1
|
Pan C, Lee LTO. Membrane drug transporters in cancer: From chemoresistance mechanism to therapeutic strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189272. [PMID: 39863184 DOI: 10.1016/j.bbcan.2025.189272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Chemoresistance is a multifactorial phenomenon and the primary cause to the ineffectiveness of oncotherapy and cancer recurrence. Membrane drug transporters are crucial for drug delivery and disposition in cancer cells. Changes in the expression and functionality of these transporters lead to decreased intracellular accumulation and reduced toxicity of antineoplastic drugs. As the mechanism has been better understood and genetic engineering technology progressed quickly in recent years, some novel targeting strategies have come to light. This article summarizes the regulatory mechanisms of membrane drug transporters and provides an extensive review of current approaches to address transporters-mediated chemoresistance. These strategies include the use of chemical inhibitors to block efflux transporters, the development of copper chelators to enhance platinum drug uptake, the delivery of genetic drugs to alter transporter expression, the regulation of transcription and post-translational modifications. Additionally, we provide information of the clinical trial performance of the related targeting strategies, along with the ongoing challenges. Even though some clinical trials failed due to unexpected side effects and limited therapeutic efficacy, the advent of targeting membrane drug transporters still presents a hopeful path for overcoming chemoresistance.
Collapse
Affiliation(s)
- Chao Pan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China.
| |
Collapse
|
2
|
Zoghbi ME, Nouel Barreto A, Hernandez AL. Conformational equilibrium of an ABC transporter analyzed by luminescence resonance energy transfer. Biophys J 2025; 124:1117-1131. [PMID: 39973007 PMCID: PMC11993921 DOI: 10.1016/j.bpj.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/03/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025] Open
Abstract
Humans have three known ATP-binding cassette (ABC) transporters in the inner mitochondrial membrane (ABCB7, ABCB8, and ABCB10). ABCB10, the most studied of them thus far, is essential for normal red blood cell development and protection against oxidative stress, and it was recently found to export biliverdin, a heme degradation product with antioxidant properties. The molecular mechanism underlying the function of ABC transporters remains controversial. Their nucleotide binding domains (NBDs) must dimerize to hydrolyze ATP, but capturing the transporters in such conformation for structural studies has been experimentally difficult, especially for ABCB10 and related eukaryotic transporters. Purified transporters are commonly studied in detergent micelles, or after their reconstitution in nanodiscs, usually at nonphysiological temperature and using nonhydrolyzable ATP analogs or mutations that prevent ATP hydrolysis. Here, we have used luminescence resonance energy transfer to evaluate the effect of experimental conditions on the NBD dimerization of ABCB10. Our results indicate that all conditions used for determination of currently available ABCB10 structures have failed to induce NBD dimerization. ABCB10 in detergent responded only to MgATP at 37°C, whereas reconstituted protein shifted toward dimeric NBDs more easily, including in response to MgAMP-PNP and even present NBD dimerization with MgATP at room temperature. The nanodisc's size affects the nucleotide-free conformational equilibrium of ABCB10 and the response to ATP in the absence of magnesium, but for all analyzed sizes (scaffold proteins MSP1D1, MSP1E3D1, and MSP2N2), a conformation with dimeric NBDs is clearly preferred during active ATP hydrolysis (MgATP, 37°C). These results highlight the sensitivity of this human ABC transporter to experimental conditions and the need for a more cautious interpretation of structural models obtained under far from physiological conditions. A dimeric NBD conformation that has been elusive in previous studies seems to be dominant during MgATP hydrolysis at physiological temperature.
Collapse
Affiliation(s)
- Maria E Zoghbi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California Merced, Merced, California; Health Sciences Research Institute, University of California Merced, Merced, California.
| | - Annabella Nouel Barreto
- Quantitative Systems Biology Graduate Program, University of California Merced, Merced, California
| | - Alex L Hernandez
- Chemistry and Biochemistry Graduate Program, University of California Merced, Merced, California
| |
Collapse
|
3
|
Zhang M, She ML, Chen J, Zeng XQ, Xiong QQ, Cen YH, Ye JA, Qiu GB, Yang SY, Ren GH. Gilteritinib reverses ABCB1-mediated multidrug resistance: Preclinical in vitro and animal investigations. Biomed Pharmacother 2024; 180:117603. [PMID: 39471652 DOI: 10.1016/j.biopha.2024.117603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024] Open
Abstract
Multi-drug resistance (MDR) poses a significant challenge to cancer treatment. Targeting ATP-binding cassette subfamily B member 1 (ABCB1) is a viable strategy for overcoming MDR. This study examined the preclinical in vitro and animal studies that used gilteritinib, a FLT3 inhibitor that reverses ABCB1-mediated MDR. At nontoxic levels, gilteritinib significantly increased the susceptibility of cancer cells overexpressing ABCB1 to chemotherapeutic drugs. Furthermore, it impaired the development of drug-resistant cell colonies and 3D spheroids. Studies on the reversal mechanism have shown that gilteritinib can directly bind to the drug-binding site of ABCB1, inhibiting drug efflux activity. Consequently, the substrate's drug cytotoxicity increases in MDR cells. Furthermore, gilteritinib increased ATPase activity while leaving ABCB1 expression and subcellular distribution unchanged and inhibited AKT or ERK activation. Docking analysis indicated that Gilteritinib could interact with the drug-binding site of the ABCB1 transporter. In vivo studies have shown that gilteritinib improves the antitumor efficacy of paclitaxel in nude mice without obvious toxic effects. In conclusion, our preclinical investigations show that gilteritinib has the potential to successfully overcome ABCB1-mediated MDR in a clinical environment when combined with substrate medicines.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China
| | - Mei-Ling She
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100020, China
| | - Jun Chen
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China
| | - Xiao-Qi Zeng
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China
| | - Qing-Quan Xiong
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China
| | - Ying-Huan Cen
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China
| | - Jia-An Ye
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China
| | - Guo-Bin Qiu
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China.
| | - Shu-Yi Yang
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China.
| | - Guang-Hui Ren
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China.
| |
Collapse
|
4
|
Zhou D, Li Y, Liu Q, Deng X, Chen L, Li M, Zhang J, Lu X, Zheng H, Dai J. Integrated whole-exome and bulk transcriptome sequencing delineates the dynamic evolution from preneoplasia to invasive lung adenocarcinoma featured with ground-glass nodules. Cancer Med 2024; 13:e7383. [PMID: 38864483 PMCID: PMC11167609 DOI: 10.1002/cam4.7383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/15/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVE The genomic and molecular ecology involved in the stepwise continuum progression of lung adenocarcinoma (LUAD) from adenocarcinoma in situ (AIS) to minimally invasive adenocarcinoma (MIA) and subsequent invasive adenocarcinoma (IAC) remains unclear and requires further elucidation. We aimed to characterize gene mutations and expression landscapes, and explore the association between differentially expressed genes (DEGs) and significantly mutated genes (SMGs) during the dynamic evolution from AIS to IAC. METHODS Thirty-five patients with ground-glass nodules (GGNs) lung adenocarcinomas were enrolled. Whole-exome sequencing (WES) and transcriptome sequencing (RNA-Seq) were conducted on all patients, encompassing both tumor samples and corresponding noncancerous tissues. Data obtained from WES and RNA-Seq were subsequently analyzed. RESULTS The findings from WES delineated that the predominant mutations were observed in EGFR (49%) and ANKRD36C (17%). SMGs, including EGFR and RBM10, were associated with the dynamic evolution from AIS to IAC. Meanwhile, DEGs, including GPR143, CCR9, ADAMTS16, and others were associated with the entire process of invasive LUAD. We found that the signaling pathways related to cell migration and invasion were upregulated, and the signaling pathways of angiogenesis were downregulated across the pathological stages. Furthermore, we found that the messenger RNA (mRNA) levels of FAM83A, MAL2, DEPTOR, and others were significantly correlated with CNVs. Gene set enrichment analysis (GSEA) showed that heme metabolism and cholesterol homeostasis pathways were significantly upregulated in patients with EGFR/RBM10 co-mutations, and these patients may have poorer overall survival than those with EGFR mutations. Based on the six calculation methods for the immune infiltration score, NK/CD8+ T cells decreased, and Treg/B cells increased with the progression of early LUAD. CONCLUSIONS Our findings offer valuable insights into the unique genomic and molecular features of LUAD, facilitating the identification and advancement of precision medicine strategies targeting the invasive progression of LUAD from AIS to IAC.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Yan‐qi Li
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Quan‐xing Liu
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Xu‐feng Deng
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Liang Chen
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Man‐yuan Li
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Jiao Zhang
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Xiao Lu
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Hong Zheng
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Ji‐gang Dai
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
5
|
Zhu S, Alexander MK, Paiva TO, Rachwalski K, Miu A, Xu Y, Verma V, Reichelt M, Dufrêne YF, Brown ED, Cox G. The inactivation of tolC sensitizes Escherichia coli to perturbations in lipopolysaccharide transport. iScience 2024; 27:109592. [PMID: 38628966 PMCID: PMC11019271 DOI: 10.1016/j.isci.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
The Escherichia coli outer membrane channel TolC complexes with several inner membrane efflux pumps to export compounds across the cell envelope. All components of these complexes are essential for robust efflux activity, yet E. coli is more sensitive to antimicrobial compounds when tolC is inactivated compared to the inactivation of genes encoding the inner membrane drug efflux pumps. While investigating these susceptibility differences, we identified a distinct class of inhibitors targeting the core-lipopolysaccharide translocase, MsbA. We show that tolC null mutants are sensitized to structurally unrelated MsbA inhibitors and msbA knockdown, highlighting a synthetic-sick interaction. Phenotypic profiling revealed that tolC inactivation induced cell envelope softening and increased outer membrane permeability. Overall, this work identified a chemical probe of MsbA, revealed that tolC is associated with cell envelope mechanics and integrity, and highlighted that these findings should be considered when using tolC null mutants to study efflux deficiency.
Collapse
Affiliation(s)
- Shawna Zhu
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | | | - Telmo O. Paiva
- Institute of Life Sciences, UCLouvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Kenneth Rachwalski
- Biochemistry and Biomedical Sciences and Degroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Anh Miu
- Genentech Inc, Biochemical and Cellular Pharmacology, South San Francisco, CA, USA
| | - Yiming Xu
- Genentech Inc, Infectious Diseases, South San Francisco, CA, USA
| | - Vishal Verma
- Genentech Inc, Discovery Chemistry, South San Francisco, CA, USA
| | - Mike Reichelt
- Genentech Inc, Pathology, South San Francisco, CA, USA
| | - Yves F. Dufrêne
- Institute of Life Sciences, UCLouvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Eric D. Brown
- Biochemistry and Biomedical Sciences and Degroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
6
|
Wang H, Ishchenko A, Skudlarek J, Shen P, Dzhekieva L, Painter RE, Chen YT, Bukhtiyarova M, Leithead A, Tracy R, Babaoglu K, Bahnck-Teets C, Buevich A, Cabalu TD, Labroli M, Lange H, Lei Y, Li W, Liu J, Mann PA, Meng T, Mitchell HJ, Mulhearn J, Scapin G, Sha D, Shaw AW, Si Q, Tong L, Wu C, Wu Z, Xiao JC, Xu M, Zhang LK, McKenney D, Miller RR, Black TA, Cooke A, Balibar CJ, Klein DJ, Raheem I, Walker SS. Cerastecins inhibit membrane lipooligosaccharide transport in drug-resistant Acinetobacter baumannii. Nat Microbiol 2024; 9:1244-1255. [PMID: 38649414 DOI: 10.1038/s41564-024-01667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Carbapenem-resistant Acinetobacter baumannii infections have limited treatment options. Synthesis, transport and placement of lipopolysaccharide or lipooligosaccharide (LOS) in the outer membrane of Gram-negative bacteria are important for bacterial virulence and survival. Here we describe the cerastecins, inhibitors of the A. baumannii transporter MsbA, an LOS flippase. These molecules are potent and bactericidal against A. baumannii, including clinical carbapenem-resistant Acinetobacter baumannii isolates. Using cryo-electron microscopy and biochemical analysis, we show that the cerastecins adopt a serpentine configuration in the central vault of the MsbA dimer, stalling the enzyme and uncoupling ATP hydrolysis from substrate flipping. A derivative with optimized potency and pharmacokinetic properties showed efficacy in murine models of bloodstream or pulmonary A. baumannii infection. While resistance development is inevitable, targeting a clinically unexploited mechanism avoids existing antibiotic resistance mechanisms. Although clinical validation of LOS transport remains undetermined, the cerastecins may open a path to narrow-spectrum treatment modalities for important nosocomial infections.
Collapse
Affiliation(s)
- Hao Wang
- Merck & Co., Inc., West Point, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ying Lei
- Merck & Co., Inc., West Point, PA, USA
| | - Wei Li
- Merck & Co., Inc., West Point, PA, USA
| | - Jian Liu
- Merck & Co., Inc., West Point, PA, USA
| | | | - Tao Meng
- Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | - Deyou Sha
- Merck & Co., Inc., West Point, PA, USA
| | | | - Qian Si
- Merck & Co., Inc., West Point, PA, USA
| | - Ling Tong
- Merck & Co., Inc., West Point, PA, USA
| | | | - Zhe Wu
- Merck & Co., Inc., West Point, PA, USA
| | | | - Min Xu
- Merck & Co., Inc., West Point, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Xiao Z, Zha J, Yang X, Huang T, Huang S, Liu Q, Wang X, Zhong J, Zheng J, Liang R, Deng Z, Zhang J, Lin S, Dai S. A three-level regulatory mechanism of the aldo-keto reductase subfamily AKR12D. Nat Commun 2024; 15:2128. [PMID: 38459030 PMCID: PMC10923870 DOI: 10.1038/s41467-024-46363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
Modulation of protein function through allosteric regulation is central in biology, but biomacromolecular systems involving multiple subunits and ligands may exhibit complex regulatory mechanisms at different levels, which remain poorly understood. Here, we discover an aldo-keto reductase termed AKRtyl and present its three-level regulatory mechanism. Specifically, by combining steady-state and transient kinetics, X-ray crystallography and molecular dynamics simulation, we demonstrate that AKRtyl exhibits a positive synergy mediated by an unusual Monod-Wyman-Changeux (MWC) paradigm of allosteric regulation at low concentrations of the cofactor NADPH, but an inhibitory effect at high concentrations is observed. While the substrate tylosin binds at a remote allosteric site with positive cooperativity. We further reveal that these regulatory mechanisms are conserved in AKR12D subfamily, and that substrate cooperativity is common in AKRs across three kingdoms of life. This work provides an intriguing example for understanding complex allosteric regulatory networks.
Collapse
Affiliation(s)
- Zhihong Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinyin Zha
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuxin Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qi Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jie Zhong
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jian Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China.
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shaobo Dai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
8
|
Lai C, Tang Z, Liu Z, Luo P, Zhang W, Zhang T, Zhang W, Dong Z, Liu X, Yang X, Wang F. Probing the functional hotspots inside protein hydrophobic pockets by in situ photochemical trifluoromethylation and mass spectrometry. Chem Sci 2024; 15:2545-2557. [PMID: 38362424 PMCID: PMC10866368 DOI: 10.1039/d3sc05106d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Due to the complex high-order structures and interactions of proteins within an aqueous solution, a majority of chemical functionalizations happen on the hydrophilic sites of protein external surfaces which are naturally exposed to the solution. However, the hydrophobic pockets inside proteins are crucial for ligand binding and function as catalytic centers and transporting tunnels. Herein, we describe a reagent pre-organization and in situ photochemical trifluoromethylation strategy to profile the functional sites inside the hydrophobic pockets of native proteins. Unbiased mass spectrometry profiling was applied for the characterization of trifluoromethylated sites with high sensitivity. Native proteins including myoglobin, trypsin, haloalkane dehalogenase, and human serum albumin have been engaged in this mild photochemical process and substantial hydrophobic site-specific and structure-selective trifluoromethylation substitutes are obtained without significant interference to their bioactivity and structures. Sodium triflinate is the only reagent required to functionalize the unprotected proteins with wide pH-range tolerance and high biocompatibility. This "in-pocket" activation model provides a general strategy to modify the potential binding pockets and gain essential structural insights into the functional hotspots inside protein hydrophobic pockets.
Collapse
Affiliation(s)
- Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhiyao Tang
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Pan Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Institute of Advanced Science Facilities Shenzhen 518107 China
| | - Wenxiang Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Tingting Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenhao Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhe Dong
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xinyuan Liu
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xueming Yang
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Institute of Advanced Science Facilities Shenzhen 518107 China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
9
|
Novischi SYP, Karoly-Lakatos A, Chok K, Bonifer C, Becker-Baldus J, Glaubitz C. Probing the allosteric NBD-TMD crosstalk in the ABC transporter MsbA by solid-state NMR. Commun Biol 2024; 7:43. [PMID: 38182790 PMCID: PMC10770068 DOI: 10.1038/s42003-023-05617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024] Open
Abstract
The ABC transporter MsbA plays a critical role in Gram-negative bacteria in the regulation of the outer membrane by translocating core-LPS across the inner membrane. Additionally, a broad substrate specificity for lipophilic drugs has been shown. The allosteric interplay between substrate binding in the transmembrane domains and ATP binding and turnover in the nucleotide-binding domains must be mediated via the NBD/TMD interface. Previous studies suggested the involvement of two intracellular loops called coupling helix 1 and 2 (CH1, CH2). Here, we demonstrate by solid-state NMR spectroscopy that substantial chemical shift changes within both CH1 and CH2 occur upon substrate binding, in the ATP hydrolysis transition state, and upon inhibitor binding. CH2 is domain-swapped within the MsbA structure, and it is noteworthy that substrate binding induces a larger response in CH2 compared to CH1. Our data demonstrate that CH1 and CH2 undergo structural changes as part of the TMD-NBD cross-talk.
Collapse
Affiliation(s)
- S Y Phoebe Novischi
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Andrea Karoly-Lakatos
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Kerby Chok
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Christian Bonifer
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
10
|
Pei S, Lai L, Sun W, Lu Z, Hao J, Liu Y, Wu W, Guan S, Su X. Discovery of novel tetrahydrobenzothiophene derivatives as MSBA inhibitors for antimicrobial agents. Bioorg Chem 2024; 142:106932. [PMID: 37913586 DOI: 10.1016/j.bioorg.2023.106932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
The incidence of infections caused by drug-resistant bacteria has been one of the most serious health threats in the past and is substantially increasing in an alarming rate. Therefore, the development of new antimicrobial agents to combat bacterial resistance effectively is urgent. This study focused on the design and synthesis of 40 novel tetrahydrobenzothiophene amide/sulfonamide derivatives and their antibacterial activities were evaluated. Compounds 2p, 6p, and 6 s exhibited significant inhibitory effects on the growth of bacteria. To assess their safety, the cytotoxicity of the compounds was assessed using human normal liver cells, revealing that compound 6p has lower cytotoxicity. A mouse wound healing experiment demonstrated that compound 6p effectively improved wound infection induced by trauma and accelerated the healing process. Compound 6p holds promise as a potential therapeutic agent for combating bacterial infections.
Collapse
Affiliation(s)
- Shuchen Pei
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| | - Lin Lai
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Wanlin Sun
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Zhaoyang Lu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Jielei Hao
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Yuheng Liu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, PR China; Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Wen Wu
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 404120, PR China.
| | - Shan Guan
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, PR China.
| | - Xiaoyan Su
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| |
Collapse
|
11
|
Gupta R, Singh M, Pathania R. Chemical genetic approaches for the discovery of bacterial cell wall inhibitors. RSC Med Chem 2023; 14:2125-2154. [PMID: 37974958 PMCID: PMC10650376 DOI: 10.1039/d3md00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Antimicrobial resistance (AMR) in bacterial pathogens is a worldwide health issue. The innovation gap in discovering new antibiotics has remained a significant hurdle in combating the AMR problem. Currently, antibiotics target various vital components of the bacterial cell envelope, nucleic acid and protein biosynthesis machinery and metabolic pathways essential for bacterial survival. The critical role of the bacterial cell envelope in cell morphogenesis and integrity makes it an attractive drug target. While a significant number of in-clinic antibiotics target peptidoglycan biosynthesis, several components of the bacterial cell envelope have been overlooked. This review focuses on various antibacterial targets in the bacterial cell wall and the strategies employed to find their novel inhibitors. This review will further elaborate on combining forward and reverse chemical genetic approaches to discover antibacterials that target the bacterial cell envelope.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| |
Collapse
|
12
|
Tang Q, Sinclair M, Hasdemir HS, Stein RA, Karakas E, Tajkhorshid E, Mchaourab HS. Asymmetric conformations and lipid interactions shape the ATP-coupled cycle of a heterodimeric ABC transporter. Nat Commun 2023; 14:7184. [PMID: 37938578 PMCID: PMC10632425 DOI: 10.1038/s41467-023-42937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Here we used cryo-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy (DEER), and molecular dynamics (MD) simulations, to capture and characterize ATP- and substrate-bound inward-facing (IF) and occluded (OC) conformational states of the heterodimeric ATP binding cassette (ABC) multidrug exporter BmrCD in lipid nanodiscs. Supported by DEER analysis, the structures reveal that ATP-powered isomerization entails changes in the relative symmetry of the BmrC and BmrD subunits that propagates from the transmembrane domain to the nucleotide binding domain. The structures uncover asymmetric substrate and Mg2+ binding which we hypothesize are required for triggering ATP hydrolysis preferentially in one of the nucleotide-binding sites. MD simulations demonstrate that multiple lipid molecules differentially bind the IF versus the OC conformation thus establishing that lipid interactions modulate BmrCD energy landscape. Our findings are framed in a model that highlights the role of asymmetric conformations in the ATP-coupled transport with general implications to the mechanism of ABC transporters.
Collapse
Affiliation(s)
- Qingyu Tang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Matt Sinclair
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hale S Hasdemir
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Erkan Karakas
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
13
|
Bloch M, Raj I, Pape T, Taylor NMI. Structural and mechanistic basis of substrate transport by the multidrug transporter MRP4. Structure 2023; 31:1407-1418.e6. [PMID: 37683641 DOI: 10.1016/j.str.2023.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
Multidrug resistance-associated protein 4 (MRP4) is an ATP-binding cassette (ABC) transporter expressed at multiple tissue barriers where it actively extrudes a wide variety of drug compounds. Overexpression of MRP4 provides resistance to clinically used antineoplastic agents, making it a highly attractive therapeutic target for countering multidrug resistance. Here, we report cryo-EM structures of multiple physiologically relevant states of lipid bilayer-embedded human MRP4, including complexes between MRP4 and two widely used chemotherapeutic agents and a complex between MRP4 and its native substrate. The structures display clear similarities and distinct differences in the coordination of these chemically diverse substrates and, in combination with functional and mutational analysis, reveal molecular details of the transport mechanism. Our study provides key insights into the unusually broad substrate specificity of MRP4 and constitutes an important contribution toward a general understanding of multidrug transporters.
Collapse
Affiliation(s)
- Magnus Bloch
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Isha Raj
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tillmann Pape
- Structural Molecular Biology Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Core Facility for Integrated Microscopy (CFIM), Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen, Denmark
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
14
|
Tang Q, Sinclair M, Hasdemir HS, Stein R, Karakas E, Tajkhorshid E, Mchaourab H. Asymmetric conformations and lipid interactions shape the ATP-coupled cycle of a heterodimeric ABC transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.541986. [PMID: 37398337 PMCID: PMC10312460 DOI: 10.1101/2023.05.29.541986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
To illuminate the structural origin of catalytic asymmetry of heterodimeric ABC transporters and how it shapes the energetics of their conformational cycles, we used cryo-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy (DEER), and molecular dynamics (MD) simulations, to capture and characterize conformational states of the heterodimeric ABC multidrug exporter BmrCD in lipid nanodiscs. In addition to multiple ATP- and substrate-bound inward-facing (IF) conformations, we obtained the structure of an occluded (OC) conformation wherein the unique extracellular domain (ECD) twists to partially open the extracellular gate. In conjunction with DEER analysis of the populations of these conformations, the structures reveal that ATP-powered isomerization entails changes in the relative symmetry of the BmrC and BmrD subunits that propagates from the transmembrane domain (TMD) to the nucleotide binding domain (NBD). The structures uncover asymmetric substrate and Mg 2+ binding which we hypothesize are required for triggering ATP hydrolysis preferentially in one of the nucleotide-binding sites. MD simulations demonstrated that multiple lipid molecules, identified from the cryo-EM density maps, differentially bind the IF versus the OC conformation thus modulating their relative stability. In addition to establishing how lipid interactions with BmrCD modulate the energy landscape, our findings are framed in a distinct transport model that highlights the role of asymmetric conformations in the ATP-coupled cycle with implications to the mechanism of ABC transporters in general.
Collapse
|
15
|
Wang K, Lee CW, Sui X, Kim S, Wang S, Higgs AB, Baublis AJ, Voth GA, Liao M, Walther TC, Farese RV. The structure of phosphatidylinositol remodeling MBOAT7 reveals its catalytic mechanism and enables inhibitor identification. Nat Commun 2023; 14:3533. [PMID: 37316513 PMCID: PMC10267149 DOI: 10.1038/s41467-023-38932-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
Cells remodel glycerophospholipid acyl chains via the Lands cycle to adjust membrane properties. Membrane-bound O-acyltransferase (MBOAT) 7 acylates lyso-phosphatidylinositol (lyso-PI) with arachidonyl-CoA. MBOAT7 mutations cause brain developmental disorders, and reduced expression is linked to fatty liver disease. In contrast, increased MBOAT7 expression is linked to hepatocellular and renal cancers. The mechanistic basis of MBOAT7 catalysis and substrate selectivity are unknown. Here, we report the structure and a model for the catalytic mechanism of human MBOAT7. Arachidonyl-CoA and lyso-PI access the catalytic center through a twisted tunnel from the cytosol and lumenal sides, respectively. N-terminal residues on the ER lumenal side determine phospholipid headgroup selectivity: swapping them between MBOATs 1, 5, and 7 converts enzyme specificity for different lyso-phospholipids. Finally, the MBOAT7 structure and virtual screening enabled identification of small-molecule inhibitors that may serve as lead compounds for pharmacologic development.
Collapse
Affiliation(s)
- Kun Wang
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Chia-Wei Lee
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xuewu Sui
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Siyoung Kim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Shuhui Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Aidan B Higgs
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Aaron J Baublis
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Harvard T.H. Chan Advanced Multi-Omics Platform, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Harvard T.H. Chan Advanced Multi-Omics Platform, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Ma C, Gong C. Considerations in production of the prokaryotic ZIP family transporters for structural and functional studies. Methods Enzymol 2023; 687:1-30. [PMID: 37666628 DOI: 10.1016/bs.mie.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Zinc ions play essential roles as components of enzymes and many other important biomolecules, and are associated with numerous diseases. The uptake of Zn2+ and other metal ions require a widely distributed transporter protein family called Zrt/Irt-like Proteins (ZIP family), the majority members of which tend to have eight transmembrane helices with both N- and C- termini located on the extracellular or periplasmic side. Their small sizes and dynamic conformations bring many difficulties in their production for structural studies either by crystallography or Cryo-EM. Here, we summarize the problems that may encounter at the various steps of processing the ZIP proteins from gene to structural and functional studies, and provide some solutions and examples from our and other labs for the cloning, expression, purification, stability screening, metal ion transport assays and structural studies of prokaryotic ZIP family transporters using Escherichia coli as a heterologous host.
Collapse
Affiliation(s)
- Cheng Ma
- Protein Facility, Zhejiang University School of Medicine, Hangzhou, P.R. China; The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, P.R. China.
| | - Caixia Gong
- The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, P.R. China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, P.R. China.
| |
Collapse
|
17
|
Mann D, Labudda K, Zimmermann S, Vocke KU, Gasper R, Kötting C, Hofmann E. ATP binding and ATP hydrolysis in full-length MsbA monitored via time-resolved Fourier transform infrared spectroscopy. Biol Chem 2023:hsz-2023-0122. [PMID: 37185095 DOI: 10.1515/hsz-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
The essential Escherichia coli ATPase MsbA is a lipid flippase that serves as a prototype for multi drug resistant ABC transporters. Its physiological function is the transport of lipopolisaccharides to build up the outer membranes of gram negative bacteria. Although several structural and biochemical studies of MsbA have been conducted previously, a detailed picture of the dynamic processes that link ATP hydrolysis to allocrit transport remains elusive. We report here for the first time time-resolved Fourier transform infrared (FTIR) spectroscopic measurements of the ATP binding and ATP hydrolysis reaction of full-length MsbA and determined reaction rates at 288 K of k 1 = 0.49 ± 0.28 s-1 and k 2 = 0.014 ± 0.003 s-1, respectively. We further verified these rates with photocaged NPEcgAppNHp where only nucleotide binding was observable and the negative mutant MsbA-H537A that showed slow hydrolysis (k 2 < 2 × 10-4 s-1). Besides single turnover kinetics, FTIR measurements also deliver IR signatures of all educts, products and the protein. ADP remains protein-bound after ATP hydrolysis. In addition, the spectral changes observed for the two variants MsbA-S378A and MsbA-S482A correlated with the loss of hydrogen bonding to the γ-phosphate of ATP. This study paves the way for FTIR-spectroscopic investigations of allocrite transport in full-length MsbA.
Collapse
Affiliation(s)
- Daniel Mann
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Forschungszentrum Jülich GmbH, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons / ER-C-3: Structural Biology, D-52425 Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute for Biological Information Processing / IBI-6 Cellular Structural Biology, D-52425 Jülich, Germany
| | - Kristin Labudda
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy, D-44780 Bochum, Germany
| | - Sophie Zimmermann
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Kai Ulrich Vocke
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Raphael Gasper
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Max Planck Institute of Molecular Physiology, Crystallography and Biophysics Facility, D-44227 Dortmund, Germany
| | - Carsten Kötting
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy, D-44780 Bochum, Germany
| | - Eckhard Hofmann
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| |
Collapse
|
18
|
Bali K, Guffick C, McCoy R, Lu Z, Kaminski CF, Mela I, Owens RM, van Veen HW. Biosensor for Multimodal Characterization of an Essential ABC Transporter for Next-Generation Antibiotic Research. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12766-12776. [PMID: 36866935 PMCID: PMC10020959 DOI: 10.1021/acsami.2c21556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 05/21/2023]
Abstract
As the threat of antibiotic resistance increases, there is a particular focus on developing antimicrobials against pathogenic bacteria whose multidrug resistance is especially entrenched and concerning. One such target for novel antimicrobials is the ATP-binding cassette (ABC) transporter MsbA that is present in the plasma membrane of Gram-negative pathogenic bacteria where it is fundamental to the survival of these bacteria. Supported lipid bilayers (SLBs) are useful in monitoring membrane protein structure and function since they can be integrated with a variety of optical, biochemical, and electrochemical techniques. Here, we form SLBs containing Escherichia coli MsbA and use atomic force microscopy (AFM) and structured illumination microscopy (SIM) as high-resolution microscopy techniques to study the integrity of the SLBs and incorporated MsbA proteins. We then integrate these SLBs on microelectrode arrays (MEA) based on the conducting polymer poly(3,4-ethylenedioxy-thiophene) poly(styrene sulfonate) (PEDOT:PSS) using electrochemical impedance spectroscopy (EIS) to monitor ion flow through MsbA proteins in response to ATP hydrolysis. These EIS measurements can be correlated with the biochemical detection of MsbA-ATPase activity. To show the potential of this SLB approach, we observe not only the activity of wild-type MsbA but also the activity of two previously characterized mutants along with quinoline-based MsbA inhibitor G907 to show that EIS systems can detect changes in ABC transporter activity. Our work combines a multitude of techniques to thoroughly investigate MsbA in lipid bilayers as well as the effects of potential inhibitors of this protein. We envisage that this platform will facilitate the development of next-generation antimicrobials that inhibit MsbA or other essential membrane transporters in microorganisms.
Collapse
Affiliation(s)
- Karan Bali
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, U. K.
| | - Charlotte Guffick
- Department
of Pharmacology, University of Cambridge, CB2 1PD Cambridge, U. K.
| | - Reece McCoy
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, U. K.
| | - Zixuan Lu
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, U. K.
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, U. K.
| | - Ioanna Mela
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, U. K.
| | - Róisín M. Owens
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, U. K.
| | - Hendrik W. van Veen
- Department
of Pharmacology, University of Cambridge, CB2 1PD Cambridge, U. K.
| |
Collapse
|
19
|
Sperandeo P, Martorana AM, Zaccaria M, Polissi A. Targeting the LPS export pathway for the development of novel therapeutics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119406. [PMID: 36473551 DOI: 10.1016/j.bbamcr.2022.119406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
The rapid rise of multi-resistant bacteria is a global health threat. This is especially serious for Gram-negative bacteria in which the impermeable outer membrane (OM) acts as a shield against antibiotics. The development of new drugs with novel modes of actions to combat multi-drug resistant pathogens requires the selection of suitable processes to be targeted. The LPS export pathway is an excellent under exploited target for drug development. Indeed, LPS is the major determinant of the OM permeability barrier, and its biogenetic pathway is conserved in most Gram-negatives. Here we describe efforts to identify inhibitors of the multiprotein Lpt system that transports LPS to the cell surface. Despite none of these molecules has been approved for clinical use, they may represent valuable compounds for optimization. Finally, the recent discovery of a link between inhibition of LPS biogenesis and changes in peptidoglycan structure uncovers additional targets to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Alessandra M Martorana
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Marta Zaccaria
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy.
| |
Collapse
|
20
|
Lyu J, Liu C, Zhang T, Schrecke S, Elam NP, Packianathan C, Hochberg GKA, Russell D, Zhao M, Laganowsky A. Structural basis for lipid and copper regulation of the ABC transporter MsbA. Nat Commun 2022; 13:7291. [PMID: 36435815 PMCID: PMC9701195 DOI: 10.1038/s41467-022-34905-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022] Open
Abstract
A critical step in lipopolysaccharide (LPS) biogenesis involves flipping lipooligosaccharide, an LPS precursor, from the cytoplasmic to the periplasmic leaflet of the inner membrane, an operation carried out by the ATP-binding cassette transporter MsbA. Although LPS binding to the inner cavity of MsbA is well established, the selectivity of MsbA-lipid interactions at other site(s) remains poorly understood. Here we use native mass spectrometry (MS) to characterize MsbA-lipid interactions and guide structural studies. We show the transporter co-purifies with copper(II) and metal binding modulates protein-lipid interactions. A 2.15 Å resolution structure of an N-terminal region of MsbA in complex with copper(II) is presented, revealing a structure reminiscent of the GHK peptide, a high-affinity copper(II) chelator. Our results demonstrate conformation-dependent lipid binding affinities, particularly for the LPS-precursor, 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)2-lipid A (KDL). We report a 3.6 Å-resolution structure of MsbA trapped in an open, outward-facing conformation with adenosine 5'-diphosphate and vanadate, revealing a distinct KDL binding site, wherein the lipid forms extensive interactions with the transporter. Additional studies provide evidence that the exterior KDL binding site is conserved and a positive allosteric modulator of ATPase activity, serving as a feedforward activation mechanism to couple transporter activity with LPS biosynthesis.
Collapse
Affiliation(s)
- Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
| | - Chang Liu
- Department of Biochemistry and Molecular biology, University of Chicago, Chicago, 60637, IL, USA
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
| | - Nicklaus P Elam
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
| | - Charles Packianathan
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
- Walter Reed Army Institute of Research, Pilot Bioproduction Facility, Silver Spring, 20910, MD, USA
| | - Georg K A Hochberg
- Max Planck Institute for Terrestrial Microbiology and Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Department of Chemistry, University of Marburg, Marburg, Germany
| | - David Russell
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular biology, University of Chicago, Chicago, 60637, IL, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA.
| |
Collapse
|
21
|
Galazzo L, Meier G, Januliene D, Parey K, De Vecchis D, Striednig B, Hilbi H, Schäfer LV, Kuprov I, Moeller A, Bordignon E, Seeger MA. The ABC transporter MsbA adopts the wide inward-open conformation in E. coli cells. SCIENCE ADVANCES 2022; 8:eabn6845. [PMID: 36223470 PMCID: PMC9555771 DOI: 10.1126/sciadv.abn6845] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/24/2022] [Indexed: 05/28/2023]
Abstract
Membrane proteins are currently investigated after detergent extraction from native cellular membranes and reconstitution into artificial liposomes or nanodiscs, thereby removing them from their physiological environment. However, to truly understand the biophysical properties of membrane proteins in a physiological environment, they must be investigated within living cells. Here, we used a spin-labeled nanobody to interrogate the conformational cycle of the ABC transporter MsbA by double electron-electron resonance. Unexpectedly, the wide inward-open conformation of MsbA, commonly considered a nonphysiological state, was found to be prominently populated in Escherichia coli cells. Molecular dynamics simulations revealed that extensive lateral portal opening is essential to provide access of its large natural substrate core lipid A to the binding cavity. Our work paves the way to investigate the conformational landscape of membrane proteins in cells.
Collapse
Affiliation(s)
- Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Gianmarco Meier
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Dovile Januliene
- Department of Structural Biology, Osnabrück University, 49076 Osnabrück, Germany
| | - Kristian Parey
- Department of Structural Biology, Osnabrück University, 49076 Osnabrück, Germany
| | - Dario De Vecchis
- Center for Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Bianca Striednig
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Lars V. Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Arne Moeller
- Department of Structural Biology, Osnabrück University, 49076 Osnabrück, Germany
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Markus A. Seeger
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
22
|
Ekiert DC, Coudray N, Bhabha G. Structure and mechanism of the bacterial lipid ABC transporter, MlaFEDB. Curr Opin Struct Biol 2022; 76:102429. [PMID: 35981415 PMCID: PMC9509461 DOI: 10.1016/j.sbi.2022.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022]
Abstract
The cell envelope of Gram-negative bacteria is composed of an inner membrane, outer membane, and an intervening periplasmic space. How the outer membrane lipids are trafficked and assembled there, and how the asymmetry of the outer membrane is maintained is an area of intense research. The Mla system has been implicated in the maintenance of lipid asymmetry in the outer membrane, and is generally thought to drive the removal of mislocalized phospholipids from the outer membrane and their retrograde transport to the inner membrane. At the heart of the Mla pathway is a structurally unique ABC transporter complex in the inner membrane, called MlaFEDB. Recently, an explosion of cryo-EM studies has begun to shed light on the structure and lipid translocation mechanism of MlaFEDB, with many parallels to other ABC transporter families, including human ABCA and ABCG, as well as bacterial lipopolysaccharide and O-antigen transporters. Here we synthesize information from all available structures, and propose a model for lipid trafficking across the cell envelope by MlaFEDB.
Collapse
Affiliation(s)
- Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | - Nicolas Coudray
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
23
|
Kehlenbeck DM, Traore DAK, Josts I, Sander S, Moulin M, Haertlein M, Prevost S, Forsyth VT, Tidow H. Cryo-EM structure of MsbA in saposin-lipid nanoparticles (Salipro) provides insights into nucleotide coordination. FEBS J 2022; 289:2959-2970. [PMID: 34921499 DOI: 10.1111/febs.16327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 01/28/2023]
Abstract
The ATP-binding cassette transporter MsbA is a lipid flippase, translocating lipid A, glycolipids, and lipopolysaccharides from the inner to the outer leaflet of the inner membrane of Gram-negative bacteria. It has been used as a model system for time-resolved structural studies as several MsbA structures in different states and reconstitution systems (detergent/nanodiscs/peptidiscs) are available. However, due to the limited resolution of the available structures, detailed structural information on the bound nucleotides has remained elusive. Here, we have reconstituted MsbA in saposin A-lipoprotein nanoparticles (Salipro) and determined the structure of ADP-vanadate-bound MsbA by single-particle cryo-electron microscopy to 3.5 Å resolution. This procedure has resulted in significantly improved resolution and enabled us to model all side chains and visualise detailed ADP-vanadate interactions in the nucleotide-binding domains. The approach may be applicable to other dynamic membrane proteins.
Collapse
Affiliation(s)
- Dominique-Maurice Kehlenbeck
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR), Germany.,Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Germany.,Life Sciences Group, Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France
| | - Daouda A K Traore
- Life Sciences Group, Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France.,Faculty of Natural Sciences, Keele University, UK.,Faculté des Sciences et Techniques, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Inokentijs Josts
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR), Germany.,Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Germany
| | - Simon Sander
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR), Germany.,Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Germany
| | - Martine Moulin
- Life Sciences Group, Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France
| | - Michael Haertlein
- Life Sciences Group, Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France
| | - Sylvain Prevost
- Large Scale Structures Group, Institut Laue-Langevin, Grenoble, France
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France.,Faculty of Natural Sciences, Keele University, UK
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR), Germany
| |
Collapse
|
24
|
Structural insights into the catalytic cycle of a bacterial multidrug ABC efflux pump. J Mol Biol 2022; 434:167541. [DOI: 10.1016/j.jmb.2022.167541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
|
25
|
Zhang W, Huang J. EViS: An Enhanced Virtual Screening Approach Based on Pocket-Ligand Similarity. J Chem Inf Model 2022; 62:498-510. [PMID: 35084171 DOI: 10.1021/acs.jcim.1c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Virtual screening (VS) is a popular technology in drug discovery to identify a new scaffold of actives for a specific drug target, which can be classified into ligand-based and structure-based approaches. As the number of protein-ligand complex structures available in public databases increases, it would be possible to develop a template searching-based VS approach that utilizes such information. In this work, we proposed an enhanced VS approach, which is termed EViS, to integrate ligand docking, protein pocket template searching, and ligand template shape similarity calculation. A novel and simple PL-score to characterize local pocket-ligand template similarity was used to evaluate the screening compounds. Benchmark tests were performed on three datasets including DUDE, LIT-PCBA, and DEKOIS. EViS achieved the average enrichment factors (EFs) of 27.8 and 23.4 at a 1% cutoff for experimental and predicted structures on the widely used DUDE dataset, respectively. Detailed data analysis shows that EViS benefits from obtaining favorable ligand poses from docking and using such ligand geometric information to perform three-dimensional (3D) ligand similarity calculations, and the PL-score is efficient to screen compounds based on template searching in the protein-ligand structure database.
Collapse
Affiliation(s)
- Wenyi Zhang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
26
|
Stopped-flow-time-resolved SAXS for studies of ligand-driven protein dimerization. Methods Enzymol 2022; 677:251-262. [DOI: 10.1016/bs.mie.2022.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Checkpoints That Regulate Balanced Biosynthesis of Lipopolysaccharide and Its Essentiality in Escherichia coli. Int J Mol Sci 2021; 23:ijms23010189. [PMID: 35008618 PMCID: PMC8745692 DOI: 10.3390/ijms23010189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria, such as Escherichia coli, is essential for their viability. Lipopolysaccharide (LPS) constitutes the major component of OM, providing the permeability barrier, and a tight balance exists between LPS and phospholipids amounts as both of these essential components use a common metabolic precursor. Hence, checkpoints are in place, right from the regulation of the first committed step in LPS biosynthesis mediated by LpxC through its turnover by FtsH and HslUV proteases in coordination with LPS assembly factors LapB and LapC. After the synthesis of LPS on the inner leaflet of the inner membrane (IM), LPS is flipped by the IM-located essential ATP-dependent transporter to the periplasmic face of IM, where it is picked up by the LPS transport complex spanning all three components of the cell envelope for its delivery to OM. MsbA exerts its intrinsic hydrocarbon ruler function as another checkpoint to transport hexa-acylated LPS as compared to underacylated LPS. Additional checkpoints in LPS assembly are: LapB-assisted coupling of LPS synthesis and translocation; cardiolipin presence when LPS is underacylated; the recruitment of RfaH transcriptional factor ensuring the transcription of LPS core biosynthetic genes; and the regulated incorporation of non-stoichiometric modifications, controlled by the stress-responsive RpoE sigma factor, small RNAs and two-component systems.
Collapse
|
28
|
MsbA: an ABC transporter paradigm. Biochem Soc Trans 2021; 49:2917-2927. [PMID: 34821931 DOI: 10.1042/bst20211030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022]
Abstract
ATP-binding cassette (ABC) transporters play an important role in various cellular processes. They display a similar architecture and share a mechanism which couples ATP hydrolysis to substrate transport. However, in the light of current data and recent experimental progress, this protein superfamily appears as multifaceted as their broad substrate range. Among the prokaryotic ABC transporters, MsbA can serve as a paradigm for research in this field. It is located in the inner membrane of Gram-negative bacteria and functions as a floppase for the lipopolysaccharide (LPS) precursor core-LPS, which is involved in the biogenesis of the bacterial outer membrane. While MsbA shows high similarity to eukaryotic ABC transporters, its expression in Gram-negative bacteria makes it conveniently accessible for many experimental approaches from spectroscopy to 3D structure determination. As an essential protein for bacterial membrane integrity, MsbA has also become an attractive target for the development of novel antibiotics. Furthermore, it serves as a model for multidrug efflux pumps. Here we provide an overview of recent findings and their relevance to the field, highlight the potential of methods such as solid-state NMR and EPR spectroscopy and provide a perspective for future work.
Collapse
|