1
|
Xia KT, Rajan A, Surendranath Y, Bergman RG, Raymond KN, Toste FD. Tunable Electrochemical Entropy through Solvent Ordering by a Supramolecular Host. J Am Chem Soc 2023; 145:25463-25470. [PMID: 37956314 PMCID: PMC10683002 DOI: 10.1021/jacs.3c10145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
An aqueous electrochemically controlled host-guest encapsulation system demonstrates a large and synthetically tunable redox entropy change. Electrochemical entropy is the basis for thermally regenerative electrochemical cycles (TRECs), which utilize reversible electrochemical processes with large molar entropy changes for thermogalvanic waste-heat harvesting and electrochemical cooling, among other potential applications. A supramolecular host-guest system demonstrates a molar entropy change of 4 times that of the state-of-the-art aqueous TREC electrolyte potassium ferricyanide. Upon encapsulation of a guest, water molecules that structurally resemble amorphous ice are displaced from the host cavity, leveraging a change in the degrees of freedom and ordering of the solvent rather than the solvation of the redox-active species to increase entropy. The synthetic tunability of the host allows rational optimization of the system's ΔS, showing a range of -51 to -101 cal mol-1 K-1 (-2.2 to -4.4 mV K-1) depending on ligand and metal vertex modifications, demonstrating the potential for rational design of high-entropy electrolytes and a new strategy to overcome theoretical limits on ion solvation reorganization entropy.
Collapse
Affiliation(s)
- Kay T. Xia
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Aravindh Rajan
- Palo
Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304, United States
| | - Yogesh Surendranath
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G. Bergman
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kenneth N. Raymond
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - F. Dean Toste
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Zheng G, Cui Y, Jiang Z, Zhou M, Wang P, Yu Y, Wang Q. Multifunctional composite coatings with hydrophobic, UV-resistant, anti-oxidative, and photothermal performance for healthcare. Colloids Surf A Physicochem Eng Asp 2023; 667:131367. [PMID: 37025928 PMCID: PMC10043963 DOI: 10.1016/j.colsurfa.2023.131367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Personal protective textiles have attracted extensive interest since Corona Virus Disease 2019 has broken out. Moreover, developing eco-friendly, multifunctional waterproof, and breathable surface is of great importance but still faces enormous challenges. Notably, good hydrophobicity and breathability are necessary for protective textiles, especially protective clothing and face masks for healthcare. Herein, the multifunctional composite coatings with good UV-resistant, anti-oxidative, hydrophobic, breathable, and photothermal performance has been rapidly created to meet protective requirements. First, the gallic acid and chitosan polymer was coated onto the cotton fabric surface. Subsequently, the modified silica sol was anchored on the coated cotton fabric surface. The successful fabrication of composite coatings was verified by RGB values obtained from the smartphone and K/S value. The present work is an advance for realizing textile hydrophobicity by utilizing fluorine-free materials, compared with the surface hydrophobicity fabricated with conventional fluorinated materials. The surface free energy has been reduced from 84.2 to27.6 mJ/m2 so that the modified cotton fabric could repel the ethylene glycol, hydrochloric acid, and sodium hydroxide solutions, respectively. Besides, the composite coatings possesses lower adhesion to deionized water. After 70 cycles of the sandpaper abrasion, the fluorine-free hydrophobic coatings still exhibits good hydrophobicity with WCA of 124.6 ± 0.9°, with overcoming the intrinsic drawback of the poor abrasion resistance of hydrophobic surfaces. Briefly, the present work may provide a universal strategy for rapidly creating advanced protective coatings to meet personal healthcare, and a novel method for detecting RGB values of composite coatings by smartphone.
Collapse
Affiliation(s)
- Guolin Zheng
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Yifan Cui
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zhe Jiang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Man Zhou
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Ping Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Yuanyuan Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Qiang Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
3
|
Qian S, Catalini D, Muehlbauer J, Liu B, Mevada H, Hou H, Hwang Y, Radermacher R, Takeuchi I. High-performance multimode elastocaloric cooling system. Science 2023; 380:722-727. [PMID: 37200413 DOI: 10.1126/science.adg7043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023]
Abstract
Developing zero-global warming potential refrigerants has emerged as one area that helps address global climate change concerns. Various high-efficiency caloric cooling techniques meet this goal, but scaling them up to technologically meaningful performance remains challenging. We have developed an elastocaloric cooling system with a maximum cooling power of 260 watts and a maximum temperature span of 22.5 kelvin. These values are among the highest reported for any caloric cooling system. Its key feature is the compression of fatigue-resistant elastocaloric nitinol (NiTi) tubes configured in a versatile multimode heat exchange architecture, which allows the harnessing of both high delivered cooling power and large temperature spans. Our system shows that elastocaloric cooling, which only emerged 8 years ago, is a promising direction for commercializing caloric cooling.
Collapse
Affiliation(s)
- Suxin Qian
- Department of Refrigeration and Cryogenic Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - David Catalini
- Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jan Muehlbauer
- Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Boyang Liu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Het Mevada
- Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Huilong Hou
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191, People's Republic of China
- Zhongfa Aviation Institute of Beihang University, Hangzhou, Zhejiang 310023, People's Republic of China
- Tianmushan Laboratory (Zhejiang Provincial Laboratory for Aviation), Hangzhou, Zhejiang 310023, People's Republic of China
| | - Yunho Hwang
- Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Reinhard Radermacher
- Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ichiro Takeuchi
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
4
|
Defay E. Cool it, with a pinch of salt. Science 2022; 378:1275. [PMID: 36548431 DOI: 10.1126/science.adf5114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Melting a solvent with a salt and then desalinating it enables a reversible cooling cycle.
Collapse
Affiliation(s)
- Emmanuel Defay
- Department of Materials Research and Technology, Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| |
Collapse
|