1
|
Li X, Duan T, Yang K, Yang B, Wang C, Tian X, Lu Q, Wang F. Mapping Temperate Savanna in Northeastern China Through Integrating UAV and Satellite Imagery. Sci Data 2025; 12:671. [PMID: 40263367 PMCID: PMC12015479 DOI: 10.1038/s41597-025-05012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/15/2025] [Indexed: 04/24/2025] Open
Abstract
Temperate savannas are globally distributed ecosystems that play a crucial role in regulating the global carbon cycle and significantly contribute to human livelihoods. This study aims to develop a novel method for identifying temperate savannas and to map their distribution in Northeastern China. To achieve this objective, Unmanned Aerial Vehicle (UAV) imagery was integrated with Sentinel-2 and Sentinel-1 satellite imagery using Random Forest (RF) regression and Classification and Regression Tree (CART) algorithms. The training and validation datasets were derived from UAV imagery covering a ground area of 5 × 107m2. The proposed method achieved an overall accuracy of 0.82 in identifying temperate savanna in Northeastern China, covering a total area of 1.7 × 1011 m2. The resulting map significantly improves understanding of the spatial distribution and extent of temperate savannas. The developed methodology establishes a framework for assessing regional and global savanna distributions in future studies.
Collapse
Affiliation(s)
- Xiaoya Li
- Institute of Desertification Studies, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
- Institute of Great Green Wall, Dengkou County, Bayan Nur, Inner Mongolia, 015200, China
| | - Tao Duan
- College of Resources and Environmental Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010010, China
| | - Kaijie Yang
- Institute of Desertification Studies, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
- Institute of Great Green Wall, Dengkou County, Bayan Nur, Inner Mongolia, 015200, China
| | - Bin Yang
- School of Electronics and Information Engineering, Wuxi University, Wuxi, Jiangsu, 214105, China
| | - Chunmei Wang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Xin Tian
- Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, 100091, China
| | - Qi Lu
- Institute of Desertification Studies, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
- Institute of Great Green Wall, Dengkou County, Bayan Nur, Inner Mongolia, 015200, China
| | - Feng Wang
- Institute of Desertification Studies, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, 100091, China.
- Institute of Great Green Wall, Dengkou County, Bayan Nur, Inner Mongolia, 015200, China.
| |
Collapse
|
2
|
Silveira FAO. Seven ways to prevent biomism. AMBIO 2025:10.1007/s13280-025-02155-3. [PMID: 39998738 DOI: 10.1007/s13280-025-02155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Biomism, the pervasive prejudice, discrimination or antagonism against a given biome, highlights critical and overlooked dimensions of human behavior biases that have consequences for real-world conservation. Here, I propose seven ways to end biomism in educational, scientific and conservation arenas, including (1) the recognition and value of all biomes, (2) use of inclusive language that acknowledges diverse perspectives, (3) preventing research prioritization based on colonial legacies, (4) tailoring biome-specific conservation, management and restoration, (5) adapting legislation to embrace all biomes, (6) developing inclusive regulatory measures and (7) equalizing funding opportunities. Recognizing and addressing biases against specific biomes is essential for fostering a more inclusive and equitable approach to conservation arenas and abandoning long-standing prejudices rooted in colonial legacies, aesthetic preferences and utilitarian views of nature.
Collapse
Affiliation(s)
- Fernando A O Silveira
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
3
|
Masters LE, Tomaszewska P, Schwarzacher T, Hackel J, Zuntini AR, Heslop-Harrison P, Vorontsova MS. Phylogenomic analysis reveals five independently evolved African forage grass clades in the genus Urochloa. ANNALS OF BOTANY 2024; 133:725-742. [PMID: 38365451 PMCID: PMC11082517 DOI: 10.1093/aob/mcae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND AIMS The grass genus Urochloa (Brachiaria) sensu lato includes forage crops that are important for beef and dairy industries in tropical and sub-tropical Africa, South America and Oceania/Australia. Economically important species include U. brizantha, U. decumbens, U. humidicola, U. mutica, U. arrecta, U. trichopus, U. mosambicensis and Megathyrsus maximus, all native to the African continent. Perennial growth habits, large, fast growing palatable leaves, intra- and interspecific morphological variability, apomictic reproductive systems and frequent polyploidy are widely shared within the genus. The combination of these traits probably favoured the selection for forage domestication and weediness, but trait emergence across Urochloa cannot be modelled, as a robust phylogenetic assessment of the genus has not been conducted. We aim to produce a phylogeny for Urochloa that includes all important forage species, and identify their closest wild relatives (crop wild relatives). Finally, we will use our phylogeny and available trait data to infer the ancestral states of important forage traits across Urochloa s.l. and model the evolution of forage syndromes across the genus. METHODS Using a target enrichment sequencing approach (Angiosperm 353), we inferred a species-level phylogeny for Urochloa s.l., encompassing 54 species (~40 % of the genus) and outgroups. Phylogenies were inferred using a multispecies coalescent model and maximum likelihood method. We determined the phylogenetic placement of agriculturally important species and identified their closest wild relatives, or crop wild relatives, based on well-supported monophyly. Further, we mapped key traits associated with Urochloa forage crops to the species tree and estimated ancestral states for forage traits along branch lengths for continuous traits and at ancestral nodes in discrete traits. KEY RESULTS Agricultural species belong to five independent clades, including U. brizantha and U. decumbens lying in a previously defined species complex. Crop wild relatives were identified for these clades supporting previous sub-generic groupings in Urochloa based on morphology. Using ancestral trait estimation models, we find that five morphological traits that correlate with forage potential (perennial growth habits, culm height, leaf size, a winged rachis and large seeds) independently evolved in forage clades. CONCLUSIONS Urochloa s.l. is a highly diverse genus that contains numerous species with agricultural potential, including crop wild relatives that are currently underexploited. All forage species and their crop wild relatives naturally occur on the African continent and their conservation across their native distributions is essential. Genomic and phenotypic diversity in forage clade species and their wild relatives need to be better assessed both to develop conservation strategies and to exploit the diversity in the genus for improved sustainability in Urochloa cultivar production.
Collapse
Affiliation(s)
- Lizo E Masters
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Paulina Tomaszewska
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Department of Genetics and Cell Physiology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jan Hackel
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
- Department of Biology, University of Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Alexandre R Zuntini
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Pat Heslop-Harrison
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Maria S Vorontsova
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| |
Collapse
|
4
|
McNicol IM, Keane A, Burgess ND, Bowers SJ, Mitchard ETA, Ryan CM. Protected areas reduce deforestation and degradation and enhance woody growth across African woodlands. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:392. [PMID: 38665189 PMCID: PMC11041809 DOI: 10.1038/s43247-023-01053-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/13/2023] [Indexed: 04/28/2024]
Abstract
Protected areas are increasingly promoted for their capacity to sequester carbon, alongside biodiversity benefits. However, we have limited understanding of whether they are effective at reducing deforestation and degradation, or promoting vegetation growth, and the impact that this has on changes to aboveground woody carbon stocks. Here we present a new satellite radar-based map of vegetation carbon change across southern Africa's woodlands and combine this with a matching approach to assess the effect of protected areas on carbon dynamics. We show that protection has a positive effect on aboveground carbon, with stocks increasing faster in protected areas (+0.53% per year) compared to comparable lands not under protection (+0.08% per year). The positive effect of protection reflects lower rates of deforestation (-39%) and degradation (-25%), as well as a greater prevalence of vegetation growth (+12%) inside protected lands. Areas under strict protection had similar outcomes to other types of protection after controlling for differences in location, with effect scores instead varying more by country, and the level of threat. These results highlight the potential for protected areas to sequester aboveground carbon, although we caution that in some areas this may have negative impacts on biodiversity, and human wellbeing.
Collapse
Affiliation(s)
- Iain M. McNicol
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF UK
| | - Aidan Keane
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF UK
| | - Neil D. Burgess
- United Nations Environment Programme – World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, CB3 0DL UK
- Centre for Macroecology, Evolution and Climate, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Samuel J. Bowers
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF UK
| | | | - Casey M. Ryan
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF UK
| |
Collapse
|
5
|
Senghor Y, Balde AB, Manga AG, Affholder F, Letourmy P, Bassene C, Kanfany G, Ndiaye M, Couedel A, Leroux L, Falconnier GN. Intercropping millet with low-density cowpea improves millet productivity for low and medium N input in semi-arid central Senegal. Heliyon 2023; 9:e17680. [PMID: 37483722 PMCID: PMC10359769 DOI: 10.1016/j.heliyon.2023.e17680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Cereal-legume intercropping has been traditionally practiced across West Africa by farmers and provides resilience of agriculture to climate variability. Intensification of these extensive intercropping systems in order to meet future food demand is critical. This study aims at evaluating the agronomic performance of the intensification of millet-cowpea intercropping with low cowpea density, and its variation with climate variability, using an on-station experiment in Bambey, Senegal. Two trials (irrigated vs rainfed) were set up to compare millet sole- and inter-cropping with a grain and a fodder variety of cowpea, in 2018 and 2019. Two levels of fertilization were tested: 0 kg(N) ha-1 and 69 kg(N) ha-1. The two cropping years were contrasting and water stress around flowering and/or during grain filling (indicated by the Fraction of Transpirable Soil Water) was higher in 2019 than in 2018 in the rainfed experiment. In both experiment and for all treatments, land equivalent ratio (LER) in the intercropping was 1.6 and 1.4 for grain and biomass respectively. Millet aboveground biomass was significantly higher in intercropping than in sole cropping in the irrigated experiment but not in the rainfed experiment. In the rainfed experiment, the interaction between cropping system and year was significant, so that millet aboveground biomass was greater in intercropping than in sole cropping in 2018 (year of lower water stress) but not in 2019 (year of higher water stress). The effect of fertilization on millet aboveground biomass did not significantly interact with cropping system (sole vs intercrop). For grain yield, fertilization interacted significantly with the cropping system in the irrigated trial: the benefits of intercropping on millet grain yield were greater with 69 kg(N) ha-1 than with 0 kg(N) ha-1. This significant interaction could not be observed in the rainfed trial, potentially due to water stress. These results show that the level of water stress (related here to the year and to the rainfed or irrigated experiment) and that of fertilization modulate the performance of millet-cowpea intercropping in the semi-arid context of Senegal. Overall, fertilization had a stronger effect on millet grain yield than intercropping. The two strategies (intercropping and mineral fertilization) can be complementary to achieve sustainable intensification of cropping system in semi-arid areas of West Africa.
Collapse
Affiliation(s)
- Yolande Senghor
- Département Productions Végétales et Agronomie, UFR des Sciences Agronomiques, de l’Aquaculture et des Technologies Alimentaires (S2ATA), Université Gaston Berger, B.P. 234, Saint Louis, Senegal
- CIRAD, UPR AIDA, F-34398, Montpellier, France
- ISRA-CNRA, BP53, Bambey, Senegal
| | - Alpha B. Balde
- ISRA-CNRA, BP53, Bambey, Senegal
- SODAGRI, Boulevard Djily Mbaye X Rue Macodou Ndiaye Immeuble Fahd 9e Etage, PO 222, Dakar, Senegal
| | - Anicet G.B. Manga
- Département Productions Végétales et Agronomie, UFR des Sciences Agronomiques, de l’Aquaculture et des Technologies Alimentaires (S2ATA), Université Gaston Berger, B.P. 234, Saint Louis, Senegal
| | - François Affholder
- CIRAD, UPR AIDA, Maputo, Mozambique
- AIDA, Univ Montpellier, CIRAD, Montpellier, France
| | - Philippe Letourmy
- CIRAD, UPR AIDA, F-34398, Montpellier, France
- AIDA, Univ Montpellier, CIRAD, Montpellier, France
| | - César Bassene
- Département Productions Végétales et Agronomie, UFR des Sciences Agronomiques, de l’Aquaculture et des Technologies Alimentaires (S2ATA), Université Gaston Berger, B.P. 234, Saint Louis, Senegal
| | - Ghislain Kanfany
- Département Productions Végétales et Agronomie, UFR des Sciences Agronomiques, de l’Aquaculture et des Technologies Alimentaires (S2ATA), Université Gaston Berger, B.P. 234, Saint Louis, Senegal
- ISRA-CNRA, BP53, Bambey, Senegal
| | | | - Antoine Couedel
- CIRAD, UPR AIDA, F-34398, Montpellier, France
- AIDA, Univ Montpellier, CIRAD, Montpellier, France
| | - Louise Leroux
- CIRAD, UPR AIDA, Nairobi, Kenya
- AIDA, Univ Montpellier, CIRAD, Montpellier, France
- IITA, Nairobi, Kenya
| | - Gatien N. Falconnier
- CIRAD, UPR AIDA, Harare, Zimbabwe
- AIDA, Univ Montpellier, CIRAD, Montpellier, France
- International Maize and Wheat Improvement Centre (CIMMYT)-Zimbabwe, 12.5 km Peg Mazowe Road, Harare, Zimbabwe
| |
Collapse
|
6
|
Pringle RM, Abraham JO, Anderson TM, Coverdale TC, Davies AB, Dutton CL, Gaylard A, Goheen JR, Holdo RM, Hutchinson MC, Kimuyu DM, Long RA, Subalusky AL, Veldhuis MP. Impacts of large herbivores on terrestrial ecosystems. Curr Biol 2023; 33:R584-R610. [PMID: 37279691 DOI: 10.1016/j.cub.2023.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Large herbivores play unique ecological roles and are disproportionately imperiled by human activity. As many wild populations dwindle towards extinction, and as interest grows in restoring lost biodiversity, research on large herbivores and their ecological impacts has intensified. Yet, results are often conflicting or contingent on local conditions, and new findings have challenged conventional wisdom, making it hard to discern general principles. Here, we review what is known about the ecosystem impacts of large herbivores globally, identify key uncertainties, and suggest priorities to guide research. Many findings are generalizable across ecosystems: large herbivores consistently exert top-down control of plant demography, species composition, and biomass, thereby suppressing fires and the abundance of smaller animals. Other general patterns do not have clearly defined impacts: large herbivores respond to predation risk but the strength of trophic cascades is variable; large herbivores move vast quantities of seeds and nutrients but with poorly understood effects on vegetation and biogeochemistry. Questions of the greatest relevance for conservation and management are among the least certain, including effects on carbon storage and other ecosystem functions and the ability to predict outcomes of extinctions and reintroductions. A unifying theme is the role of body size in regulating ecological impact. Small herbivores cannot fully substitute for large ones, and large-herbivore species are not functionally redundant - losing any, especially the largest, will alter net impact, helping to explain why livestock are poor surrogates for wild species. We advocate leveraging a broad spectrum of techniques to mechanistically explain how large-herbivore traits and environmental context interactively govern the ecological impacts of these animals.
Collapse
Affiliation(s)
- Robert M Pringle
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Joel O Abraham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - T Michael Anderson
- Department of Biology, Wake Forest University, Winston Salem, NC 27109, USA
| | - Tyler C Coverdale
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew B Davies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | - Jacob R Goheen
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82072, USA
| | - Ricardo M Holdo
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Matthew C Hutchinson
- Department of Life & Environmental Sciences, University of California Merced, Merced, CA 95343, USA
| | - Duncan M Kimuyu
- Department of Natural Resources, Karatina University, Karatina, Kenya
| | - Ryan A Long
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Amanda L Subalusky
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Michiel P Veldhuis
- Institute of Environmental Sciences, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
7
|
Pörtner HO, Scholes RJ, Arneth A, Barnes DKA, Burrows MT, Diamond SE, Duarte CM, Kiessling W, Leadley P, Managi S, McElwee P, Midgley G, Ngo HT, Obura D, Pascual U, Sankaran M, Shin YJ, Val AL. Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 2023; 380:eabl4881. [PMID: 37079687 DOI: 10.1126/science.abl4881] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Earth's biodiversity and human societies face pollution, overconsumption of natural resources, urbanization, demographic shifts, social and economic inequalities, and habitat loss, many of which are exacerbated by climate change. Here, we review links among climate, biodiversity, and society and develop a roadmap toward sustainability. These include limiting warming to 1.5°C and effectively conserving and restoring functional ecosystems on 30 to 50% of land, freshwater, and ocean "scapes." We envision a mosaic of interconnected protected and shared spaces, including intensively used spaces, to strengthen self-sustaining biodiversity, the capacity of people and nature to adapt to and mitigate climate change, and nature's contributions to people. Fostering interlinked human, ecosystem, and planetary health for a livable future urgently requires bold implementation of transformative policy interventions through interconnected institutions, governance, and social systems from local to global levels.
Collapse
Affiliation(s)
- H-O Pörtner
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - R J Scholes
- Global Change Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - A Arneth
- Atmospheric Environmental Research, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - D K A Barnes
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - M T Burrows
- Scottish Association for Marine Science, Oban, Argyll, UK
| | - S E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - C M Duarte
- Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Centre (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - W Kiessling
- Geozentrum Nordbayern, Friedrich-Alexander-Universität, Erlangen, Germany
| | - P Leadley
- Laboratoire d'Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91400 Orsay, France
| | - S Managi
- Urban Institute, Kyushu University, Fukuoka, Japan
| | - P McElwee
- Department of Human Ecology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - G Midgley
- Global Change Biology Group, Botany and Zoology Department, University of Stellenbosch, 7600 Stellenbosch, South Africa
| | - H T Ngo
- Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), Bonn, Germany
- Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome, Italy
| | - D Obura
- Coastal Oceans Research and Development-Indian Ocean (CORDIO) East Africa, Mombasa, Kenya
- Global Climate Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - U Pascual
- Basque Centre for Climate Change (BC3), Leioa, Spain
- Basque Foundation for Science (Ikerbasque), Bilbao, Spain
- Centre for Development and Environment, University of Bern, Bern, Switzerland
| | - M Sankaran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, Karnataka, India
| | - Y J Shin
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Institut de Recherche pour le Développement (IRD), Université Montpellier, Insititut Français de Recherche pour l'Exploitation de la Mer (IFREMER), CNRS, 34000 Montpellier, France
| | - A L Val
- Brazilian National Institute for Research of the Amazon, 69080-971 Manaus, Brazil
| |
Collapse
|
8
|
Wang Z, Liu X, Zhou W, Sinclair F, Shi L, Xu J, Gui H. Land use intensification in a dry-hot valley reduced the constraints of water content on soil microbial diversity and multifunctionality but increased CO 2 production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158397. [PMID: 36055510 DOI: 10.1016/j.scitotenv.2022.158397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Conversion of abandoned land (mainly savanna) into cropland generally occurs in fragile ecosystems such as dry-hot valleys (DHVs) in southwest China, with the intent of increasing land productivity and conducting ecological restoration. However, the effects of conversion on soil microbial communities and carbon turnover of savanna ecosystems remain unclear, since savannas could be a vital but overlooked carbon sink. To illustrate the ecological consequences of land-use change (LUC) for savanna ecosystems, a 1-year field experiment was conducted in DHVs of southwest China. The soil properties, microbial respiration, and metagenomics from two different land-use types (grassland and mango plantation) were examined to reveal the effects of regional LUC on soil C turnover and microbial traits. Conversion from degraded grassland into cropland increased the contribution of soil microclimate to the microbial community composition, reduced the constraints of soil water content (SWC), and further decreased nutrient availability. LUC reshaped the composition and structure of soil bacterial communities. Specifically, soil dominant microbes that belonged to Actinobacteria and Proteobacteria were significantly enriched by conversion, while rare microbes that belonged to a wider range of phyla were generally depleted, leading to an overall decrease in community diversity. In addition, LUC-induced changes in soil characteristics and microbial communities further decreased soil multifunctionality as well as the carbon use efficiency of microbes. Intensified microbial respiration and a significant increase in the soil CO2 efflux were observed following LUC, which could drive changes in soil microbial community composition and functions (such as growth and regeneration). In summary, through simultaneously reducing constraints on SWC and decreasing nutrient availability, conversion from degraded grassland to cropland in a DHV decreased soil microbial diversity and multifunctionality, and increased microbial respiration and soil CO2 efflux. Our study provides new insights for understanding the role and mechanisms of LUC in soil carbon turnover in ecologically fragile areas such as DHVs.
Collapse
Affiliation(s)
- Zhenghong Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wenjun Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Fergus Sinclair
- World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box 30677-00100, Nairobi, Kenya
| | - Lingling Shi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Heng Gui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|