1
|
Wach A, Bericat-Vadell R, Bacellar C, Cirelli C, Johnson PJM, Castillo RG, Silveira VR, Broqvist P, Kullgren J, Maximenko A, Sobol T, Partyka-Jankowska E, Nordlander P, Halas NJ, Szlachetko J, Sá J. The dynamics of plasmon-induced hot carrier creation in colloidal gold. Nat Commun 2025; 16:2274. [PMID: 40050628 PMCID: PMC11885627 DOI: 10.1038/s41467-025-57657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
The generation and dynamics of plasmon-induced hot carriers in gold nanoparticles offer crucial insights into nonequilibrium states for energy applications, yet the underlying mechanisms remain experimentally elusive. Here, we leverage ultrafast X-ray absorption spectroscopy (XAS) to directly capture hot carrier dynamics with sub-50 fs temporal resolution, providing clear evidence of plasmon decay mechanisms. We observe the sequential processes of Landau damping (~25 fs) and hot carrier thermalization (~1.5 ps), identifying hot carrier formation as a significant decay pathway. Energy distribution measurements reveal carriers in non-Fermi-Dirac states persisting beyond 500 fs and observe electron populations exceeding single-photon excitation energy, indicating the role of an Auger heating mechanism alongside traditional impact excitation. These findings deepen the understanding of hot carrier behavior under localized surface plasmon resonance, offering valuable implications for applications in photocatalysis, photovoltaics, and phototherapy. This work establishes a methodological framework for studying hot carrier dynamics, opening avenues for optimizing energy transfer processes in nanoscale plasmonic systems.
Collapse
Affiliation(s)
- Anna Wach
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
- Paul Scherrer Institut, Villigen PSI, Switzerland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Bericat-Vadell
- Department of Chemistry-Ångström, Physical Chemistry division, Uppsala University, Uppsala, Sweden
| | | | | | | | - Rebeca G Castillo
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Mülheim an der Ruhr, Germany
| | - Vitor R Silveira
- Department of Chemistry-Ångström, Physical Chemistry division, Uppsala University, Uppsala, Sweden
| | - Peter Broqvist
- Maxepartment of Chemistry-Ångström, Structural Chemistry division, Uppsala University, Uppsala, Sweden
| | - Jolla Kullgren
- Maxepartment of Chemistry-Ångström, Structural Chemistry division, Uppsala University, Uppsala, Sweden
| | - Alexey Maximenko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
| | - Tomasz Sobol
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
| | - Ewa Partyka-Jankowska
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
| | - Peter Nordlander
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Naomi J Halas
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Jakub Szlachetko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland.
| | - Jacinto Sá
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
- Department of Chemistry-Ångström, Physical Chemistry division, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Capra NE, Trinh BB, Girolami GS. Weakly Bound but Strongly Interacting: The Structures, Stabilities, and Dynamics of Osmium(II) Ethane, Propane, and Butane Complexes. J Am Chem Soc 2025; 147:7377-7390. [PMID: 39994835 DOI: 10.1021/jacs.4c13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Low-temperature protonation of the osmium(II) alkyl compounds (C5Me5)Os(dfmpm)R, where dfmpm = (F3C)2PCH2P(CF3)2 and R = ethyl, n-propyl, n-butyl, or i-butyl, generates σ-ethane, σ-propane, σ-n-butane, and σ-i-butane complexes. The alkane dissociation barriers are ∼13.2 kcal mol-1 or about 0.5 kcal mol-1 larger than that of the previously described methane complex [(C5Me5)Os(dfmpm)(CH4)]+. The alkane ligands bind to osmium through one methyl group, which exchanges slowly with the unbound terminal methyl group(s). Within the bound methyl group, one bridging hydrogen atom interacts directly with osmium; it exchanges rapidly with the other two methyl C-H bonds at a rate consistent with a slightly hindered C-C bond rotation. The large difference in 1JCH between the bridging (75 Hz) and terminal (142 Hz) C-H sites is consistent with the view that the 16-electron [(C5Me5)Os(dfmpm)]+ fragment has partially abstracted a hydride group (H-) from the alkane, which confers carbocation (sp2) character to the CH2R portion of the Os-H-CH2R unit. The extent of this distortion and the overall strength of the metal-alkane interaction are correlated with the alkane C-H orbital energies in a manner consistent with covalent metal-ligand bonding. Whereas most ligands can bind to metals with little structural reorganization, an alkane must undergo a significant structural change─weakening of a C-H bond─to become a sufficiently good donor and acceptor to bind to a metal. Collectively, these results show that the binding energies of alkane ligands are small not because the constituent metal-ligand interactions are weak but rather because the reorganization energy needed to form them is large.
Collapse
Affiliation(s)
- Nicolas E Capra
- School of Chemical Sciences, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Brian B Trinh
- School of Chemical Sciences, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Gregory S Girolami
- School of Chemical Sciences, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Liu F, Yi X, Liu T, Chen W, Yang J, Xiao Y, Qin Y, Song L, Zheng A. Microenvironment perturbations driving methanol low-temperature conversion over zeolite. SCIENCE ADVANCES 2025; 11:eads4018. [PMID: 39970221 PMCID: PMC11837997 DOI: 10.1126/sciadv.ads4018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025]
Abstract
Compared to methanol, dimethyl ether (DME) is a more ideal and attractive raw material for industrial applications. Typically, the industrially zeolite-catalyzed methanol dehydration to DME occurs at temperatures above 423 kelvin. Improving catalytic reactivity and reducing energy consumption are urgently needed but remain challenging. Here, we report an unexplored associative strategy to realize DME formation at room temperature and the generation of olefins even at 413 kelvin, which is achieved by coinjecting basic acetone to manipulate the local chemical microenvironment of the methanol reactant inside the H-ZSM-5 zeolite. The crucial role of acetone in accelerating methanol direct dehydration to DME is highlighted as the obvious destabilization effect for the adsorbed methanol cluster with strong hydrogen bonds and the subsequent traction of water during DME formation. These findings offer more insights into the rational design of reaction systems by manipulating the local surroundings to regulate catalytic performances and should represent a large step forward in methanol conversion technology.
Collapse
Affiliation(s)
- Fengqing Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Tangkang Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jiabao Yang
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yucai Qin
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
4
|
Xu X, Xi Z, Zhao D, Liu Z, Wang L, Ban T, Wang J, Zhao S, Gao H, Wang G. Regulating electron transfer between valence-variable cuprum and cerium sites within bimetallic metal-organic framework towards enhanced catalytic hydrogenation performance. J Colloid Interface Sci 2025; 679:1159-1170. [PMID: 39423682 DOI: 10.1016/j.jcis.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Modulating the electron distribution between active sites in metal-organic frameworks (MOFs) offers a promising strategy for optimizing their catalytic performance. In this study, we employed a novel heterovalent substitution strategy to synthesize bimetallic organic frameworks (CuxCey-BTC) that feature dual active sites with copper (Cu) and cerium (Ce), Our objective was to achieve efficient hydrogenation of dicyclopentadiene (DCPD) by regulating the electron transfer between the valence-variable Cu and Ce species. The designed CuxCey-BTC were characterized using various spectroscopic and microscopic techniques, along with density functional theory (DFT) calculations, confirming the successful incorporation of bimetallic nodes within the framework structure and the electron transfer between them. The transfer of electrons from the less electronegative Ce to the Cu sites promotes the chemisorption of hydrogen gas (H2) on the electron-rich Cu sites, thereby optimizing the activation of the CC bond in DCPD. The Cu4Ce-BTC catalyst demonstrated exceptional performance, achieving complete conversion of DCPD and significantly surpassing monometallic MOFs. Moreover, we proposed a plausible pathway for the hydrogenation of DCPD. This work highlights the synergistic effects between bimetallic centers and offers a novel strategy to improve the MOFs' catalytic activity by modulating electron distribution between dual active sites.
Collapse
Affiliation(s)
- Xinmeng Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zuoshuai Xi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Danfeng Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zhiyuan Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Linmeng Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Tao Ban
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - JingJing Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Shunzheng Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Hongyi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Shunde Innovation School, University of Science and Technology Beijing, Shunde 528399, PR China.
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
5
|
Zhang ZY, Restaino L, Sen A, Winghart MO, Coates MR, Odelius M, Kowalewski M, Nibbering ETJ, Rouzée A. Ultrafast Mapping of Electronic and Nuclear Structure in the Photo Dissociation of Nitrogen Dioxide. J Phys Chem Lett 2024; 15:12025-12033. [PMID: 39588803 PMCID: PMC11626503 DOI: 10.1021/acs.jpclett.4c02808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
We investigate the photoinduced dissociation reaction of NO2 → NO + O upon electronic excitation of the X̃2A1 (D0) to the Ã2B2 (D1) state by femtosecond X-ray absorption spectroscopy at the nitrogen K-edge. We obtain key insight into the chemical bond breaking event and its associated electronic structural dynamics. Calculations of the photoinduced reaction allow to assign the transient absorption features at time scales of 10-50 fs to wave packet motions in the excited D1 and ground D0 states, followed by the formation of the NO photoproduct with a 255 ± 23 fs time constant. Our analysis shows that there is no direct correlation between the 1s core levels and the electronic ground and excited states transition energies and the bond elongation of NO2, while en route to dissociation toward the NO + O photoproducts, in the transient nitrogen K-edge spectra. However, simulations predict that for a sufficiently short UV pump pulse, the early wave packet dynamics in the D1 electronic excited state occurring within the first 35 fs along the bending and symmetric stretching modes can be directly mapped in the transient X-ray absorption spectra.
Collapse
Affiliation(s)
- Zhuang-Yan Zhang
- Max Born
Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, 12489 Berlin, Germany
| | - Lorenzo Restaino
- Department
of Physics, Stockholm University, AlbaNova
University Center, 106 91 Stockholm, Sweden
| | - Arnab Sen
- Max Born
Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, 12489 Berlin, Germany
| | - Marc-Oliver Winghart
- Max Born
Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, 12489 Berlin, Germany
| | - Michael R. Coates
- Department
of Physics, Stockholm University, AlbaNova
University Center, 106 91 Stockholm, Sweden
| | - Michael Odelius
- Department
of Physics, Stockholm University, AlbaNova
University Center, 106 91 Stockholm, Sweden
| | - Markus Kowalewski
- Department
of Physics, Stockholm University, AlbaNova
University Center, 106 91 Stockholm, Sweden
| | - Erik T. J. Nibbering
- Max Born
Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, 12489 Berlin, Germany
| | - Arnaud Rouzée
- Max Born
Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, 12489 Berlin, Germany
| |
Collapse
|
6
|
Schröder H, Coates MR, Jay RM, Banerjee A, Sorgenfrei NL, Weniger C, Mitzner R, Föhlisch A, Odelius M, Wernet P. Different Photodissociation Mechanisms in Fe(CO) 5 and Cr(CO) 6 Evidenced with Femtosecond Valence Photoelectron Spectroscopy and Excited-State Molecular Dynamics Simulations. J Phys Chem Lett 2024; 15:11830-11838. [PMID: 39564782 PMCID: PMC11613650 DOI: 10.1021/acs.jpclett.4c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Measured and calculated time-resolved photoelectron spectra and excited-state molecular dynamics simulations of photoexcited gas-phase molecules Fe(CO)5 and Cr(CO)6 are presented. Samples were excited with 266 nm pump pulses and probed with 23 eV photons from a femtosecond high-order harmonic generation source. Photoelectron intensities are seen to blue-shift as a function of time from binding energies characteristic of bound electronic excited states via dissociated-state energies toward the energies of the dissociated species for both Fe(CO)5 and Cr(CO)6, but differences are apparent. The excited-state and dissociation dynamics are found to be faster in Cr(CO)6 because the repopulation from bound excited to dissociative excited states is faster. This may be due to stronger coupling between bound and dissociative states in Cr(CO)6, a notion supported by the observation that the manifolds of bound and dissociative states overlap in a narrow energy range in this system.
Collapse
Affiliation(s)
- Henning Schröder
- Institut
für Physik und Astronomie, Universität
Potsdam, Haus 28 Karl-Liebknecht-Straße
24/25, 14476 Potsdam-Golm, Germany
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Michael R. Coates
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Raphael M. Jay
- Institut
für Physik und Astronomie, Universität
Potsdam, Haus 28 Karl-Liebknecht-Straße
24/25, 14476 Potsdam-Golm, Germany
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Ambar Banerjee
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Nomi L.A.N. Sorgenfrei
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Christian Weniger
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Rolf Mitzner
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Alexander Föhlisch
- Institut
für Physik und Astronomie, Universität
Potsdam, Haus 28 Karl-Liebknecht-Straße
24/25, 14476 Potsdam-Golm, Germany
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Michael Odelius
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Philippe Wernet
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|
7
|
Hui L, Yan D, Zhang X, Wu H, Li J, Li Y. Halogen Tailoring of Platinum Electrocatalyst with High CO Tolerance for Methanol Oxidation Reaction. Angew Chem Int Ed Engl 2024; 63:e202410413. [PMID: 38973379 DOI: 10.1002/anie.202410413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
The catalytic activity of platinum for CO oxidation depends on the interaction of electron donation and back-donation at the platinum center. Here we demonstrate that the platinum bromine nanoparticles with electron-rich properties on bromine bonded with sp-C in graphdiyne (PtBr NPs/Br-GDY), which is formed by bromine ligand and constitutes an electrocatalyst with a high CO-resistant for methanol oxidation reaction (MOR). The catalyst showed peak mass activity for MOR as high as 10.4 A mgPt -1, which is 20.8 times higher than the 20 % Pt/C. The catalyst also showed robust long-term stability with slight current density decay after 100 hours at 35 mA cm-2. Structural characterization, experimental, and theoretical studies show that the electron donation from bromine makes the surface of platinum catalysts highly electron-rich, and can strengthen the adsorption of CO as well as enhance π back-donation of Pt to weaken the C-O bond to facilitate CO electrooxidation and enhance catalytic performance during MOR. The results highlight the importance of electron-rich structure among active sites in Pt-halogen catalysts and provide detailed insights into the new mechanism of CO electrooxidation to overcome CO poisoning at the Pt center on an orbital level.
Collapse
Affiliation(s)
- Lan Hui
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dengxin Yan
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052, Gent, Belgium
| | - Xueting Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinze Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Liu D, Wang B, Wu Y, Vasenko AS, Prezhdo OV. Breaking the size limitation of nonadiabatic molecular dynamics in condensed matter systems with local descriptor machine learning. Proc Natl Acad Sci U S A 2024; 121:e2403497121. [PMID: 39213179 PMCID: PMC11388379 DOI: 10.1073/pnas.2403497121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Nonadiabatic molecular dynamics (NA-MD) is a powerful tool to model far-from-equilibrium processes, such as photochemical reactions and charge transport. NA-MD application to condensed phase has drawn tremendous attention recently for development of next-generation energy and optoelectronic materials. Studies of condensed matter allow one to employ efficient computational tools, such as density functional theory (DFT) and classical path approximation (CPA). Still, system size and simulation timescale are strongly limited by costly ab initio calculations of electronic energies, forces, and NA couplings. We resolve the limitations by developing a fully machine learning (ML) approach in which all the above properties are obtained using neural networks based on local descriptors. The ML models correlate the target properties for NA-MD, implemented with DFT and CPA, directly to the system structure. Trained on small systems, the neural networks are applied to large systems and long timescales, extending NA-MD capabilities by orders of magnitude. We demonstrate the approach with dependence of charge trapping and recombination on defect concentration in MoS2. Defects provide the main mechanism of charge losses, resulting in performance degradation. Charge trapping slows with decreasing defect concentration; however, recombination exhibits complex dependence, conditional on whether it occurs between free or trapped charges, and relative concentrations of carriers and defects. Delocalized shallow traps can become localized with increasing temperature, changing trapping and recombination behavior. Completely based on ML, the approach bridges the gap between theoretical models and realistic experimental conditions and enables NA-MD on thousand-atom systems and many nanoseconds.
Collapse
Affiliation(s)
- Dongyu Liu
- School of Electronic Engineering, HSE University, Moscow Institute of Electronics and Mathematics (MIEM), Moscow123458, Russia
| | - Bipeng Wang
- Department of Chemical Engineering, University of Southern California, Los Angeles, CA90089
| | - Yifan Wu
- Department of Chemistry, University of Southern California, Los Angeles, CA90089
| | - Andrey S. Vasenko
- School of Electronic Engineering, HSE University, Moscow Institute of Electronics and Mathematics (MIEM), Moscow123458, Russia
- Donostia International Physics Center, San Sebastián-Donostia, Euskadi20018, Spain
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA90089
- Department of Physics, University of Southern California, Los Angeles, CA90089
- Department of Astronomy, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
9
|
Jay RM, Coates MR, Zhao H, Winghart MO, Han P, Wang RP, Harich J, Banerjee A, Wikmark H, Fondell M, Nibbering ETJ, Odelius M, Huse N, Wernet P. Photochemical Formation and Electronic Structure of an Alkane σ-Complex from Time-Resolved Optical and X-ray Absorption Spectroscopy. J Am Chem Soc 2024; 146:14000-14011. [PMID: 38713061 PMCID: PMC11117182 DOI: 10.1021/jacs.4c02077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
C-H bond activation reactions with transition metals typically proceed via the formation of alkane σ-complexes, where an alkane C-H σ-bond binds to the metal. Due to the weak nature of metal-alkane bonds, σ-complexes are challenging to characterize experimentally. Here, we establish the complete pathways of photochemical formation of the model σ-complex Cr(CO)5-alkane from Cr(CO)6 in octane solution and characterize the nature of its metal-ligand bonding interactions. Using femtosecond optical absorption spectroscopy, we find photoinduced CO dissociation from Cr(CO)6 to occur within the 100 fs time resolution of the experiment. Rapid geminate recombination by a fraction of molecules is found to occur with a time constant of 150 fs. The formation of bare Cr(CO)5 in its singlet ground state is followed by complexation of an octane molecule from solution with a time constant of 8.2 ps. Picosecond X-ray absorption spectroscopy at the Cr L-edge and O K-edge provides unique information on the electronic structure of the Cr(CO)5-alkane σ-complex from both the metal and ligand perspectives. Based on clear experimental observables, we find substantial destabilization of the lowest unoccupied molecular orbital upon coordination of the C-H bond to the undercoordinated Cr center in the Cr(CO)5-alkane σ-complex, and we define this as a general, orbital-based descriptor of the metal-alkane bond. Our study demonstrates the value of combining optical and X-ray spectroscopic methods as complementary tools to study the stability and reactivity of alkane σ-complexes in their role as the decisive intermediates in C-H bond activation reactions.
Collapse
Affiliation(s)
- Raphael M. Jay
- Department
of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Michael R. Coates
- Department
of Physics, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
| | - Huan Zhao
- Center
for Free-Electron Laser Science, Department of Physics, University of Hamburg, 22761 Hamburg, Germany
| | - Marc-Oliver Winghart
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Peng Han
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Ru-Pan Wang
- Center
for Free-Electron Laser Science, Department of Physics, University of Hamburg, 22761 Hamburg, Germany
| | - Jessica Harich
- Center
for Free-Electron Laser Science, Department of Physics, University of Hamburg, 22761 Hamburg, Germany
| | - Ambar Banerjee
- Department
of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Hampus Wikmark
- Department
of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Mattis Fondell
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Erik T. J. Nibbering
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Michael Odelius
- Department
of Physics, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
| | - Nils Huse
- Center
for Free-Electron Laser Science, Department of Physics, University of Hamburg, 22761 Hamburg, Germany
| | - Philippe Wernet
- Department
of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| |
Collapse
|
10
|
Wang T, Zhang Z, Yan W, Jiang S, Li S, Zhuang J, Xie H, Li G, Jiang L. Spectroscopic Characterization of Highly Excited Neutral Chromium Tricarbonyl. J Phys Chem A 2024; 128:3321-3328. [PMID: 38634151 DOI: 10.1021/acs.jpca.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Spectroscopic characterization of highly excited neutral transition-metal complexes is important for understanding the multifaceted reaction mechanisms between metals and ligands. In this work, the reactions of neutral chromium atoms with carbon monoxide were probed by size-specific infrared spectroscopy. Interestingly, Cr(CO)3 was found to have an unprecedented 7A2″ septet excited state rather than the singlet ground state. A combination of experiment and theory shows that the gas-phase formation of this highly excited Cr(CO)3 is facile both thermodynamically and kinetically. Electronic structure and bonding analyses indicate that the valence electrons of Cr atoms in the septet Cr(CO)3 are in a relatively stable configuration, which facilitate the highly excited structure and the planar geometric shape (D3h symmetry). The observed septet Cr(CO)3 affords a paradigm for exploring the structure, properties, and formation mechanism of a large variety of excited neutral compounds.
Collapse
Affiliation(s)
- Tiantong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangdong Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxing Zhuang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
11
|
Li B, Mu J, Long G, Song X, Huang E, Liu S, Wei Y, Sun F, Feng S, Yuan Q, Cai Y, Song J, Dong W, Zhang W, Yang X, Yan L, Ding Y. Water-participated mild oxidation of ethane to acetaldehyde. Nat Commun 2024; 15:2555. [PMID: 38519506 PMCID: PMC10959925 DOI: 10.1038/s41467-024-46884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
The direct conversion of low alkane such as ethane into high-value-added chemicals has remained a great challenge since the development of natural gas utilization. Herein, we achieve an efficient one-step conversion of ethane to C2 oxygenates on a Rh1/AC-SNI catalyst under a mild condition, which delivers a turnover frequency as high as 158.5 h-1. 18O isotope-GC-MS shows that the formation of ethanol and acetaldehyde follows two distinct pathways, where oxygen and water directly participate in the formation of ethanol and acetaldehyde, respectively. In situ formed intermediate species of oxygen radicals, hydroxyl radicals, vinyl groups, and ethyl groups are captured by laser desorption ionization/time of flight mass spectrometer. Density functional theory calculation shows that the activation barrier of the rate-determining step for acetaldehyde formation is much lower than that of ethanol, leading to the higher selectivity of acetaldehyde in all the products.
Collapse
Affiliation(s)
- Bin Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiali Mu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guifa Long
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Xiangen Song
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Ende Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siyue Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao Wei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Siquan Feng
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qiao Yuan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yutong Cai
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Song
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenrui Dong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Hefei National Laboratory, Hefei, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
| | - Li Yan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
12
|
Xu H, Wang QY, Jiang M, Li SS. Application of valence-variable transition-metal-oxide-based nanomaterials in electrochemical analysis: A review. Anal Chim Acta 2024; 1295:342270. [PMID: 38355227 DOI: 10.1016/j.aca.2024.342270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
The construction of materials with rapid electron transfer is considered an effective method for enhancing electrochemical activity in electroanalysis. It has been widely demonstrated that valence changes in transition metal ions can promote electron transfer and thus increase electrochemical activity. Recently, valence-variable transition metal oxides (TMOs) have shown popular application in electrochemical analysis by using their abundant valence state changes to accelerate electron transfer during electrochemical detection. In this review, we summarize recent research advances in valence changes of TMOs and their application in electrochemical analysis. This includes the definition and mechanism of valence change, the association of valence changes with electronic structure, and their applications in electrochemical detection, along with the use of density functional theory (DFT) to simulate the process of electron transfer during valence changes. Finally, the challenges and opportunities for developing and applying valence changes in electrochemical analysis are also identified.
Collapse
Affiliation(s)
- Huan Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Qiu-Yu Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Min Jiang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Shan-Shan Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
13
|
Banerjee A, Jay RM, Leitner T, Wang RP, Harich J, Stefanuik R, Coates MR, Beale EV, Kabanova V, Kahraman A, Wach A, Ozerov D, Arrell C, Milne C, Johnson PJM, Cirelli C, Bacellar C, Huse N, Odelius M, Wernet P. Accessing metal-specific orbital interactions in C-H activation with resonant inelastic X-ray scattering. Chem Sci 2024; 15:2398-2409. [PMID: 38362433 PMCID: PMC10866335 DOI: 10.1039/d3sc04388f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/01/2024] [Indexed: 02/17/2024] Open
Abstract
Photochemically prepared transition-metal complexes are known to be effective at cleaving the strong C-H bonds of organic molecules in room temperature solutions. There is also ample theoretical evidence that the two-way, metal to ligand (MLCT) and ligand to metal (LMCT), charge-transfer between an incoming alkane C-H group and the transition metal is the decisive interaction in the C-H activation reaction. What is missing, however, are experimental methods to directly probe these interactions in order to reveal what determines reactivity of intermediates and the rate of the reaction. Here, using quantum chemical simulations we predict and propose future time-resolved valence-to-core resonant inelastic X-ray scattering (VtC-RIXS) experiments at the transition metal L-edge as a method to provide a full account of the evolution of metal-alkane interactions during transition-metal mediated C-H activation reactions. For the model system cyclopentadienyl rhodium dicarbonyl (CpRh(CO)2), we demonstrate, by simulating the VtC-RIXS signatures of key intermediates in the C-H activation pathway, how the Rh-centered valence-excited states accessible through VtC-RIXS directly reflect changes in donation and back-donation between the alkane C-H group and the transition metal as the reaction proceeds via those intermediates. We benchmark and validate our quantum chemical simulations against experimental steady-state measurements of CpRh(CO)2 and Rh(acac)(CO)2 (where acac is acetylacetonate). Our study constitutes the first step towards establishing VtC-RIXS as a new experimental observable for probing reactivity of C-H activation reactions. More generally, the study further motivates the use of time-resolved VtC-RIXS to follow the valence electronic structure evolution along photochemical, photoinitiated and photocatalytic reactions with transition metal complexes.
Collapse
Affiliation(s)
- Ambar Banerjee
- Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
| | - Raphael M Jay
- Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
| | - Torsten Leitner
- Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
| | - Ru-Pan Wang
- Center for Free-Electron Laser Science, Department of Physics, University of Hamburg 22761 Hamburg Germany
| | - Jessica Harich
- Center for Free-Electron Laser Science, Department of Physics, University of Hamburg 22761 Hamburg Germany
| | - Robert Stefanuik
- Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
| | - Michael R Coates
- Department of Physics, Stockholm University, AlbaNova University Center 106 91 Stockholm Sweden
| | - Emma V Beale
- Paul Scherrer Institute CH-5232 Villigen PSI Switzerland
| | | | | | - Anna Wach
- Paul Scherrer Institute CH-5232 Villigen PSI Switzerland
- Institute of Nuclear Physics, Polish Academy of Sciences PL-31342 Krakow Poland
| | - Dmitry Ozerov
- Paul Scherrer Institute CH-5232 Villigen PSI Switzerland
| | | | | | | | | | | | - Nils Huse
- Center for Free-Electron Laser Science, Department of Physics, University of Hamburg 22761 Hamburg Germany
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center 106 91 Stockholm Sweden
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
| |
Collapse
|
14
|
Watson L, Pope T, Jay RM, Banerjee A, Wernet P, Penfold TJ. A Δ-learning strategy for interpretation of spectroscopic observables. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:064101. [PMID: 37941993 PMCID: PMC10629969 DOI: 10.1063/4.0000215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Accurate computations of experimental observables are essential for interpreting the high information content held within x-ray spectra. However, for complicated systems this can be difficult, a challenge compounded when dynamics becomes important owing to the large number of calculations required to capture the time-evolving observable. While machine learning architectures have been shown to represent a promising approach for rapidly predicting spectral lineshapes, achieving simultaneously accurate and sufficiently comprehensive training data is challenging. Herein, we introduce Δ-learning for x-ray spectroscopy. Instead of directly learning the structure-spectrum relationship, the Δ-model learns the structure dependent difference between a higher and lower level of theory. Consequently, once developed these models can be used to translate spectral shapes obtained from lower levels of theory to mimic those corresponding to higher levels of theory. Ultimately, this achieves accurate simulations with a much reduced computational burden as only the lower level of theory is computed, while the model can instantaneously transform this to a spectrum equivalent to a higher level of theory. Our present model, demonstrated herein, learns the difference between TDDFT(BLYP) and TDDFT(B3LYP) spectra. Its effectiveness is illustrated using simulations of Rh L3-edge spectra tracking the C-H activation of octane by a cyclopentadienyl rhodium carbonyl complex.
Collapse
Affiliation(s)
- Luke Watson
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Thomas Pope
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Raphael M. Jay
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Ambar Banerjee
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
15
|
Kim T, Im J, Roh Y, Lee G, Seo M. Identification of Chemical and Structural Characteristics of Acrylic Paint Layer Using Terahertz Metasurfaces. Anal Chem 2023; 95:15302-15310. [PMID: 37769202 DOI: 10.1021/acs.analchem.3c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The precise investigation and monitoring of the internal structural change within complex layered systems are crucial, as the emergence of undesirable defects or formation of secondary internal structures significantly exerts a profound influence on the overall properties of the system. We demonstrate an advanced sensing platform utilizing terahertz metasurfaces, allowing chemical detection and precise identification within an acrylic paint layer with a noticeable sensitivity, reaching down to several hundreds of nanometers, in nondestructive and noncontact manners. The identification of solid and mixed paint samples was achieved by analyzing their optical properties, including the refractive index and absorption coefficient. Notably, the presence of internal pore defects within the mixed acrylic paint led to geometric distortions, affecting the state of the overall system. Intriguingly, even in cases where acrylic paint exhibited identical colors perceptible under visible light, distinct discrimination and identification of chemical compositions were successfully proposed.
Collapse
Affiliation(s)
- Taeyeon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jaeryong Im
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- School of Electrical and Computer Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Yeeun Roh
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Geon Lee
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Minah Seo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
16
|
Xie Z, Chen JG. Bimetallic-Derived Catalytic Structures for CO 2-Assisted Ethane Activation. Acc Chem Res 2023; 56:2447-2458. [PMID: 37647142 DOI: 10.1021/acs.accounts.3c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
ConspectusIn recent years, the simultaneous upgrading of CO2 and ethane has emerged as a promising approach for generating valuable gaseous (CO, H2, and ethylene) and liquid (aromatics and C3 oxygenates) chemicals from the greenhouse gas CO2 and large-reserved shale gas. The key challenges for controlling product selectivity lie in the selective C-H and C-C bond cleavage of ethane with the assistance of CO2. Bimetallic-derived catalysts likely undergo alloying or oxygen-induced segregation under reaction conditions, thus providing diverse types of interfacial sites, e.g., metal/support (M/M'Ox) interface and metal oxide/metal (M'Ox/M) inverse interface, that are beneficial for selective CO2-assisted ethane upgrading. The alloying extent can be initially predicted by cohesive energy and atomic radius (or Wigner-Seitz radius), while the preference for segregation to form the on-top suboxide can be approximated using the work function, electronegativity, and binding strength of adsorbed oxygen. Furthermore, bimetallic-derived catalysts are typically supported on high surface area oxides. Modifying the reducibility and acidity/basicity of the oxide supports and introducing surface defects facilitate CO2 activation and oxygen supplies for ethane activation.Using in situ synchrotron characterization and density functional theory (DFT) calculations, we found that the electronic properties of oxygen species influence the selective cleavage of C-H/C-C bonds in ethane, with electron-deficient oxygen over the metal (or alloy) surface promoting nonselective bond scission to produce syngas and electron-enriched oxygen over the metal oxide/metal interface enhancing selective C-H scission to yield ethylene. We further demonstrate that the preferred structures of the catalyst surfaces, either alloy surfaces or metal oxide/metal inverse interfaces, can be controlled through the appropriate choice of metal combinations and their atomic ratios. Through a comprehensive comparison of experimental results and DFT calculations, the selectivity of C-C/C-H bond scission is correlated with the thermodynamically favorable bimetallic-derived structures (i.e., alloy surfaces or metal oxide/metal inverse interfaces) under reaction conditions over a wide range of bimetallic catalysts. These findings not only offer structural and mechanistic insights into bimetallic-derived catalysts but also provide design principles for selective catalysts for CO2-assisted activation of ethane and other light alkanes. This Account concludes by discussing challenges and opportunities in designing advanced bimetallic-derived catalysts, incorporating new reaction chemistries for other products, employing precise synthesis strategies for well-defined structures with optimized site densities, and leveraging time/spatial/energy-resolved in situ spectroscopy/scattering/microscopy techniques for comprehensive structural analysis. The research methodologies established here are helpful for the investigation of dynamic alloy and interfacial structures and should inspire more efforts toward the simultaneous upgrading of CO2 and shale gas.
Collapse
Affiliation(s)
- Zhenhua Xie
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jingguang G Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|