1
|
Morriss MC, Mitchell NA, Yanites BJ, Staisch LM, Korup O. Cave records reveal recent origin of North America's deepest canyon. Proc Natl Acad Sci U S A 2025; 122:e2413069122. [PMID: 40388611 DOI: 10.1073/pnas.2413069122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 04/07/2025] [Indexed: 05/21/2025] Open
Abstract
We explore how and when Hells Canyon, North America's deepest river gorge (~2,400 m deep), formed, addressing these fundamental questions first posed by W. Lindgren [The Gold Belt of the Blue Mountains of Oregon (1901)]. Existing hypotheses about the canyon's formation and timing of incision remain speculative due to a lack of direct constraints and geomorphic analysis in the canyon. Herein, we combine cosmogenic nuclide dating of cave-bound river deposits, river profile analysis, and numerical modeling to provide the first direct age constraints and systematic analysis of incision processes at work in Hells Canyon. Our study reveals a significant drainage capture triggered rapid incision at ~2.1 ± 1.0 Ma, establishing the Snake River's modern route into the Columbia River system. The increased drainage area and subsequent increase in stream power resulted in the rapid incision of Hells Canyon and the formation of tributary knickpoints (KPs) that decrease in elevation away from the capture location. Cosmogenic dating of cave deposits indicates incision rates increased from ~0.01 to ~0.16 mm y-1. Numerical modeling of the stream capture supports these observations, demonstrating how abrupt drainage area increase drives rapid river incision. Our findings from Hells Canyon provide a well-constrained example of how drainage capture can dramatically shape the evolution of a major river gorge.
Collapse
Affiliation(s)
- Matthew C Morriss
- Earth Sciences Department, University of Oregon, Eugene, OR 97401
- Department of Natural Resources, Utah Geological Survey, Salt Lake City, UT 84116
| | - Nate A Mitchell
- Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47405-1405
| | - Brian J Yanites
- Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47405-1405
| | - Lydia M Staisch
- Geology Minerals Energy and Geophysics Science Center, United States Geological Survey, Portland, OR 97201
| | - Oliver Korup
- Institute of Environmental Science and Geography, University of Potsdam, Potsdam D-14476
- Institute of Geosciences, University of Potsdam, Potsdam D-14476, Germany
| |
Collapse
|
2
|
McCulloch GA, Pohe SR, Wilkinson SP, Drinan TJ, Waters JM. Targeted eDNA Metabarcoding Reveals New Populations of a Range-Limited Stonefly. Ecol Evol 2025; 15:e71244. [PMID: 40190802 PMCID: PMC11968413 DOI: 10.1002/ece3.71244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
Understanding the geographic distributions of rare species can be crucial for conservation management. New environmental DNA (eDNA) technologies offer the potential to efficiently document the distributions of endangered species, but to date, such screening has focused largely on vertebrate taxa. Here we use freshwater eDNA to assess the geographic distribution of the Maungatua stonefly, Zelandoperla maungatuaensis, a flightless insect previously known from only a handful of streams draining a 4-km section of the Maungatua mountain range in southern New Zealand. We analyzed freshwater eDNA from 12 stream localities across the Maungatua range. Screening with commercial eDNA COI primers failed to detect the focal species Z. maungatuaensis. However, newly designed species-specific primers detected this taxon from four adjacent east-flowing streams known to contain Z. maungatuaensis, and two streams from which it had not previously been detected. Subsequent manual surveys confirmed the presence of two newly discovered Z. maungatuaensis populations, with COI barcoding revealing that they together represent a previously unknown, genetically divergent subclade. Our results illustrate the potential of eDNA metabarcoding to help delineate the geographic ranges of rare taxa, and highlight the importance of primer specificity when screening for rare taxa. These findings also have considerable implications for commercial companies offering biodiversity and stream health eDNA services targeting invertebrates.
Collapse
|
3
|
Gunn JC, Clements SJ, Adams G, Sterling EM, Moore MJ, Volkers TN, Eggert LS. Phenotypic homogenization and potential fitness constraints following non-native introgression in an endemic sportfish. J Evol Biol 2025; 38:94-110. [PMID: 39485793 DOI: 10.1093/jeb/voae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 11/03/2024]
Abstract
Introgressive hybridization may lead to contrasting evolutionary outcomes that are difficult to predict since they depend on the fitness effects of endogenous genomic interactions and environmental factors. Conservation of endemic biodiversity may be more effective with require direct measurement of introgressed ancestry and fitness in wild populations, especially for keystone taxa at risk of hybridization following species introductions. We assessed the relationship of non-native ancestry with growth and body condition in the basin-restricted Neosho Bass (Micropterus velox; NB), focussing on two streams in the NB native range that are admixed extensively with non-native Smallmouth Bass (M. dolomieu; SMB). We quantified the genetic composition of 116 fish from Big Sugar Creek (N = 46) and Elk River (N = 70) at 14 microsatellite loci. Using back-calculated total length-at-age estimated from sagittal otoliths, we assessed whether genetic ancestry explained variation in von Bertalanffy growth model parameters, accounting for sex and stream effects. We then assessed the relationship between ancestry and body condition. We found no differences in growth parameters by sex, stream, or ancestry, suggesting phenotypic homogenization which could be mediated by selection on body size. We found a negative correlation between SMB ancestry and condition, including lower condition in Big Sugar Creek, possibly reflecting a trade-off between maximum length and condition with respect to overall fitness. We show that ongoing non-native introgression, which may be augmented by anthropogenic SMB introductions, may attenuate evolutionary differentiation between species and directly influence fitness, possibly having critical implications for long-term persistence and management of adaptive potential in a popular and ecologically important endemic sportfish.
Collapse
Affiliation(s)
- Joe C Gunn
- Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Sarah J Clements
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME 04469USA
| | - Grant Adams
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195USA
- Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Seattle, WA 98115, USA
| | - Edward M Sterling
- Department of Fish and Aquatic Conservation, U.S. Fish and Wildlife Service, Columbia, MO 65203, USA
| | - Michael J Moore
- U.S. Geological Survey, Missouri Cooperative Fish and Wildlife Research Unit, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Taylor N Volkers
- Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lori S Eggert
- Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Yang JQ. Solute flow and particle transport in aquatic ecosystems: A review on the effect of emergent and rigid vegetation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100429. [PMID: 38860122 PMCID: PMC11163177 DOI: 10.1016/j.ese.2024.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
In-channel vegetation is ubiquitous in aquatic environments and plays a critical role in the fate and transport of solutes and particles in aquatic ecosystems. Recent studies have advanced our understanding of the role of vegetation in solute flow and particle transport in aquatic ecosystems. This review summarizes these papers and discusses the impacts of emergent and rigid vegetation on the surface flow, the advection and dispersion of solutes, suspended load transport, bedload transport, and hyporheic exchange. The two competing effects of emergent vegetation on the above transport processes are discussed. On the one hand, emergent vegetation reduces mean flow velocity at the same surface slope, which reduces mass transport. On the other hand, at the same mean flow velocity, vegetation generates turbulence, which enhances mass transport. Mechanistic understanding of these two competing effects and predictive equations derived from laboratory experiments are discussed. Predictive equations for the mean flow velocity and turbulent kinetic energy inside an emergent vegetation canopy are derived based on force and energy balance. The impacts of emergent vegetation on the advection-dispersion process, the suspended load and bedload transport, and the hyporheic exchange are summarized. The impacts of other vegetation-related factors, such as vegetation morphology, submergence, and flexibility, are briefly discussed. The role of vegetation in transporting other particles, such as micro- and macro-plastics, is also briefly discussed. Finally, suggestions for future research directions are proposed to advance the understanding of the dynamic interplays among natural vegetation, flow dynamics, and sedimentary processes.
Collapse
Affiliation(s)
- Judy Q. Yang
- St. Anthony Falls Laboratory, Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin Cities, MN, USA
| |
Collapse
|
5
|
Alencar LRV, Schwery O, Gade MR, Domínguez-Guerrero SF, Tarimo E, Bodensteiner BL, Uyeda JC, Muñoz MM. Opportunity begets opportunity to drive macroevolutionary dynamics of a diverse lizard radiation. Evol Lett 2024; 8:623-637. [PMID: 39328284 PMCID: PMC11424082 DOI: 10.1093/evlett/qrae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 09/28/2024] Open
Abstract
Evolution proceeds unevenly across the tree of life, with some lineages accumulating diversity more rapidly than others. Explaining this disparity is challenging as similar evolutionary triggers often do not result in analogous shifts across the tree, and similar shifts may reflect different evolutionary triggers. We used a combination of approaches to directly consider such context-dependency and untangle the complex network of processes that shape macroevolutionary dynamics, focusing on Pleurodonta, a diverse radiation of lizards. Our approach shows that some lineage-wide signatures are lost when conditioned on sublineages: while viviparity appears to accelerate diversification, its effect size is overestimated by its association with the Andean mountains. Conversely, some signals that erode at broader phylogenetic scales emerge at shallower ones. Mountains, in general, do not affect speciation rates; rather, the occurrence in the Andean mountains specifically promotes diversification. Likewise, the evolution of larger sizes catalyzes diversification rates, but only within certain ecological and geographical settings. We caution that conventional methods of fitting models to entire trees may mistakenly assign diversification heterogeneity to specific factors despite evidence against their plausibility. Our study takes a significant stride toward disentangling confounding factors and identifying plausible sources of ecological opportunities in the diversification of large evolutionary radiations.
Collapse
Affiliation(s)
- Laura R V Alencar
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Orlando Schwery
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Meaghan R Gade
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | | | - Eliza Tarimo
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Brooke L Bodensteiner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Josef C Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
6
|
Dong X, Stokes MF, Hendry AP, Larsen LG, Dolby GA. Geo-evolutionary feedbacks: integrating rapid evolution and landscape change. Trends Ecol Evol 2024; 39:863-876. [PMID: 38862356 DOI: 10.1016/j.tree.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
We develop a conceptual framework for geo-evolutionary feedbacks which describes the mutual interplay between landscape change and the evolution of traits of organisms residing on the landscape, with an emphasis on contemporary timeframes. Geo-evolutionary feedbacks can be realized via the direct evolution of geomorphic engineering traits or can be mediated by the evolution of trait variation that affects the population size and distribution of the specific geomorphic engineering organisms involved. Organisms that modify their local environments provide the basis for patch-scale geo-evolutionary feedbacks, whereas spatial self-organization provides a mechanism for geo-evolutionary feedbacks at the landscape scale. Understanding these likely prevalent geo-evolutionary feedbacks, that occur at timescales similar to anthropogenic climate change, will be essential to better predict landscape adaptive capacity and change.
Collapse
Affiliation(s)
- Xiaoli Dong
- Department of Environmental Science and Policy, University of California, Davis, CA, USA.
| | - Maya F Stokes
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| | - Andrew P Hendry
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Laurel G Larsen
- Department of Geography and Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Greer A Dolby
- Department of Biology, University of Alabama, Birmingham, AL, USA
| |
Collapse
|
7
|
Pierson TW, Kozak KH, Glenn TC, Fitzpatrick BM. River Drainage Reorganization and Reticulate Evolution in the Two-Lined Salamander (Eurycea bislineata) Species Complex. Syst Biol 2024; 73:26-35. [PMID: 37879625 DOI: 10.1093/sysbio/syad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
The origin and eventual loss of biogeographic barriers can create alternating periods of allopatry and secondary contact, facilitating gene flow among distinct metapopulations and generating reticulate evolutionary histories that are not adequately described by a bifurcating evolutionary tree. One such example may exist in the two-lined salamander (Eurycea bislineata) species complex, where discordance among morphological and molecular datasets has created a "vexing taxonomic challenge." Previous phylogeographic analyses of mitochondrial DNA (mtDNA) suggested that the reorganization of Miocene paleodrainages drove vicariance and dispersal, but the inherent limitations of a single-locus dataset precluded the evaluation of subsequent gene flow. Here, we generate triple-enzyme restriction site-associated DNA sequencing (3RAD) data for > 100 individuals representing all major mtDNA lineages and use a suite of complementary methods to demonstrate that discordance among earlier datasets is best explained by a reticulate evolutionary history influenced by river drainage reorganization. Systematics of such groups should acknowledge these complex histories and relationships that are not strictly hierarchical. [Amphibian; hybridization; introgression; Plethodontidae; stream capture.].
Collapse
Affiliation(s)
- Todd W Pierson
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Kenneth H Kozak
- Bell Museum and Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Travis C Glenn
- Department of Environmental Health Science and Institute of Bioinformatics, University of Georgia, Athens, GA 30609, USA
| | - Benjamin M Fitzpatrick
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
8
|
Waters JM, King TM, Craw D. Gorges partition diversity within New Zealand flathead Galaxias populations. JOURNAL OF FISH BIOLOGY 2024; 104:950-956. [PMID: 38018507 DOI: 10.1111/jfb.15635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Understanding the landscape factors governing population connectivity in riverine ecosystems represents an ongoing challenge for freshwater biologists. We used DNA sequence analysis to test the hypothesis that major geomorphological features underpin freshwater-limited fish diversity in a tectonically dynamic region of New Zealand. Phylogeographic analysis of 101 Galaxias depressiceps cytochrome b sequences, incorporating 55 localities from southern New Zealand, revealed 26 haplotypes, with only one shared among rivers. We detect strong hierarchical genetic differentiation both among and within river systems. Genetic structuring is particularly pronounced across the Taieri River system (63 individuals from 35 sites, 18 haplotypes), with 92% of variation partitioned among locations. Distinctive within-river genetic clusters are invariably associated with major subcatchment units, typically isolated by substantial gorges. The anomalous distribution of a single lineage across a major drainage divide is consistent with local, tectonically driven headwater capture. We conclude that major landscape features such as gorges can strongly partition riverine fish diversity and constrain freshwater biodiversity.
Collapse
Affiliation(s)
| | - Tania M King
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Dave Craw
- Department of Geology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Liu Y, Wang Y, Willett SD, Zimmermann NE, Pellissier L. Escarpment evolution drives the diversification of the Madagascar flora. Science 2024; 383:653-658. [PMID: 38330102 DOI: 10.1126/science.adi0833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
Madagascar exhibits high endemic biodiversity that has evolved with sustained and stable rates of speciation over the past several tens of millions of years. The topography of Madagascar is dominated by a mountainous continental rift escarpment, with the highest plant diversity and rarity found along the steep, eastern side of this geographic feature. Using a process-explicit model, we show that precipitation-driven erosion and landward retreat of this high-relief topography creates transient habitat organization through multiple mechanisms, including catchment expansion, isolation of highland remnants, and formation of topographic barriers. Habitat isolation and reconnection on a million-year timescale serves as an allopatric speciation pump creating the observed biodiversity.
Collapse
Affiliation(s)
- Yi Liu
- Swiss Federal Research Institute (WSL), 8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Yanyan Wang
- Department of Earth Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Sean D Willett
- Department of Earth Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Niklaus E Zimmermann
- Swiss Federal Research Institute (WSL), 8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Loïc Pellissier
- Swiss Federal Research Institute (WSL), 8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
10
|
Ni X, Chen Y, Deng G, Fu C. Pleistocene Landscape Dynamics Drives Lineage Divergence of a Temperate Freshwater Fish Gobio rivuloides in Coastal Drainages of Northern China. Genes (Basel) 2023; 14:2146. [PMID: 38136969 PMCID: PMC10743038 DOI: 10.3390/genes14122146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Understanding historical processes underlying lineage distribution patterns is a primary goal of phylogeography. We selected Gobio rivuloides (Cypriniformes: Gobionidae) as a model to improve our knowledge about how intraspecific genetic divergence of freshwater fishes arises in coastal drainages of northern China via statistical analysis using cytochrome b gene. The time-calibrated phylogeny of G. rivuloides showed the divergence of two major lineages (I and II) at ~0.98 Ma (million years ago). Lineage I can be divided into two sub-lineages (I-A and I-B) with a divergence time of ~0.83 Ma. Sub-lineage I-A inhabits the Amur River, and sub-lineage I-B lives in the Luan River and Liao River. Lineage II is distributed in the Yellow River and Hai River, with close genetic relationships between the two drainages, and can be split into two sub-lineages (II-C and II-D) with a divergence time of ~0.60 Ma. Our findings indicate that the splitting of lineages and sub-lineages could be attributed to geographic isolation caused by the formation of the Bohai Sea, river capture, and the episodic hydrologic closing of a paleolake during the late Lower-Middle Pleistocene. It is also the first report we know of displaying a clear phylogeographic break for freshwater fishes across coastal drainages in northern China.
Collapse
Affiliation(s)
| | | | | | - Cuizhang Fu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China; (X.N.); (Y.C.); (G.D.)
| |
Collapse
|