1
|
Budnick A, Butoto E, Loschin N, Mainello‐Land A, Furgurson J, Brown R, Ferraro G, Alirigia R, Abugu M, Stokes R, Gillespie C, Speicher N. Questions and Consequences of Omics in Genetically Engineered Crop Regulation. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2025; 6:e70033. [PMID: 39967832 PMCID: PMC11832586 DOI: 10.1002/pei3.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/20/2025]
Abstract
In 2016, a National Academies of Sciences, Engineering, and Medicine advisory committee proposed omics technologies as one possible adequate response to the regulatory challenges posed by gene editing and synthetic biology. This paper presents a set of questions that would need to be answered to integrate omics experiments and data into crop regulatory systems. These questions concern both experimental practice and how omics-experimental and regulatory systems intersect. We anticipate that the chosen answers to these questions will impact the scientific validity, regulatory burden, and usefulness for forecasting risk in nuanced ways. In doing so, we conclude that the integration of omics technologies into regulatory systems poses an array of more-than-technical dilemmas whose management will require cross-sector collaboration and innovative approaches to socio-technical decision-making.
Collapse
Affiliation(s)
- Asa Budnick
- Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Eric Butoto
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Crop and Soil SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Nick Loschin
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Applied EcologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Amanda Mainello‐Land
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Jill Furgurson
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Rebekah Brown
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Food, Bioprocessing and Nutrition SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Greg Ferraro
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Agricultural and Resource EconomicsNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Rex Alirigia
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Modesta Abugu
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Horticultural ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ruthie Stokes
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
- BiochemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Christopher Gillespie
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Nolan Speicher
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Communication, Rhetoric, and Digital MediaNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
2
|
Polidoros A, Nianiou-Obeidat I, Tsakirpaloglou N, Petrou N, Deligiannidou E, Makri NM. Genome-Editing Products Line up for the Market: Will Europe Harvest the Benefits from Science and Innovation? Genes (Basel) 2024; 15:1014. [PMID: 39202374 PMCID: PMC11353485 DOI: 10.3390/genes15081014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies have revolutionized genome editing, significantly advancing the improvement of cultivated crop species. This review provides an overview of genome-edited crops that have either reached the market or received the necessary approvals but are not yet available to consumers. We analyze various genome-editing studies to understand the distribution of different genome-editing systems, the types of site-directed nucleases employed, and the geographical spread of these studies, with a specific focus on global and European contexts. Additionally, we examine the target crops involved. The review also outlines the multiple steps required for the legal acceptance of genome-edited crops within European jurisdictions. We conclude with suggestions for the future prospects of genome-editing research in Europe, aiming to streamline the approval process and enhance the development and adoption of genome-edited crops.
Collapse
Affiliation(s)
- Alexios Polidoros
- Laboratory of Genetics and Plant Breeding, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.N.-O.); (N.T.); (N.P.); (E.D.); (N.-M.M.)
| | | | | | | | | | | |
Collapse
|
3
|
Giddings LV. Overcoming Obstacles to Gene-Edited Solutions to Climate Challenges. Cold Spring Harb Perspect Biol 2024; 16:a041677. [PMID: 38151332 PMCID: PMC11293532 DOI: 10.1101/cshperspect.a041677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Gene editing and genetic modification hold enormous potential to deliver solutions to multiple climate change challenges. The most important rate-limiting obstacles impeding their development and deployment are not technical, but rather counterproductive policies and regulations. These are driven in part by the mistaken apprehension of widespread public opposition. These obstacles are described and solutions to overcoming them are presented.
Collapse
Affiliation(s)
- L Val Giddings
- Information Technology and Innovation Foundation, Washington, D.C. 20001, USA
| |
Collapse
|
4
|
Wang Y, Yang F, Fu Y, He X, Tian H, Yang L, Wu M, Cao J, Liu J. A point-of-care testing platform for on-site identification of genetically modified crops. LAB ON A CHIP 2024; 24:2622-2632. [PMID: 38644672 DOI: 10.1039/d4lc00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Genetically modified (GM) food is still highly controversial nowadays. Due to the disparate policies and attitudes worldwide, demands for a rapid, cost-effective and user-friendly GM crop identification method are increasingly significant for import administration, market supervision, etc. However, as the most-recognized methods, nucleic acid-based identification approaches require bulky instruments, long turn-around times and trained personnel, which are only suitable in laboratories. To fulfil the urgent needs of on-site testing, we develop a point-of-care testing platform that is able to identify 12 types of GM crops in less than 40 minutes without using laboratory settings. Our system integrates sample pre-treatment modules in a microfluidic chip, performs DNA amplification via a battery-powered portable kit, and presents results via eye-recognized colorimetric change. A paraffin-based reflow method and a slip plate-based fluid switch are developed to encapsulate and release amplification primers in individual microwells on demand, thus enabling identification of varied targets simultaneously. Our system offers an efficient, affordable and convenient tool for GM crop identification, thus it will not only benefit customs and market administration bureaus, but also satisfy demands of numerous consumers.
Collapse
Affiliation(s)
- Yangyang Wang
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Furui Yang
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yingyi Fu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xin He
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Haowei Tian
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Lili Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Mengxi Wu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Junshan Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
5
|
Kuzma J, Grieger K, Cimadori I, Cummings CL, Loschin N, Wei W. Parameters, practices, and preferences for regulatory review of emerging biotechnology products in food and agriculture. Front Bioeng Biotechnol 2023; 11:1256388. [PMID: 37840660 PMCID: PMC10569304 DOI: 10.3389/fbioe.2023.1256388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
This paper evaluates the U.S. regulatory review of three emerging biotechnology products according to parameters, practices, and endpoints of assessments that are important to stakeholders and publics. First, we present a summary of the literature on variables that are important to non-expert publics in governing biotech products, including ethical, social, policy process, and risk and benefit parameters. Second, we draw from our USDA-funded project results that surveyed stakeholders with subject matter expertise about their attitudes towards important risk, benefit, sustainability, and societal impact parameters for assessing novel agrifood technologies, including biotech. Third, we evaluate the regulatory assessments of three food and agricultural biotechnology case studies that have been reviewed under U.S. regulatory agencies and laws of the Coordinated Framework for the Regulation of Biotechnology, including gene-edited soybeans, beef cattle, and mustard greens. Evaluation of the regulatory review process was based on parameters identified in steps 1 and 2 which were deemed important to both publics and stakeholders. Based on this review, we then propose several policy options for U.S. federal agencies to strengthen their oversight processes to better align with a broader range of parameters to support sustainable agrifood products that rely on novel technologies. These policy options include 1) those that would not require new institutions or legal foundations (such as conducting Environmental Impact Statements and/or requiring a minimal level of safety data), 2) those that would require a novel institutional or cross-institutional framework (such as developing a publicly-available website and/or performing holistic sustainability assessments), and 3) those that would require the agencies to have additional legal authorities (such as requiring agencies to review biotech products according to a minimal set of health, environmental, and socio-economic parameters). Overall, the results of this analysis will be important for guiding policy practice and formulation in the regulatory assessment of emerging biotechnology products that challenge existing legal and institutional frameworks.
Collapse
Affiliation(s)
- Jennifer Kuzma
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- School of Public and International Affairs, North Carolina State University, Raleigh, NC, United States
| | - Khara Grieger
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- North Carolina Plant Science Initiative, North Carolina State University, Raleigh, NC, United States
| | - Ilaria Cimadori
- Yale School of the Environment, Yale University, New Haven, CT, United States
| | - Christopher L. Cummings
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Engineering Research and Development Center, United States Army Corps of Engineers, Vicksburg, MS, United States
- Gene Edited Foods Project, Iowa State University, Ames, IA, United States
| | - Nick Loschin
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- North Carolina Plant Science Initiative, North Carolina State University, Raleigh, NC, United States
| | - Wei Wei
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- North Carolina Plant Science Initiative, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
6
|
Furgurson J, Loschin N, Butoto E, Abugu M, Gillespie CJ, Brown R, Ferraro G, Speicher N, Stokes R, Budnick A, Geist K, Alirigia R, Andrews A, Mainello A. Seizing the policy moment in crop biotech regulation: an interdisciplinary response to the Executive Order on biotechnology. Front Bioeng Biotechnol 2023; 11:1241537. [PMID: 37609116 PMCID: PMC10441231 DOI: 10.3389/fbioe.2023.1241537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Affiliation(s)
- Jill Furgurson
- North Carolina State University Forestry and Environmental Resources, Raleigh, NC, United States
- North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States
| | - Nick Loschin
- North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States
- North Carolina State University Applied Ecology, Raleigh, NC, United States
| | - Eric Butoto
- North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States
- North Carolina State University Crop and Soil Sciences, Raleigh, NC, United States
| | - Modesta Abugu
- North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States
- North Carolina State University Horticultural Science, Raleigh, NC, United States
| | - Christopher J. Gillespie
- North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States
- North Carolina State University Entomology and Plant Pathology, Raleigh, NC, United States
| | - Rebekah Brown
- North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States
- North Carolina State University Food, Bioprocessing and Nutrition Sciences, Raleigh, NC, United States
| | - Greg Ferraro
- North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States
- North Carolina State University Agricultural and Resource Economics, Raleigh, NC, United States
| | - Nolan Speicher
- North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States
- North Carolina State University Communication, Rhetoric, and Digital Media, Raleigh, NC, United States
| | - Ruthie Stokes
- North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States
- North Carolina State University Biochemistry, Raleigh, NC, United States
| | - Asa Budnick
- North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States
- North Carolina State University Plant Biology, Raleigh, NC, United States
| | - Katrina Geist
- North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States
- North Carolina State University Anthropology, Raleigh, NC, United States
| | - Rex Alirigia
- North Carolina State University Forestry and Environmental Resources, Raleigh, NC, United States
- North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States
| | - Amaja Andrews
- North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States
- North Carolina State University Anthropology, Raleigh, NC, United States
| | - Amanda Mainello
- North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States
- North Carolina State University Entomology and Plant Pathology, Raleigh, NC, United States
| |
Collapse
|
7
|
Drapal M, Enfissi EMA, Almeida J, Rapacz E, Nogueira M, Fraser PD. The potential of metabolomics in assessing global compositional changes resulting from the application of CRISPR/Cas9 technologies. Transgenic Res 2023; 32:265-278. [PMID: 37166587 DOI: 10.1007/s11248-023-00347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/03/2023] [Indexed: 05/12/2023]
Abstract
Exhaustive analysis of genetically modified crops over multiple decades has increased societal confidence in the technology. New Plant Breeding Techniques are now emerging with improved precision and the ability to generate products containing no foreign DNA and mimic/replicate conventionally bred varieties. In the present study, metabolomic analysis was used to compare (i) tobacco genotypes with and without the CRISPR associated protein 9 (Cas9), (ii) tobacco lines with the edited and non-edited DE-ETIOLATED-1 gene without phenotype and (iii) leaf and fruit tissue from stable non-edited tomato progeny with and without the Cas9. In all cases, multivariate analysis based on the difference test using LC-HRMS/MS and GC-MS data indicated no significant difference in their metabolomes. The variations in metabolome composition that were evident could be associated with the processes of tissue culture regeneration and/or transformation (e.g. interaction with Agrobacterium). Metabolites responsible for the variance included quantitative changes of abundant, well characterised metabolites such as phenolics (e.g. chlorogenic acid) and several common sugars such as fructose. This study provides fundamental data on the characterisation of gene edited crops, that are important for the evaluation of the technology and its assessment. The approach also suggests that metabolomics could contribute to routine product-based analysis of crops/foods generated from New Plant Breeding approaches.
Collapse
Affiliation(s)
- Margit Drapal
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Eugenia M A Enfissi
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | | | - Elzbieta Rapacz
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Marilise Nogueira
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK.
| |
Collapse
|
8
|
Schneider K, Barreiro-Hurle J, Vossen J, Schouten HJ, Kessel G, Andreasson E, Kieu NP, Strassemeyer J, Hristov J, Rodriguez-Cerezo E. Insights on cisgenic plants with durable disease resistance under the European Green Deal. Trends Biotechnol 2023; 41:1027-1040. [PMID: 37419837 DOI: 10.1016/j.tibtech.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 07/09/2023]
Abstract
Significant shares of harvests are lost to pests and diseases, therefore, minimizing these losses could solve part of the supply constraints to feed the world. Cisgenesis is defined as the insertion of genetic material into a recipient organism from a donor that is sexually compatible. Here, we review (i) conventional plant breeding, (ii) cisgenesis, (iii) current pesticide-based disease management, (iv) potential economic implications of cultivating cisgenic crops with durable disease resistances, and (v) potential environmental implications of cultivating such crops; focusing mostly on potatoes, but also apples, with resistances to Phytophthora infestans and Venturia inaequalis, respectively. Adopting cisgenic varieties could provide benefits to farmers and to the environment through lower pesticide use, thus contributing to the European Green Deal target.
Collapse
Affiliation(s)
- Kevin Schneider
- Joint Research Centre, European Commission, Calle Inca Garcilaso 3, 41092, Sevilla, Spain.
| | - Jesus Barreiro-Hurle
- Joint Research Centre, European Commission, Calle Inca Garcilaso 3, 41092, Sevilla, Spain
| | - Jack Vossen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6700, AJ, Wageningen, The Netherlands
| | - Henk J Schouten
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6700, AJ, Wageningen, The Netherlands
| | - Geert Kessel
- Field Crops, Wageningen University & Research, Edelhertweg 1, 8219, PH, Lelystad, The Netherlands
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp Campus, Sweden
| | - Nam Phuong Kieu
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp Campus, Sweden
| | - Jörn Strassemeyer
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Strategies and Technology Assessment, 14532, Kleinmachnow, Germany
| | - Jordan Hristov
- Joint Research Centre, European Commission, Calle Inca Garcilaso 3, 41092, Sevilla, Spain
| | | |
Collapse
|
9
|
Wei W, Stewart CN. Biosafety and Ecological Assessment of Genetically Engineered and Edited Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:2551. [PMID: 37447112 DOI: 10.3390/plants12132551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Nearly three decades have passed since the first commercial cultivation of genetically engineered (GE) crops [...].
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Charles Neal Stewart
- Department of Plant Sciences and Center for Agricultural Synthetic Biology, 112 Plant Biotechnology Building, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
10
|
Eckerstorfer MF, Dolezel M, Engelhard M, Giovannelli V, Grabowski M, Heissenberger A, Lener M, Reichenbecher W, Simon S, Staiano G, Wüst Saucy AG, Zünd J, Lüthi C. Recommendations for the Assessment of Potential Environmental Effects of Genome-Editing Applications in Plants in the EU. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091764. [PMID: 37176822 PMCID: PMC10180588 DOI: 10.3390/plants12091764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
The current initiative of the European Commission (EC) concerning plants produced using certain new genomic techniques, in particular, targeted mutagenesis and cisgenesis, underlines that a high level of protection for human and animal health and the environment needs to be maintained when using such applications. The current EU biosafety regulation framework ensures a high level of protection with a mandatory environmental risk assessment (ERA) of genetically modified (GM) products prior to the authorization of individual GMOs for environmental release or marketing. However, the guidance available from the European Food Safety Authority (EFSA) for conducting such an ERA is not specific enough regarding the techniques under discussion and needs to be further developed to support the policy goals towards ERA, i.e., a case-by-case assessment approach proportionate to the respective risks, currently put forward by the EC. This review identifies important elements for the case-by-case approach for the ERA that need to be taken into account in the framework for a risk-oriented regulatory approach. We also discuss that the comparison of genome-edited plants with plants developed using conventional breeding methods should be conducted at the level of a scientific case-by-case assessment of individual applications rather than at a general, technology-based level. Our considerations aim to support the development of further specific guidance for the ERA of genome-edited plants.
Collapse
Affiliation(s)
- Michael F Eckerstorfer
- Umweltbundesamt-Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria
| | - Marion Dolezel
- Umweltbundesamt-Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria
| | - Margret Engelhard
- Federal Agency for Nature Conservation, Division of Assessment of GMOs/Enforcement of Genetic Engineering Act, Konstantinstr. 110, 53179 Bonn, Germany
| | - Valeria Giovannelli
- ISPRA (Italian Institute for Environmental Protection and Research), Department for Environmental Monitoring and Protection and for Biodiversity Conservation, Via Vitaliano Brancati, 48, 00144 Rome, Italy
| | - Marcin Grabowski
- Ministry of Climate and Environment, Department Nature Conservation, GMO Unit, Wawelska 52/54, 00-922 Warsaw, Poland
| | - Andreas Heissenberger
- Umweltbundesamt-Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria
| | - Matteo Lener
- ISPRA (Italian Institute for Environmental Protection and Research), Department for Environmental Monitoring and Protection and for Biodiversity Conservation, Via Vitaliano Brancati, 48, 00144 Rome, Italy
| | - Wolfram Reichenbecher
- Federal Agency for Nature Conservation, Division of Assessment of GMOs/Enforcement of Genetic Engineering Act, Konstantinstr. 110, 53179 Bonn, Germany
| | - Samson Simon
- Federal Agency for Nature Conservation, Division of Assessment of GMOs/Enforcement of Genetic Engineering Act, Konstantinstr. 110, 53179 Bonn, Germany
| | - Giovanni Staiano
- ISPRA (Italian Institute for Environmental Protection and Research), Department for Environmental Monitoring and Protection and for Biodiversity Conservation, Via Vitaliano Brancati, 48, 00144 Rome, Italy
| | - Anne Gabrielle Wüst Saucy
- Federal Office for the Environment (FOEN), Biotechnology Section, Soil and Biotechnology Division, 3003 Bern, Switzerland
| | - Jan Zünd
- Federal Office for the Environment (FOEN), Biotechnology Section, Soil and Biotechnology Division, 3003 Bern, Switzerland
| | - Christoph Lüthi
- Federal Office for the Environment (FOEN), Biotechnology Section, Soil and Biotechnology Division, 3003 Bern, Switzerland
| |
Collapse
|
11
|
Sustek-Sánchez F, Rognli OA, Rostoks N, Sõmera M, Jaškūnė K, Kovi MR, Statkevičiūtė G, Sarmiento C. Improving abiotic stress tolerance of forage grasses - prospects of using genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1127532. [PMID: 36824201 PMCID: PMC9941169 DOI: 10.3389/fpls.2023.1127532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Due to an increase in the consumption of food, feed, and fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to obtain high-yielding crops that can adapt to future climate changes. Currently, the main feed source used for ruminant livestock production is forage grasses. In temperate climate zones, perennial grasses grown for feed are widely distributed and tend to suffer under unfavorable environmental conditions. Genome editing has been shown to be an effective tool for the development of abiotic stress-resistant plants. The highly versatile CRISPR-Cas system enables increasingly complex modifications in genomes while maintaining precision and low off-target frequency mutations. In this review, we provide an overview of forage grass species that have been subjected to genome editing. We offer a perspective view on the generation of plants resilient to abiotic stresses. Due to the broad factors contributing to these stresses the review focuses on drought, salt, heat, and cold stresses. The application of new genomic techniques (e.g., CRISPR-Cas) allows addressing several challenges caused by climate change and abiotic stresses for developing forage grass cultivars with improved adaptation to the future climatic conditions. Genome editing will contribute towards developing safe and sustainable food systems.
Collapse
Affiliation(s)
- Ferenz Sustek-Sánchez
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Odd Arne Rognli
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Nils Rostoks
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristina Jaškūnė
- Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Mallikarjuna Rao Kovi
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gražina Statkevičiūtė
- Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
12
|
Dwivedi SL, Garcia-Oliveira AL, Govindaraj M, Ortiz R. Biofortification to avoid malnutrition in humans in a changing climate: Enhancing micronutrient bioavailability in seed, tuber, and storage roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1119148. [PMID: 36794214 PMCID: PMC9923027 DOI: 10.3389/fpls.2023.1119148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Malnutrition results in enormous socio-economic costs to the individual, their community, and the nation's economy. The evidence suggests an overall negative impact of climate change on the agricultural productivity and nutritional quality of food crops. Producing more food with better nutritional quality, which is feasible, should be prioritized in crop improvement programs. Biofortification refers to developing micronutrient -dense cultivars through crossbreeding or genetic engineering. This review provides updates on nutrient acquisition, transport, and storage in plant organs; the cross-talk between macro- and micronutrients transport and signaling; nutrient profiling and spatial and temporal distribution; the putative and functionally characterized genes/single-nucleotide polymorphisms associated with Fe, Zn, and β-carotene; and global efforts to breed nutrient-dense crops and map adoption of such crops globally. This article also includes an overview on the bioavailability, bioaccessibility, and bioactivity of nutrients as well as the molecular basis of nutrient transport and absorption in human. Over 400 minerals (Fe, Zn) and provitamin A-rich cultivars have been released in the Global South. Approximately 4.6 million households currently cultivate Zn-rich rice and wheat, while ~3 million households in sub-Saharan Africa and Latin America benefit from Fe-rich beans, and 2.6 million people in sub-Saharan Africa and Brazil eat provitamin A-rich cassava. Furthermore, nutrient profiles can be improved through genetic engineering in an agronomically acceptable genetic background. The development of "Golden Rice" and provitamin A-rich dessert bananas and subsequent transfer of this trait into locally adapted cultivars are evident, with no significant change in nutritional profile, except for the trait incorporated. A greater understanding of nutrient transport and absorption may lead to the development of diet therapy for the betterment of human health.
Collapse
Affiliation(s)
| | - Ana Luísa Garcia-Oliveira
- International Maize and Wheat Research Center, Centro Internacional de Mejoramiento de Maíz. y Trigo (CIMMYT), Nairobi, Kenya
- Department of Molecular Biology, College of Biotechnology, CCS Haryana Agricultural University, Hissar, India
| | - Mahalingam Govindaraj
- HarvestPlus Program, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
13
|
Biohacking the food chain: using CRISPR to combat the global food crisis. Biotechniques 2022; 73:159-161. [PMID: 36205133 DOI: 10.2144/btn-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
[Formula: see text] Standfirst: To feed an ever-growing population in an increasingly volatile climate, new technologies are required; is CRISPR the key to reducing food waste and creating climate change-proof crops?
Collapse
|