1
|
Chen Y, Han C, Ou H, Chen H, Liu Y, Zhan X. Transcriptomic and metabolomic analyses provide insights into the energy metabolism and signaling regulation of byssus secretion in winged pearl oyster Pteria penguin. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101446. [PMID: 39965458 DOI: 10.1016/j.cbd.2025.101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
The winged pearl oyster Pteria penguin has the unique stout byssus in comparison with other pearl oysters. However, the mechanism of the byssus secretion in this species has not been largely investigated. This study applied transcriptomic and metabolomic techniques to elucidate this mechanism. The results showed that 3420 differentially expressed genes (DEGs) were identified which were enriched in glycolysis/gluconeogenesis, pentose phosphate pathway, TCA cycle, fatty acid metabolism, mTOR signaling pathway, FoxO signaling pathway and Notch signaling pathway. The metabolomic analysis revealed that 135 significantly different metabolites (SDMs) were identified with 23 pathways involved, including pentose phosphate pathway, glutathione metabolism and amino acid metabolism. Comprehensive analysis of transcriptome and metabolome indicated that glycogen, fatty acid metabolism and protein conversion could be used interchangeably as energy sources. Moreover, the glutathione metabolism and immune response demonstrated the importance of cellular homeostasis for byssus secretion in the winged pearl oyster. Dynamic expression of 5-hydroxytryptamine, dopamine receptors and adenylate cyclase suggested that the foot may regulate byssus secretion through an aminergic neurofeedback system which could translate information into neurochemical signals. In conclusion, this study provided insights into the energy metabolism and signaling regulation of byssus secretion in winged pearl oyster by the transcriptomic and metabolomic analyses.
Collapse
Affiliation(s)
- Yi Chen
- School of Ecology, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Changqing Han
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Huilong Ou
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Hengda Chen
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Yibing Liu
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China.
| | - Xin Zhan
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Lu L, Xu J, Huang X, Hu L, Ji K, Jiang C, Wang Y, Qin Y, Zhang Y, Zhang J, Hu J, Qian S, Huang Y, Bai H, Zhang X, Liu F, Gu Z, Wang J. Mussel Foot Protein Membrane-Enclosed Crystalline Drug with Zero-Order Release Kinetics for Long-Acting Therapy. Angew Chem Int Ed Engl 2025; 64:e202502205. [PMID: 40022608 DOI: 10.1002/anie.202502205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Injectable formulations with sustained and steady release capabilities are critically required to treat diseases requiring temporary or lifelong continuous therapy, especially for drugs with a short half-life. Additionally, achieving a sufficiently high drug loading in a single dose remains a persistent challenge. Herein, by mimicking the formation principles of mussel adhesive plaques, we have developed membrane-enclosed crystalline systems of insulin and progesterone as model macro- and small-molecular crystalline drugs. The system exhibits a substantial drug loading capacity (>90 %). It exhibits sustained and zero-order release kinetics, thereby facilitating the establishment of a subcutaneous reservoir containing a substantial drug load, enabling progressive and continuous release of the drug into the body. One single injection of membrane-enclosed insulin crystal can maintain normoglycemia in diabetic mice for up to 7 days. Meanwhile, membrane-coated progesterone crystals can sustain drug release in rats for over 7 days. The protein membrane can be cleared from the injection sites in 35 days. This system can serve as a versatile platform for the sustained release of various crystalline pharmaceuticals and the treatment of distinct diseases.
Collapse
Affiliation(s)
- Leihao Lu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Jianchang Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Xuehui Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Leyi Hu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Kangfan Ji
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Chuhuan Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Yue Qin
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Yang Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Juan Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Jiahao Hu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shenxi Qian
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingqi Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongzhen Bai
- Department of Chemistry, Hangzhou, 310058, China
| | - Xiangnan Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Fuyao Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Hangzhou, 311121, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, 310009, China
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Wei J, Chen H, Pan F, Zhang H, Yang K, Yuan T, Fang Y, Ping H, Wang Q, Fu Z. Reusable Liquid Metal-Based Hierarchical Hydrogels with Multifunctional Sensing Capability for Electrophysiology Electrode Substitution. ACS NANO 2025; 19:15554-15564. [PMID: 40254826 DOI: 10.1021/acsnano.4c16933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Electrophysiological electrode patches are often used to collect surface electrophysiological signals to monitor and evaluate human health. However, commercial Ag/AgCl gels are very susceptible to electrode-skin interface interference during rehabilitation exercises and cannot achieve a stable collection of electrophysiological signals. In order to solve this challenge, this paper designed a liquid metal-based hierarchical hydrogel, which has a series of great performances, including adhesion to various substrates, efficient self-healing ability, excellent stretchability, and conductivity. Due to the hydrogel's unique rheological and adhesive properties, a conformal electrode/skin interface was generated, thus enabling stable electrophysiological signal acquisition during exercise. In addition, the strain sensor assembled based on the conductive hydrogel can sensitively monitor human limb movements in real time and can even be used for remote intelligent gesture recognition. Therefore, this work provides scientific guidance for developing a next generation of intelligent hydrogels with personal health surveillance, rehabilitation training monitoring, and wearable human-machine interaction.
Collapse
Affiliation(s)
- Jingjiang Wei
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, P. R. China
| | - Hao Chen
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Fei Pan
- Department of Chemistry, University of Basel, Basel 4058, Switzerland
| | - Hongming Zhang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Kun Yang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Tianyu Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Yuanlai Fang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, P. R. China
| | - Qingyuan Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, P. R. China
| |
Collapse
|
4
|
Yuan H, Wang J, Cui W. Biologically controllable adhesion interfaces. Sci Bull (Beijing) 2025; 70:1013-1015. [PMID: 39488452 DOI: 10.1016/j.scib.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Affiliation(s)
- Hui Yuan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
5
|
Li Z, Liu B, Chen X, Ren J, Ma P, Liu Z, Sun X, Zhou L, Wu B, Zheng Y, Yu T. The chromosomal-level genome assembly and annotation of pen shell Atrina pectinata. Sci Data 2025; 12:617. [PMID: 40229273 PMCID: PMC11997025 DOI: 10.1038/s41597-025-04978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/09/2025] [Indexed: 04/16/2025] Open
Abstract
The pen shell Atrina pectinata is a bivalve recognized for its outstanding large adductor muscle and developed byssus. Now, it becomes threatened in East Asia, requiring special attention for artificial breeding to boost yield. However, the lack of high-quality genomes hinders our understanding of its reproductive biology, which resulting in the artificial breeding in pen shell is still a scientific technological problem. Here, we produced a high-quality chromosome-level genome assembly of A. pectinata combing the PacBio, Illumina, and high-resolution chromosome conformation capture sequencing. The final assembly has a size of 951.01 Mb with a scaffold N50 of 52.64 Mb, 98.87% of sequence was anchored onto 17 chromosomes, with a BUSCO evaluation integrity score of 98.8%. We successfully identified 29,326 protein-coding genes and 24,708 genes (84.25%) were functionally annotated. The BUSCO evaluation integrity score for the predicted protein-coding genes was 97.7%. This work promotes the applicability of the A. pectinata genome, laying a solid foundation for future investigations into genomics and biology within this species.
Collapse
Affiliation(s)
- Zhuanzhuan Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Bo Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xi Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jianfeng Ren
- Key Laboratory of Freshwater Aquatic Genetic Resources certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Peizhen Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Zhihong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Xiujun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Liqing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, Shandong, 265800, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, Shandong, 265800, China
| |
Collapse
|
6
|
Zeng C, Li G, Lin C, He G, Hao L, Gong F, Zheng S, Nie F. Interfacial Reinforcement of Polymer-Bonded Explosives by Grafting a Neutral Bonding Agent with Enhanced Mechanical Properties. ACS OMEGA 2025; 10:9441-9452. [PMID: 40092834 PMCID: PMC11904655 DOI: 10.1021/acsomega.4c10364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/08/2025] [Accepted: 01/31/2025] [Indexed: 03/19/2025]
Abstract
The poor bonding of energetic crystals has severely influenced the comprehensive performance of explosive composites. Herein, surface modification is displayed as an effective method to implement the interaction of composites. In this work, a multipurpose functionalization of interfacial additives and biomimetic coating was demonstrated in facial and reproductive ways. The self-polymerization of dopamine (DA) formed polydopamine (PDA) shells, followed by neutral bonding agent (NBA) grafting, which led to a roughness change of the 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystal. The new bonds of amino ester (-NHCOO) were generated, proving the success of the "grafting to" strategy. The ability to resist deformation after surface modification was significantly improved with strain below 0.06% under 75 °C or 9 MPa. The storage modulus of PBX is above 4000 MPa within a temperature range of 20-120 °C. Moreover, the mechanical properties of PBX-3 significantly improved, with the strength and elongation in the Brazillian mechanical test increasing by 19.4 and 24.4%, respectively, ultimately resulting in an enhancement of approximately 51.6% in fracture work. The dual effect of hydrogen bonding and a physical anchor may serve to enhance mechanical properties. The approach of PDA coating and NBA grafting presented in this paper may be favorable for improving the mechanics of general composites.
Collapse
Affiliation(s)
- Chengcheng Zeng
- Institute of Chemical
Materials, China Academy of Engineering
Physics, Mianyang 621900, China
| | - Gang Li
- Institute of Chemical
Materials, China Academy of Engineering
Physics, Mianyang 621900, China
| | - Congmei Lin
- Institute of Chemical
Materials, China Academy of Engineering
Physics, Mianyang 621900, China
| | - Guansong He
- Institute of Chemical
Materials, China Academy of Engineering
Physics, Mianyang 621900, China
| | - Lixiao Hao
- Institute of Chemical
Materials, China Academy of Engineering
Physics, Mianyang 621900, China
| | - Feiyan Gong
- Institute of Chemical
Materials, China Academy of Engineering
Physics, Mianyang 621900, China
| | - Shengjun Zheng
- Institute of Chemical
Materials, China Academy of Engineering
Physics, Mianyang 621900, China
| | - Fude Nie
- Institute of Chemical
Materials, China Academy of Engineering
Physics, Mianyang 621900, China
| |
Collapse
|
7
|
Wang SX, Waite JH. Catechol redox maintenance in mussel adhesion. Nat Rev Chem 2025; 9:159-172. [PMID: 39809861 DOI: 10.1038/s41570-024-00673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 01/16/2025]
Abstract
Catechol-functionalized proteins in mussel holdfasts are essential for underwater adhesion and cohesion and have inspired countless synthetic polymeric materials and devices. However, as catechols are prone to oxidation, long-term performance and stability of these inventions awaits effective antioxidation strategies. In mussels, catechol-mediated interactions are stabilized by 'built-in' homeostatic redox reservoirs that restore catechols oxidized to quinones. Mussel byssus has a typical 'core-shell' architecture in which the core is a degradable fibrous block copolymer consisting of collagen and fibroin coated by robust protein networks stabilized by bis-catecholato-metal and tris-catecholato-metal ion complexes. The coating is well-adapted to protect the core against abrasion, hydrolysis and microbial attack, but it is not impervious to oxidative damage, which, during function, is promptly repaired by redox poise via coacervated catechol-rich and thiol-rich reducing interlayers and inclusions. However, when the e- and H+ equivalents from these reducing reservoirs are depleted, coating damage accumulates, leading to exposure of the vulnerable core to environmental attack. Heeding and translating these strategies is essential for deploying catechols with longer service lifetimes and designing more sustainable next-generation polymeric adhesives.
Collapse
Affiliation(s)
- Stephanie X Wang
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - J Herbert Waite
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.
- Department of Molecular, Cell & Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
8
|
Han B, Song Y, Wang S, Yang T, Sun Z, Wang A, Jin M, Yang Z, Wang X, Liang F. Biomimetic Janus Particles Induced In Situ Interfacial Remineralization for Dentin Hypersensitivity. ADVANCED FUNCTIONAL MATERIALS 2025; 35. [DOI: 10.1002/adfm.202412954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Indexed: 02/03/2025]
Abstract
AbstractDentin hypersensitivity (DH), caused by the exposure of dentin tubules, is a common complaint of dental patients. Although occlusion of the exposed tubules is the primary treatment approach, the complex oral environment, and multiple simultaneous requirements often hinder its implementation. In this study, strawberry‐shaped hemispheric Janus particles (JPs) are synthesized, and their use in the treatment of DH is evaluated in vitro and in an animal model. The hemispheric side of the JPs is modified with polymers of quaternary ammonium salts (QASs) to form a superhydrophobic coating with antibiofilm properties, while the flat side is modified with catechol groups able to form strong bonds with dentin. Even after 1 h of ultrasonication or 1000 rounds of thermal cycling, the dentin tubules are completely occluded by the JPs. Moreover, biofilm formation is not observed, and the area of living bacteria is less than 1% compared to the blank control and sodium fluoride (NaF)‐treated groups. In a rat model, the dentin tubules in the fixed specimens are completely occluded at day 3, much earlier than the occlusion obtained with commonly used NaF. These results demonstrate that JPs can provide a novel approach to the treatment of DH.
Collapse
Affiliation(s)
- Bing Han
- Department of Cariology and Endodontology Peking University School and Hospital of Stomatology National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China
| | - Yilin Song
- Department of Cariology and Endodontology Peking University School and Hospital of Stomatology National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China
| | - Shi Wang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Tiantian Yang
- School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang 110870 P. R. China
| | - Zetao Sun
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Aijing Wang
- Department of Cariology and Endodontology Peking University School and Hospital of Stomatology National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China
| | - Moran Jin
- Department of Cariology and Endodontology Peking University School and Hospital of Stomatology National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology Peking University School and Hospital of Stomatology National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
9
|
Xu J, Lu L, Cong Q, Zhang W, Zhao T. Chemo-Mechanical Due-Biomimetic Approach for Ultra-Stable Adsorption Across Multiple Scenarios. SMALL METHODS 2025:e2402055. [PMID: 39865730 DOI: 10.1002/smtd.202402055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Indexed: 01/28/2025]
Abstract
The unique adhesion capabilities of soft-bodied creatures such as leeches and octopuses have provided considerable inspiration for the development of artificial adhesive materials. However, previous studies have either focused on the design of sucker structures or concentrated on the synthesis of adhesive materials, with the combination of these two aspects not yet having been deeply investigated. In this study, inspired from leech's unique adsorption ability, a biomimetic approach is proposed that combined artificial sucker and mucus, to achieve remarkable adhesion stability on rough surfaces using 5 cm diameter silicone suction cups. Even on 40-mesh substrates, the mucus-coated suction cups maintained over 95% of their adhesion force compared to smooth surfaces. The formation of a liquid seal by the mucus at the suction cup edges effectively prevented gas leakage on rough substrates, thus ensuring stable adhesion. This experiments across various scenarios and real-world objects substantiated the stability and versatility of this strategy. In summary, a straightforward method is presented for achieving reliable adhesion with centimeter-scale suction cups, thereby unveiling new avenues for the development of commercially viable adhesion devices.
Collapse
Affiliation(s)
- Jin Xu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Luo Lu
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Qian Cong
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Wei Zhang
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Tiancong Zhao
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
10
|
Wang C, Yu F, Yuan Y, Zhao Z, Zhang L. Biomimetic poly(thioctic acid)-based bioadhesive hydrogels for wet adhesion, expeditious hemostasis and enhanced wound healing. Int J Biol Macromol 2024; 283:137108. [PMID: 39486699 DOI: 10.1016/j.ijbiomac.2024.137108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The bioadhesive hydrogels have been viewed as promising substitutes for surgical sutures in wound closure. However, current bioadhesives face challenges such as weak wet adhesion and hemostatic performance, which hinder their wider clinical application. In this study, a novel poly(thioctic acid)Li+/caffeic acid-grafted sericin (CAS) (PTALi-CAS) supramolecular hydrogel was prepared using facile one-pot method. Among the PTALi-CAS hydrogels with varying CAS content, the PTALi-7%CAS hydrogels exhibited the highest adhesion strength (32.02 ± 2.28 kPa) and could adhere on surfaces of various organs in moist environments. It is noteworthy that the microstructure of the PTALi-7%CAS hydrogels after stretching closely resemble those of mussel byssal adhesion proteins. Additionally, the PTALi-7%CAS hydrogels exhibited rapid hemostatic properties in rat hemorrhage models and significantly accelerated the wound healing in rat skin incision experiments. Therefore, this study proposes a promising approach for developing a versatile hydrogel to aid in healing traumatic wounds.
Collapse
Affiliation(s)
- Chen Wang
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China
| | - Fangzheng Yu
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China
| | - Yang Yuan
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China
| | - Zheng Zhao
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Lingling Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430070, China.
| |
Collapse
|
11
|
Yu Z, Li X, Wang Z, Fan Y, Zhao W, Li D, Xu D, Gu T, Wang F. Robust Chiral Metal-Organic Framework Coatings for Self-Activating and Sustainable Biofouling Mitigation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407409. [PMID: 39235391 DOI: 10.1002/adma.202407409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Surface coatings are designed to mitigate pervasive biofouling herald, a new era of surface protection in complex biological environments. However, existing strategies are plagued by persistent and recurrent biofilm attachment, despite the use of bactericidal agents. Herein, a chiral metal-organic framework (MOF)-based coating with conformal microstructures to enable a new anti-biofouling mode that involves spontaneous biofilm disassembly followed by bacterial eradication is developed. A facile and universal metal-polyphenol network (MPN) is designed to robustly anchor the MOF nanoarmor of biocidal Cu2+ ions and anti-biofilm d-amino acid ligands to a variety of substrates across different material categories and surface topologies. Incorporating a diverse array of chiral amino acids endows the resultant coatings with widespread signals for biofilm dispersal, facilitating copper-catalyzed chemodynamic reactions and inherent mechano-bactericidal activities. This synergistic mechanism yields unprecedented anti-biofouling efficacy elucidated by RNA-sequencing transcriptomics analysis, enhancing broad-spectrum antibacterial activities, preventing biofilm formation, and destroying mature biofilms. Additionally, the chelation-directed amorphous/crystalline coatings can activate photoluminescent properties to inhibit the settlement of microalgae biofilms. This study provides a distinctive perspective on chirality-enhanced antimicrobial behaviors and pioneers a rational pathway toward developing next-generation anti-biofouling coatings for diverse applications.
Collapse
Affiliation(s)
- Zhiqun Yu
- Corrosion and Protection Center, Northeastern University, Shenyang, 110819, P. R. China
| | - Xiangyu Li
- Corrosion and Protection Center, Northeastern University, Shenyang, 110819, P. R. China
| | - Zhengxing Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yongqiang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Wenjie Zhao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Dianzhong Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Dake Xu
- Corrosion and Protection Center, Northeastern University, Shenyang, 110819, P. R. China
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Fuhui Wang
- Corrosion and Protection Center, Northeastern University, Shenyang, 110819, P. R. China
| |
Collapse
|
12
|
Li W, Zhou R, Ouyang Y, Guan Q, Shen Y, Saiz E, Li M, Hou X. Harnessing Biomimicry for Controlled Adhesion on Material Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401859. [PMID: 39031996 DOI: 10.1002/smll.202401859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/25/2024] [Indexed: 07/22/2024]
Abstract
Nature serves as an abundant wellspring of inspiration for crafting innovative adhesive materials. Extensive research is conducted on various complex forms of biological attachment, such as geckos, tree frogs, octopuses, and mussels. However, significant obstacles still exist in developing adhesive materials that truly replicate the behaviors and functionalities observed in living organisms. Here, an overview of biological organs, structures, and adhesive secretions endowed with adhesion capabilities, delving into the intricate relationship between their morphology and function, and potential for biomimicry are provided. First, the design principles and mechanisms of adhesion behavior and individual organ morphology in nature are summarized from the perspective of structural and size constraints. Subsequently, the value of engineered and bioinspired adhesive materials through selective application cases in practical fields is emphasized. Then, a forward-looking gaze on the conceivable challenges and associated opportunities in harnessing biomimetic strategies and biological materials for advancing adhesive material innovation is highlighted and cast.
Collapse
Affiliation(s)
- Weijun Li
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ruini Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yirui Ouyang
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yigang Shen
- College of Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102, China
- Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
13
|
Liu X, Li D, Tabassum M, Huang C, Yi K, Fang T, Jia X. Sequentially photocatalytic degradation of mussel-inspired polydopamine: From nanoscale disassembly to effective mineralization. J Colloid Interface Sci 2024; 672:329-337. [PMID: 38850860 DOI: 10.1016/j.jcis.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Mussel-inspired polydopamine (PDA) coating has been utilized extensively as versatile deposition strategies that can functionalize surfaces of virtually all substrates. However, the strong adhesion, stability and intermolecular interaction of PDA make it inefficient in certain applications. Herein, a green and efficient photocatalytic method was reported to remove adhesion and degrade PDA by using TiO2-H2O2 as photocatalyst. The photodegradation process of the PDA spheres was first undergone nanoscale disassembly to form soluble PDA oligomers or well-dispersed nanoparticles. Most of the disassembled PDA can be photodegraded and finally mineralized to CO2 and H2O. Various PDA coated templates and PDA hollow structures can be photodegraded by this strategy. Such process provides a practical strategy for constructing the patterned and gradient surfaces by the "top-down" method under the control of light scope and intensity. This sequential degradation strategy is beneficial to achieve the decomposition of highly crosslinked polymers.
Collapse
Affiliation(s)
- Xinghuan Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Danya Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Mehwish Tabassum
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Chao Huang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Ke Yi
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Tianwen Fang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xin Jia
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
14
|
Ma Y, Cao J, Li S, Wang L, Meng Y, Chen Y. Nature-Inspired Wet Drug Delivery Platforms. SMALL METHODS 2024; 8:e2301726. [PMID: 38284322 DOI: 10.1002/smtd.202301726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Nature has created various organisms with unique chemical components and multi-scale structures (e.g., foot proteins, toe pads, suckers, setose gill lamellae) to achieve wet adhesion functions to adapt to their complex living environments. These organisms can provide inspirations for designing wet adhesives with mediated drug release behaviors in target locations of biological surfaces. They exhibit conformal and enhanced wet adhesion, addressing the bottleneck of weaker tissue interface adhesion in the presence of body fluids. Herein, it is focused on the research progress of different wet adhesion and bioinspired fabrications, including adhesive protein-based adhesion and inspired adhesives (e.g., mussel adhesion); capillarity and Stefan adhesion and inspired adhesive surfaces (e.g., tree frog adhesion); suction-based adhesion and inspired suckers (e.g., octopus' adhesion); interlocking and friction-based adhesion and potential inspirations (e.g., mayfly larva and teleost adhesion). Other secreted protein-induced wet adhesion is also reviewed and various suckers for other organisms and their inspirations. Notably, one representative application scenario of these bioinspired wet adhesives is highlighted, where they function as efficient drug delivery platforms on target tissues and/or organs with requirements of both controllable wet adhesion and optimized drug release. Finally, the challenges of these bioinspired wet drug delivery platforms in the future is presented.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jian Cao
- School of Software and Microelectronics, Peking University, Beijing, 100871, China
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lili Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Yufei Meng
- Research Institute of Ornamental Plants and Landscapes, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Li M, Fan Y, Ran M, Chen H, Han J, Zhai J, Wang Z, Ning C, Shi Z, Yu P. Hydrogel Coatings of Implants for Pathological Bone Repair. Adv Healthc Mater 2024; 13:e2401296. [PMID: 38794971 DOI: 10.1002/adhm.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Indexed: 05/27/2024]
Abstract
Hydrogels are well-suited for biomedical applications due to their numerous advantages, such as excellent bioactivity, versatile physical and chemical properties, and effective drug delivery capabilities. Recently, hydrogel coatings have developed to functionalize bone implants which are biologically inert and cannot withstand the complex bone tissue repair microenvironment. These coatings have shown promise in addressing unique and pressing medical needs. This review begins with the major functionalized performance and interfacial bonding strategy of hydrogel coatings, with a focus on the novel external field response properties of the hydrogel. Recent advances in the fabrication strategies of hydrogel coatings and their use in the treatment of pathologic bone regeneration are highlighted. Finally, challenges and emerging trends in the evolution and application of physiological environment-responsive and external electric field-responsive hydrogel coatings for bone implants are discussed.
Collapse
Affiliation(s)
- Mengqing Li
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Youzhun Fan
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Maofei Ran
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Haoyan Chen
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Jien Han
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Jinxia Zhai
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Zhengao Wang
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Chengyun Ning
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Zhifeng Shi
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Peng Yu
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| |
Collapse
|
16
|
Du X, Wang H, Wang Y, Cao Z, Yang L, Shi X, Zhang X, He C, Gu X, Liu N. An Ultra-Conductive and Patternable 40 nm-Thick Polymer Film for Reliable Emotion Recognition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403411. [PMID: 38804620 DOI: 10.1002/adma.202403411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Understanding psychology is an important task in modern society which helps predict human behavior and provide feedback accordingly. Monitoring of weak psychological and emotional changes requires bioelectronic devices to be stretchable and compliant for unobtrusive and high-fidelity signal acquisition. Thin conductive polymer film is regarded as an ideal interface; however, it is very challenging to simultaneously balance mechanical robustness and opto-electrical property. Here, a 40 nm-thick film based on photolithographic double-network conductive polymer mediated by graphene layer is reported, which concurrently enables stretchability, conductivity, and conformability. Photolithographic polymer and graphene endow the film photopatternability, enhance stress dissipation capability, as well as improve opto-electrical conductivity (4458 S cm-1@>90% transparency) through molecular rearrangement by π-π interaction, electrostatic interaction, and hydrogen bonding. The film is further applied onto corrugated facial skin, the subtle electromyogram is monitored, and machine learning algorithm is performed to understand complex emotions, indicating the outstanding ability for stretchable and compliant bioelectronics.
Collapse
Affiliation(s)
- Xiaojia Du
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hai Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yunfei Wang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Zhiqiang Cao
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Leyi Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaohu Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaoxu Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaodan Gu
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
- Beijing Graphene Institute, Beijing, 100095, China
| |
Collapse
|
17
|
Gao H, Zhao F, Liu J, Meng Z, Han Z, Liu Y. What Exactly Can Bionic Strategies Achieve for Flexible Sensors? ACS APPLIED MATERIALS & INTERFACES 2024; 16:38811-38831. [PMID: 39031068 DOI: 10.1021/acsami.4c06905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Flexible sensors have attracted great attention in the field of wearable electronic devices due to their deformability, lightness, and versatility. However, property improvement remains a key challenge. Fortunately, natural organisms exhibit many unique response mechanisms to various stimuli, and the corresponding structures and compositions provide advanced design ideas for the development of flexible sensors. Therefore, this Review highlights recent advances in sensing performance and functional characteristics of flexible sensors from the perspective of bionics for the first time. First, the "twins" of bionics and flexible sensors are introduced. Second, the enhancements in electrical and mechanical performance through bionic strategies are summarized according to the prototypes of humans, plants, and animals. Third, the functional characteristics of bionic strategies for flexible sensors are discussed in detail, including self-healing, color-changing, tangential force, strain redistribution, and interfacial resistance. Finally, we summarize the challenges and development trends of bioinspired flexible sensors. This Review aims to deepen the understanding of bionic strategies and provide innovative ideas and references for the design and manufacture of next-generation flexible sensors.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - Fangyi Zhao
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - Jiaxi Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin130022, P. R. China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin130022, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin130022, P. R. China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, Liaoning 110167, China
| |
Collapse
|
18
|
Wang WY, Ni JY, Huang SH, Cui QW, Wang YQ, Gu ZQ, Li YF. Hyposalinity stress reduces mussel byssus secretion but does not cause detachment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172561. [PMID: 38641104 DOI: 10.1016/j.scitotenv.2024.172561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Environmental stressors such as salinity fluctuations can significantly impact the ecological dynamics of mussel beds. The present study evaluated the influence of hyposalinity stress on the detachment and survival of attached mussels by simulating a mussel farming model in a laboratory setting. Byssus production and mechanical properties of thread in response to varying salinity levels were assessed, and histological sections of the mussel foot were analyzed to identify the changes in the byssus secretory gland area. The results showed that hyposalinity stress (20 and 15 psu) led to a significant decrease in mussel byssus secretion, delayed initiation of new byssus production, and reduced plaque adhesion strength and breaking force of byssal threads compared to the control (30 psu) (p < 0.05). The complete suppression of byssal thread secretion in mussels under salinity conditions of 10 and 5 psu, leading to lethality, indicates the presence of a blockade in byssus secretion when mussels are subjected to significant physiological stressors. Histological analysis further demonstrated a decrease in the percentage of foot secretory gland areas in mussels exposed to low salinities. However, contrary to expectations, the study found that mussels did not exhibit marked detachment from ropes in response to the reduced salinity levels during one week of exposure. Hyposalinity stress exposure reduced the byssal secretion capacity and the mechanical properties of threads, which could be a cause for the detachment of suspension-cultured mussels. These results highlight the vulnerability of mussels to hyposalinity stress, which significantly affects their byssus mechanical performance.
Collapse
Affiliation(s)
- Wen-Yi Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Ji-Yue Ni
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Shi-Hui Huang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Qian-Wen Cui
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yu-Qing Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zhong-Qi Gu
- Shengsi County Aquaculture Service Center, Zhoushan, China.
| | - Yi-Feng Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
19
|
Zhao J, Liu J, Wang Q, Wei A, Zhang P, Li A, Yu Y. Visual Quantitation of Dopamine-Inspired Fluorescent Adhesion with Orthogonal Phenanthrenequinone Photochemistry. ACS Macro Lett 2024; 13:788-797. [PMID: 38838345 DOI: 10.1021/acsmacrolett.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Quantifying adhesion is crucial for understanding adhesion mechanisms and developing advanced dopamine-inspired materials and devices. However, achieving nondestructive and real-time quantitation of adhesion using optical spectra remains challenging. Here, we present a dopamine-inspired orthogonal phenanthrenequinone photochemistry strategy for the one-step adhesion and real-time visual quantitation of fluorescent spectra. This strategy utilizes phenanthrenequinone-mediated photochemistry to facilitate conjoined network formation in the adhesive through simultaneous photoclick cycloaddition and free-radical polymerization. The resulting hydrogel-like adhesive exhibits good mechanical performance, with a Young's modulus of 300 kPa, a toughness of 750 kJ m-3, and a fracture energy of 4500 J m-2. This adhesive, along with polycyclic aromatic phenanthrenequinones, shows strong adhesion (>100 kPa) and interfacial toughness thresholds (250 J m-2) on diverse surfaces─twice to triple as much as typical dopamine-contained adhesives. Importantly, such an adhesive demonstrates excellent fluorescent performance under UV irradiation, closely correlating with its adhesion strengths. Their fluorescence intensities remain constant after continuous stretching/releasing treatment and even in the dried state. Therefore, this dopamine-inspired orthogonal phenanthrenequinone photochemistry is readily available for real-time and nondestructive visual quantitation of adhesion performance under various conditions. Moreover, the adhesive precursor is chemically ultrastable for more than seven months and achieves adhesion on substrates within seconds upon blue light irradiation. As a proof-of-concept, we leverage the rapid and visual quantitation of adhesion and printability to create fluorescent patterns and structures, showcasing applications in information storage, adhesion prediction, and self-reporting properties. This general and straightforward strategy holds promise for rapidly preparing functional adhesive materials and designing high-performance wearable devices.
Collapse
Affiliation(s)
- Jinhao Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - Jupen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - Qian Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - An Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| |
Collapse
|
20
|
Xie X, Jiang Y, Yao X, Zhang J, Zhang Z, Huang T, Li R, Chen Y, Li SL, Lan YQ. A solvent-free processed low-temperature tolerant adhesive. Nat Commun 2024; 15:5017. [PMID: 38866776 PMCID: PMC11169673 DOI: 10.1038/s41467-024-49503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
Ultra-low temperature resistant adhesive is highly desired yet scarce for material adhesion for the potential usage in Arctic/Antarctic or outer space exploration. Here we develop a solvent-free processed low-temperature tolerant adhesive with excellent adhesion strength and organic solvent stability, wide tolerable temperature range (i.e. -196 to 55 °C), long-lasting adhesion effect ( > 60 days, -196 °C) that exceeds the classic commercial hot melt adhesives. Furthermore, combine experimental results with theoretical calculations, the strong interaction energy between polyoxometalate and polymer is the main factor for the low-temperature tolerant adhesive, possessing enhanced cohesion strength, suppressed polymer crystallization and volumetric contraction. Notably, manufacturing at scale can be easily achieved by the facile scale-up solvent-free processing, showing much potential towards practical application in Arctic/Antarctic or planetary exploration.
Collapse
Affiliation(s)
- Xiaoming Xie
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China
| | - Yulian Jiang
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China
| | - Xiaoman Yao
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Jiaqi Zhang
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zilin Zhang
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China
| | - Taoping Huang
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Runhan Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China.
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China.
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China.
| |
Collapse
|
21
|
Zhang H, Feng Y, Wang T, Zhang J, Song Y, Zhang J, Li Y, Zhou D, Gu Z. Natural polyphenolic antibacterial bio-adhesives for infected wound healing. Biomater Sci 2024; 12:2282-2291. [PMID: 38415775 DOI: 10.1039/d3bm02122j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Bio-adhesives used clinically, commonly have the ability to fill surgical voids and support wound healing, but which are devoid of antibacterial activity, and thus, could not meet the particular needs of the infected wound site. Herein, a series of natural polyphenolic antibacterial bio-adhesives were prepared via simple mixing and heating of polyphenols and acid anhydrides without any solvent or catalyst. Upon the acid anhydride ring opening and acylation reactions, various natural polyphenolic bio-adhesives could adhere to various substrates (i.e., tissue, wood, glass, rubber, paper, plastic, and metal) based on multi-interactions. Moreover, these bio-adhesives showed excellent antibacterial and anti-infection activity, rapid hemostatic performance and appropriate biodegradability, which could be widely used in promoting bacterial infection wound healing and hot burn infection wound repair. This work could provide a new strategy for strong adhesives using naturally occurring molecules, and provide a method for the preparation of novel multifunctional wound dressings for infected wound healing.
Collapse
Affiliation(s)
- Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuqi Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuxian Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Dingzi Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610065, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
22
|
Pan G, Li B. A dynamic biointerface controls mussel adhesion. Science 2023; 382:763-764. [PMID: 37972175 DOI: 10.1126/science.adl2002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The mussel-adherent secreta interface reveals how nonliving material can be compatible with tissue.
Collapse
Affiliation(s)
- Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|