1
|
Fernandez AA, Serve N, Fabian SC, Knörnschild M. Maternal behavior influences vocal practice and learning processes in the greater sac-winged bat. eLife 2025; 13:RP99474. [PMID: 40356332 PMCID: PMC12074634 DOI: 10.7554/elife.99474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Learning, particularly vocal learning, is often a social process. In human infants, it is well-established that social interactions influence speech acquisition and are hypothesized to modulate attentiveness and sensory processes, thereby affecting the speech-learning process. However, our understanding of how social interactions shape vocal ontogenetic processes in non-human mammals, particularly those which vocally learn, remains limited. In the bat Saccopteryx bilineata, pups acquire the adult vocal repertoire through a distinctive babbling behavior that shows interesting similarities to human infant babbling. While babbling encompasses many different syllable types, it is particularly noteworthy that pups learn song syllables by imitating adult singing males. The pups' social environment involves frequent interactions with their mothers, whereas adult males mainly serve as the primary source of acoustic input. We monitored the vocal ontogeny of wild pups, investigating whether their social environment influenced three aspects of babbling: the amount of vocal practice, the pups' final syllable repertoire size and the production of the syllable types acquired through vocal learning. The results demonstrate that maternal behavioral displays significantly influence the amount of vocal practice, the presence and versatility of song syllable types in babbling and the percentage of mature song syllables. Our findings show that maternal feedback plays a significant role in the vocal ontogeny and learning processes of S. bilineata, thus enhancing our understanding of the relationship between social feedback and vocal development in mammalian vocal learners.
Collapse
Affiliation(s)
- Ahana Aurora Fernandez
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Free UniversityBerlinGermany
| | - Nora Serve
- Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Free UniversityBerlinGermany
| | - Sarah-Cecil Fabian
- Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Free UniversityBerlinGermany
| | - Mirjam Knörnschild
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Smithsonian Tropical Research InstituteBalboaPanama
- Evolutionary Ethology, Institute for Biology, Humboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
2
|
Knörnschild M, Nagy M, Russo D. Bats resolve conflicting sensory information for individual recognition. Curr Biol 2025; 35:1883-1889.e3. [PMID: 40132586 DOI: 10.1016/j.cub.2025.02.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/05/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
Recognizing conspecifics individually is paramount in shaping animal societies,1,2,3,4,5,6,7,8 and vocal signals can play an important role in this process.9,10,11,12 Humans13 and some other species14,15,16,17,18 identify individuals by integrating information from different sensory modalities. This ability can facilitate stable relationships, kin recognition, and cooperative interactions.5,6,7,8 Studies of individual recognition in wild animals remain rare.19,20,21 Here, we present experimental evidence that wild greater sac-winged bats, Saccopteryx bilineata, a species with stable social groups, high roost fidelity, and a preference for well-lit day-roosts,22,23 recognize individual group members. In many species,24,25,26,27,28,29 including bats,30,31,32,33,34 individuals produce distress calls when physically constrained by a predator. We show that distress calls of S. bilineata encode individual signatures. Further, we conducted playback experiments at the day-roosts to test for individual recognition. We used a violation-of-expectation paradigm in which the subject is presented with information for individual identification aligning or conflicting with one another.17 When individual recognition occurs, the subject may show heightened attention to conflicting information17,19,21 or the plausible association.18,35,36 Remarkably, roosting bats only approached the source of a distress call under plausible conditions-when the supposed caller was absent from the roost. When confronted with an impossibility-the supposed caller was in the roost and its voice simultaneously came from elsewhere-bats ignored the playback entirely. This striking ability to detect and reject such inconsistencies reveals a high level of cognitive sophistication, as these bats reconcile what they see or smell with what they hear to assess the reality of a situation.
Collapse
Affiliation(s)
- Mirjam Knörnschild
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany; Evolutionary Ethology, Institute for Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Smithsonian Tropical Research Institute, 0843-03092 Panamá, República de Panamá.
| | - Martina Nagy
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Danilo Russo
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany; Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici (Napoli), Italy
| |
Collapse
|
3
|
Hex SBSW, Rubenstein DI. "Age of risk" shapes simpler multimodal communication in the juvenile plains zebra (Equus quagga). Commun Biol 2025; 8:44. [PMID: 39799197 PMCID: PMC11724946 DOI: 10.1038/s42003-024-07169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/29/2024] [Indexed: 01/15/2025] Open
Abstract
Juveniles occupy a different social niche than adults, engaging in a smaller diversity of social contexts and perceiving greater social risks. Either or both of these factors may influence the form communication takes in immaturity and its developmental trajectory. We investigated the relative influence of these social forces on the development of multimodal communication in plains zebras (Equus quagga). Juveniles possessed smaller repertoires than adults, with lower combinatorial flexibility and greater stereotypy, particularly for signals used in submission. When interacting with adults, juveniles used a larger fraction of their repertoire, but with reduced combinatorial flexibility. The usage of a contextually flexible signal, "snapping", also shifted across development, beginning as a stereotyped, submissive signal before diversifying into the full range of adult usage. Taken together, the lower complexity of juvenile communication may reduce signal ambiguity and the risk of miscommunication when interacting with social partners perceived as higher risk, like adults.
Collapse
Affiliation(s)
- Severine B S W Hex
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Daniel I Rubenstein
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
4
|
Langehennig-Peristenidou A, Felmy F, Scheumann M. Graded calls of the smallest terrestrial mammal, the Etruscan shrew, living in a closed habitat. iScience 2024; 27:111297. [PMID: 39628566 PMCID: PMC11612789 DOI: 10.1016/j.isci.2024.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
Graded call types predominate in species inhabiting open habitats with complex social systems, whereas discrete call types predominate in species with simple social systems living in closed habitats. This study aims to establish the vocal repertoire of Etruscan shrews, the smallest terrestrial mammal, which lives in pairs in closed habitats. Through various behavioral experiments, vocalizations were recorded and analyzed using unsupervised soft clustering, identifying four call types, one of which exhibited gradation. These calls were present in both pups and adults, showing age-related acoustic differences. One call type was observed during socio-positive behavior, with higher call rates during female-male interactions, while the others occurred during socio-negative contexts, with higher call rates for animals housed in pairs. Delivering the first detailed insight into Etruscan shrew vocal behavior, we demonstrated that the smallest terrestrial mammal possesses graded and discrete call types, regardless of its social system and habitat.
Collapse
Affiliation(s)
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marina Scheumann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Goncharova M, Jadoul Y, Reichmuth C, Fitch WT, Ravignani A. Vocal tract dynamics shape the formant structure of conditioned vocalizations in a harbor seal. Ann N Y Acad Sci 2024; 1538:107-116. [PMID: 39091036 DOI: 10.1111/nyas.15189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Formants, or resonance frequencies of the upper vocal tract, are an essential part of acoustic communication. Articulatory gestures-such as jaw, tongue, lip, and soft palate movements-shape formant structure in human vocalizations, but little is known about how nonhuman mammals use those gestures to modify formant frequencies. Here, we report a case study with an adult male harbor seal trained to produce an arbitrary vocalization composed of multiple repetitions of the sound wa. We analyzed jaw movements frame-by-frame and matched them to the tracked formant modulation in the corresponding vocalizations. We found that the jaw opening angle was strongly correlated with the first (F1) and, to a lesser degree, with the second formant (F2). F2 variation was better explained by the jaw angle opening when the seal was lying on his back rather than on the belly, which might derive from soft tissue displacement due to gravity. These results show that harbor seals share some common articulatory traits with humans, where the F1 depends more on the jaw position than F2. We propose further in vivo investigations of seals to further test the role of the tongue on formant modulation in mammalian sound production.
Collapse
Affiliation(s)
- Maria Goncharova
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Yannick Jadoul
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Colleen Reichmuth
- Long Marine Laboratory, Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, USA
| | - W Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, Vienna CogSciHub, University of Vienna, Vienna, Austria
| | - Andrea Ravignani
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Zhang C, Zheng Z, Lucas JR, Wang Y, Fan X, Zhao X, Feng J, Sun C, Jiang T. Do bats' social vocalizations conform to Zipf's law and the Menzerath-Altmann law? iScience 2024; 27:110401. [PMID: 39104571 PMCID: PMC11298857 DOI: 10.1016/j.isci.2024.110401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/18/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
The study of vocal communication in non-human animals can uncover the roots of human languages. Recent studies of language have focused on two linguistic laws: Zipf's law and the Menzerath-Altmann law. However, whether bats' social vocalizations follow these linguistic laws, especially Menzerath's law, has largely been unexplored. Here, we used Asian particolored bats, Vespertilio sinensis, to examine whether aggressive vocalizations conform to Zipf's and Menzerath's laws. Aggressive vocalizations of V. sinensis adhere to Zipf's law, with the most frequent syllables being the shortest in duration. There was a negative association between the syllable number within a call and the average syllable duration, in agreement with Menzerath's law. A decrease in the proportion of some long syllables and a decrease in the duration of several syllable types in long-duration calls explain the occurrence of this law. Our results indicate that a general compression principle organizes aspects of bat vocal communication systems.
Collapse
Affiliation(s)
- Chunmian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziqi Zheng
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Jeffrey R. Lucas
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China
| | - Yicheng Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Xin Fan
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Xin Zhao
- School of Psychology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Congnan Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| |
Collapse
|
7
|
Zeh JM, Adcock DL, Perez-Marrufo V, Cusano DA, Robbins J, Tackaberry JE, Jensen FH, Weinrich M, Friedlaender AS, Wiley DN, Parks SE. Acoustic behavior of humpback whale calves on the feeding ground: Comparisons across age and implications for vocal development. PLoS One 2024; 19:e0303741. [PMID: 38809930 PMCID: PMC11135678 DOI: 10.1371/journal.pone.0303741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Studying sound production at different developmental stages can provide insight into the processes involved in vocal ontogeny. Humpback whales (Megaptera novaeangliae) are a known vocal learning species, but their vocal development is poorly understood. While studies of humpback whale calves in the early stages of their lives on the breeding grounds and migration routes exist, little is known about the behavior of these immature, dependent animals by the time they reach the feeding grounds. In this study, we used data from groups of North Atlantic humpback whales in the Gulf of Maine in which all members were simultaneously carrying acoustic recording tags attached with suction cups. This allowed for assignment of likely caller identity using the relative received levels of calls across tags. We analyzed data from 3 calves and 13 adults. There were high levels of call rate variation among these individuals and the results represent preliminary descriptions of calf behavior. Our analysis suggests that, in contrast to the breeding grounds or on migration, calves are no longer acoustically cryptic by the time they reach their feeding ground. Calves and adults both produce calls in bouts, but there may be some differences in bout parameters like inter-call intervals and bout durations. Calves were able to produce most of the adult vocal repertoire but used different call types in different proportions. Finally, we found evidence of immature call types in calves, akin to protosyllables used in babbling in other mammals, including humans. Overall, the sound production of humpback whale calves on the feeding grounds appears to be already similar to that of adults, but with differences in line with ontogenetic changes observed in other vocal learning species.
Collapse
Affiliation(s)
- Julia M. Zeh
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Dana L. Adcock
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Valeria Perez-Marrufo
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Dana A. Cusano
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Jooke Robbins
- Center for Coastal Studies, Provincetown, Massachusetts, United States of America
| | | | - Frants H. Jensen
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Mason Weinrich
- Whale Center of New England, Gloucester, Massachusetts, United States of America
| | - Ari S. Friedlaender
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - David N. Wiley
- Stellwagen Bank National Marine Sanctuary, Scituate, Massachusetts, United States of America
| | - Susan E. Parks
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
8
|
Osiecka AN, Fearey J, Ravignani A, Burchardt LS. Isochrony in barks of Cape fur seal ( Arctocephalus pusillus pusillus) pups and adults. Ecol Evol 2024; 14:e11085. [PMID: 38463637 PMCID: PMC10920323 DOI: 10.1002/ece3.11085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Animal vocal communication often relies on call sequences. The temporal patterns of such sequences can be adjusted to other callers, follow complex rhythmic structures or exhibit a metronome-like pattern (i.e., isochronous). How regular are the temporal patterns in animal signals, and what influences their precision? If present, are rhythms already there early in ontogeny? Here, we describe an exploratory study of Cape fur seal (Arctocephalus pusillus pusillus) barks-a vocalisation type produced across many pinniped species in rhythmic, percussive bouts. This study is the first quantitative description of barking in Cape fur seal pups. We analysed the rhythmic structures of spontaneous barking bouts of pups and adult females from the breeding colony in Cape Cross, Namibia. Barks of adult females exhibited isochrony, that is they were produced at fairly regular points in time. Instead, intervals between pup barks were more variable, that is skipping a bark in the isochronous series occasionally. In both age classes, beat precision, that is how well the barks followed a perfect template, was worse when barking at higher rates. Differences could be explained by physiological factors, such as respiration or arousal. Whether, and how, isochrony develops in this species remains an open question. This study provides evidence towards a rhythmic production of barks in Cape fur seal pups and lays the groundwork for future studies to investigate the development of rhythm using multidimensional metrics.
Collapse
Affiliation(s)
- Anna N. Osiecka
- Department of Vertebrate Ecology and Zoology, Faculty of BiologyUniversity of GdańskGdańskPoland
- Behavioural Ecology Group, Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jack Fearey
- Sea Search Research and Conservation NPCCape TownSouth Africa
- Department of Statistical Sciences, Centre for Statistics in Ecology, Environment and ConservationUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Andrea Ravignani
- Comparative Bioacoustics GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Center for Music in the Brain, Department of Clinical MedicineAarhus UniversityAarhus CDenmark
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Lara S. Burchardt
- Comparative Bioacoustics GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Leibniz‐Zentrum Allgemeine SprachwissenschaftBerlinGermany
| |
Collapse
|
9
|
McLean CR, Mata A, Kline RJ, Berg KS. Early corticosterone increases vocal complexity in a wild parrot: An organizational role of the hypothalamic-pituitary-adrenal axis in vocal learning? J Neuroendocrinol 2024:e13365. [PMID: 38200690 DOI: 10.1111/jne.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/03/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The neuroendocrinology of vocal learning is exceptionally well known in passerine songbirds. Despite huge life history, genetic and ecological variation across passerines, song learning tends to occur as a result of rises in gonadal and non-gonadal sex steroids that shape telencephalic vocal control circuits and song. Parrots are closely related but independently evolved different cerebral circuits for vocal repertoire acquisition in both sexes that serve a broader suite of social functions and do not appear to be shaped by early androgens or estrogens; instead, parrots begin a plastic phase in vocal development at an earlier life history stage that favors the growth, maturation, and survival functions of corticosteroids. As evidence, corticosterone (CORT) supplements given to wild green-rumped parrotlets (Forpus passerinus) during the first week of vocal babbling resulted in larger vocal repertoires in both sexes in the remaining days before fledging. Here, we replicate this experiment but began treatment 1 week before in development, analyzing both experiments in one model and a stronger test of the organizational effects of CORT on repertoire acquisition. Early CORT treatment resulted in significantly larger repertoires compared to late treatment. Both treatment groups showed weak negative effects on the early, reduplicated stage of babbling and strong, positive effects of CORT on the later, variegated stage. Results are consistent with more formative effects of corticosteroids at earlier developmental stages and a role of the hypothalamic-pituitary-adrenal axis (HPA) in vocal repertoire acquisition. Given the early emergence of speech in human ontogeny, parrots are a promising model for understanding the putative role of the HPA axis in the construction of neural circuits that support language acquisition.
Collapse
Affiliation(s)
- Celia R McLean
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Astolfo Mata
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
- Centre National de la Recherche Scientifique, Universite de Strasbourg, Strasbourg, France
| | - Richard J Kline
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, Texas, USA
- School of Earth Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Karl S Berg
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
10
|
Langehennig-Peristenidou A, Romero-Mujalli D, Bergmann T, Scheumann M. Features of animal babbling in the vocal ontogeny of the gray mouse lemur (Microcebus murinus). Sci Rep 2023; 13:21384. [PMID: 38049448 PMCID: PMC10696017 DOI: 10.1038/s41598-023-47919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
In human infants babbling is an important developmental stage of vocal plasticity to acquire maternal language. To investigate parallels in the vocal development of human infants and non-human mammals, seven key features of human babbling were defined, which are up to date only shown in bats and marmosets. This study will explore whether these features can also be found in gray mouse lemurs by investigating how infant vocal streams gradually resemble the structure of the adult trill call, which is not present at birth. Using unsupervised clustering, we distinguished six syllable types, whose sequential order gradually reflected the adult trill. A subset of adult syllable types was produced by several infants, with the syllable production being rhythmic, repetitive, and independent of the social context. The temporal structure of the calling bouts and the tempo-spectral features of syllable types became adult-like at the age of weaning. The age-dependent changes in the acoustic parameters differed between syllable types, suggesting that they cannot solely be explained by physical maturation of the vocal apparatus. Since gray mouse lemurs exhibit five features of animal babbling, they show parallels to the vocal development of human infants, bats, and marmosets.
Collapse
Affiliation(s)
| | - Daniel Romero-Mujalli
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
- Department for Environment Constructions and Design, Institute of Microbiology (IM), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6850, Mendrisio, Switzerland
| | - Tjard Bergmann
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Marina Scheumann
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| |
Collapse
|
11
|
Furest Cataldo B, Yang L, Cabezas B, Ovetsky J, Vicario DS. Novel sound exposure drives dynamic changes in auditory lateralization that are associated with perceptual learning in zebra finches. Commun Biol 2023; 6:1205. [PMID: 38012325 PMCID: PMC10681987 DOI: 10.1038/s42003-023-05567-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Songbirds provide a model for adult plasticity in the auditory cortex as a function of recent experience due to parallels with human auditory processing. As for speech processing in humans, activity in songbirds' higher auditory cortex (caudomedial nidopallium, NCM) is lateralized for complex vocalization sounds. However, in Zebra finches exposed to a novel heterospecific (canary) acoustic environment for 4-9 days, the typical pattern of right-lateralization is reversed. We now report that, in birds passively exposed to a novel heterospecific environment for extended periods (up to 21 days), the right-lateralized pattern of epidural auditory potentials first reverses transiently then returns to the typical pattern. Using acute, bilateral multi-unit electrophysiology, we confirm that this dynamic pattern occurs in NCM. Furthermore, extended exposure enhances discrimination for heterospecific stimuli. We conclude that lateralization is functionally labile and, when engaged by novel sensory experience, contributes to discrimination of novel stimuli that may be ethologically relevant. Future studies seek to determine whether, (1) the dynamicity of lateralized processes engaged by novel sensory experiences recurs with every novel challenge in the same organism; (2) the dynamic pattern extends to other cortical, thalamic or midbrain structures; and (3) the phenomenon generalizes across sensory modalities.
Collapse
Affiliation(s)
| | - Lillian Yang
- The City College of New York (CUNY), Physiology, Pharmacology and Neuroscience Department, New York, NY, 10031, USA
| | - Bryan Cabezas
- Rutgers University, Department of Psychology, Piscataway, NJ, 08854, USA
| | - Jonathan Ovetsky
- Rutgers University, Department of Psychology, Piscataway, NJ, 08854, USA
| | - David S Vicario
- Rutgers University, Department of Psychology, Piscataway, NJ, 08854, USA.
| |
Collapse
|
12
|
Cartmill EA. Overcoming bias in the comparison of human language and animal communication. Proc Natl Acad Sci U S A 2023; 120:e2218799120. [PMID: 37956297 PMCID: PMC10666095 DOI: 10.1073/pnas.2218799120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Human language is a powerful communicative and cognitive tool. Scholars have long sought to characterize its uniqueness, but each time a property is proposed to set human language apart (e.g., reference, syntax), some (attenuated) version of that property is found in animals. Recently, the uniqueness argument has shifted from linguistic rules to cognitive capacities underlying them. Scholars argue that human language is unique because it relies on ostension and inference, while animal communication depends on simple associations and largely hardwired signals. Such characterizations are often borne out in published data, but these empirical findings are driven by radical differences in the ways animal and human communication are studied. The field of animal communication has been dramatically shaped by the "code model," which imagines communication as involving information packets that are encoded, transmitted, decoded, and interpreted. This framework standardized methods for studying meaning in animal signals, but it does not allow for the nuance, ambiguity, or contextual variation seen in humans. The code model is insidious. It is rarely referenced directly, but it significantly shapes how we study animals. To compare animal communication and human language, we must acknowledge biases resulting from the different theoretical models used. By incorporating new approaches that break away from searching for codes, we may find that animal communication and human language are characterized by differences of degree rather than kind.
Collapse
Affiliation(s)
- Erica A. Cartmill
- Department of Anthropology, University of California, Los Angeles, CA90095
- Department of Psychology, University of California, Los Angeles, CA90095
| |
Collapse
|
13
|
Abstract
Talking to animals is a fundamental human desire. The emergence of powerful AI algorithms, and specifically Large Language Models, has driven many to suggest that we are on the verge of fulfilling this wish. A few large scientific consortia have been formed around this topic and several commercial entities even offer such services. We frame the task of communicating with animals as 'The Doctor Dolittle challenge' and identify three main obstacles on the route to doing so. First, although generative AI models can create novel animal communication samples, it is very difficult to determine their context, and we will forever be biased by our human umwelt when doing so. Second, using AI to extract context in an unsupervised manner must be validated through controlled experiments aiming to measure the animals' response. This is difficult, and moreover, AI algorithms tend to cling on to any available information and are thus prone to finding spurious correlations. And third, animal communication focuses on a restricted set of contexts, such as alarm and courtship, highly limiting our ability to communicate regarding other contexts. Nevertheless, using the tremendous power of novel AI methods to decipher and mimic animal communication is both fascinating and important. We thus define the criteria for passing the Doctor Dolittle challenge and call upon scientists to take on the mission.
Collapse
Affiliation(s)
- Yossi Yovel
- School of Zoology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Nevue AA, Mello CV, Portfors CV. Bats possess the anatomical substrate for a laryngeal motor cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546619. [PMID: 37425685 PMCID: PMC10327025 DOI: 10.1101/2023.06.26.546619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cortical neurons that make direct connections to motor neurons in the brainstem and spinal cord are specialized for fine motor control and learning [1, 2]. Imitative vocal learning, the basis for human speech, requires the precise control of the larynx muscles [3]. While much knowledge on vocal learning systems has been gained from studying songbirds [4], an accessible laboratory model for mammalian vocal learning is highly desirable. Evidence indicative of complex vocal repertoires and dialects suggests that bats are vocal learners [5, 6], however the circuitry that underlies vocal control and learning in bats is largely unknown. A key feature of vocal learning animals is a direct cortical projection to the brainstem motor neurons that innervate the vocal organ [7]. A recent study [8] described a direct connection from the primary motor cortex to medullary nucleus ambiguus in the Egyptian fruit bat (Rousettus aegyptiacus). Here we show that a distantly related bat, Seba's short-tailed bat (Carollia perspicillata) also possesses a direct projection from the primary motor cortex to nucleus ambiguus. Our results, in combination with Wirthlin et al. [8], suggest that multiple bat lineages possess the anatomical substrate for cortical control of vocal output. We propose that bats would be an informative mammalian model for vocal learning studies to better understand the genetics and circuitry involved in human vocal communication.
Collapse
Affiliation(s)
- Alexander A Nevue
- College of Arts and Sciences, Washington State University, Vancouver, WA, 98686
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239
| | | |
Collapse
|
15
|
Salles A, Neunuebel J. What do mammals have to say about the neurobiology of acoustic communication? MOLECULAR PSYCHOLOGY : BRAIN, BEHAVIOR, AND SOCIETY 2023; 2:5. [PMID: 38827277 PMCID: PMC11141777 DOI: 10.12688/molpsychol.17539.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Auditory communication is crucial across taxa, including humans, because it enables individuals to convey information about threats, food sources, mating opportunities, and other social cues necessary for survival. Comparative approaches to auditory communication will help bridge gaps across taxa and facilitate our understanding of the neural mechanisms underlying this complex task. In this work, we briefly review the field of auditory communication processing and the classical champion animal, the songbird. In addition, we discuss other mammalian species that are advancing the field. In particular, we emphasize mice and bats, highlighting the characteristics that may inform how we think about communication processing.
Collapse
Affiliation(s)
- Angeles Salles
- Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Joshua Neunuebel
- Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
16
|
Moss CF, Ortiz ST, Wahlberg M. Adaptive echolocation behavior of bats and toothed whales in dynamic soundscapes. J Exp Biol 2023; 226:jeb245450. [PMID: 37161774 PMCID: PMC10184770 DOI: 10.1242/jeb.245450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Journal of Experimental Biology has a long history of reporting research discoveries on animal echolocation, the subject of this Centenary Review. Echolocating animals emit intense sound pulses and process echoes to localize objects in dynamic soundscapes. More than 1100 species of bats and 70 species of toothed whales rely on echolocation to operate in aerial and aquatic environments, respectively. The need to mitigate acoustic clutter and ambient noise is common to both aerial and aquatic echolocating animals, resulting in convergence of many echolocation features, such as directional sound emission and hearing, and decreased pulse intervals and sound intensity during target approach. The physics of sound transmission in air and underwater constrains the production, detection and localization of sonar signals, resulting in differences in response times to initiate prey interception by aerial and aquatic echolocating animals. Anti-predator behavioral responses of prey pursued by echolocating animals affect behavioral foraging strategies in air and underwater. For example, many insect prey can detect and react to bat echolocation sounds, whereas most fish and squid are unresponsive to toothed whale signals, but can instead sense water movements generated by an approaching predator. These differences have implications for how bats and toothed whales hunt using echolocation. Here, we consider the behaviors used by echolocating mammals to (1) track and intercept moving prey equipped with predator detectors, (2) interrogate dynamic sonar scenes and (3) exploit visual and passive acoustic stimuli. Similarities and differences in animal sonar behaviors underwater and in air point to open research questions that are ripe for exploration.
Collapse
Affiliation(s)
- Cynthia F. Moss
- Johns Hopkins University, Departments of Psychological and Brain Sciences, Neuroscience and Mechanical Engineering, 3400 N. Charles St., Baltimore, MD 21218, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sara Torres Ortiz
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| | - Magnus Wahlberg
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| |
Collapse
|
17
|
Amit Y, Yovel Y. Bat vocal sequences enhance contextual information independently of syllable order. iScience 2023; 26:106466. [PMID: 37123233 PMCID: PMC10139886 DOI: 10.1016/j.isci.2023.106466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/05/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Many animals, humans included, rely on acoustic vocalizations for communication. The complexity of non-human vocal communication has been under debate one of the main open questions being: What could be the function of multi-syllabic vocal sequences? We address these questions by analyzing fruit-bat vocal communication. We use neural networks to encode the vocalizations, and statistical models to examine the information conveyed by sequences of vocalizations. We show that fruit-bat vocal sequences potentially convey more contextual information than individual syllables, but that the order of the syllables within the sequence is unimportant for context. Specifically, sequences are composed of slightly modified syllables, thus increasing the probability of context-specificity. We note that future behavioral, e.g., playback experiments are needed in order to validate the biological relevance of our statistical results. We hypothesize that such sequences might have served as pre-syntax precursors in the evolution of animal communication.
Collapse
Affiliation(s)
- Yoni Amit
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- National Research Center for Biodiversity Studies, The Steinhardt Museum of Natural History, Tel-Aviv University, Tel Aviv, Israel
- Corresponding author
| |
Collapse
|
18
|
Vernes SC, Devanna P, Hörpel SG, Alvarez van Tussenbroek I, Firzlaff U, Hagoort P, Hiller M, Hoeksema N, Hughes GM, Lavrichenko K, Mengede J, Morales AE, Wiesmann M. The pale spear-nosed bat: A neuromolecular and transgenic model for vocal learning. Ann N Y Acad Sci 2022; 1517:125-142. [PMID: 36069117 PMCID: PMC9826251 DOI: 10.1111/nyas.14884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vocal learning, the ability to produce modified vocalizations via learning from acoustic signals, is a key trait in the evolution of speech. While extensively studied in songbirds, mammalian models for vocal learning are rare. Bats present a promising study system given their gregarious natures, small size, and the ability of some species to be maintained in captive colonies. We utilize the pale spear-nosed bat (Phyllostomus discolor) and report advances in establishing this species as a tractable model for understanding vocal learning. We have taken an interdisciplinary approach, aiming to provide an integrated understanding across genomics (Part I), neurobiology (Part II), and transgenics (Part III). In Part I, we generated new, high-quality genome annotations of coding genes and noncoding microRNAs to facilitate functional and evolutionary studies. In Part II, we traced connections between auditory-related brain regions and reported neuroimaging to explore the structure of the brain and gene expression patterns to highlight brain regions. In Part III, we created the first successful transgenic bats by manipulating the expression of FoxP2, a speech-related gene. These interdisciplinary approaches are facilitating a mechanistic and evolutionary understanding of mammalian vocal learning and can also contribute to other areas of investigation that utilize P. discolor or bats as study species.
Collapse
Affiliation(s)
- Sonja C. Vernes
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Paolo Devanna
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Stephen Gareth Hörpel
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands,TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Ine Alvarez van Tussenbroek
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Uwe Firzlaff
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Peter Hagoort
- Neurobiology of Language DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Faculty of Biosciences, Senckenberg Research Institute, Goethe‐UniversityFrankfurtGermany
| | - Nienke Hoeksema
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands,Neurobiology of Language DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Graham M. Hughes
- School of Biology and Environmental ScienceUniversity College DublinBelfieldIreland
| | - Ksenia Lavrichenko
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Janine Mengede
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Ariadna E. Morales
- LOEWE Centre for Translational Biodiversity Genomics, Faculty of Biosciences, Senckenberg Research Institute, Goethe‐UniversityFrankfurtGermany
| | - Maximilian Wiesmann
- Department of Medical ImagingAnatomyRadboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer CenterNijmegenThe Netherlands
| |
Collapse
|
19
|
Ružinská R, Lőbbová D, Kaňuch P. Demographic characteristics shape patterns of dawn swarming during roost switching in tree-dwelling Daubenton's bat. Sci Rep 2022; 12:10014. [PMID: 35705697 PMCID: PMC9200770 DOI: 10.1038/s41598-022-14246-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022] Open
Abstract
Frequent roost switching in fission-fusion societies of tree-dwelling bats is closely associated with swarming behaviour entailing ritualised night-time displays around the roost tree and/or at the roost entrance to signal its actual location, particularly immediately prior to sunrise. However, effects of demographic characteristics of individuals in this social behaviour remain unanswered. Using passive integrated transponders (PIT) and automatic readers, we recorded swarming activity of members of a Daubenton's bat (Myotis daubentonii) maternity colony in the vicinity of their roosts. In total, 59,622 activity events of 281 PIT-tagged individuals were recorded on ten monitored roosts during three summer seasons. We found a gradual increase of swarming activity from midnight to sunrise in old adult females, whereas young females and juveniles primarily swarmed later at dawn. We attribute this difference to the learning status of younger bats, which are not yet able to perform a defined pattern of swarming activity, whereas older bats likely take a more active role in signalling the position of the roost. Old males exhibited the least swarming activity at maternity roosts, which mostly occurred between crepuscular periods, presumably due to their solitary lives. A negative correlation between genetic distance and swarming activity suggests an important role of kinship in the formation of the maternity colony as well as group cohesion during roost switching.
Collapse
Affiliation(s)
- Romana Ružinská
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
- Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovakia
| | | | - Peter Kaňuch
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia.
| |
Collapse
|
20
|
Eggleston R, Viloria N, Delgado S, Mata A, Guerrero HY, Kline RJ, Beissinger SR, Berg KS. Vocal babbling in a wild parrot shows life history and endocrine affinities with human infants. Proc Biol Sci 2022; 289:20220592. [PMID: 35642373 PMCID: PMC9156925 DOI: 10.1098/rspb.2022.0592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Prelinguistic babbling is a critical phase in infant language development and is best understood in temperate songbirds where it occurs primarily in males at reproductive maturity and is modulated by sex steroids. Parrots of both sexes are icons of tropical vocal plasticity, but vocal babbling is unreported in this group and whether the endocrine system is involved is unknown. Here we show that vocal babbling is widespread in a wild parrot population in Venezuela, ensues in both sexes during the nestling stage, occurs amidst a captive audience of mixed-aged siblings, and is modulated by corticosteroids. Spectrographic analysis and machine learning found phoneme diversity and combinatorial capacity increased precipitously for the first week, thereafter, crystalizing into a smaller repertoire, consistent with the selective attrition model of language development. Corticosterone-treated nestlings differed from unmanipulated birds and sham controls in several acoustic properties and crystallized a larger repertoire post-treatment. Our findings indicate babbling occurs during an early life-history stage in which corticosteroids help catalyse the transition from a universal learning programme to one finely tuned for the prevailing ecological environment, a potentially convergent scenario in human prelinguistic development.
Collapse
Affiliation(s)
- Rory Eggleston
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Nurialby Viloria
- Departmento de Biología, Universidad de Carabobo, Valencia, Venezuela
| | - Soraya Delgado
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Astolfo Mata
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Hilda Y. Guerrero
- Instituto de Medicina Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| | - Richard J. Kline
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA,School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Steven R. Beissinger
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA,Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Karl S. Berg
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA,School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
21
|
Abstract
Bats are social mammals that display a wide array of social communication calls. Among them, it is common for most bats species to emit distress, agonistic, appeasement and infant isolation calls. Big brown bats (Eptesicus fuscus) are no different: They are gregarious animals living in colonies that can comprise hundreds of individuals. These bats live in North America and, typically found roosting in man-made structures like barns and attics, are considered common. They are insectivorous laryngeal echolocators, and while their calls and associated brain mechanisms in echolocation are well-documented, much less is known about their neural systems for analyzing social vocalizations. In this work we review what we know about the social lives of big brown bats and propose how to consolidate the nomenclature used to describe their social vocalizations. Furthermore, we discuss the next steps in the characterization of the social structure of this species and how these studies will advance both research in neuroethology and ecology of big brown bats.
Collapse
Affiliation(s)
- Jessica Montoya
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Yelim Lee
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Angeles Salles
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
22
|
Kerth G. Long-term field studies in bat research: importance for basic and applied research questions in animal behavior. Behav Ecol Sociobiol 2022; 76:75. [PMID: 35669868 PMCID: PMC9135593 DOI: 10.1007/s00265-022-03180-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
Abstract
Animal species differ considerably in longevity. Among mammals, short-lived species such as shrews have a maximum lifespan of about a year, whereas long-lived species such as whales can live for more than two centuries. Because of their slow pace of life, long-lived species are typically of high conservation concern and of special scientific interest. This applies not only to large mammals such as whales, but also to small-sized bats and mole-rats. To understand the typically complex social behavior of long-lived mammals and protect their threatened populations, field studies that cover substantial parts of a species' maximum lifespan are required. However, long-term field studies on mammals are an exception because the collection of individualized data requires considerable resources over long time periods in species where individuals can live for decades. Field studies that span decades do not fit well in the current career and funding regime in science. This is unfortunate, as the existing long-term studies on mammals yielded exciting insights into animal behavior and contributed data important for protecting their populations. Here, I present results of long-term field studies on the behavior, demography, and life history of bats, with a particular focus on my long-term studies on wild Bechstein's bats. I show that long-term studies on individually marked populations are invaluable to understand the social system of bats, investigate the causes and consequences of their extraordinary longevity, and assess their responses to changing environments with the aim to efficiently protect these unique mammals in the face of anthropogenic global change.
Collapse
Affiliation(s)
- Gerald Kerth
- Zoological Institute and Museum, Applied Zoology and Nature Conservation, University of Greifswald, Greifswald, Germany
| |
Collapse
|
23
|
Banerjee A, Vallentin D. Convergent behavioral strategies and neural computations during vocal turn-taking across diverse species. Curr Opin Neurobiol 2022; 73:102529. [DOI: 10.1016/j.conb.2022.102529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 01/20/2023]
|
24
|
Warren MR, Campbell D, Borie AM, Ford CL, Dharani AM, Young LJ, Liu RC. Maturation of Social-Vocal Communication in Prairie Vole ( Microtus ochrogaster) Pups. Front Behav Neurosci 2022; 15:814200. [PMID: 35087387 PMCID: PMC8787284 DOI: 10.3389/fnbeh.2021.814200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Impairments in social communication are common among neurodevelopmental disorders. While traditional animal models have advanced our understanding of the physiological and pathological development of social behavior, they do not recapitulate some aspects where social communication is essential, such as biparental care and the ability to form long-lasting social bonds. Prairie voles (Microtus ochrogaster) have emerged as a valuable rodent model in social neuroscience because they naturally display these behaviors. Nonetheless, the role of vocalizations in prairie vole social communication remains unclear. Here, we studied the ontogeny [from postnatal days (P) 8-16] of prairie vole pup ultrasonic vocalizations (USVs), both when isolated and when the mother was present but physically unattainable. In contrast to other similarly sized rodents such as mice, prairie vole pups of all ages produced isolation USVs with a relatively low fundamental frequency between 22 and 50 kHz, often with strong harmonic structure. Males consistently emitted vocalizations with a lower frequency than females. With age, pups vocalized less, and the acoustic features of vocalizations (e.g., duration and bandwidth) became more stereotyped. Manipulating an isolated pup's social environment by introducing its mother significantly increased vocal production at older (P12-16) but not younger ages, when pups were likely unable to hear or see her. Our data provide the first indication of a maturation in social context-dependent vocal emission, which may facilitate more active acoustic communication. These results help lay a foundation for the use of prairie voles as a model organism to probe the role of early life experience in the development of social-vocal communication.
Collapse
Affiliation(s)
- Megan R. Warren
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Drayson Campbell
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Amélie M. Borie
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Charles L. Ford
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, United States
| | - Ammar M. Dharani
- Summer Opportunities of Academic Research Program, James T. Laney School of Graduate Studies, Emory University, Atlanta, GA, United States
| | - Larry J. Young
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| |
Collapse
|
25
|
The maturational gradient of infant vocalizations: Developmental stages and functional modules. Infant Behav Dev 2021; 66:101682. [PMID: 34920296 DOI: 10.1016/j.infbeh.2021.101682] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022]
Abstract
Stage models have been influential in characterizing infant vocalizations in the first year of life. These models are basically descriptive and do not explain why certain types of vocal behaviors occur within a particular stage or why successive patterns of vocalization occur. This review paper summarizes and elaborates a theory of Developmental Functional Modules (DFMs) and discusses how maturational gradients in the DFMs explain age typical vocalizations as well as the transitions between successive stages or other static forms. Maturational gradients are based on biological processes that effect the reconfiguration and remodeling of the respiratory, laryngeal, and craniofacial systems during infancy. From a dynamic systems perspective, DFMs are part of a complex system with multiple degrees of freedom that can achieve stable performance with relatively few control variables by relying on principles such as synergies, self-organization, nonlinear performance, and movement variability.
Collapse
|
26
|
Ter Haar SM, Fernandez AA, Gratier M, Knörnschild M, Levelt C, Moore RK, Vellema M, Wang X, Oller DK. Cross-species parallels in babbling: animals and algorithms. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200239. [PMID: 34482727 PMCID: PMC8419573 DOI: 10.1098/rstb.2020.0239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A key feature of vocal ontogeny in a variety of taxa with extensive vocal repertoires is a developmental pattern in which vocal exploration is followed by a period of category formation that results in a mature species-specific repertoire. Vocal development preceding the adult repertoire is often called ‘babbling’, a term used to describe aspects of vocal development in species of vocal-learning birds, some marine mammals, some New World monkeys, some bats and humans. The paper summarizes the results of research on babbling in examples from five taxa and proposes a unifying definition facilitating their comparison. There are notable similarities across these species in the developmental pattern of vocalizations, suggesting that vocal production learning might require babbling. However, the current state of the literature is insufficient to confirm this suggestion. We suggest directions for future research to elucidate this issue, emphasizing the importance of (i) expanding the descriptive data and seeking species with complex mature repertoires where babbling may not occur or may occur only to a minimal extent; (ii) (quasi-)experimental research to tease apart possible mechanisms of acquisition and/or self-organizing development; and (iii) computational modelling as a methodology to test hypotheses about the origins and functions of babbling. This article is part of the theme issue ‘Vocal learning in animals and humans’.
Collapse
Affiliation(s)
- Sita M Ter Haar
- Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University, PO Box 80086, 3508 TB Utrecht, The Netherlands
| | - Ahana A Fernandez
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany
| | - Maya Gratier
- Laboratoire Ethologie, Cognition, Développement, Paris Nanterre University, Nanterre, France
| | - Mirjam Knörnschild
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.,Animal Behavior Lab, Freie Universität, Berlin, Germany.,Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Claartje Levelt
- Leiden University Centre for Linguistics, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Roger K Moore
- Department Computer Science, University of Sheffield, Sheffield, UK
| | - Michiel Vellema
- Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University, PO Box 80086, 3508 TB Utrecht, The Netherlands
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - D Kimbrough Oller
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, USA.,Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA.,Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| |
Collapse
|
27
|
Fernandez AA, Burchardt LS, Nagy M, Knörnschild M. Babbling in a vocal learning bat resembles human infant babbling. Science 2021; 373:923-926. [PMID: 34413237 DOI: 10.1126/science.abf9279] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/13/2021] [Indexed: 11/02/2022]
Abstract
Babbling is a production milestone in infant speech development. Evidence for babbling in nonhuman mammals is scarce, which has prevented cross-species comparisons. In this study, we investigated the conspicuous babbling behavior of Saccopteryx bilineata, a bat capable of vocal production learning. We analyzed the babbling of 20 bat pups in the field during their 3-month ontogeny and compared its features to those that characterize babbling in human infants. Our findings demonstrate that babbling in bat pups is characterized by the same eight features as babbling in human infants, including the conspicuous features reduplication and rhythmicity. These parallels in vocal ontogeny between two mammalian species offer future possibilities for comparison of cognitive and neuromolecular mechanisms and adaptive functions of babbling in bats and humans.
Collapse
Affiliation(s)
- Ahana A Fernandez
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Animal Behavior Lab, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Lara S Burchardt
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Animal Behavior Lab, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Martina Nagy
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany
| | - Mirjam Knörnschild
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Animal Behavior Lab, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany.,Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper, Balboa Ancon, Republic of Panama
| |
Collapse
|
28
|
Kozlov M. Baby bats babble like human infants. Nature 2021:10.1038/d41586-021-02258-3. [PMID: 34413531 DOI: 10.1038/d41586-021-02258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|