1
|
Lyons TW, Tino CJ, Fournier GP, Anderson RE, Leavitt WD, Konhauser KO, Stüeken EE. Co-evolution of early Earth environments and microbial life. Nat Rev Microbiol 2024; 22:572-586. [PMID: 38811839 DOI: 10.1038/s41579-024-01044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/31/2024]
Abstract
Two records of Earth history capture the evolution of life and its co-evolving ecosystems with interpretable fidelity: the geobiological and geochemical traces preserved in rocks and the evolutionary histories captured within genomes. The earliest vestiges of life are recognized mostly in isotopic fingerprints of specific microbial metabolisms, whereas fossils and organic biomarkers become important later. Molecular biology provides lineages that can be overlayed on geologic and geochemical records of evolving life. All these data lie within a framework of biospheric evolution that is primarily characterized by the transition from an oxygen-poor to an oxygen-rich world. In this Review, we explore the history of microbial life on Earth and the degree to which it shaped, and was shaped by, fundamental transitions in the chemical properties of the oceans, continents and atmosphere. We examine the diversity and evolution of early metabolic processes, their couplings with biogeochemical cycles and their links to the oxygenation of the early biosphere. We discuss the distinction between the beginnings of metabolisms and their subsequent proliferation and their capacity to shape surface environments on a planetary scale. The evolution of microbial life and its ecological impacts directly mirror the Earth's chemical and physical evolution through cause-and-effect relationships.
Collapse
Affiliation(s)
- Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA.
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA.
| | - Christopher J Tino
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA.
| | - Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rika E Anderson
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA
- Biology Department, Carleton College, Northfield, MN, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Eva E Stüeken
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
2
|
Matsu'ura F, Sawaki Y, Komiya T, Han J, Maruyama S, Ushikubo T, Shimizu K, Ueno Y. Oceanic and Sedimentary Microbial Sulfur Cycling Controlled by Local Organic Matter Flux During the Ediacaran Shuram Excursion in the Three Gorges Area, South China. GEOBIOLOGY 2024; 22:e12617. [PMID: 39295594 DOI: 10.1111/gbi.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/17/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024]
Abstract
The increased difference in the sulfur isotopic compositions of sedimentary sulfate (carbonate-associated sulfate: CAS) and sulfide (chromium-reducible sulfur: CRS) during the Ediacaran Shuram excursion is attributed to increased oceanic sulfate concentration in association with the oxidation of the global ocean and atmosphere. However, recent studies on the isotopic composition of pyrites have revealed that CRS in sediments has diverse origins of pyrites. These pyrites are formed either in the water column/shallow sediments, where the system is open with respect to sulfate, or in deep sediments, where the system is closed with respect to sulfate. The δ34S value of sulfate in the open system is equal to that of seawater; on the contrary, the δ34S value of sulfate in the closed system is higher than that of seawater. Therefore, obtaining the isotopic composition of pyrites formed in an open system, which most likely retain microbial sulfur isotope fractionation, is essential to reconstruct the paleo-oceanic sulfur cycle. In this study, we carried out multiple sulfur isotope analyses of CRS and mechanically separated pyrite grains (>100 μm) using a fluorination method, in addition to secondary ion mass spectrometry (SIMS) analyses of in situ δ34S values of pyrite grains in drill core samples of Member 3 of the Ediacaran Doushantuo Formation in the Three Gorges area, South China. The isotope fractionation of microbial sulfate reduction (MSR) in the limestone layers of the upper part of Member 3 was calculated to be 34ε = 55.7‰ and 33λ = 0.5129 from the δ34S and Δ33S' values of medium-sized pyrite grains ranging from 100 to 300 μm and the average δ34S and Δ33S' values of CAS. Model calculations revealed that the influence of sulfur disproportionation on the δ34S values of these medium-sized pyrite grains was insignificant. In contrast, within the dolostone layers of the middle part of Member 3, isotope fractionation was determined to be 34ε = 47.5‰. The 34ε value in the middle part of Member 3 was calculated from the average δ34S values of the rim of medium-sized pyrite grains and the average δ34S values of CAS. This observation revealed an increase in microbial sulfur isotope fractionation during the Shuram excursion at the drill core site. Furthermore, our investigation revealed correlations between δ34SCRS values and CRS concentrations and between CRS and TOC concentrations, implying that organic matter load to sediments controlled the δ34SCRS values rather than oceanic sulfate concentrations. However, these CRS and TOC concentrations are local parameters that can change only at the kilometer scale with local redox conditions and the intensity of primary production. Therefore, the decreasing δ34SCRS values likely resulted from local redox conditions and not from a global increase in the oceanic sulfate concentration.
Collapse
Affiliation(s)
- Fumihiro Matsu'ura
- International Center for Isotope Effects Research, Nanjing University, Nanjing, Jiangsu, China
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
- Earth-Life Science Institute (WPI-ELSI), Tokyo Institute of Technology, Tokyo, Japan
| | - Yusuke Sawaki
- Department of Earth Science and Astronomy Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Komiya
- Department of Earth Science and Astronomy Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Jian Han
- Early Life Institute and Department of Geology and State Key Laboratory of Continental Dynamics, Northwest University, Xi'an, China
| | - Shigenori Maruyama
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
| | - Takayuki Ushikubo
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Kenji Shimizu
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Yuichiro Ueno
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
- Earth-Life Science Institute (WPI-ELSI), Tokyo Institute of Technology, Tokyo, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| |
Collapse
|
3
|
Shu X, Qin Z, Nie C, Zhang D, Du H, Zhang Q, Dang Z. Inhibition photooxidation of pyrite under illumination via altering photogenerated carrier migration pathways: Role of DTC-TETA surface passivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171988. [PMID: 38537811 DOI: 10.1016/j.scitotenv.2024.171988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
The oxidation of pyrite is the main cause of acidic mine drainage (AMD), which is a very serious environmental problem in numerous mining areas around the world. Previous studies have shown that passivation agents create a hydrophobic film on the surface of pyrite, effectively isolating oxygen and water. However, the presence of abundant sulfide minerals in tailings ponds may exacerbate AMD when exposed to solar radiation, due to the semiconductor properties of pyrite. It remains uncertain whether the current surface passivation coating can effectively prevent the oxidation of pyrite under light conditions. This paper is the first to investigate the passivation effect as well as the mechanism of surface passivation coating on pyrite under illumination from the perspective of materials science. The results demonstrated that the triethylenetetramine-bisdithiocarbamate (DTC-TETA) passivation coating on pyrite almost completely suppressed the photooxidation of pyrite under illumination by changing the migration path of photogenerated charge carriers. The formation of NC(S)2-Fe chelating groups provides atomic-level interface channels for DTC-TETA to transfer electrons to pyrite and creates a favorable reduction environment for pyrite. Besides, DTC-TETA coating greatly improves the electron-hole pairs recombination efficiency of pyrite, which significantly inhibits the photogenerated electron reduction of oxygen to generate reactive oxygen species (ROS). Moreover, DTC-TETA coating captures the photogenerated holes, avoiding direct oxidation of pyrite by holes. Density functional theory (DFT) calculations revealed that the DTC-TETA coating increases the adsorption energy barrier for oxygen and water. The results extend the existing knowledge on passivation mechanisms on pyrite and hold significant implications for the future screening, evaluation, and practical application of surface passivating agents.
Collapse
Affiliation(s)
- Xiaohua Shu
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - ZiQi Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - Changda Nie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - Dinghua Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China
| | - Haijie Du
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, PR China.
| | - Qian Zhang
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, Guangxi 541000, PR China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|