms.
Collapse
Affiliation(s)
- Thomas Bick
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476 Potsdam Golm, Germany
| | - Paulina M. Dominiak
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476 Potsdam Golm, Germany
| |
Collapse
|
15
|
Aiyer S, Baldwin PR, Tan SM, Shan Z, Oh J, Mehrani A, Bowman ME, Louie G, Passos DO, Đorđević-Marquardt S, Mietzsch M, Hull JA, Hoshika S, Barad BA, Grotjahn DA, McKenna R, Agbandje-McKenna M, Benner SA, Noel JAP, Wang D, Tan YZ, Lyumkis D. Overcoming resolution attenuation during tilted cryo-EM data collection. Nat Commun 2024; 15:389. [PMID: 38195598 PMCID: PMC10776679 DOI: 10.1038/s41467-023-44555-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
Structural biology efforts using cryogenic electron microscopy are frequently stifled by specimens adopting "preferred orientations" on grids, leading to anisotropic map resolution and impeding structure determination. Tilting the specimen stage during data collection is a generalizable solution but has historically led to substantial resolution attenuation. Here, we develop updated data collection and image processing workflows and demonstrate, using multiple specimens, that resolution attenuation is negligible or significantly reduced across tilt angles. Reconstructions with and without the stage tilted as high as 60° are virtually indistinguishable. These strategies allowed the reconstruction to 3 Å resolution of a bacterial RNA polymerase with preferred orientation, containing an unnatural nucleotide for studying novel base pair recognition. Furthermore, we present a quantitative framework that allows cryo-EM practitioners to define an optimal tilt angle during data acquisition. These results reinforce the utility of employing stage tilt for data collection and provide quantitative metrics to obtain isotropic maps.
Collapse
Affiliation(s)
- Sriram Aiyer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Philip R Baldwin
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shi Min Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Zelin Shan
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- College of Pharmacy, Kyung Hee University, Seoul, 02247, Republic of Korea
| | - Atousa Mehrani
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Marianne E Bowman
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gordon Louie
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Dario Oliveira Passos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joshua A Hull
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd Box 7, Alachua, FL, 32615, USA
| | - Benjamin A Barad
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd Box 7, Alachua, FL, 32615, USA
| | - Joseph A P Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yong Zi Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
- Disease Intervention Technology Laboratory (DITL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Singapore, 138648, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Graduate School of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
de la Cruz MJ, Eng ET. Scaling up cryo-EM for biology and chemistry: The journey from niche technology to mainstream method. Structure 2023; 31:1487-1498. [PMID: 37820731 PMCID: PMC10841453 DOI: 10.1016/j.str.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Cryoelectron microscopy (cryo-EM) methods have made meaningful contributions in a wide variety of scientific research fields. In structural biology, cryo-EM routinely elucidates molecular structure from isolated biological macromolecular complexes or in a cellular context by harnessing the high-resolution power of the electron in order to image samples in a frozen, hydrated environment. For structural chemistry, the cryo-EM method popularly known as microcrystal electron diffraction (MicroED) has facilitated atomic structure generation of peptides and small molecules from their three-dimensional crystal forms. As cryo-EM has grown from an emerging technology, it has undergone modernization to enable multimodal transmission electron microscopy (TEM) techniques becoming more routine, reproducible, and accessible to accelerate research across multiple disciplines. We review recent advances in modern cryo-EM and assess how they are contributing to the future of the field with an eye to the past.
Collapse
Affiliation(s)
- M Jason de la Cruz
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Edward T Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA.
| |
Collapse
|
17
|
McMullan G, Naydenova K, Mihaylov D, Yamashita K, Peet MJ, Wilson H, Dickerson JL, Chen S, Cannone G, Lee Y, Hutchings KA, Gittins O, Sobhy MA, Wells T, El-Gomati MM, Dalby J, Meffert M, Schulze-Briese C, Henderson R, Russo CJ. Structure determination by cryoEM at 100 keV. Proc Natl Acad Sci U S A 2023; 120:e2312905120. [PMID: 38011573 PMCID: PMC10710074 DOI: 10.1073/pnas.2312905120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023] Open
Abstract
Electron cryomicroscopy can, in principle, determine the structures of most biological molecules but is currently limited by access, specimen preparation difficulties, and cost. We describe a purpose-built instrument operating at 100 keV-including advances in electron optics, detection, and processing-that makes structure determination fast and simple at a fraction of current costs. The instrument attains its theoretical performance limits, allowing atomic resolution imaging of gold test specimens and biological molecular structure determination in hours. We demonstrate its capabilities by determining the structures of eleven different specimens, ranging in size from 140 kDa to 2 MDa, using a fraction of the data normally required. CryoEM with a microscope designed specifically for high-efficiency, on-the-spot imaging of biological molecules will expand structural biology to a wide range of previously intractable problems.
Collapse
Affiliation(s)
- Greg McMullan
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Katerina Naydenova
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Daniel Mihaylov
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Keitaro Yamashita
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Mathew J. Peet
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Hugh Wilson
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Joshua L. Dickerson
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Shaoxia Chen
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Giuseppe Cannone
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Yang Lee
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Katherine A. Hutchings
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Olivia Gittins
- Newcastle University, Newcastle upon TyneNE2 4HH, United Kingdom
| | - Mohamed A. Sobhy
- King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Torquil Wells
- York Probe Sources Ltd., YorkYO26 6QU, United Kingdom
| | | | - Jason Dalby
- JEOL U.K. Ltd., Welwyn Garden CityAL7 1LT, United Kingdom
| | | | | | - Richard Henderson
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Christopher J. Russo
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
18
|
Huang C, Kim JS, Kirkland AI. Cryo-electron ptychography: Applications and potential in biological characterisation. Curr Opin Struct Biol 2023; 83:102730. [PMID: 37992450 DOI: 10.1016/j.sbi.2023.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
There is a clear need for developments in characterisation techniques that provide detailed information about structure-function relationships in biology. Using electron microscopy to achieve high resolution while maintaining a broad field of view remains a challenge, particularly for radiation-sensitive specimens where the signal-to-noise ratio required to maintain structural integrity is limited by low electron fluence. In this review, we explore the potential of cryogenic electron ptychography as an alternative method for characterising biological systems under low-fluence conditions. Using this method with increased information content from multiple sampled regions of interest potentially allows 3D reconstruction with far fewer particles than required in conventional cryo-electron microscopy. This is important for achieving higher resolution in systems where distributions of homogeneous single particles are difficult to obtain. We discuss the progress, limitations, and potential areas for future development of this approach for both single particle analysis and applications to heterogeneous large objects.
Collapse
Affiliation(s)
- Chen Huang
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0QX, United Kingdom.
| | - Judy S Kim
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0QX, United Kingdom; Department of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom
| | - Angus I Kirkland
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0QX, United Kingdom; Department of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom
| |
Collapse
|
19
|
Ochner H, Bharat TAM. Charting the molecular landscape of the cell. Structure 2023; 31:1297-1305. [PMID: 37699393 PMCID: PMC7615466 DOI: 10.1016/j.str.2023.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Biological function of macromolecules is closely tied to their cellular location, as well as to interactions with other molecules within the native environment of the cell. Therefore, to obtain detailed mechanistic insights into macromolecular functionality, one of the outstanding targets for structural biology is to produce an atomic-level understanding of the cell. One structural biology technique that has already been used to directly derive atomic models of macromolecules from cells, without any additional external information, is electron cryotomography (cryoET). In this perspective article, we discuss possible routes to chart the molecular landscape of the cell by advancing cryoET imaging as well as by embedding cryoET into correlative imaging workflows.
Collapse
Affiliation(s)
- Hannah Ochner
- Structural Studies Division, MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.
| |
Collapse
|
20
|
Zhao C, Lu D, Zhao Q, Ren C, Zhang H, Zhai J, Gou J, Zhu S, Zhang Y, Gong X. Computational methods for in situ structural studies with cryogenic electron tomography. Front Cell Infect Microbiol 2023; 13:1135013. [PMID: 37868346 PMCID: PMC10586593 DOI: 10.3389/fcimb.2023.1135013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/29/2023] [Indexed: 10/24/2023] Open
Abstract
Cryo-electron tomography (cryo-ET) plays a critical role in imaging microorganisms in situ in terms of further analyzing the working mechanisms of viruses and drug exploitation, among others. A data processing workflow for cryo-ET has been developed to reconstruct three-dimensional density maps and further build atomic models from a tilt series of two-dimensional projections. Low signal-to-noise ratio (SNR) and missing wedge are two major factors that make the reconstruction procedure challenging. Because only few near-atomic resolution structures have been reconstructed in cryo-ET, there is still much room to design new approaches to improve universal reconstruction resolutions. This review summarizes classical mathematical models and deep learning methods among general reconstruction steps. Moreover, we also discuss current limitations and prospects. This review can provide software and methods for each step of the entire procedure from tilt series by cryo-ET to 3D atomic structures. In addition, it can also help more experts in various fields comprehend a recent research trend in cryo-ET. Furthermore, we hope that more researchers can collaborate in developing computational methods and mathematical models for high-resolution three-dimensional structures from cryo-ET datasets.
Collapse
Affiliation(s)
- Cuicui Zhao
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Da Lu
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Qian Zhao
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Chongjiao Ren
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Huangtao Zhang
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Jiaqi Zhai
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Jiaxin Gou
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Shilin Zhu
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Yaqi Zhang
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Xinqi Gong
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
- Beijing Academy of Intelligence, Beijing, China
| |
Collapse
|
21
|
Garman EF, Weik M. Radiation damage to biological macromolecules∗. Curr Opin Struct Biol 2023; 82:102662. [PMID: 37573816 DOI: 10.1016/j.sbi.2023.102662] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
In this review, we describe recent research developments into radiation damage effects in macromolecular X-ray crystallography observed at synchrotrons and X-ray free electron lasers. Radiation damage in small molecule X-ray crystallography, small angle X-ray scattering experiments, microelectron diffraction, and single particle cryo-electron microscopy is briefly covered.
Collapse
Affiliation(s)
- Elspeth F Garman
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France.
| |
Collapse
|
22
|
Vénien-Bryan C, Fernandes CAH. Overview of Membrane Protein Sample Preparation for Single-Particle Cryo-Electron Microscopy Analysis. Int J Mol Sci 2023; 24:14785. [PMID: 37834233 PMCID: PMC10573263 DOI: 10.3390/ijms241914785] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Single-particle cryo-electron microscopy (cryo-EM SPA) has recently emerged as an exceptionally well-suited technique for determining the structure of membrane proteins (MPs). Indeed, in recent years, huge increase in the number of MPs solved via cryo-EM SPA at a resolution better than 3.0 Å in the Protein Data Bank (PDB) has been observed. However, sample preparation remains a significant challenge in the field. Here, we evaluated the MPs solved using cryo-EM SPA deposited in the PDB in the last two years at a resolution below 3.0 Å. The most critical parameters for sample preparation are as follows: (i) the surfactant used for protein extraction from the membrane, (ii) the surfactant, amphiphiles, nanodiscs or other molecules present in the vitrification step, (iii) the vitrification method employed, and (iv) the type of grids used. The aim is not to provide a definitive answer on the optimal sample conditions for cryo-EM SPA of MPs but rather assess the current trends in the MP structural biology community towards obtaining high-resolution cryo-EM structures.
Collapse
Affiliation(s)
| | - Carlos A. H. Fernandes
- Unité Mixte de Recherche (UMR) 7590, Centre National de la Recherche Scientifique (CNRS), Muséum National d’Histoire Naturelle, Institut de Recherche pour le Développement (IRD), Institut de Minéralogie, Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, 75005 Paris, France;
| |
Collapse
|
23
|
Zhang Y, van Schayck JP, Pedrazo-Tardajos A, Claes N, Noteborn WEM, Lu PH, Duimel H, Dunin-Borkowski RE, Bals S, Peters PJ, Ravelli RBG. Charging of Vitreous Samples in Cryogenic Electron Microscopy Mitigated by Graphene. ACS NANO 2023; 17:15836-15846. [PMID: 37531407 PMCID: PMC10448747 DOI: 10.1021/acsnano.3c03722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Cryogenic electron microscopy can provide high-resolution reconstructions of macromolecules embedded in a thin layer of ice from which atomic models can be built de novo. However, the interaction between the ionizing electron beam and the sample results in beam-induced motion and image distortion, which limit the attainable resolutions. Sample charging is one contributing factor of beam-induced motions and image distortions, which is normally alleviated by including part of the supporting conducting film within the beam-exposed region. However, routine data collection schemes avoid strategies whereby the beam is not in contact with the supporting film, whose rationale is not fully understood. Here we characterize electrostatic charging of vitreous samples, both in imaging and in diffraction mode. We mitigate sample charging by depositing a single layer of conductive graphene on top of regular EM grids. We obtained high-resolution single-particle analysis (SPA) reconstructions at 2 Å when the electron beam only irradiates the middle of the hole on graphene-coated grids, using data collection schemes that previously failed to produce sub 3 Å reconstructions without the graphene layer. We also observe that the SPA data obtained with the graphene-coated grids exhibit a higher b factor and reduced particle movement compared to data obtained without the graphene layer. This mitigation of charging could have broad implications for various EM techniques, including SPA and cryotomography, and for the study of radiation damage and the development of future sample carriers. Furthermore, it may facilitate the exploration of more dose-efficient, scanning transmission EM based SPA techniques.
Collapse
Affiliation(s)
- Yue Zhang
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - J. Paul van Schayck
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Adrián Pedrazo-Tardajos
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp 2020, Belgium
- NANOlab
Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Nathalie Claes
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp 2020, Belgium
- NANOlab
Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Willem E. M. Noteborn
- Netherlands
Centre for Electron Nanoscopy (NeCEN), Leiden
University, 2300 RS Leiden, The Netherlands
| | - Peng-Han Lu
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum
Jülich, 52425 Jülich, Germany
| | - Hans Duimel
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Rafal E. Dunin-Borkowski
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum
Jülich, 52425 Jülich, Germany
| | - Sara Bals
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp 2020, Belgium
- NANOlab
Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Peter J. Peters
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Raimond B. G. Ravelli
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
24
|
Naylor C, King R. Improving Every Image: HexAuFoil® Ultra-small Hole Sample Supports for CryoEM Reconstructions. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1038. [PMID: 37613187 DOI: 10.1093/micmic/ozad067.529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Claire Naylor
- Quantifoil Micro Tools GmbH, Jena, Thuringia, Germany
| | | |
Collapse
|
25
|
Aiyer S, Baldwin PR, Tan SM, Shan Z, Oh J, Mehrani A, Bowman ME, Louie G, Passos DO, Đorđević-Marquardt S, Mietzsch M, Hull JA, Hoshika S, Barad BA, Grotjahn DA, McKenna R, Agbandje-McKenna M, Benner SA, Noel JAP, Wang D, Tan YZ, Lyumkis D. Overcoming Resolution Attenuation During Tilted Cryo-EM Data Collection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.548955. [PMID: 37503021 PMCID: PMC10369999 DOI: 10.1101/2023.07.14.548955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Structural biology efforts using cryogenic electron microscopy are frequently stifled by specimens adopting "preferred orientations" on grids, leading to anisotropic map resolution and impeding structure determination. Tilting the specimen stage during data collection is a generalizable solution but has historically led to substantial resolution attenuation. Here, we develop updated data collection and image processing workflows and demonstrate, using multiple specimens, that resolution attenuation is negligible or significantly reduced across tilt angles. Reconstructions with and without the stage tilted as high as 60° are virtually indistinguishable. These strategies allowed the reconstruction to 3 Å resolution of a bacterial RNA polymerase with preferred orientation. Furthermore, we present a quantitative framework that allows cryo-EM practitioners to define an optimal tilt angle for dataset acquisition. These data reinforce the utility of employing stage tilt for data collection and provide quantitative metrics to obtain isotropic maps.
Collapse
|
26
|
Pei X, Zhou L, Huang C, Boyce M, Kim JS, Liberti E, Hu Y, Sasaki T, Nellist PD, Zhang P, Stuart DI, Kirkland AI, Wang P. Cryogenic electron ptychographic single particle analysis with wide bandwidth information transfer. Nat Commun 2023; 14:3027. [PMID: 37230988 PMCID: PMC10212999 DOI: 10.1038/s41467-023-38268-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
Advances in cryogenic transmission electron microscopy have revolutionised the determination of many macromolecular structures at atomic or near-atomic resolution. This method is based on conventional defocused phase contrast imaging. However, it has limitations of weaker contrast for small biological molecules embedded in vitreous ice, in comparison with cryo-ptychography, which shows increased contrast. Here we report a single-particle analysis based on the use of ptychographic reconstruction data, demonstrating that three dimensional reconstructions with a wide information transfer bandwidth can be recovered by Fourier domain synthesis. Our work suggests future applications in otherwise challenging single particle analyses, including small macromolecules and heterogeneous or flexible particles. In addition structure determination in situ within cells without the requirement for protein purification and expression may be possible.
Collapse
Affiliation(s)
- Xudong Pei
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Liqi Zhou
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
- Department of Physics, University of Warwick, Coventry, UK
| | - Chen Huang
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
| | - Mark Boyce
- Division of Structural Biology, Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Judy S Kim
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Materials, University of Oxford, Oxford, UK
| | - Emanuela Liberti
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
| | - Yiming Hu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | | | | | - Peijun Zhang
- Division of Structural Biology, Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - David I Stuart
- Division of Structural Biology, Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Angus I Kirkland
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK.
- Department of Materials, University of Oxford, Oxford, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| | - Peng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
- Department of Physics, University of Warwick, Coventry, UK.
| |
Collapse
|
27
|
Chari A, Stark H. Prospects and Limitations of High-Resolution Single-Particle Cryo-Electron Microscopy. Annu Rev Biophys 2023; 52:391-411. [PMID: 37159297 DOI: 10.1146/annurev-biophys-111622-091300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Single particle cryo-electron microscopy (cryo-EM) has matured into a robust method for the determination of biological macromolecule structures in the past decade, complementing X-ray crystallography and nuclear magnetic resonance. Constant methodological improvements in both cryo-EM hardware and image processing software continue to contribute to an exponential growth in the number of structures solved annually. In this review, we provide a historical view of the many steps that were required to make cryo-EM a successful method for the determination of high-resolution protein complex structures. We further discuss aspects of cryo-EM methodology that are the greatest pitfalls challenging successful structure determination to date. Lastly, we highlight and propose potential future developments that would improve the method even further in the near future.
Collapse
Affiliation(s)
- Ashwin Chari
- Research Group for Structural Biochemistry and Mechanisms, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
28
|
Ahn E, Kim B, Park S, Erwin AL, Sung SH, Hovden R, Mosalaganti S, Cho US. Batch Production of High-Quality Graphene Grids for Cryo-EM: Cryo-EM Structure of Methylococcus capsulatus Soluble Methane Monooxygenase Hydroxylase. ACS NANO 2023; 17:6011-6022. [PMID: 36926824 PMCID: PMC10062032 DOI: 10.1021/acsnano.3c00463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Cryogenic electron microscopy (cryo-EM) has become a widely used tool for determining the protein structure. Despite recent technical advances, sample preparation remains a major bottleneck for several reasons, including protein denaturation at the air-water interface, the presence of preferred orientations, nonuniform ice layers, etc. Graphene, a two-dimensional allotrope of carbon consisting of a single atomic layer, has recently gained attention as a near-ideal support film for cryo-EM that can overcome these challenges because of its superior properties, including mechanical strength and electrical conductivity. Here, we introduce a reliable, easily implemented, and reproducible method to produce 36 graphene-coated grids within 1.5 days. To demonstrate their practical application, we determined the cryo-EM structure of Methylococcus capsulatus soluble methane monooxygenase hydroxylase (sMMOH) at resolutions of 2.9 and 2.5 Å using Quantifoil and graphene-coated grids, respectively. We found that the graphene-coated grid has several advantages, including a smaller amount of protein required and avoiding protein denaturation at the air-water interface. By comparing the cryo-EM structure of sMMOH with its crystal structure, we identified subtle yet significant geometrical changes at the nonheme diiron center, which may better indicate the active site configuration of sMMOH in the resting/oxidized state.
Collapse
Affiliation(s)
- Eungjin Ahn
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Byungchul Kim
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Soyoung Park
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Fine Chemistry, Seoul National University
of Science and Technology, Seoul 139-743, Korea
| | - Amanda L. Erwin
- Department
of Cell and Developmental Biology, University
of Michigan, Ann Arbor, Michigan 48109, United
States
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Suk Hyun Sung
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48105, United
States
| | - Robert Hovden
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48105, United
States
- Applied
Physics Program, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Shyamal Mosalaganti
- Department
of Cell and Developmental Biology, University
of Michigan, Ann Arbor, Michigan 48109, United
States
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Uhn-Soo Cho
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
29
|
Ho MR, Wu YM, Lu YC, Ko TP, Wu KP. Cryo-EM reveals the structure and dynamics of a 723-residue malate synthase G. J Struct Biol 2023; 215:107958. [PMID: 36997036 DOI: 10.1016/j.jsb.2023.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Determination of sub-100 kilodalton (kDa) structures by cryo-electron microscopy (EM) is a longstanding but not straightforward goal. Here, we present a 2.9-Å cryo-EM structure of a 723-amino acid apo-form malate synthase G (MSG) from Escherichia coli. The cryo-EM structure of the 82-kDa MSG exhibits the same global folding as structures resolved by crystallography and nuclear magnetic resonance (NMR) spectroscopy, and the crystal and cryo-EM structures are indistinguishable. Analyses of MSG dynamics reveal consistent conformational flexibilities among the three experimental approaches, most notably that the α/β domain exhibits structural heterogeneity. We observed that sidechains of F453, L454, M629, and E630 residues involved in hosting the cofactor acetyl-CoA and substrate rotate differently between the cryo-EM apo-form and complex crystal structures. Our work demonstrates that the cryo-EM technique can be used to determine structures and conformational heterogeneity of sub-100 kDa biomolecules to a quality as high as that obtained from X-ray crystallography and NMR spectroscopy.
Collapse
|
30
|
Harrison PJ, Vecerkova T, Clare DK, Quigley A. A review of the approaches used to solve sub-100 kDa membrane proteins by cryo-electron microscopy. J Struct Biol 2023; 215:107959. [PMID: 37004781 DOI: 10.1016/j.jsb.2023.107959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Membrane proteins (MPs) are essential components of all biological membranes, contributing to key cellular functions that include signalling, molecular transport and energy metabolism. Consequently, MPs are important biomedical targets for therapeutics discovery. Despite hardware and software developments in cryo-electron microscopy, as well as MP sample preparation, MPs smaller than 100 kDa remain difficult to study structurally. Significant investment is required to overcome low levels of naturally abundant protein, MP hydrophobicity as well as conformational and compositional instability. Here we have reviewed the sample preparation approaches that have been taken to successfully express, purify and prepare small MPs for analysis by cryo-EM (those with a total solved molecular weight of under 100 kDa), as well as examining the differing approaches towards data processing and ultimately obtaining a structural solution. We highlight common challenges at each stage in the process as well as strategies that have been developed to overcome these issues. Finally, we discuss future directions and opportunities for the study of sub-100 kDa membrane proteins by cryo-EM.
Collapse
|
31
|
Shi H, Wu C, Zhang X. Addressing compressive deformation of proteins embedded in crystalline ice. Structure 2023; 31:213-220.e3. [PMID: 36586403 DOI: 10.1016/j.str.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 11/29/2022] [Indexed: 12/31/2022]
Abstract
For cryoelectron microscopy (cryo-EM), high cooling rates have been required for preparation of protein samples to vitrify the surrounding water and avoid formation of damaging crystalline ice. Whether and how crystalline ice affects single-particle cryo-EM is still unclear. Here, single-particle cryo-EM was used to analyze three-dimensional structures of various proteins and viruses embedded in crystalline ice formed at various cooling rates. Low cooling rates led to shrinkage deformation and density distortions on samples having loose structures. Higher cooling rates reduced deformations. Deformation-free proteins in crystalline ice were obtained by modifying the freezing conditions, and reconstructions from these samples revealed a marked improvement over vitreous ice. This procedure also increased the efficiency of cryo-EM structure determinations and was essential for high-resolution reconstructions.
Collapse
Affiliation(s)
- Huigang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunling Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
32
|
Zheng L, Liu N, Gao X, Zhu W, Liu K, Wu C, Yan R, Zhang J, Gao X, Yao Y, Deng B, Xu J, Lu Y, Liu Z, Li M, Wei X, Wang HW, Peng H. Uniform thin ice on ultraflat graphene for high-resolution cryo-EM. Nat Methods 2023; 20:123-130. [PMID: 36522503 PMCID: PMC9834055 DOI: 10.1038/s41592-022-01693-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/20/2022] [Indexed: 12/23/2022]
Abstract
Cryo-electron microscopy (cryo-EM) visualizes the atomic structure of macromolecules that are embedded in vitrified thin ice at their close-to-native state. However, the homogeneity of ice thickness, a key factor to ensure high image quality, is poorly controlled during specimen preparation and has become one of the main challenges for high-resolution cryo-EM. Here we found that the uniformity of thin ice relies on the surface flatness of the supporting film, and developed a method to use ultraflat graphene (UFG) as the support for cryo-EM specimen preparation to achieve better control of vitreous ice thickness. We show that the uniform thin ice on UFG improves the image quality of vitrified specimens. Using such a method we successfully determined the three-dimensional structures of hemoglobin (64 kDa), α-fetoprotein (67 kDa) with no symmetry, and streptavidin (52 kDa) at a resolution of 3.5 Å, 2.6 Å and 2.2 Å, respectively. Furthermore, our results demonstrate the potential of UFG for the fields of cryo-electron tomography and structure-based drug discovery.
Collapse
Affiliation(s)
- Liming Zheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Xiaoyin Gao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wenqing Zhu
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Cang Wu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Rui Yan
- Beijing Graphene Institute (BGI), Beijing, China
| | - Jincan Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xin Gao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yating Yao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Bing Deng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ye Lu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhongmin Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, China.
- Peking University Nanchang Innovation Institute, Nanchang, China.
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Beijing Graphene Institute (BGI), Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
33
|
Salome AZ, Lee KW, Grant T, Westphall MS, Coon JJ. Matrix-Landing Mass Spectrometry for Electron Microscopy Imaging of Native Protein Complexes. Anal Chem 2022; 94:17616-17624. [PMID: 36475605 PMCID: PMC9951558 DOI: 10.1021/acs.analchem.2c04263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, we described the use of a chemical matrix for landing and preserving the cations of protein-protein complexes within a mass spectrometer (MS) instrument. By use of a glycerol-landing matrix, we used negative stain transmission electron microscopy (TEM) to obtain a three-dimensional (3D) reconstruction of landed GroEL complexes. Here, we investigate the utilities of other chemical matrices for their abilities to land, preserve, and allow for direct imaging of these cationic particles using TEM. We report here that poly(propylene) glycol (PPG) offers superior performance over glycerol for matrix landing. We demonstrated the utility of the PPG matrix landing using three protein-protein complexes─GroEL, the 20S proteasome core particle, and β-galactosidase─and obtained a 3D reconstruction of each complex from matrix-landed particles. These structures have no detectable differences from the structures obtained using conventional preparation methods, suggesting the structures are well preserved at least to the resolution limit of the reconstructions (∼20 Å). We conclude that matrix landing offers a direct approach to couple native MS with TEM for protein structure determination.
Collapse
Affiliation(s)
- Austin Z. Salome
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Kenneth W. Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Timothy Grant
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
- Morgridge Institute for Research, Madison, WI
| | - Michael S. Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
- Morgridge Institute for Research, Madison, WI
| |
Collapse
|
34
|
Wang J, Liu J, Gisriel CJ, Wu S, Maschietto F, Flesher DA, Lolis E, Lisi GP, Brudvig GW, Xiong Y, Batista VS. How to correct relative voxel scale factors for calculations of vector-difference Fourier maps in cryo-EM. J Struct Biol 2022; 214:107902. [PMID: 36202310 DOI: 10.1016/j.jsb.2022.107902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
The atomic coordinates derived from cryo-electron microscopy (cryo-EM) maps can be inaccurate when the voxel scaling factors are not properly calibrated. Here, we describe a method for correcting relative voxel scaling factors between pairs of cryo-EM maps for the same or similar structures that are expanded or contracted relative to each other. We find that the correction of scaling factors reduces the amplitude differences of Fourier-inverted structure factors from voxel-rescaled maps by up to 20-30%, as shown by two cryo-EM maps of the SARS-CoV-2 spike protein measured at pH 4.0 and pH 8.0. This allows for the calculation of the difference map after properly scaling, revealing differences between the two structures for individual amino acid residues. Unexpectedly, the analysis uncovers two previously overlooked differences of amino acid residues in structures and their local structural changes. Furthermore, we demonstrate the method as applied to two cryo-EM maps of monomeric apo-photosystem II from the cyanobacteria Synechocystis sp. PCC 6803 and Thermosynechococcus elongatus. The resulting difference maps reveal many changes in the peripheral transmembrane PsbX subunit between the two species.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA.
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA
| | | | - Shenping Wu
- Department of Pharmacology, Yale University, New Haven, CT 06520-8066, USA
| | | | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA
| | - Elias Lolis
- Department of Pharmacology, Yale University, New Haven, CT 06520-8066, USA
| | - George P Lisi
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Gary W Brudvig
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA; Department of Chemistry, Yale University, New Haven, CT 06511-8499, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06511-8499, USA
| |
Collapse
|
35
|
Dahlberg PD, Perez D, Hecksel CW, Chiu W, Moerner WE. Metallic support films reduce optical heating in cryogenic correlative light and electron tomography. J Struct Biol 2022; 214:107901. [PMID: 36191745 PMCID: PMC9729463 DOI: 10.1016/j.jsb.2022.107901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/28/2022] [Accepted: 09/26/2022] [Indexed: 12/30/2022]
Abstract
Super-resolved cryogenic correlative light and electron tomography is an emerging method that provides both the single-molecule sensitivity and specificity of fluorescence imaging, and the molecular scale resolution and detailed cellular context of tomography, all in vitrified cells preserved in their native hydrated state. Technical hurdles that limit these correlative experiments need to be overcome for the full potential of this approach to be realized. Chief among these is sample heating due to optical excitation which leads to devitrification, a phase transition from amorphous to crystalline ice. Here we show that much of this heating is due to the material properties of the support film of the electron microscopy grid, specifically the absorptivity and thermal conductivity. We demonstrate through experiment and simulation that the properties of the standard holey carbon electron microscopy grid lead to substantial heating under optical excitation. In order to avoid devitrification, optical excitation intensities must be kept orders of magnitude lower than the intensities commonly employed in room temperature super-resolution experiments. We further show that the use of metallic films, either holey gold grids, or custom made holey silver grids, alleviate much of this heating. For example, the holey silver grids permit 20× the optical intensities used on the standard holey carbon grids. Super-resolution correlative experiments conducted on holey silver grids under these increased optical excitation intensities have a corresponding increase in the rate of single-molecule fluorescence localizations. This results in an increased density of localizations and improved correlative imaging without deleterious effects from sample heating.
Collapse
Affiliation(s)
- Peter D Dahlberg
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Davis Perez
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Corey W Hecksel
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Wah Chiu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Beton JG, Cragnolini T, Kaleel M, Mulvaney T, Sweeney A, Topf M. Integrating model simulation tools and
cryo‐electron
microscopy. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Joseph George Beton
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Birkbeck and University College London London UK
| | - Manaz Kaleel
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Aaron Sweeney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| |
Collapse
|
37
|
Jia P, Wang X, Cai X, Guo Q, Zhang D, Sun Y, Yang J. Freestanding Metal Nanomembranes and Nanowires by Template Transfer with a Soluble Adhesive. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3988. [PMID: 36432274 PMCID: PMC9694887 DOI: 10.3390/nano12223988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The fabrication of nanostructures usually involves chemical processes that have in certain steps. Especially, it is necessary to use the chemical etching method to release the as-patterned structures from the substrate in most of the transfer techniques. Here, a novel scheme of template transfer as developed for the fabrication of freestanding Au nanomembranes and nanowires by using a soluble PVP adhesive. The nanomembranes feature the periodic nanohole arrays with high uniformity. Without the substrates, these plasmonic nanohole arrays show symmetric and antisymmetric resonance modes with bright and dark spectral features, respectively, in transmission. Through the spectral analysis for reflection, we have disclosed that the usual dark mode in transmission is not really dark, but it reveals a distinct feature in reflection. Two coupling modes present distinct spectral features in transmission and reflection due to their different loss channels. To show their versatility, the freestanding nanomembranes were also employed as secondary templates to form Si nanowire arrays by the metal-assisted chemical etching method.
Collapse
Affiliation(s)
- Peipei Jia
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
| | - Xinzhong Wang
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Xiaobing Cai
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qiuquan Guo
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
| | - Dongxing Zhang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
| | - Yong Sun
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
| | - Jun Yang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
| |
Collapse
|
38
|
Russo CJ, Dickerson JL, Naydenova K. Cryomicroscopy in situ: what is the smallest molecule that can be directly identified without labels in a cell? Faraday Discuss 2022; 240:277-302. [PMID: 35913392 PMCID: PMC9642008 DOI: 10.1039/d2fd00076h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 01/09/2023]
Abstract
Electron cryomicroscopy (cryoEM) has made great strides in the last decade, such that the atomic structure of most biological macromolecules can, at least in principle, be determined. Major technological advances - in electron imaging hardware, data analysis software, and cryogenic specimen preparation technology - continue at pace and contribute to the exponential growth in the number of atomic structures determined by cryoEM. It is now conceivable that within the next decade we will have structures for hundreds of thousands of unique protein and nucleic acid molecular complexes. But the answers to many important questions in biology would become obvious if we could identify these structures precisely inside cells with quantifiable error. In the context of an abundance of known structures, it is appropriate to consider the current state of electron cryomicroscopy for frozen specimens prepared directly from cells, and try to answer to the question of the title, both now and in the foreseeable future.
Collapse
Affiliation(s)
- Christopher J Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Joshua L Dickerson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Katerina Naydenova
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
39
|
Kühlbrandt W. Concluding remarks: Challenges and future developments in biological electron cryo-microscopy. Faraday Discuss 2022; 240:323-335. [PMID: 36305740 DOI: 10.1039/d2fd90062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During the past 10 years, biological electron cryo-microscopy (cryoEM) has undergone a process of rapid transformation. Many things we could only dream about a decade ago have now become almost routine. Nevertheless, a number of challenges remain, to do with sample preparation, the correlation between tomographic analysis and light microscopy, data validation, and the growing impact of artificial intelligence and structure prediction. This year's Faraday Discussion examined these challenges in some detail. The concluding remarks present a concise summary of the meeting and a brief outlook to the future.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany.
| |
Collapse
|
40
|
Saibil HR. Spiers Memorial Lecture: Challenges in cryo electron microscopy. Faraday Discuss 2022; 240:10-17. [PMID: 36218050 DOI: 10.1039/d2fd90044k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This article provides an introductory background and overview of the discussion meeting. It begins with an account of a few key milestones in the development of the cryo EM field, followed by an overview of the presentations that will form the basis of the discussion.
Collapse
|
41
|
Abstract
Cryo-electron microscopy (CryoEM) has become a vital technique in structural biology. It is an interdisciplinary field that takes advantage of advances in biochemistry, physics, and image processing, among other disciplines. Innovations in these three basic pillars have contributed to the boosting of CryoEM in the past decade. This work reviews the main contributions in image processing to the current reconstruction workflow of single particle analysis (SPA) by CryoEM. Our review emphasizes the time evolution of the algorithms across the different steps of the workflow differentiating between two groups of approaches: analytical methods and deep learning algorithms. We present an analysis of the current state of the art. Finally, we discuss the emerging problems and challenges still to be addressed in the evolution of CryoEM image processing methods in SPA.
Collapse
Affiliation(s)
- Jose Luis Vilas
- Biocomputing Unit, Centro
Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - Jose Maria Carazo
- Biocomputing Unit, Centro
Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, Centro
Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
42
|
Lazić I, Wirix M, Leidl ML, de Haas F, Mann D, Beckers M, Pechnikova EV, Müller-Caspary K, Egoavil R, Bosch EGT, Sachse C. Single-particle cryo-EM structures from iDPC-STEM at near-atomic resolution. Nat Methods 2022; 19:1126-1136. [PMID: 36064775 PMCID: PMC9467914 DOI: 10.1038/s41592-022-01586-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
In electron cryomicroscopy (cryo-EM), molecular images of vitrified biological samples are obtained by conventional transmission microscopy (CTEM) using large underfocuses and subsequently computationally combined into a high-resolution three-dimensional structure. Here, we apply scanning transmission electron microscopy (STEM) using the integrated differential phase contrast mode also known as iDPC-STEM to two cryo-EM test specimens, keyhole limpet hemocyanin (KLH) and tobacco mosaic virus (TMV). The micrographs show complete contrast transfer to high resolution and enable the cryo-EM structure determination for KLH at 6.5 Å resolution, as well as for TMV at 3.5 Å resolution using single-particle reconstruction methods, which share identical features with maps obtained by CTEM of a previously acquired same-sized TMV data set. These data show that STEM imaging in general, and in particular the iDPC-STEM approach, can be applied to vitrified single-particle specimens to determine near-atomic resolution cryo-EM structures of biological macromolecules.
Collapse
Affiliation(s)
- Ivan Lazić
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands.
| | - Maarten Wirix
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Max Leo Leidl
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany
- Department of Chemistry and Centre for NanoScience, Ludwig-Maximilians-University Munich, Munich, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-1): Physics of Nanoscale Systems, Jülich, Germany
- Institute for Biological Information Processing (IBI-6): Cellular Structural Biology, Jülich, Germany
| | - Felix de Haas
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Daniel Mann
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany
- Institute for Biological Information Processing (IBI-6): Cellular Structural Biology, Jülich, Germany
| | - Maximilian Beckers
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Evgeniya V Pechnikova
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Knut Müller-Caspary
- Department of Chemistry and Centre for NanoScience, Ludwig-Maximilians-University Munich, Munich, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-1): Physics of Nanoscale Systems, Jülich, Germany
| | - Ricardo Egoavil
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Eric G T Bosch
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Carsten Sachse
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany.
- Institute for Biological Information Processing (IBI-6): Cellular Structural Biology, Jülich, Germany.
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
43
|
Fan H, Sun F. Developing Graphene Grids for Cryoelectron Microscopy. Front Mol Biosci 2022; 9:937253. [PMID: 35911962 PMCID: PMC9326159 DOI: 10.3389/fmolb.2022.937253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cryogenic electron microscopy (cryo-EM) single particle analysis has become one of the major techniques used to study high-resolution 3D structures of biological macromolecules. Specimens are generally prepared in a thin layer of vitrified ice using a holey carbon grid. However, the sample quality using this type of grid is not always ideal for high-resolution imaging even when the specimens in the test tube behave ideally. Various problems occur during a vitrification procedure, including poor/nonuniform distribution of particles, preferred orientation of particles, specimen denaturation/degradation, high background from thick ice, and beam-induced motion, which have become important bottlenecks in high-resolution structural studies using cryo-EM in many projects. In recent years, grids with support films made of graphene and its derivatives have been developed to efficiently solve these problems. Here, the various advantages of graphene grids over conventional holey carbon film grids, functionalization of graphene support films, production methods of graphene grids, and origins of pristine graphene contamination are reviewed and discussed.
Collapse
Affiliation(s)
- Hongcheng Fan
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Bioland Laboratory, Guangzhou, China
| |
Collapse
|
44
|
Gopalasingam CC, Hasnain SS. Frontiers in metalloprotein crystallography and cryogenic electron microscopy. Curr Opin Struct Biol 2022; 75:102420. [PMID: 35841747 DOI: 10.1016/j.sbi.2022.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/03/2022]
Abstract
Metalloproteins comprise at least a third of all proteins that utilize redox properties of transition metals on their own or as parts of cofactors. The development of third generation storage ring sources and X-ray free-electron lasers with femtosecond pulses in the first decade of the 21st century has transformed metalloprotein crystallography. In the past decade, cryogenic-electron microscopy single-particle analysis, which does not require crystallization of biological samples has been extensively utilized, particularly for membrane-bound metalloprotein systems. Here, we explore recent frontiers in metalloprotein crystallography and cryogenic electron microscopy, organized for convenience under three metalloprotein-centered biological cycles, focusing on contributions from each technique, their synergy and the ability to preserve metals' redox states when subjected to a particular probe.
Collapse
Affiliation(s)
- Chai C Gopalasingam
- Molecular Biophysics Group, Department of Biochemistry and Systems Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK; Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan. https://twitter.com/@Chai_Gopal
| | - S Samar Hasnain
- Molecular Biophysics Group, Department of Biochemistry and Systems Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
45
|
Dickerson JL, Lu PH, Hristov D, Dunin-Borkowski RE, Russo CJ. Imaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM. Ultramicroscopy 2022; 237:113510. [PMID: 35367900 PMCID: PMC9355893 DOI: 10.1016/j.ultramic.2022.113510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/24/2022] [Accepted: 03/06/2022] [Indexed: 11/17/2022]
Abstract
We investigate potential improvements in using electron cryomicroscopy to image thick specimens with high-resolution phase contrast imaging. In particular, using model experiments, electron scattering theory, Monte Carlo and multislice simulations, we determine the potential for improving electron cryomicrographs of proteins within a cell using chromatic aberration (Cc) correction. We show that inelastically scattered electrons lose a quantifiable amount of spatial coherence as they transit the specimen, yet can be used to enhance the signal from thick biological specimens (in the 1000 to 5000 Å range) provided they are imaged close to focus with an achromatic lens. This loss of information quantified here, which we call "specimen induced decoherence", is a fundamental limit on imaging biological molecules in situ. We further show that with foreseeable advances in transmission electron microscope technology, it should be possible to directly locate and uniquely identify sub-100 kDa proteins without the need for labels, in a vitrified specimen taken from a cell.
Collapse
Affiliation(s)
- Joshua L Dickerson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Peng-Han Lu
- Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Dilyan Hristov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Christopher J Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
46
|
Naydenova K, Kamegawa A, Peet MJ, Henderson R, Fujiyoshi Y, Russo CJ. On the reduction in the effects of radiation damage to two-dimensional crystals of organic and biological molecules at liquid-helium temperature. Ultramicroscopy 2022; 237:113512. [PMID: 35367901 PMCID: PMC9355890 DOI: 10.1016/j.ultramic.2022.113512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/24/2022] [Accepted: 03/06/2022] [Indexed: 11/17/2022]
Abstract
We have studied the fading of electron diffraction spots from two-dimensional (2D) crystals of paraffin (C44H90), purple membrane (bacteriorhodopsin) and aquaporin 4 (AQP4) at stage temperatures between 4K and 100K. We observed that the diffraction spots at resolutions between 3 Å and 20 Å fade more slowly at liquid-helium temperatures compared to liquid-nitrogen temperatures, by a factor of between 1.2 and 1.8, depending on the specimens. If the reduction in the effective rate of radiation damage for 2D crystals at liquid-helium temperature (as measured by spot fading) can be shown to extend to macromolecular assemblies embedded in amorphous ice, this would suggest that valuable improvements to electron cryomicroscopy (cryoEM) of biological specimens could be made by reducing the temperature of the specimens under irradiation below what is obtainable using standard liquid-nitrogen cryostats.
Collapse
Affiliation(s)
- Katerina Naydenova
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Akiko Kamegawa
- Cellular and Structural Physiology Laboratory (CeSPL), Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Mathew J Peet
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Richard Henderson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Laboratory (CeSPL), Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Christopher J Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
47
|
Harder OF, Voss JM, Olshin PK, Drabbels M, Lorenz UJ. Microsecond melting and revitrification of cryo samples: protein structure and beam-induced motion. Acta Crystallogr D Struct Biol 2022; 78:883-889. [PMID: 35775987 PMCID: PMC9248841 DOI: 10.1107/s205979832200554x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/21/2022] [Indexed: 11/10/2022] Open
Abstract
A novel approach to time-resolved cryo-electron microscopy (cryo-EM) has recently been introduced that involves melting a cryo sample with a laser beam to allow protein dynamics to briefly occur in the liquid, before trapping the particles in their transient configurations by rapidly revitrifying the sample. With a time resolution of just a few microseconds, this approach is notably fast enough to study the domain motions that are typically associated with the activity of proteins but which have previously remained inaccessible. Here, crucial details are added to the characterization of the method. It is shown that single-particle reconstructions of apoferritin and Cowpea chlorotic mottle virus from revitrified samples are indistinguishable from those from conventional samples, demonstrating that melting and revitrification leaves the particles intact and that they do not undergo structural changes within the spatial resolution afforded by the instrument. How rapid revitrification affects the properties of the ice is also characterized, showing that revitrified samples exhibit comparable amounts of beam-induced motion. The results pave the way for microsecond time-resolved studies of the conformational dynamics of proteins and open up new avenues to study the vitrification process and to address beam-induced specimen movement.
Collapse
Affiliation(s)
- Oliver F. Harder
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jonathan M. Voss
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pavel K. Olshin
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marcel Drabbels
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ulrich J. Lorenz
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
48
|
Chua EYD, Mendez JH, Rapp M, Ilca SL, Tan YZ, Maruthi K, Kuang H, Zimanyi CM, Cheng A, Eng ET, Noble AJ, Potter CS, Carragher B. Better, Faster, Cheaper: Recent Advances in Cryo-Electron Microscopy. Annu Rev Biochem 2022; 91:1-32. [PMID: 35320683 PMCID: PMC10393189 DOI: 10.1146/annurev-biochem-032620-110705] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cryo-electron microscopy (cryo-EM) continues its remarkable growth as a method for visualizing biological objects, which has been driven by advances across the entire pipeline. Developments in both single-particle analysis and in situ tomography have enabled more structures to be imaged and determined to better resolutions, at faster speeds, and with more scientists having improved access. This review highlights recent advances at each stageof the cryo-EM pipeline and provides examples of how these techniques have been used to investigate real-world problems, including antibody development against the SARS-CoV-2 spike during the recent COVID-19 pandemic.
Collapse
Affiliation(s)
- Eugene Y D Chua
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Joshua H Mendez
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Micah Rapp
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
| | - Serban L Ilca
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
| | - Yong Zi Tan
- Department of Biological Sciences, National University of Singapore, Singapore;
- Disease Intervention Technology Laboratory, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kashyap Maruthi
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Huihui Kuang
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Christina M Zimanyi
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Anchi Cheng
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Edward T Eng
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Alex J Noble
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
- National Center for In-Situ Tomographic Ultramicroscopy, New York, NY, USA
- Simons Machine Learning Center, New York, NY, USA
| | - Clinton S Potter
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
- National Center for In-Situ Tomographic Ultramicroscopy, New York, NY, USA
- Simons Machine Learning Center, New York, NY, USA
| | - Bridget Carragher
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
- National Center for In-Situ Tomographic Ultramicroscopy, New York, NY, USA
- Simons Machine Learning Center, New York, NY, USA
| |
Collapse
|
49
|
Hagen WJH. Light ‘Em up: Efficient Screening of Gold Foil Grids in Cryo-EM. Front Mol Biosci 2022; 9:912363. [PMID: 35693551 PMCID: PMC9184724 DOI: 10.3389/fmolb.2022.912363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Transmission electron cryo-microscopy (cryo-EM) allows for obtaining 3D structural information by imaging macromolecules embedded in thin layers of amorphous ice. To obtain high-resolution structural information, samples need to be thin to minimize inelastic scattering which blurs images. During data collection sessions, time spent on finding areas on the cryo-EM grid with optimal ice thickness should be minimized as imaging time on high-end Transmission Electron Microscope TEM systems is costly. Recently, grids covered with thin gold films have become popular due to their stability and reduced beam-induced motion of the sample. Gold foil grids have substantially different densities between the gold foil and ice, effectively resulting in the loss of dynamic range between thin and thick regions of ice, making it challenging to find areas with suitable ice thickness efficiently during grid screening and thus increase expensive imaging time. Here, an energy filter-based plasmon imaging is presented as a fast and easy method for grid screening of the gold foil grids.
Collapse
|
50
|
Westphall MS, Lee KW, Salome AZ, Lodge JM, Grant T, Coon JJ. Three-dimensional structure determination of protein complexes using matrix-landing mass spectrometry. Nat Commun 2022; 13:2276. [PMID: 35478194 PMCID: PMC9046196 DOI: 10.1038/s41467-022-29964-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Native mass spectrometry (MS) is increasingly used to provide complementary data to electron microscopy (EM) for protein structure characterization. Beyond the ability to provide mass measurements of gas-phase biomolecular ions, MS instruments offer the ability to purify, select, and precisely control the spatial location of these ions. Here we present a modified Orbitrap MS system capable of depositing a native MS ion beam onto EM grids. We further describe the use of a chemical landing matrix that preserves the structural integrity of the deposited particles. With this system we obtain a three-dimensional reconstruction of the 800 kDa protein complex GroEL from gas-phase deposited GroEL ions. These data provide direct evidence that non-covalent protein complexes can indeed retain their condensed-phase structures following ionization and vaporization. Finally, we describe how further developments of this technology could pave the way to an integrated MS-EM technology with promise to provide improved cryo-EM sample preparation over conventional plunge-freezing techniques.
Collapse
Affiliation(s)
- Michael S. Westphall
- grid.14003.360000 0001 2167 3675Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI United States
| | - Kenneth W. Lee
- grid.14003.360000 0001 2167 3675Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI United States
| | - Austin Z. Salome
- grid.14003.360000 0001 2167 3675Department of Chemistry, University of Wisconsin-Madison, Madison, WI United States
| | - Jean M. Lodge
- grid.14003.360000 0001 2167 3675Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI United States
| | - Timothy Grant
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States. .,Morgridge Institute for Research, Madison, WI, United States.
| | - Joshua J. Coon
- grid.14003.360000 0001 2167 3675Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI United States ,grid.14003.360000 0001 2167 3675Department of Chemistry, University of Wisconsin-Madison, Madison, WI United States ,grid.509573.d0000 0004 0405 0937Morgridge Institute for Research, Madison, WI United States
| |
Collapse
|