1
|
Faure G, Saito M, Wilkinson ME, Quinones-Olvera N, Xu P, Flam-Shepherd D, Kim S, Reddy N, Zhu S, Evgeniou L, Koonin EV, Macrae RK, Zhang F. TIGR-Tas: A family of modular RNA-guided DNA-targeting systems in prokaryotes and their viruses. Science 2025; 388:eadv9789. [PMID: 40014690 PMCID: PMC12045711 DOI: 10.1126/science.adv9789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
RNA-guided systems provide remarkable versatility, enabling diverse biological functions. Through iterative structural and sequence homology-based mining starting with a guide RNA-interaction domain of Cas9, we identified a family of RNA-guided DNA-targeting proteins in phage and parasitic bacteria. Each system consists of a tandem interspaced guide RNA (TIGR) array and a TIGR-associated (Tas) protein containing a nucleolar protein (Nop) domain, sometimes fused to HNH (TasH)- or RuvC (TasR)-nuclease domains. We show that TIGR arrays are processed into 36-nucleotide RNAs (tigRNAs) that direct sequence-specific DNA binding through a tandem-spacer targeting mechanism. TasR can be reprogrammed for precise DNA cleavage, including in human cells. The structure of TasR reveals striking similarities to box C/D small nucleolar ribonucleoproteins and IS110 RNA-guided transposases, providing insights into the evolution of diverse RNA-guided systems.
Collapse
Affiliation(s)
- Guilhem Faure
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Makoto Saito
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Max E. Wilkinson
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Natalia Quinones-Olvera
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Peiyu Xu
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Daniel Flam-Shepherd
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Stephanie Kim
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Nishith Reddy
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Shiyou Zhu
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Lilia Evgeniou
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
- Department of Systems Biology, Harvard University; Boston, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Rhiannon K. Macrae
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| |
Collapse
|
2
|
Lin CP, Li H, Brogan DJ, Wang T, Akbari OS, Komives E. CRISPR RNA binding drives structural ordering that primes Cas7-11 for target cleavage. Nucleic Acids Res 2025; 53:gkaf271. [PMID: 40226913 PMCID: PMC11995262 DOI: 10.1093/nar/gkaf271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/19/2025] [Accepted: 03/30/2025] [Indexed: 04/15/2025] Open
Abstract
Type III-E CRISPR-Cas effectors, referred to as Cas7-11 or giant Repeat-Associated Mysterious Protein, are single proteins that cleave target RNAs (tgRNAs) without nonspecific collateral cleavage, opening new possibilities for RNA editing. Here, biochemical assays combined with amide hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments reveal the dynamics of apo Cas7-11. The HDX-MS results suggest a mechanism by which CRISPR RNA (crRNA) stabilizes the folded state of the protein and subsequent tgRNA binding remodels it to the active form. HDX-MS shows that the four Cas7 RNA recognition motif (RRM) folds are well-folded, but insertion sequences, including disordered catalytic loops and β-hairpins of the Cas7.2/Cas7.3 active sites, fold upon binding crRNA leading to stronger interactions at domain-domain interfaces, and folding of the Cas7.1 processing site. TgRNA binding causes conformational changes around the catalytic loops of Cas7.2 and Cas7.3. We show that Cas7-11 cannot independently process the CRISPR array and that binding of partially processed crRNA induces multiple states in Cas7-11 and reduces tgRNA cleavage. The insertion domain interacts most stably with mature crRNA. Finally, we show a crRNA-induced conformational change in one of the tetratricopeptide repeat fused with Cas/HEF1-associated signal transducer (TPR-CHAT) binding sites providing an explanation for why crRNA binding facilitates TPR-CHAT binding.
Collapse
Affiliation(s)
- Calvin P Lin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States
| | - Harry Li
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States
| | - Daniel J Brogan
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093, United States
| | - Tianqi Wang
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093, United States
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093, United States
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
3
|
Rousset F, Osterman I, Scherf T, Falkovich AH, Leavitt A, Amitai G, Shir S, Malitsky S, Itkin M, Savidor A, Sorek R. TIR signaling activates caspase-like immunity in bacteria. Science 2025; 387:510-516. [PMID: 39883761 DOI: 10.1126/science.adu2262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/30/2024] [Indexed: 02/01/2025]
Abstract
Caspase family proteases and Toll/interleukin-1 receptor (TIR)-domain proteins have central roles in innate immunity and regulated cell death in humans. We describe a bacterial immune system comprising both a caspase-like protease and a TIR-domain protein. We found that the TIR protein, once it recognizes phage invasion, produces the previously unknown immune signaling molecule adenosine 5'-diphosphate-cyclo[N7:1'']-ribose (N7-cADPR). This molecule specifically activates the bacterial caspase-like protease, which then indiscriminately degrades cellular proteins to halt phage replication. The TIR-caspase defense system, which we denote as type IV Thoeris, is abundant in bacteria and efficiently protects against phage propagation. Our study highlights the diversity of TIR-produced immune signaling molecules and demonstrates that cell death regulated by proteases of the caspase family is an ancient mechanism of innate immunity.
Collapse
Affiliation(s)
- François Rousset
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ilya Osterman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Scherf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Alla H Falkovich
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Azita Leavitt
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sapir Shir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Jiang G, Gao Y, Zhou N, Wang B. CRISPR-powered RNA sensing in vivo. Trends Biotechnol 2024; 42:1601-1614. [PMID: 38734565 DOI: 10.1016/j.tibtech.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/13/2024]
Abstract
RNA sensing in vivo evaluates past or ongoing endogenous RNA disturbances, which is crucial for identifying cell types and states and diagnosing diseases. Recently, the CRISPR-driven genetic circuits have offered promising solutions to burgeoning challenges in RNA sensing. This review delves into the cutting-edge developments of CRISPR-powered RNA sensors in vivo, reclassifying these RNA sensors into four categories based on their working mechanisms, including programmable reassembly of split single-guide RNA (sgRNA), RNA-triggered RNA processing and protein cleavage, miRNA-triggered RNA interference (RNAi), and strand displacement reactions. Then, we discuss the advantages and challenges of existing methodologies in diverse application scenarios and anticipate and analyze obstacles and opportunities in forthcoming practical implementations.
Collapse
Affiliation(s)
- Guo Jiang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, Zhejiang, China
| | - Yuanli Gao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, Zhejiang, China; School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Nan Zhou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, Zhejiang, China
| | - Baojun Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, Zhejiang, China.
| |
Collapse
|
5
|
Smalakyte D, Ruksenaite A, Sasnauskas G, Tamulaitiene G, Tamulaitis G. Filament formation activates protease and ring nuclease activities of CRISPR Lon-SAVED. Mol Cell 2024; 84:4239-4255.e8. [PMID: 39362215 DOI: 10.1016/j.molcel.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/22/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024]
Abstract
To combat phage infection, type III CRISPR-Cas systems utilize cyclic oligoadenylates (cAn) signaling to activate various auxiliary effectors, including the CRISPR-associated Lon-SAVED protease CalpL, which forms a tripartite effector system together with an anti-σ factor, CalpT, and an ECF-like σ factor, CalpS. Here, we report the characterization of the Candidatus Cloacimonas acidaminovorans CalpL-CalpT-CalpS. We demonstrate that cA4 binding triggers CalpL filament formation and activates it to cleave CalpT within the CalpT-CalpS dimer. This cleavage exposes the CalpT C-degron, which targets it for further degradation by cellular proteases. Consequently, CalpS is released to bind to RNA polymerase, causing growth arrest in E. coli. Furthermore, the CalpL-CalpT-CalpS system is regulated by the SAVED domain of CalpL, which is a ring nuclease that cleaves cA4 in a sequential three-step mechanism. These findings provide key mechanistic details for the activation, proteolytic events, and regulation of the signaling cascade in the type III CRISPR-Cas immunity.
Collapse
Affiliation(s)
- Dalia Smalakyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Audrone Ruksenaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania.
| |
Collapse
|
6
|
Hosseini SA, Elahian F, Mirzaei SA. Innovative genetic scissor strategies and their applications in cancer treatment and prevention: CRISPR modules and challenges. Int J Biol Macromol 2024; 279:135239. [PMID: 39218175 DOI: 10.1016/j.ijbiomac.2024.135239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
There are lots of gene editing tools for targeting genome sequences. Some are almost known, and most are a complete mystery and undiscovered. CRISPR/Cas editing tools have brought about a major revolution in medicine. Researchers have shown that CRISPR can modify DNA much more accurately, economically and easily than previous methods. CRISPR has proven itself effective for the deletion, replacement and insertion of DNA fragments into cell types, tissues and organisms. Recently, combining CRISPR/Cas with factors (transcription factors/repressors, exonucleases, endonucleases, transposons, caspase, fluorescent proteins, oxidoreductive enzymes, DNA/RNA polymerases), and elements (aptamers, barcodes, fluorescent probes, Trigger) have provided genome, transcriptome, proteome and epigenome modification. These modules are being investigated for cancer prevention and therapy and this review focuses on such innovative combinations that hopefully will become a clinical reality in the near future.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
7
|
Bernal-Bernal D, Pantoja-Uceda D, López-Alonso JP, López-Rojo A, López-Ruiz JA, Galbis-Martínez M, Ochoa-Lizarralde B, Tascón I, Elías-Arnanz M, Ubarretxena-Belandia I, Padmanabhan S. Structural basis for regulation of a CBASS-CRISPR-Cas defense island by a transmembrane anti-σ factor and its ECF σ partner. SCIENCE ADVANCES 2024; 10:eadp1053. [PMID: 39454004 PMCID: PMC11506125 DOI: 10.1126/sciadv.adp1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
How CRISPR-Cas and cyclic oligonucleotide-based antiphage signaling systems (CBASS) are coordinately deployed against invaders remains unclear. We show that a locus containing two CBASS and one type III-B CRISPR-Cas system, regulated by the transmembrane anti-σ DdvA and its cognate extracytoplasmic function (ECF) σ DdvS, can defend Myxococcus xanthus against a phage. Cryo-electron microscopy reveals DdvA-DdvS pairs assemble as arrow-shaped transmembrane dimers. Each DdvA periplasmic domain adopts a separase/craspase-type tetratricopeptide repeat (TPR)-caspase HetF-associated with TPR (TPR-CHAT) architecture with an incomplete His-Cys active site, lacking three α-helices conserved among CHAT domains. Each active site faces the dimer interface, raising the possibility that signal-induced caspase-like DdvA autoproteolysis in trans precedes RseP-mediated intramembrane proteolysis and DdvS release. Nuclear magnetic resonance reveals a DdvA cytoplasmic CHCC-type zinc-bound three-helix bundle that binds to DdvS σ2 and σ4 domains, undergoing σ4-induced helix extension to trap DdvS. Altogether, we provide structural-mechanistic insights into membrane anti-σ-ECF σ regulation of an antiviral CBASS-CRISPR-Cas defense island.
Collapse
Affiliation(s)
- Diego Bernal-Bernal
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
- Instituto de Química Física “Blas Cabrera,” CSIC (IQF-CSIC), 28006 Madrid, Spain
- Instituto Biofisika (UPV/EHU, CSIC), 48940 Leioa, Spain
| | - David Pantoja-Uceda
- Instituto de Química Física “Blas Cabrera,” CSIC (IQF-CSIC), 28006 Madrid, Spain
| | | | - Alfonso López-Rojo
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | - José Antonio López-Ruiz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | - Marisa Galbis-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | | | - Igor Tascón
- Instituto Biofisika (UPV/EHU, CSIC), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (UPV/EHU, CSIC), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - S. Padmanabhan
- Instituto de Química Física “Blas Cabrera,” CSIC (IQF-CSIC), 28006 Madrid, Spain
| |
Collapse
|
8
|
Zhang M, Zhang X, Xu Y, Xiang Y, Zhang B, Xie Z, Wu Q, Lou C. High-resolution and programmable RNA-IN and RNA-OUT genetic circuit in living mammalian cells. Nat Commun 2024; 15:8768. [PMID: 39384754 PMCID: PMC11464720 DOI: 10.1038/s41467-024-52962-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
RNAs and their encoded proteins intricately regulate diverse cell types and states within the human body. Dysregulated RNA expressions or mutations can lead to various diseased cell states, including tumorigenesis. Detecting and manipulating these endogenous RNAs offers significant promise for restoring healthy cell states and targeting tumors both in research and clinical contexts. This study presents an RNA-IN and RNA-OUT genetic circuit capable dynamically sensing and manipulating any RNA target in a programmable manner. The RNA-IN module employes a programmable CRISPR-associated protease (CASP) complex for RNA detection, while the RNA-OUT module utilizes an engineered protease-responsive dCas9-VPR activator. Additionally, the CASP module can detect point mutations by harnessing an uncovered dual-nucleotide synergistic switching effect within the CASP complex, resulting in the amplification of point-mutation signals from initially undetectable levels (1.5-fold) to a remarkable 94-fold. We successfully showcase the circuit's ability to rewire endogenous RNA-IN signals to activate endogenous progesterone biosynthesis pathway, dynamically monitor adipogenic differentiation of mesenchymal stem cells (MSCs) and the epithelial-to-mesenchmal trans-differentiation, as well as selective killing of tumor cells. The programmable RNA-IN and RNA-OUT circuit exhibits tremendous potential for applications in gene therapy, biosensing and design of synthetic regulatory networks.
Collapse
Affiliation(s)
- Min Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xue Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yongyue Xu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanhui Xiang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bo Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chunbo Lou
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Binder S, Schneberger N, Schmitz M, Engeser M, Geyer M, Rouillon C, Hagelueken G. The SAVED domain of the type III CRISPR protease CalpL is a ring nuclease. Nucleic Acids Res 2024; 52:10520-10532. [PMID: 39166476 PMCID: PMC11417357 DOI: 10.1093/nar/gkae676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024] Open
Abstract
Prokaryotic CRISPR-Cas immune systems detect and cleave foreign nucleic acids. In type III CRISPR-Cas systems, the Cas10 subunit of the activated recognition complex synthesizes cyclic oligoadenylates (cOAs), second messengers that activate downstream ancillary effector proteins. Once the viral attack has been weathered, elimination of extant cOA is essential to limit the antiviral response and to allow cellular recovery. Various families of ring nucleases have been identified, specializing in the degradation of cOAs either as standalone enzymes or as domains of effector proteins. Here we describe the ring nuclease activity inherent in the SAVED domain of the cA4-activated CRISPR Lon protease CalpL. We characterize the kinetics of cA4 cleavage and identify key catalytic residues. We demonstrate that cA4-induced oligomerization of CalpL is essential not only for activation of the protease, but is also required for nuclease activity. Further, the nuclease activity of CalpL poses a limitation to the protease reaction, indicating a mechanism for regulation of the CalpL/T/S signaling cascade. This work is the first demonstration of a catalytic SAVED domain and gives new insights into the dynamics of transcriptional adaption in CRISPR defense systems.
Collapse
Affiliation(s)
- Sophie C Binder
- Institute of Structural Biology, Venusberg-Campus 1, University of Bonn, Bonn, Germany
| | - Niels Schneberger
- Institute of Structural Biology, Venusberg-Campus 1, University of Bonn, Bonn, Germany
| | - Maximilian Schmitz
- Institute of Structural Biology, Venusberg-Campus 1, University of Bonn, Bonn, Germany
| | - Marianne Engeser
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, Venusberg-Campus 1, University of Bonn, Bonn, Germany
| | - Christophe Rouillon
- Institut Pasteur, Université Paris Cité, Synthetic Biology, 75015 Paris, France
| | - Gregor Hagelueken
- Institute of Structural Biology, Venusberg-Campus 1, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Lin CP, Li H, Brogan DJ, Wang T, Akbari OS, Komives EA. CRISPR RNA binding drives structural ordering that primes Cas7-11 for target cleavage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606276. [PMID: 39211128 PMCID: PMC11360901 DOI: 10.1101/2024.08.01.606276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Type III-E CRISPR-Cas effectors, of which Cas7-11 is the first, are single proteins that cleave target RNAs without nonspecific collateral cleavage, opening new possibilities for RNA editing. Biochemical experiments combined with amide hydrogen-deuterium exchange (HDX-MS) experiments provide a first glimpse of the conformational dynamics of apo Cas7-11. HDX-MS revealed the backbone comprised of the four Cas7 zinc-binding RRM folds are well-folded but insertion sequences are highly dynamic and fold upon binding crRNA. The crRNA causes folding of disordered catalytic loops and β-hairpins, stronger interactions at domain-domain interfaces, and folding of the Cas7.1 processing site. Target RNA binding causes only minor ordering around the catalytic loops of Cas7.2 and Cas7.3. We show that Cas7-11 cannot fully process the CRISPR array and that binding of partially processed crRNA induces multiple states in Cas7-11 and reduces target RNA cleavage. The insertion domain shows the most ordering upon binding of mature crRNA. Finally, we show a crRNA-induced conformational change in one of the TPR-CHAT binding sites providing an explanation for why crRNA binding facilitates TPR-CHAT binding. The results provide the first glimpse of the apo state of Cas7-11 and reveal how its structure and function are regulated by crRNA binding.
Collapse
|
11
|
Yang J, Li X, He Q, Wang X, Tang J, Wang T, Zhang Y, Yu F, Zhang S, Liu Z, Zhang L, Liao F, Yin H, Zhao H, Deng Z, Zhang H. Structural basis for the activity of the type VII CRISPR-Cas system. Nature 2024; 633:465-472. [PMID: 39143216 DOI: 10.1038/s41586-024-07815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
The newly identified type VII CRISPR-Cas candidate system uses a CRISPR RNA-guided ribonucleoprotein complex formed by Cas5 and Cas7 proteins to target RNA1. However, the RNA cleavage is executed by a dedicated Cas14 nuclease, which is distinct from the effector nucleases of the other CRISPR-Cas systems. Here we report seven cryo-electron microscopy structures of the Cas14-bound interference complex at different functional states. Cas14, a tetrameric protein in solution, is recruited to the Cas5-Cas7 complex in a target RNA-dependent manner. The N-terminal catalytic domain of Cas14 binds a stretch of the substrate RNA for cleavage, whereas the C-terminal domain is primarily responsible for tethering Cas14 to the Cas5-Cas7 complex. The biochemical cleavage assays corroborate the captured functional conformations, revealing that Cas14 binds to different sites on the Cas5-Cas7 complex to execute individual cleavage events. Notably, a plugged-in arginine of Cas7 sandwiched by a C-shaped clamp of C-terminal domain precisely modulates Cas14 binding. More interestingly, target RNA cleavage is altered by a complementary protospacer flanking sequence at the 5' end, but not at the 3' end. Altogether, our study elucidates critical molecular details underlying the assembly of the interference complex and substrate cleavage in the type VII CRISPR-Cas system, which may help rational engineering of the type VII CRISPR-Cas system for biotechnological applications.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), International Joint Laboratory of Ocular Diseases (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xuzichao Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), International Joint Laboratory of Ocular Diseases (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiuqiu He
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), International Joint Laboratory of Ocular Diseases (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoshen Wang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), International Joint Laboratory of Ocular Diseases (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingjing Tang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tongyao Wang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), International Joint Laboratory of Ocular Diseases (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yi Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), International Joint Laboratory of Ocular Diseases (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Feiyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shuqin Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), International Joint Laboratory of Ocular Diseases (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhikun Liu
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), International Joint Laboratory of Ocular Diseases (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingling Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), International Joint Laboratory of Ocular Diseases (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fumeng Liao
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), International Joint Laboratory of Ocular Diseases (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hang Yin
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), International Joint Laboratory of Ocular Diseases (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Haiyan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zengqin Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- Hubei Jiangxia Laboratory, Wuhan, China.
| | - Heng Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), International Joint Laboratory of Ocular Diseases (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
12
|
Yang Y, Rocamonde-Lago I, Shen B, Berzina I, Zipf J, Högberg B. Re-engineered guide RNA enables DNA loops and contacts modulating repression in E. coli. Nucleic Acids Res 2024; 52:9328-9339. [PMID: 39011887 PMCID: PMC11347156 DOI: 10.1093/nar/gkae591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/23/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
RNA serves as information media as well as molecular scaffold in nature and synthetic systems. The single guide RNA (sgRNA) widely applied in CRISPR techniques exemplifies both functions, with a guide region bearing DNA base-pairing information, and a structural motif for Cas9 protein scaffolding. The scaffold region has been modified by fusing RNA aptamers to the tetra-stem loop. The guide region is typically not regarded as a pluggable module as it encodes the essential function of DNA sequence recognition. Here, we investigate a chimera of two sgRNAs, with distinct guide sequences joined by an RNA linker (dgRNA), regarding its DNA binding function and loop induction capability. First, we studied the sequence bi-specificity of the dgRNA and discovered that the RNA linker allows distal parts of double-stranded DNA to be brought into proximity. To test the activity of the dgRNA in organisms, we used the LacZ gene as a reporter and recapitulated the loop-mediated gene inhibition by LacI in E. coli. We found that the dgRNA can be applied to target distal genomic regions with comparable levels of inhibition. The capability of dgRNA to induce DNA contacts solely requires dCas9 and RNA, making it a minimal system to remodel chromosomal conformation in various organisms.
Collapse
Affiliation(s)
- Yunshi Yang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Stockholm 17177, Sweden
| | - Iris Rocamonde-Lago
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Stockholm 17177, Sweden
| | - Boxuan Shen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Stockholm 17177, Sweden
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Ieva Berzina
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Stockholm 17177, Sweden
| | - Johanna Zipf
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Stockholm 17177, Sweden
| | - Björn Högberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Stockholm 17177, Sweden
| |
Collapse
|
13
|
An Q, Wang Y, Tian Z, Han J, Li J, Liao F, Yu F, Zhao H, Wen Y, Zhang H, Deng Z. Molecular and structural basis of an ATPase-nuclease dual-enzyme anti-phage defense complex. Cell Res 2024; 34:545-555. [PMID: 38834762 PMCID: PMC11291478 DOI: 10.1038/s41422-024-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Coupling distinct enzymatic effectors emerges as an efficient strategy for defense against phage infection in bacterial immune responses, such as the widely studied nuclease and cyclase activities in the type III CRISPR-Cas system. However, concerted enzymatic activities in other bacterial defense systems are poorly understood. Here, we biochemically and structurally characterize a two-component defense system DUF4297-HerA, demonstrating that DUF4297-HerA confers resistance against phage infection by cooperatively cleaving dsDNA and hydrolyzing ATP. DUF4297 alone forms a dimer, and HerA alone exists as a nonplanar split spiral hexamer, both of which exhibit extremely low enzymatic activity. Interestingly, DUF4297 and HerA assemble into an approximately 1 MDa supramolecular complex, where two layers of DUF4297 (6 DUF4297 molecules per layer) linked via inter-layer dimerization of neighboring DUF4297 molecules are stacked on top of the HerA hexamer. Importantly, the complex assembly promotes dimerization of DUF4297 molecules in the upper layer and enables a transition of HerA from a nonplanar hexamer to a planar hexamer, thus activating their respective enzymatic activities to abrogate phage infection. Together, our findings not only characterize a novel dual-enzyme anti-phage defense system, but also reveal a unique activation mechanism by cooperative complex assembly in bacterial immunity.
Collapse
Affiliation(s)
- Qiyin An
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Tian
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Han
- Department of Human Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jinyue Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Fumeng Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Feiyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Haiyan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian, China
| | - Heng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zengqin Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024; 25:464-487. [PMID: 38308006 DOI: 10.1038/s41580-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/04/2024]
Abstract
Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.
Collapse
Affiliation(s)
- Lukas Villiger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA
| | - Julia Joung
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| |
Collapse
|
15
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
16
|
Zhang S, Sun A, Qian JM, Lin S, Xing W, Yang Y, Zhu HZ, Zhou XY, Guo YS, Liu Y, Meng Y, Jin SL, Song W, Li CP, Li Z, Jin S, Wang JH, Dong MQ, Gao C, Chen C, Bai Y, Liu JJG. Pro-CRISPR PcrIIC1-associated Cas9 system for enhanced bacterial immunity. Nature 2024; 630:484-492. [PMID: 38811729 DOI: 10.1038/s41586-024-07486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel β-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.
Collapse
Affiliation(s)
- Shouyue Zhang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ao Sun
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing-Mei Qian
- State Key Laboratory of Plant Genomics, CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Lin
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenjing Xing
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yun Yang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Han-Zhou Zhu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin-Yi Zhou
- State Key Laboratory of Plant Genomics, CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Shuo Guo
- State Key Laboratory of Plant Genomics, CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Liu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yu Meng
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shu-Lin Jin
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenhao Song
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Cheng-Ping Li
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhaofu Li
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuai Jin
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jian-Hua Wang
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Caixia Gao
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chunlai Chen
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Yang Bai
- State Key Laboratory of Plant Genomics, CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, China.
| | - Jun-Jie Gogo Liu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
17
|
van Beljouw SP, Haagsma AC, Kalogeropoulos K, Pabst M, Brouns SJJ. Craspase Orthologs Cleave a Nonconserved Site in Target Protein Csx30. ACS Chem Biol 2024; 19:1051-1055. [PMID: 38602884 PMCID: PMC11106740 DOI: 10.1021/acschembio.3c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
The Craspase CRISPR-Cas effector consists of the RNA-guided ribonuclease gRAMP and the protease TPR-CHAT, coupling target RNA recognition to protease activation. The natural substrate of Craspase is Csx30, a protein cleaved in two fragments that subsequently activates downstream antiviral pathways. Here, we determined the protease substrate specificity of Craspase from Candidatus "Jettenia caeni" (Jc-Craspase). We find that Jc-Craspase cleaves Jc-Csx30 in a target RNA-dependent fashion in A|S, which is different from the sites found in two other studied Craspases (L|D and M|K for Candidatus "Scalindua brodae" and Desulfonema ishimotonii, respectively). The fact that Craspase cleaves a nonconserved site across orthologs indicates the evolution of specific protein interactions between Craspase and its respective Csx30 target protein. The Craspase family thus represents a panel of proteases with different substrate specificities, which we exploited for the development of a readout for multiplexed RNA detection.
Collapse
Affiliation(s)
- Sam P.
B. van Beljouw
- Department
of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli
Institute of Nanoscience, 2629 HZ Delft, Netherlands
| | - Anna C. Haagsma
- Department
of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli
Institute of Nanoscience, 2629 HZ Delft, Netherlands
| | | | - Martin Pabst
- Department
of Biotechnology, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Stan J. J. Brouns
- Department
of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli
Institute of Nanoscience, 2629 HZ Delft, Netherlands
| |
Collapse
|
18
|
Hong T, Luo Q, Ma H, Wang X, Li X, Shen C, Pang J, Wang Y, Chen Y, Zhang C, Su Z, Dong H, Tang X. Structural basis of negative regulation of CRISPR-Cas7-11 by TPR-CHAT. Signal Transduct Target Ther 2024; 9:111. [PMID: 38735995 PMCID: PMC11089037 DOI: 10.1038/s41392-024-01821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
CRISPR‒Cas7-11 is a Type III-E CRISPR-associated nuclease that functions as a potent RNA editing tool. Tetratrico-peptide repeat fused with Cas/HEF1-associated signal transducer (TPR-CHAT) acts as a regulatory protein that interacts with CRISPR RNA (crRNA)-bound Cas7-11 to form a CRISPR-guided caspase complex (Craspase). However, the precise modulation of Cas7-11's nuclease activity by TPR-CHAT to enhance its utility requires further study. Here, we report cryo-electron microscopy (cryo-EM) structures of Desulfonema ishimotonii (Di) Cas7-11-crRNA, complexed with or without the full length or the N-terminus of TPR-CHAT. These structures unveil the molecular features of the Craspase complex. Structural analysis, combined with in vitro nuclease assay and electrophoretic mobility shift assay, reveals that DiTPR-CHAT negatively regulates the activity of DiCas7-11 by preventing target RNA from binding through the N-terminal 65 amino acids of DiTPR-CHAT (DiTPR-CHATNTD). Our work demonstrates that DiTPR-CHATNTD can function as a small unit of DiCas7-11 regulator, potentially enabling safe applications to prevent overcutting and off-target effects of the CRISPR‒Cas7-11 system.
Collapse
Affiliation(s)
- Tian Hong
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghua Luo
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyun Ma
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xinqiong Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chongrong Shen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Pang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuejia Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Changbin Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaoming Su
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Haohao Dong
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaodi Tang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Li X, Han J, Yang J, Zhang H. The structural biology of type III CRISPR-Cas systems. J Struct Biol 2024; 216:108070. [PMID: 38395113 DOI: 10.1016/j.jsb.2024.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
CRISPR-Cas system is an RNA-guided adaptive immune system widespread in bacteria and archaea. Among them, type III CRISPR-Cas systems are the most ancient throughout the CRISPR-Cas family, proving anti-phage defense through a crRNA-guided RNA targeting manner and possessing multiple enzymatic activities. Type III CRISPR-Cas systems comprise four typical members (type III-A to III-D) and two atypical members (type III-E and type III-F), providing immune defense through distinct mechanisms. Here, we delve into structural studies conducted on three well-characterized members: the type III-A, III-B, and III-E systems, provide an overview of the structural insights into the crRNA-guided target RNA cleavage, self/non-self discrimination, and the target RNA-dependent regulation of enzymatic subunits in the effector complex.
Collapse
Affiliation(s)
- Xuzichao Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Han
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Heng Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
20
|
Chen T, Jia W, Zhang B, Xie H, Wu Q. EMT transcription factors activated circuits: A novel tool to study EMT dynamics and its therapeutic implications. Synth Syst Biotechnol 2024; 9:1-10. [PMID: 38173810 PMCID: PMC10758624 DOI: 10.1016/j.synbio.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024] Open
Abstract
The epithelial mesenchymal transition (EMT) plays significant roles in the progression of cancer and fibrotic disease. Moreover, this process is reversible, resulting in mesenchymal epithelial transition (MET), which plays an important role in cancer metastasis. There is a lack of methods to trace and target EMT cells using synthetic biology circuits, which makes it difficult to study the cell fate or develop targeted treatments. In this study, we introduced responsive EMT sensing circuits, which sense the EMT using specific promoters that respond to transcription factors typical of EMT activation (EMT-TFs). The transcriptional strength of EMT-sensing promoters decreased more than 13-fold in response to the overexpression of the EMT-TF. Then, the NOT gate circuits were built by placing the tetR transcription repressor under the control of EMT sensing promoters and expressed an output signal using the constitutive CMV promoter modified with tetO sites This circuit is named EMT sensing and responding circuits .When the EMT transcription factors was present, we observed a 5.8-fold signal increase in the system. Then, we successfully distinguished mesenchymal breast cancer cells from epithelial cancer cells and repressed the proliferation of EMT tumor cells using our circuits. The EMT sensing and responding circuits are promising tools for the identification of EMT cells, which is crucial for EMT-related disease therapy and investigating the mechanisms underlying the reversible EMT process.
Collapse
Affiliation(s)
- Tianying Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wangyue Jia
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bo Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hanqi Xie
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
van Beljouw SPB, Brouns SJJ. CRISPR-controlled proteases. Biochem Soc Trans 2024; 52:441-453. [PMID: 38334140 DOI: 10.1042/bst20230962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
With the discovery of CRISPR-controlled proteases, CRISPR-Cas has moved beyond mere nucleic acid targeting into the territory of targeted protein cleavage. Here, we review the understanding of Craspase, the best-studied member of the growing CRISPR RNA-guided protease family. We recollect the original bioinformatic prediction and early experimental characterizations; evaluate some of the mechanistic structural intricacies and emerging biotechnology; discuss open questions and unexplained mysteries; and indicate future directions for the rapidly moving field of the CRISPR proteases.
Collapse
Affiliation(s)
- Sam P B van Beljouw
- Department of Bionanoscience, Delft University of Technology, 2629 HZ, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft, Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft, Netherlands
| |
Collapse
|
22
|
Steens JA, Bravo JP, Salazar CRP, Yildiz C, Amieiro AM, Köstlbacher S, Prinsen SH, Andres AS, Patinios C, Bardis A, Barendregt A, Scheltema RA, Ettema TJ, van der Oost J, Taylor DW, Staals RH. Type III-B CRISPR-Cas cascade of proteolytic cleavages. Science 2024; 383:512-519. [PMID: 38301007 PMCID: PMC11220425 DOI: 10.1126/science.adk0378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
The generation of cyclic oligoadenylates and subsequent allosteric activation of proteins that carry sensory domains is a distinctive feature of type III CRISPR-Cas systems. In this work, we characterize a set of associated genes of a type III-B system from Haliangium ochraceum that contains two caspase-like proteases, SAVED-CHAT and PCaspase (prokaryotic caspase), co-opted from a cyclic oligonucleotide-based antiphage signaling system (CBASS). Cyclic tri-adenosine monophosphate (AMP)-induced oligomerization of SAVED-CHAT activates proteolytic activity of the CHAT domains, which specifically cleave and activate PCaspase. Subsequently, activated PCaspase cleaves a multitude of proteins, which results in a strong interference phenotype in vivo in Escherichia coli. Taken together, our findings reveal how a CRISPR-Cas-based detection of a target RNA triggers a cascade of caspase-associated proteolytic activities.
Collapse
Affiliation(s)
- Jurre A. Steens
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
- Scope Biosciences B.V.; Wageningen, The Netherlands
| | - Jack P.K. Bravo
- Department of Molecular Biosciences, University of Texas at Austin; Austin, USA
| | | | - Caglar Yildiz
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | - Afonso M. Amieiro
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | | | - Ane S. Andres
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | - Constantinos Patinios
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | - Andreas Bardis
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht; Utrecht, The Netherlands
| | - Richard A. Scheltema
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht; Utrecht, The Netherlands
| | - Thijs J.G. Ettema
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | - David W. Taylor
- Department of Molecular Biosciences, University of Texas at Austin; Austin, USA
| | - Raymond H.J. Staals
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| |
Collapse
|
23
|
Schmitt-Ulms C, Kayabolen A, Manero-Carranza M, Zhou N, Donnelly K, Nuccio SP, Kato K, Nishimasu H, Gootenberg JS, Abudayyeh OO. Programmable RNA writing with trans-splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578223. [PMID: 38352602 PMCID: PMC10862893 DOI: 10.1101/2024.01.31.578223] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
RNA editing offers the opportunity to introduce either stable or transient modifications to nucleic acid sequence without permanent off-target effects, but installation of arbitrary edits into the transcriptome is currently infeasible. Here, we describe Programmable RNA Editing & Cleavage for Insertion, Substitution, and Erasure (PRECISE), a versatile RNA editing method for writing RNA of arbitrary length and sequence into existing pre-mRNAs via 5' or 3' trans-splicing. In trans-splicing, an exogenous template is introduced to compete with the endogenous pre-mRNA, allowing for replacement of upstream or downstream exon sequence. Using Cas7-11 cleavage of pre-mRNAs to bias towards editing outcomes, we boost the efficiency of RNA trans-splicing by 10-100 fold, achieving editing rates between 5-50% and 85% on endogenous and reporter transcripts, respectively, while maintaining high-fidelity. We demonstrate PRECISE editing across 11 distinct endogenous transcripts of widely varying expression levels, showcasing more than 50 types of edits, including all 12 possible transversions and transitions, insertions ranging from 1 to 1,863 nucleotides, and deletions. We show high efficiency replacement of exon 4 of MECP2, addressing most mutations that drive the Rett Syndrome; editing of SHANK3 transcripts, a gene involved in Autism; and replacement of exon 1 of HTT, removing the hallmark repeat expansions of Huntington's disease. Whole transcriptome sequencing reveals the high precision of PRECISE editing and lack of off-target trans-splicing activity. Furthermore, we combine payload engineering and ribozymes for protein-free, high-efficiency trans-splicing, with demonstrated efficiency in editing HTT exon 1 via AAV delivery. We show that the high activity of PRECISE editing enables editing in non-dividing neurons and patient-derived Huntington's disease fibroblasts. PRECISE editing markedly broadens the scope of genetic editing, is straightforward to deliver over existing gene editing tools like prime editing, lacks permanent off-targets, and can enable any type of genetic edit large or small, including edits not otherwise possible with existing RNA base editors, widening the spectrum of addressable diseases.
Collapse
Affiliation(s)
- Cian Schmitt-Ulms
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alisan Kayabolen
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcos Manero-Carranza
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nathan Zhou
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Keira Donnelly
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sabrina Pia Nuccio
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kazuki Kato
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto 600-8411, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Jonathan S. Gootenberg
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Omar O. Abudayyeh
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
24
|
Stella G, Marraffini L. Type III CRISPR-Cas: beyond the Cas10 effector complex. Trends Biochem Sci 2024; 49:28-37. [PMID: 37949766 PMCID: PMC10844953 DOI: 10.1016/j.tibs.2023.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Type III CRISPR-Cas loci encode some of the most abundant, yet complex, immune systems of prokaryotes. They are composed of a Cas10 complex that uses an RNA guide to recognize transcripts from bacteriophage and plasmid invaders. Target recognition triggers three activities within this complex: ssDNA degradation, synthesis of cyclic oligoadenylates (cOA) that act as second messengers to activate CARF-domain effectors, and cleavage of target RNA. This review covers recent research in type III CRISPR-Cas systems that looked beyond the activity of the canonical Cas10 complexes towards: (i) ancillary nucleases and understanding how they provide defense by sensing cOA molecules; (ii) ring nucleases and their role in regulating cOA production; and (iii) CRISPR-associated proteases, including the function of the Craspase complex in a transcriptional response to phage infection.
Collapse
Affiliation(s)
- Gianna Stella
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Luciano Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
25
|
Oh GS, An S, Kim S. Harnessing CRISPR-Cas adaptation for RNA recording and beyond. BMB Rep 2024; 57:40-49. [PMID: 38053290 PMCID: PMC10828431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 12/07/2023] Open
Abstract
Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and plasmids. During a process called 'adaptation', non-self-nucleic acid fragments are acquired as spacers between repeats in the host CRISPR array, to establish immunological memory. The highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers in a time course manner, which can subsequently be expressed as crRNAs complexed with Cas effector proteins for the RNAguided interference pathways. In some of the RNA-targeting type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we summarize current studies that focus on the molecular structure and function of the RT-fused Cas1-Cas2 integrase, and its potential applications as a directional RNA-recording tool in cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future directions for RNA-recording CRISPR technologies. [BMB Reports 2024; 57(1): 40-49].
Collapse
Affiliation(s)
- Gyeong-Seok Oh
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Seongjin An
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Sungchul Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| |
Collapse
|
26
|
Oh GS, An S, Kim S. Harnessing CRISPR-Cas adaptation for RNA recording and beyond. BMB Rep 2024; 57:40-49. [PMID: 38053290 PMCID: PMC10828431 DOI: 10.5483/bmbrep.2023-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 03/09/2025] Open
Abstract
Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and plasmids. During a process called 'adaptation', non-self-nucleic acid fragments are acquired as spacers between repeats in the host CRISPR array, to establish immunological memory. The highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers in a time course manner, which can subsequently be expressed as crRNAs complexed with Cas effector proteins for the RNAguided interference pathways. In some of the RNA-targeting type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we summarize current studies that focus on the molecular structure and function of the RT-fused Cas1-Cas2 integrase, and its potential applications as a directional RNA-recording tool in cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future directions for RNA-recording CRISPR technologies. [BMB Reports 2024; 57(1): 40-49].
Collapse
Affiliation(s)
- Gyeong-Seok Oh
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Seongjin An
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Sungchul Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| |
Collapse
|
27
|
Liu Y, Liu W, Wang B. Engineering CRISPR guide RNAs for programmable RNA sensors. Biochem Soc Trans 2023; 51:2061-2070. [PMID: 37955062 PMCID: PMC10754282 DOI: 10.1042/bst20221486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
As the most valuable feature of the CRISPR system, the programmability based on Watson-Crick base pairing has been widely exploited in engineering RNA sensors. The base pairing in these systems offers a connection between the RNA of interest and the CRISPR effector, providing a highly specific mechanism for RNA detection both in vivo and in vitro. In the last decade, despite the many successful RNA sensing approaches developed during the era of CRISPR explosion, a deeper understanding of the characteristics of CRISPR systems and the continuous expansion of the CRISPR family members indicates that the CRISPR-based RNA sensor remains a promising area from which a variety of new functions and applications can be engineered. Here, we present a systematic overview of the various strategies of engineering CRISPR gRNA for programmable RNA detection with an aim to clarify the role of gRNA's programmability among the present limitations and future development of CRISPR-enabled RNA sensors.
Collapse
Affiliation(s)
- Yang Liu
- MRC Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - Wei Liu
- MRC Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - Baojun Wang
- College of Chemical and Biological Engineering & Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- Research Center for Biological Computation, Zhejiang Lab, Hangzhou 311100, China
| |
Collapse
|
28
|
Koonin EV, Gootenberg JS, Abudayyeh OO. Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry 2023; 62:3465-3487. [PMID: 37192099 PMCID: PMC10734277 DOI: 10.1021/acs.biochem.3c00159] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Indexed: 05/18/2023]
Abstract
CRISPR systems mediate adaptive immunity in bacteria and archaea through diverse effector mechanisms and have been repurposed for versatile applications in therapeutics and diagnostics thanks to their facile reprogramming with RNA guides. RNA-guided CRISPR-Cas targeting and interference are mediated by effectors that are either components of multisubunit complexes in class 1 systems or multidomain single-effector proteins in class 2. The compact class 2 CRISPR systems have been broadly adopted for multiple applications, especially genome editing, leading to a transformation of the molecular biology and biotechnology toolkit. The diversity of class 2 effector enzymes, initially limited to the Cas9 nuclease, was substantially expanded via computational genome and metagenome mining to include numerous variants of Cas12 and Cas13, providing substrates for the development of versatile, orthogonal molecular tools. Characterization of these diverse CRISPR effectors uncovered many new features, including distinct protospacer adjacent motifs (PAMs) that expand the targeting space, improved editing specificity, RNA rather than DNA targeting, smaller crRNAs, staggered and blunt end cuts, miniature enzymes, promiscuous RNA and DNA cleavage, etc. These unique properties enabled multiple applications, such as harnessing the promiscuous RNase activity of the type VI effector, Cas13, for supersensitive nucleic acid detection. class 1 CRISPR systems have been adopted for genome editing, as well, despite the challenge of expressing and delivering the multiprotein class 1 effectors. The rich diversity of CRISPR enzymes led to rapid maturation of the genome editing toolbox, with capabilities such as gene knockout, base editing, prime editing, gene insertion, DNA imaging, epigenetic modulation, transcriptional modulation, and RNA editing. Combined with rational design and engineering of the effector proteins and associated RNAs, the natural diversity of CRISPR and related bacterial RNA-guided systems provides a vast resource for expanding the repertoire of tools for molecular biology and biotechnology.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Jonathan S. Gootenberg
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Omar O. Abudayyeh
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Bhuyan SJ, Kumar M, Ramrao Devde P, Rai AC, Mishra AK, Singh PK, Siddique KHM. Progress in gene editing tools, implications and success in plants: a review. Front Genome Ed 2023; 5:1272678. [PMID: 38144710 PMCID: PMC10744593 DOI: 10.3389/fgeed.2023.1272678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Genetic modifications are made through diverse mutagenesis techniques for crop improvement programs. Among these mutagenesis tools, the traditional methods involve chemical and radiation-induced mutagenesis, resulting in off-target and unintended mutations in the genome. However, recent advances have introduced site-directed nucleases (SDNs) for gene editing, significantly reducing off-target changes in the genome compared to induced mutagenesis and naturally occurring mutations in breeding populations. SDNs have revolutionized genetic engineering, enabling precise gene editing in recent decades. One widely used method, homology-directed repair (HDR), has been effective for accurate base substitution and gene alterations in some plant species. However, its application has been limited due to the inefficiency of HDR in plant cells and the prevalence of the error-prone repair pathway known as non-homologous end joining (NHEJ). The discovery of CRISPR-Cas has been a game-changer in this field. This system induces mutations by creating double-strand breaks (DSBs) in the genome and repairing them through associated repair pathways like NHEJ. As a result, the CRISPR-Cas system has been extensively used to transform plants for gene function analysis and to enhance desirable traits. Researchers have made significant progress in genetic engineering in recent years, particularly in understanding the CRISPR-Cas mechanism. This has led to various CRISPR-Cas variants, including CRISPR-Cas13, CRISPR interference, CRISPR activation, base editors, primes editors, and CRASPASE, a new CRISPR-Cas system for genetic engineering that cleaves proteins. Moreover, gene editing technologies like the prime editor and base editor approaches offer excellent opportunities for plant genome engineering. These cutting-edge tools have opened up new avenues for rapidly manipulating plant genomes. This review article provides a comprehensive overview of the current state of plant genetic engineering, focusing on recently developed tools for gene alteration and their potential applications in plant research.
Collapse
Affiliation(s)
- Suman Jyoti Bhuyan
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Pandurang Ramrao Devde
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Avinash Chandra Rai
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | | | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | | |
Collapse
|
30
|
Liu J, Li Q, Wang X, Liu Z, Ye Q, Liu T, Pan S, Peng N. An archaeal virus-encoded anti-CRISPR protein inhibits type III-B immunity by inhibiting Cas RNP complex turnover. Nucleic Acids Res 2023; 51:11783-11796. [PMID: 37850639 PMCID: PMC10681719 DOI: 10.1093/nar/gkad804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/19/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
CRISPR-Cas systems are widespread in prokaryotes and provide adaptive immune against viral infection. Viruses encode a type of proteins called anti-CRISPR to evade the immunity. Here, we identify an archaeal virus-encoded anti-CRISPR protein, AcrIIIB2, that inhibits Type III-B immunity. We find that AcrIIIB2 inhibits Type III-B CRISPR-Cas immunity in vivo regardless of viral early or middle-/late-expressed genes to be targeted. We also demonstrate that AcrIIIB2 interacts with Cmr4α subunit, forming a complex with target RNA and Cmr-α ribonucleoprotein complex (RNP). Furtherly, we discover that AcrIIIB2 inhibits the RNase activity, ssDNase activity and cOA synthesis activity of Cmr-α RNP in vitro under a higher target RNA-to-Cmr-α RNP ratio and has no effect on Cmr-α activities at the target RNA-to-Cmr-α RNP ratio of 1. Our results suggest that once the target RNA is cleaved by Cmr-α RNP, AcrIIIB2 probably inhibits the disassociation of cleaved target RNA, therefore blocking the access of other target RNA substrates. Together, our findings highlight the multiple functions of a novel anti-CRISPR protein on inhibition of the most complicated CRISPR-Cas system targeting the genes involved in the whole life cycle of viruses.
Collapse
Affiliation(s)
- Jilin Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiaojie Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Zhenzhen Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106, Chengdu, P. R. China
| | - Qing Ye
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Tao Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Saifu Pan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
31
|
Altae-Tran H, Kannan S, Suberski AJ, Mears KS, Demircioglu FE, Moeller L, Kocalar S, Oshiro R, Makarova KS, Macrae RK, Koonin EV, Zhang F. Uncovering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering. Science 2023; 382:eadi1910. [PMID: 37995242 PMCID: PMC10910872 DOI: 10.1126/science.adi1910] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/28/2023] [Indexed: 11/25/2023]
Abstract
Microbial systems underpin many biotechnologies, including CRISPR, but the exponential growth of sequence databases makes it difficult to find previously unidentified systems. In this work, we develop the fast locality-sensitive hashing-based clustering (FLSHclust) algorithm, which performs deep clustering on massive datasets in linearithmic time. We incorporated FLSHclust into a CRISPR discovery pipeline and identified 188 previously unreported CRISPR-linked gene modules, revealing many additional biochemical functions coupled to adaptive immunity. We experimentally characterized three HNH nuclease-containing CRISPR systems, including the first type IV system with a specified interference mechanism, and engineered them for genome editing. We also identified and characterized a candidate type VII system, which we show acts on RNA. This work opens new avenues for harnessing CRISPR and for the broader exploration of the vast functional diversity of microbial proteins.
Collapse
Affiliation(s)
- Han Altae-Tran
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Soumya Kannan
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Anthony J. Suberski
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Kepler S. Mears
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - F. Esra Demircioglu
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Lukas Moeller
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Selin Kocalar
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Rachel Oshiro
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health; Bethesda, MD 20894, USA
| | - Rhiannon K. Macrae
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health; Bethesda, MD 20894, USA
| | - Feng Zhang
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| |
Collapse
|
32
|
He Q, Lei X, Liu Y, Wang X, Ji N, Yin H, Wang H, Zhang H, Yu G. Nucleic Acid Detection through RNA-Guided Protease Activity in Type III-E CRISPR-Cas Systems. Chembiochem 2023; 24:e202300401. [PMID: 37710076 DOI: 10.1002/cbic.202300401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
RNA-guided protease activity was recently discovered in the type III-E CRISPR-Cas systems (Craspase), providing a novel platform for engineering a protein probe instead of the commonly used nucleic acid probe in nucleic acid detection assays. Here, by adapting a fluorescence readout technique using the affinity- and fluorescent protein dual-tagged Csx30 protein substrate, we have established an assay monitoring Csx30 cleavage by target ssRNA-activated Craspase. Four Craspase-based nucleic acid detection systems for genes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), norovirus, and the influenza virus (IFV) were reconstituted with demonstrated specificity. The assay could reliably detect target ssRNAs at concentrations down to 25 pM, which could be further improved approximately 15 000-fold (ca. 2 fM) by incorporating a recombinase polymerase isothermal preamplification step. Importantly, the species-specific substrate cleavage specificity of Craspase enabled multiplexed diagnosis, as demonstrated by the reconstituted composite systems for simultaneous detection of two genes from the same virus (SARS-CoV-2, spike and nsp12) or two types of viruses (SARS-CoV-2 and IFV). The assay could be further expanded by diversifying the fluorescent tags in the substrate and including Craspase systems from various species, thus potentially providing an easily adaptable platform for clinical diagnosis.
Collapse
Affiliation(s)
- Qiuqiu He
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Xinlong Lei
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yuanjun Liu
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Dermatovenereology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, P. R. China
| | - Xiaoshen Wang
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Nan Ji
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Hang Yin
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Huiping Wang
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Dermatovenereology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, P. R. China
| | - Heng Zhang
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Guimei Yu
- The Province and Ministry Co-sponsored Collaborative, Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and, Disease (Ministry of Education), Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, P. R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| |
Collapse
|
33
|
Liu Z, Liu J, Yang Z, Zhu L, Zhu Z, Huang H, Jiang L. Endogenous CRISPR-Cas mediated in situ genome editing: State-of-the-art and the road ahead for engineering prokaryotes. Biotechnol Adv 2023; 68:108241. [PMID: 37633620 DOI: 10.1016/j.biotechadv.2023.108241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The CRISPR-Cas systems have shown tremendous promise as heterologous tools for genome editing in various prokaryotes. However, the perturbation of DNA homeostasis and the inherent toxicity of Cas9/12a proteins could easily lead to cell death, which led to the development of endogenous CRISPR-Cas systems. Programming the widespread endogenous CRISPR-Cas systems for in situ genome editing represents a promising tool in prokaryotes, especially in genetically intractable species. Here, this review briefly summarizes the advances of endogenous CRISPR-Cas-mediated genome editing, covering aspects of establishing and optimizing the genetic tools. In particular, this review presents the application of different types of endogenous CRISPR-Cas tools for strain engineering, including genome editing and genetic regulation. Notably, this review also provides a detailed discussion of the transposon-associated CRISPR-Cas systems, and the programmable RNA-guided transposition using endogenous CRISPR-Cas systems to enable editing of microbial communities for understanding and control. Therefore, they will be a powerful tool for targeted genetic manipulation. Overall, this review will not only facilitate the development of standard genetic manipulation tools for non-model prokaryotes but will also enable more non-model prokaryotes to be genetically tractable.
Collapse
Affiliation(s)
- Zhenlei Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiayu Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
34
|
Wang B, Yang H. Progress of CRISPR-based programmable RNA manipulation and detection. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1804. [PMID: 37282821 DOI: 10.1002/wrna.1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
Prokaryotic clustered regularly interspaced short palindromic repeats and CRISPR associated (CRISPR-Cas) systems provide adaptive immunity by using RNA-guided endonucleases to recognize and eliminate invading foreign nucleic acids. Type II Cas9, type V Cas12, type VI Cas13, and type III Csm/Cmr complexes have been well characterized and developed as programmable platforms for selectively targeting and manipulating RNA molecules of interest in prokaryotic and eukaryotic cells. These Cas effectors exhibit remarkable diversity of ribonucleoprotein (RNP) composition, target recognition and cleavage mechanisms, and self discrimination mechanisms, which are leveraged for various RNA targeting applications. Here, we summarize the current understanding of mechanistic and functional characteristics of these Cas effectors, give an overview on RNA detection and manipulation toolbox established so far including knockdown, editing, imaging, modification, and mapping RNA-protein interactions, and discuss the future directions for CRISPR-based RNA targeting tools. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Beibei Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
35
|
Chen Y, Zeng Z, She Q, Han W. The abortive infection functions of CRISPR-Cas and Argonaute. Trends Microbiol 2023; 31:405-418. [PMID: 36463018 DOI: 10.1016/j.tim.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
CRISPR-Cas and prokaryotic Argonaute (pAgo) are nucleic acid (NA)-guided defense systems that protect prokaryotes against the invasion of mobile genetic elements. Previous studies established that they are directed by NA fragments (guides) to recognize invading complementary NA (targets), and that they cleave the targets to silence the invaders. Nevertheless, growing evidence indicates that many CRISPR-Cas and pAgo systems exploit the abortive infection (Abi) strategy to confer immunity. The CRISPR-Cas and pAgo Abi systems typically sense invaders using the NA recognition ability and activate various toxic effectors to kill the infected cells to prevent the invaders from spreading. This review summarizes the diverse mechanisms of these CRISPR-Cas and pAgo systems, and highlights their critical roles in the arms race between microbes and invaders.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhifeng Zeng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Jimo, 266237, Qingdao, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
36
|
Li ZH, Wang J, Xu JP, Wang J, Yang X. Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Mil Med Res 2023; 10:12. [PMID: 36895064 PMCID: PMC9999643 DOI: 10.1186/s40779-023-00447-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing toolbox has been greatly expanded, not only with emerging CRISPR-associated protein (Cas) nucleases, but also novel applications through combination with diverse effectors. Recently, transposon-associated programmable RNA-guided genome editing systems have been uncovered, adding myriads of potential new tools to the genome editing toolbox. CRISPR-based genome editing technology has also revolutionized cardiovascular research. Here we first summarize the advances involving newly identified Cas orthologs, engineered variants and novel genome editing systems, and then discuss the applications of the CRISPR-Cas systems in precise genome editing, such as base editing and prime editing. We also highlight recent progress in cardiovascular research using CRISPR-based genome editing technologies, including the generation of genetically modified in vitro and animal models of cardiovascular diseases (CVD) as well as the applications in treating different types of CVD. Finally, the current limitations and future prospects of genome editing technologies are discussed.
Collapse
Affiliation(s)
- Zhen-Hua Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China
| | - Jun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China
| | - Jing-Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China.,Yaneng BIOScience (Shenzhen) Co., Ltd., Shenzhen, 518102, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China.
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China.
| |
Collapse
|
37
|
Yang H, Zhang Y, Teng X, Hou H, Deng R, Li J. CRISPR-based nucleic acid diagnostics for pathogens. Trends Analyt Chem 2023; 160:116980. [PMID: 36818498 PMCID: PMC9922438 DOI: 10.1016/j.trac.2023.116980] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Pathogenic infection remains the primary threat to human health, such as the global COVID-19 pandemic. It is important to develop rapid, sensitive and multiplexed tools for detecting pathogens and their mutated variants, particularly the tailor-made strategies for point-of-care diagnosis allowing for use in resource-constrained settings. The rapidly evolving CRISPR/Cas systems have provided a powerful toolbox for pathogenic diagnostics via nucleic acid tests. In this review, we firstly describe the resultant promising class 2 (single, multidomain effector) and recently explored class 1 (multisubunit effector complexes) CRISPR tools. We present diverse engineering nucleic acid diagnostics based on CRISPR/Cas systems for pathogenic viruses, bacteria and fungi, and highlight the application for detecting viral variants and drug-resistant bacteria enabled by CRISPR-based mutation profiling. Finally, we discuss the challenges involved in on-site diagnostic assays and present emerging CRISPR systems and CRISPR cascade that potentially enable multiplexed and preamplification-free pathogenic diagnostics.
Collapse
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China,Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China,Beijing Institute of Life Science and Technology, Beijing, 102206, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China,Corresponding author
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China,Corresponding author
| |
Collapse
|
38
|
Cryo-EM structure and protease activity of the type III-E CRISPR-Cas effector. Nat Microbiol 2023; 8:522-532. [PMID: 36702942 DOI: 10.1038/s41564-022-01316-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/20/2022] [Indexed: 01/27/2023]
Abstract
The recently discovered type III-E CRISPR-Cas effector Cas7-11 shows promise when used as an RNA manipulation tool, but its structure and the mechanisms underlying its function remain unclear. Here we present four cryo-EM structures of Desulfonema ishimotonii Cas7-11-crRNA complex in pre-target and target RNA-bound states, and the cryo-EM structure of DiCas7-11-crRNA bound to its accessory protein DiCsx29. These data reveal structural elements for pre-crRNA processing, target RNA cleavage and regulation. Moreover, a 3' seed region of crRNA is involved in regulating RNA cleavage activity of DiCas7-11-crRNA-Csx29. Our analysis also shows that both the minimal mismatch of 4 nt to the 5' handle of crRNA and the minimal matching of the first 12 nt of the spacer by the target RNA are essential for triggering the protease activity of DiCas7-11-crRNA-Csx29 towards DiCsx30. Taken together, we propose that target RNA recognition and cleavage regulate and fine-tune the protease activity of DiCas7-11-crRNA-Csx29, thus preventing auto-immune responses.
Collapse
|
39
|
The Epidemiology of Infectious Diseases Meets AI: A Match Made in Heaven. Pathogens 2023; 12:pathogens12020317. [PMID: 36839589 PMCID: PMC9963936 DOI: 10.3390/pathogens12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Infectious diseases remain a major threat to public health [...].
Collapse
|
40
|
Rouillon C, Schneberger N, Chi H, Blumenstock K, Da Vela S, Ackermann K, Moecking J, Peter MF, Boenigk W, Seifert R, Bode BE, Schmid-Burgk JL, Svergun D, Geyer M, White MF, Hagelueken G. Antiviral signalling by a cyclic nucleotide activated CRISPR protease. Nature 2023; 614:168-174. [PMID: 36423657 DOI: 10.1038/s41586-022-05571-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
CRISPR defence systems such as the well-known DNA-targeting Cas9 and the RNA-targeting type III systems are widespread in prokaryotes1,2. The latter orchestrates a complex antiviral response that is initiated through the synthesis of cyclic oligoadenylates after recognition of foreign RNA3-5. Among the large set of proteins that are linked to type III systems and predicted to bind cyclic oligoadenylates6,7, a CRISPR-associated Lon protease (CalpL) stood out to us. CalpL contains a sensor domain of the SAVED family7 fused to a Lon protease effector domain. However, the mode of action of this effector is unknown. Here we report the structure and function of CalpL and show that this soluble protein forms a stable tripartite complex with two other proteins, CalpT and CalpS, that are encoded on the same operon. After activation by cyclic tetra-adenylate (cA4), CalpL oligomerizes and specifically cleaves the MazF homologue CalpT, which releases the extracytoplasmic function σ factor CalpS from the complex. Our data provide a direct connection between CRISPR-based detection of foreign nucleic acids and transcriptional regulation. Furthermore, the presence of a SAVED domain that binds cyclic tetra-adenylate in a CRISPR effector reveals a link to the cyclic-oligonucleotide-based antiphage signalling system.
Collapse
Affiliation(s)
- Christophe Rouillon
- Institute of Structural Biology, University of Bonn, Bonn, Germany.
- Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany.
| | | | - Haotian Chi
- School of Biology, University of St Andrews, St Andrews, UK
| | - Katja Blumenstock
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory (EMBL), Hamburg Site, Hamburg, Germany
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, UK
| | - Jonas Moecking
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Martin F Peter
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Wolfgang Boenigk
- Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany
| | - Reinhard Seifert
- Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, UK
| | - Jonathan L Schmid-Burgk
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Site, Hamburg, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
41
|
Rish AD, Fu TM. CRISPR-Cas has a new juggling act: interplay between nuclease and protease. Nat Struct Mol Biol 2023; 30:126-128. [PMID: 36721057 PMCID: PMC11332594 DOI: 10.1038/s41594-022-00917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Craspase is a newly identified Type III CRISPR-Cas system with two major components: Cas7-11 with nuclease activity and TPR-CHAT with protease activity. Craspases perform a delicate balancing act between nuclease and protease activity to achieve immune tolerance and immune defense in bacteria. See Ekundayo et al.
Collapse
Affiliation(s)
- Anthony D Rish
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Program of OSBP, The Ohio State University, Columbus, OH, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Program of OSBP, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
42
|
Burgess DJ. New cuts for CRISPR effectors. Nat Rev Genet 2023; 24:71. [PMID: 36543986 DOI: 10.1038/s41576-022-00570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Wang X, Yu G, Wen Y, An Q, Li X, Liao F, Lian C, Zhang K, Yin H, Wei Y, Deng Z, Zhang H. Target RNA-guided protease activity in type III-E CRISPR-Cas system. Nucleic Acids Res 2022; 50:12913-12923. [PMID: 36484100 PMCID: PMC9825189 DOI: 10.1093/nar/gkac1151] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
The type III-E CRISPR-Cas systems are newly identified adaptive immune systems in prokaryotes that use a single Cas7-11 protein to specifically cleave target RNA. Cas7-11 could associate with Csx29, a putative caspase-like protein encoded by the gene frequently found in the type III-E loci, suggesting a functional linkage between the RNase and protease activities in type III-E systems. Here, we demonstrated that target RNA recognition would stimulate the proteolytic activity of Csx29, and protein Csx30 is the endogenous substrate. More interestingly, while the cognate target RNA recognition would activate Csx29, non-cognate target RNA with the complementary 3' anti-tag sequence inhibits the enzymatic activity. Csx30 could bind to the sigma factor RpoE, which may initiate the stress response after proteolytic cleavage. Combined with biochemical and structural studies, we have elucidated the mechanisms underlying the target RNA-guided proteolytic activity of Csx29. Our work will guide further developments leveraging this simple RNA targeting system for RNA and protein-related applications.
Collapse
Affiliation(s)
| | | | | | | | - Xuzichao Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Fumeng Liao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chengwei Lian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hang Yin
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yong Wei
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Zengqin Deng
- Correspondence may also be addressed to Zengqin Deng.
| | - Heng Zhang
- To whom correspondence should be addressed. Tel: +86 22 83336833;
| |
Collapse
|
44
|
Structural basis for the non-self RNA-activated protease activity of the type III-E CRISPR nuclease-protease Craspase. Nat Commun 2022; 13:7549. [PMID: 36477448 PMCID: PMC9729208 DOI: 10.1038/s41467-022-35275-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
The RNA-targeting type III-E CRISPR-gRAMP effector interacts with a caspase-like protease TPR-CHAT to form the CRISPR-guided caspase complex (Craspase), but their functional mechanism is unknown. Here, we report cryo-EM structures of the type III-E gRAMPcrRNA and gRAMPcrRNA-TPR-CHAT complexes, before and after either self or non-self RNA target binding, and elucidate the mechanisms underlying RNA-targeting and non-self RNA-induced protease activation. The associated TPR-CHAT adopted a distinct conformation upon self versus non-self RNA target binding, with nucleotides at positions -1 and -2 of the CRISPR-derived RNA (crRNA) serving as a sensor. Only binding of the non-self RNA target activated the TPR-CHAT protease, leading to cleavage of Csx30 protein. Furthermore, TPR-CHAT structurally resembled eukaryotic separase, but with a distinct mechanism for protease regulation. Our findings should facilitate the development of gRAMP-based RNA manipulation tools, and advance our understanding of the virus-host discrimination process governed by a nuclease-protease Craspase during type III-E CRISPR-Cas immunity.
Collapse
|
45
|
Steens JA, van der Oost J, Staals RHJ. Compact but mighty: Biology and applications of type III-E CRISPR-Cas systems. Mol Cell 2022; 82:4405-4406. [PMID: 36459983 DOI: 10.1016/j.molcel.2022.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
In this issue, Liu et al. present an in-depth study aiming to unravel the structural, biochemical, and physiological aspects of how type III-E CRISPR-Cas systems trigger abortive infection by activating a protease upon target RNA recognition.1.
Collapse
Affiliation(s)
- Jurre A Steens
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands; Scope Biosciences B.V., Wageningen, the Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
46
|
Willson J. CRISPR-associated proteases as RNA sensors. Nat Biotechnol 2022:10.1038/d41587-022-00013-1. [PMID: 36434089 DOI: 10.1038/d41587-022-00013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|