1
|
Simpson KL, Rothwell DG, Blackhall F, Dive C. Challenges of small cell lung cancer heterogeneity and phenotypic plasticity. Nat Rev Cancer 2025; 25:447-462. [PMID: 40211072 DOI: 10.1038/s41568-025-00803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 04/12/2025]
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy with ~7% 5-year overall survival reflecting early metastasis and rapid acquired chemoresistance. Immunotherapy briefly extends overall survival in ~15% cases, yet predictive biomarkers are lacking. Targeted therapies are beginning to show promise, with a recently approved delta-like ligand 3 (DLL3)-targeted therapy impacting the treatment landscape. The increased availability of patient-faithful models, accumulating human tumour biobanks and numerous comprehensive molecular profiling studies have collectively facilitated the mapping and understanding of substantial intertumoural and intratumoural heterogeneity. Beyond the almost ubiquitous loss of wild-type p53 and RB1, SCLC is characterized by heterogeneously mis-regulated expression of MYC family members, yes-associated protein 1 (YAP1), NOTCH pathway signalling, anti-apoptotic BCL2 and epigenetic regulators. Molecular subtypes are based on the neurogenic transcription factors achaete-scute homologue 1 (ASCL1) and neurogenic differentiation factor 1 (NEUROD1), the rarer non-neuroendocrine transcription factor POU class 2 homeobox 3 (POU2F3), and immune- and inflammation-related signatures. Furthermore, SCLC shows phenotypic plasticity, including neuroendocrine-to-non-neuroendocrine transition driven by NOTCH signalling, which is associated with disease progression, chemoresistance and immune modulation and, in mouse models, with metastasis. Although these features pose substantial challenges, understanding the molecular vulnerabilities of transcription factor subtypes, the functional relevance of plasticity and cell cooperation offer opportunities for personalized therapies informed by liquid and tissue biomarkers.
Collapse
Affiliation(s)
- Kathryn L Simpson
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Dominic G Rothwell
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Fiona Blackhall
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Medical Oncology, Christie Hospital National Health Service, Foundation Trust, Manchester, UK
| | - Caroline Dive
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK.
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK.
- CRUK Lung Cancer Centre of Excellence, Manchester, UK.
| |
Collapse
|
2
|
Abate-Shen C, Politi K. The Evolution of Mouse Models of Cancer: Past, Present, and Future. Cold Spring Harb Perspect Med 2025; 15:a041736. [PMID: 38772706 PMCID: PMC12047742 DOI: 10.1101/cshperspect.a041736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
In the nearly 50 years since the original models of cancer first hit the stage, mouse models have become a major contributor to virtually all aspects of cancer research, and these have evolved well beyond simple transgenic or xenograft models to encompass a wide range of more complex models. As the sophistication of mouse models has increased, an explosion of new technologies has expanded the potential to both further develop and apply these models to address major challenges in cancer research. In the current era, cancer modeling has expanded to include nongermline genetically engineered mouse models (GEMMs), patient-derived models, organoids, and adaptations of the models better suited for cancer immunology research. New technologies that have transformed the field include the application of CRISPR-Cas9-mediated genome editing, in vivo imaging, and single-cell analysis to cancer modeling. Here, we provide a historical perspective on the evolution of mouse models of cancer, focusing on how far we have come in a relatively short time and how new technologies will shape the future development of mouse models of cancer.
Collapse
Affiliation(s)
- Cory Abate-Shen
- Departments of Molecular Pharmacology and Therapeutics, Urology, Pathology and Cell Biology, Medicine, and Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Katerina Politi
- Departments of Pathology and Internal Medicine (Section of Medical Oncology) and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06405, USA
| |
Collapse
|
3
|
Zhou X, Zeng L, Huang Z, Ruan Z, Yan H, Zou C, Xu S, Zhang Y. Strategies Beyond 3rd EGFR-TKI Acquired Resistance: Opportunities and Challenges. Cancer Med 2025; 14:e70921. [PMID: 40322930 PMCID: PMC12051098 DOI: 10.1002/cam4.70921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
The seminal identification of epidermal growth factor receptor (EGFR) mutations as pivotal oncogenic drivers in non-small cell lung cancer (NSCLC) has catalyzed the evolution of biomarker-guided therapeutic paradigms for advanced disease. Currently, third-generation EGFR tyrosine kinase inhibitors (EGFR-TKI) have revolutionized first-line treatment for advanced EGFR-mutated NSCLC, yet acquired resistance remains an inevitable and formidable clinical challenge. This review systematically summarizes molecular mechanisms underlying treatment resistance, with a focus on clinical challenges associated with central nervous system (CNS) metastases. Therapeutic resistance mechanisms are categorized into EGFR-dependent (on-target) pathways, typified by acquired kinase domain mutations (e.g., C797S), and EGFR-independent (off-target) pathways, involving compensatory activation of parallel signaling effectors (e.g., MET amplification, HER2 activation) or phenotypic transformation. We further evaluated contemporary diagnostic modalities for identifying resistance drivers and appraised emerging therapeutic strategies, including fourth-generation EGFR-TKI, various combination therapies, and antibody-drug conjugates (ADCs), and so forth, with emphasis on ongoing clinical trials that may transform the existing treatment paradigm. By synthesizing preclinical and clinical insights, this review aims to advance mechanistic understanding and propose therapeutic strategies to overcome acquired resistance to third-generation EGFR-TKI in first-line treatment.
Collapse
Affiliation(s)
- Xuexue Zhou
- Medical CollegeJishou UniversityJishouChina
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Zhe Huang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Department of Pathology and Pathophysiology, School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Zhaohui Ruan
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Department of Pathology and Pathophysiology, School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Huan Yan
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Chun Zou
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Shidong Xu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Department of Pathology and Pathophysiology, School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Yongchang Zhang
- Medical CollegeJishou UniversityJishouChina
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Department of Pathology and Pathophysiology, School of Basic Medical SciencesCentral South UniversityChangshaChina
| |
Collapse
|
4
|
Zhang Y, Lang L, Guo X, Huang K, Yi J, Yuan Y, Zhu M, Zhang S, Hu B, Li X, Zhang Y. The association and impact of radiographic, pathological emphysema and spirometric airway obstruction on patients with resectable lung adenocarcinoma. Respir Res 2025; 26:151. [PMID: 40241184 PMCID: PMC12004668 DOI: 10.1186/s12931-025-03225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 04/06/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Destruction of alveoli structure and lung function are interrelated, however, their correlation and clinical significance have been not well defined in patients with lung cancer. Thus, this study aimed to examine the association among radiographic, pathological emphysema and spirometric airway obstruction in patients with resectable lung cancer as well as explore their impact on postoperative pulmonary complications (PPCs) and long-term prognosis. METHODS Lung adenocarcinoma (LUAD) patients who performed chest CT, spirometry, and curative resection were included from a prospective three-institution database. CT-defined emphysema at baseline was assessed visually and quantitatively, pathological emphysema was reviewed on postoperative specimen. Multivariable regression models, propensity score matching, stratified analysis, and subgroup analysis were adopted to reduce selection bias. RESULTS Our cohort included 902 patients, with a median follow-up of 5.6 years. CT-defined emphysema was present in 163 patients (18.1%) and most of them (86.5%) were validated with pathological evidence. 169 had spirometric airway obstruction, while only 29.6% patients overlapped with CT-defined emphysema. Multivariable logistic regression models showed CT-defined emphysema, not airway obstruction, was associated with an increased risk of PPCs (adjusted odds ratio, 2.35; 95% CI, 1.40-3.93; P = 0.001). After adjusting for age, sex, body mass index, smoking history, tumour stage, vascular invasion, pleural invasion, multivariate cox analysis identified CT-defined emphysema, not airway obstruction, as an independent prognostic factor for OS (adjusted hazard ratio, 1.44; 95%CI, 1.05-1.97; P = 0.022). Patients with both radiographic and pathological emphysema experienced worse OS (log-rank P < 0.001). In the propensity score-matched cohort, stratified analysis, and never-smokers subgroup analysis, CT-defined emphysema remained a strong and statistically significant factor related to poor survival. CONCLUSIONS The presence of radiological and pathological emphysema in resectable LUAD was associated with frequent PPCs and decreased survival. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Yixiao Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lu Lang
- Department of Pulmonary and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Guo
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Kewu Huang
- Department of Pulmonary and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiawen Yi
- Department of Pulmonary and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuan Yuan
- Department of Pulmonary and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Min Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shu Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Xue Li
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Yuhui Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Yi L, Shahatiaili A, Zhang L, He H, Chen L, Zhang Z, Gao F, Shao F, Gao Y, He J. USP13: A therapeutic target for combating tumorigenesis and antitumor therapy resistance. Int J Biol Macromol 2025; 304:140608. [PMID: 39900156 DOI: 10.1016/j.ijbiomac.2025.140608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Ubiquitin-specific peptidase 13 (USP13) has emerged as a key regulator of proteins critical to the hallmarks of cancer, playing an essential role in cellular regulation. This deubiquitinating enzyme, often overexpressed in malignancies, wields its molecular scissors precisely, snipping ubiquitin tags to rescue oncoproteins from degradation. Our review highlights the dual role of USP13 in cancer biology: while it predominantly fuels tumor growth and metastasis, USP13 occasionally functions as a tumor suppressor. USP13 is as a formidable factor in cancer therapy, fortifying tumors against an arsenal of treatments. It bolsters DNA repair mechanisms, ignites prosurvival autophagy, and even reprograms cell lineages to evade targeted therapies. However, USP13 is also a promising target in the treatment of cancer. We highlight burgeoning strategies to neutralize USP13, from small molecule inhibitors to innovative protein degraders, which may disarm cancer resistance mechanisms. We also offer suggestions for future USP13 research, emphasizing the need for structural insights and more potent inhibitors. This review highlights the critical role of USP13 in cancer and underscores its potential as a therapeutic target for advancing cancer treatment.
Collapse
Affiliation(s)
- Lina Yi
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China; Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Akezhouli Shahatiaili
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Haihua He
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leifeng Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fushan Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China; Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, China; Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancers Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Jie He
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| |
Collapse
|
6
|
Tan J, Zhao D, Wang Q, Peng Y, Li J, Li X, Che N, Hu Y, Zheng H. Whole Exome Sequencing Study Identifies Distinct Characteristics of Transformed Small Cell Lung Cancer With EGFR Mutation Compared to De Novo Small Cell and Primary Non-Small Cell Lung Cancers. Cancer Med 2025; 14:e70838. [PMID: 40197849 PMCID: PMC11976457 DOI: 10.1002/cam4.70838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma (LUAD) is the most common subtype among non-small cell lung cancer (NSCLC) and targeted therapies are the primary approach for treatment. However, the development of resistance to therapy and histological transformation into small cell lung cancer (SCLC) present significant challenges. Understanding the mechanisms underlying this transformation is crucial for effective differential diagnosis and the formulation of treatment strategies. METHODS In this study, we collected tissue from 5 primary LUAD before SCLC transformation, 12 transformed SCLC after EGFR tyrosine kinase inhibitor (TKI) treatment, and 18 de novo SCLC from lung cancer patients treated at Beijing Chest Hospital, Capital Medical University from January 2015 to December 2021. Whole-exome sequencing was performed on these samples to compare the genomic alterations of these three tumor types, elucidating their similarities, differences, and connections. Statistical analyses were conducted using the Fisher exact test and performed with R v4.2.1 environment. RESULTS Among 12 transformed SCLC cases, the majority were female (10/12, 83.3%), non-smokers (10/12, 83.3%) and harbored EGFR 19del mutations (11/12, 91.7%). Four were with limited stage and 8 with extensive stage. TP53 mutations and RB1 loss are important but not necessary for SCLC transformation. The mutation rates of TP53 were 60% (3/5) in primary LUAD, 70% (7/10) in transformed SCLC, and 89% (16/18) in de novo SCLC. RB1 loss rates were 40% (2/5) in primary LUAD, 30% (3/10) in transformed SCLC, and 50% (9/18) in de novo SCLC. Additionally, mutations in COL22A1 and ALMS1 were only observed in transformed SCLC and de novo SCLC. In contrast, mutations in PTCH2, CNGB3, SPTBN5, CROCC, and MYO15A were more common in transformed SCLC, whereas PABPC3 and MUC19 mutations were more frequent in de novo SCLC. Smoking-related mutations (SBS4) were only found in de novo SCLC, with no changes observed in transformed SCLC. TMB levels were significantly lower in transformed SCLC compared to de novo SCLC (p = 0.01). Genomic instability was significantly higher in transformed SCLC compared to primary LUAD and de novo SCLC. This was supported by higher levels of homologous recombination deficiency (HRD, p = 0.025), uniparental disomy (UPD, p = 0.003), loss of heterozygosity (LOH, p = 0.008), and telomeric allelic imbalance (TAI, p = 0.02). The increased frequency of UPD events in transformed SCLC suggests that UPD may act as a "second hit" in Knudson's model, leading to biallelic inactivation of tumor suppressor genes. High similarity was observed in genetic alterations related to DNA damage repair (DDR) and Notch signaling pathways between transformed SCLC and de novo SCLC. CONCLUSIONS The identification of these specific genomic alterations in transformed SCLC contributes to a better understanding of the mechanisms driving this transformation. This knowledge may guide future predicting the transformation of SCLC and the development of personalized treatment strategies for these patients.
Collapse
Affiliation(s)
- Jinjing Tan
- Cancer Research Center, Beijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Dan Zhao
- Department of Pathology, Beijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Qunhui Wang
- Department of Medical Oncology, Beijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Yanjing Peng
- Cancer Research Center, Beijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Jie Li
- Department of Medical Oncology, Beijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Xi Li
- Department of Medical Oncology, Beijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Nanying Che
- Department of Pathology, Beijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Ying Hu
- Department of Medical Oncology, Beijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Hua Zheng
- Department of Medical Oncology, Beijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| |
Collapse
|
7
|
Zhai X, Zhang Z, Chen Y, Wu Y, Zhen C, Liu Y, Lin Y, Chen C. Current and future therapies for small cell lung carcinoma. J Hematol Oncol 2025; 18:37. [PMID: 40170056 PMCID: PMC11959764 DOI: 10.1186/s13045-025-01690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/14/2025] [Indexed: 04/03/2025] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy characterized by rapid proliferation and high metastatic potential. It is characterized by universal inactivation of and RB1, overexpression of the MYC family and dysregulation of multiple oncogenic signaling pathways. Among different patients, SCLCs are similar at the genetic level but exhibit significant heterogeneity at the molecular level. The classification of SCLC has evolved from a simple neuroendocrine (NE)/non-neuroendocrine (non-NE) classification system to a transcription factor-based molecular subtype system; lineage plasticity adds further complexity and poses challenges for therapeutic development. While SCLC is initially sensitive to platinum-based chemotherapy, resistance develops rapidly, leading to a dismal prognosis. Various antibodies, including PD-1/PD-L1 inhibitors and antibody‒drug conjugates, have been introduced into clinical practice or are being evaluated in clinical trials. However, their therapeutic benefits for SCLC patients remain limited. This review summarizes SCLC carcinogenic mechanisms, tumor heterogeneity, and the immune microenvironment of SCLC, with a focus on recent advances in metastasis and resistance mechanisms. Additionally, the corresponding clinical progress in tackling these challenges is discussed.
Collapse
Affiliation(s)
- Xiaoqian Zhai
- Department of Medical Oncology, State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 1, Keyuan 4th Road, Gaopeng Avenue, Chengdu, 610041, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhengkun Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxin Chen
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanmou Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Cheng Zhen
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Liu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, Keyuan 4th Road, Gaopeng Avenue, Chengdu, 610041, Sichuan, China.
| | - Yiyun Lin
- Department of Medicine, Weill Cornell Medicine, East 69th Street, New York, NY, 10021, USA.
| | - Chong Chen
- Department of Medical Oncology, State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 1, Keyuan 4th Road, Gaopeng Avenue, Chengdu, 610041, Sichuan, China.
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Kumagai S, Momoi Y, Nishikawa H. Immunogenomic cancer evolution: A framework to understand cancer immunosuppression. Sci Immunol 2025; 10:eabo5570. [PMID: 40153489 DOI: 10.1126/sciimmunol.abo5570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/26/2024] [Accepted: 03/05/2025] [Indexed: 03/30/2025]
Abstract
The process of tumor development involves tumor cells eluding detection and suppression of immune responses, which can cause decreased tumor cell antigenicity, expression of immunosuppressive molecules, and immunosuppressive cell recruitment to the tumor microenvironment (TME). Immunologically and genomically integrated analysis (immunogenomic analysis) of patient specimens has revealed that oncogenic aberrant signaling is involved in both carcinogenesis and immune evasion. In noninflamed cancers such as epidermal growth factor receptor (EGFR)-mutated lung cancers, genetic abnormalities in cancer cells contribute to the formation of an immunosuppressive TME by recruiting immunosuppressive cells, which cannot be fully explained by the cancer immunoediting hypothesis. This review summarizes the latest findings regarding the links between cancer genetic abnormalities and immunosuppression causing clinical resistance to immunotherapy. We propose the concepts of immunogenomic cancer evolution, in which cancer cell genomic evolution shapes the immunosuppressive TME, and immunogenomic precision medicine, in which cancer immunotherapy can be combined with molecularly targeted reagents that modulate the immunosuppressive TME.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Division of Cellular Signaling, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
| | - Yusaku Momoi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Tumor Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Kindai University Faculty of Medicine, Osaka-sayama 589-8511, Japan
| |
Collapse
|
9
|
Oluloro A, Wells DL, Childers CK, Luu T, Eaton KD, Urban RR, Konnick EQ, Paulson VA, Banda K. Revealing neuroendocrine transformation in gynecological cancers through genomic analysis. NPJ Precis Oncol 2025; 9:77. [PMID: 40108436 PMCID: PMC11923128 DOI: 10.1038/s41698-025-00861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
Neuroendocrine transformation (NT) in cancers, typically observed under the selective pressure of targeted therapies, involves lineage plasticity where adenocarcinomas adopt neuroendocrine characteristics while retaining the molecular alterations of their original histology. This phenomenon, well-documented in prostate and lung cancers, has not been observed in gynecological malignancies until now. We present two pivotal cases involving primary ovarian and uterine cancers that developed neuroendocrine carcinomas post-treatment. Initially presumed to be independent primaries, comprehensive next-generation sequencing technologies, including UW-OncoPlex and BROCA panels, were used to establish a clonal relationship between the primary tumors and their respective neuroendocrine metastases. This report provides the first documented instances of NT in gynecological cancers, indicating that it may be a more widespread resistance mechanism than previously recognized. Routine re-biopsy and early integration of advanced molecular diagnostics into clinical practice will identify NT and provide insights into pathogenesis and eventual therapeutic options.
Collapse
Affiliation(s)
- Ann Oluloro
- Division of Gynecological Oncology, University of Washington, Seattle, WA, USA
| | - David L Wells
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Charles K Childers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Tiffany Luu
- Division of Gynecological Oncology, University of Washington, Seattle, WA, USA
| | - Keith D Eaton
- Clinical Research Division, Fred Hutchison Cancer Center, Seattle, WA, USA
- Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Renata R Urban
- Division of Gynecological Oncology, University of Washington, Seattle, WA, USA
| | - Eric Q Konnick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Vera A Paulson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kalyan Banda
- Clinical Research Division, Fred Hutchison Cancer Center, Seattle, WA, USA.
- Division of Medical Oncology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Zhang C, Wang K, Wang H. The emerging landscape and future perspective of SCLC transformation: From molecular mechanisms to therapeutic strategies. Crit Rev Oncol Hematol 2025; 207:104616. [PMID: 39805410 DOI: 10.1016/j.critrevonc.2025.104616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Small-cell lung cancer (SCLC) is featured by high malignancy and undesirable prognosis. Transformed SCLC shares several common grounds but differ in biological behavior, molecular mechanism and therapeutic options from typical SCLC. SCLC transformation exerts indispensable role in drug resistance among patients with non-small cell lung cancer (NSCLC) upon various treatment modalities. Two hypotheses have been raised to account for SCLC transformation. It develops mostly in EGFR-mutant adenocarcinoma, and can also occur in ALK or ROS1 mutant patients, and EGFR-wildtype adenocarcinoma. Effective biomarkers for early detection, and therapeutic strategies are vital for improving survival for patients undergoing SCLC transformation. This review summarizes the emerging landscape in transformed SCLC, including its origin, molecular mechanisms, approaches for early detection and corresponding therapeutic options, in a bid to gain a comprehensive insight of this recalcitrant and tricky disease. More importantly, we also discuss challenges that lie ahead and future perspectives on this aggressive malignancy.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
11
|
Diao S, Zou JY, Wang S, Ghaddar N, Chan JE, Kim H, Poulain N, Koumenis C, Hatzoglou M, Walter P, Sonenberg N, Le Quesne J, Tammela T, Koromilas AE. Lineage plasticity of the integrated stress response is a hallmark of cancer evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637516. [PMID: 39990365 PMCID: PMC11844398 DOI: 10.1101/2025.02.10.637516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The link between the "stress phenotype"-a well-established hallmark of cancer-and its role in tumor progression and intratumor heterogeneity remains poorly defined. The integrated stress response (ISR) is a key adaptive pathway that enables tumor survival under oncogenic stress. While ISR has been implicated in promoting tumor growth, its precise role in driving tumor evolution and heterogeneity has not been elucidated. In this study, using a genetically engineered mouse models, we demonstrate that ISR activation-indicated by elevated levels of phosphorylated eIF2 (p-eIF2) and ATF4-is essential for the emergence of dedifferentiated, therapy-resistant cell states. ISR, through the coordinated actions of ATF4 and MYC, facilitates the development of tumor cell populations characterized by high plasticity, stemness, and an epithelial-mesenchymal transition (EMT)-prone phenotype. This process is driven by ISR-mediated expression of genes that maintain mitochondrial integrity and function, critical for sustaining tumor progression. Importantly, genetic, or pharmacological inhibition of the p-eIF2-ATF4 signaling axis leads to mitochondrial dysfunction and significantly impairs tumor growth in mouse models of lung adenocarcinoma (LUAD). Moreover, ISR-driven dedifferentiation is associated with poor prognosis and therapy resistance in advanced human LUAD, underscoring ISR inhibition as a promising therapeutic strategy to disrupt tumor evolution and counteract disease progression.
Collapse
|
12
|
Wang C, Li J, Chen J, Wang Z, Zhu G, Song L, Wu J, Li C, Qiu R, Chen X, Zhang L, Li W. Multi-omics analyses reveal biological and clinical insights in recurrent stage I non-small cell lung cancer. Nat Commun 2025; 16:1477. [PMID: 39929832 PMCID: PMC11811181 DOI: 10.1038/s41467-024-55068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/26/2024] [Indexed: 02/13/2025] Open
Abstract
Post-operative recurrence rates of stage I non-small cell lung cancer (NSCLC) range from 20% to 40%. Nonetheless, the molecular mechanisms underlying recurrence hitherto remain largely elusive. Here, we generate genomic, epigenomic and transcriptomic profiles of paired tumors and adjacent tissues from 122 stage I NSCLC patients, among which 57 patients develop recurrence after surgery during follow-up. Integrated analyses illustrate that the presence of predominantly solid or micropapillary histological subtypes, increased genomic instability, and APOBEC-related signature are associated with recurrence. Furthermore, TP53 missense mutation in DNA-binding domain could contribute to shorter time to recurrence. DNA hypomethylation is pronounced in recurrent NSCLC, and PRAME is the significantly hypomethylated and overexpressed gene in recurrent lung adenocarcinoma (LUAD). Mechanistically, hypomethylation at TEAD1 binding site facilitates the transcriptional activation of PRAME. Inhibition of PRAME restrains the tumor metastasis via downregulation of epithelial-mesenchymal transition-related genes. We also identify that enrichment of AT2 cells with higher copy number variation burden, exhausted CD8 + T cells and Macro_SPP1, along with the reduced interaction between AT2 and immune cells, is essential for the formation of ecosystem in recurrent LUAD. Finally, multi-omics clustering could stratify the NSCLC patients into 4 subclusters with varying recurrence risk and subcluster-specific therapeutic vulnerabilities. Collectively, this study constitutes a promising resource enabling insights into the biological mechanisms and clinical management for post-operative recurrence of stage I NSCLC.
Collapse
Affiliation(s)
- Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jingwei Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyao Chen
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhoufeng Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guonian Zhu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lujia Song
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayang Wu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changshu Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Qiu
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, China
| | - Xuelan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Yamakado T, Sato-Yazawa H, Ishii J, Kashiwagi K, Kimura T, Tanei ZI, Yazawa T, Ishida Y, Tanaka S. Spontaneous Transformation from Lung Adenocarcinoma to MYC-amplified Large Cell Neuroendocrine Carcinoma. Pathol Int 2025; 75:105-113. [PMID: 39868963 DOI: 10.1111/pin.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025]
Abstract
Recent studies suggest that lung adenocarcinoma cells are closely associated with the tumorigenesis of large-cell neuroendocrine carcinoma via cellular transformation. However, morphological evidence, along with genetic abnormalities before, during, and after transformation, is quite limited. We present here a case of combined large-cell neuroendocrine carcinoma and adenocarcinoma exhibiting acinar and solid patterns. Adenocarcinoma cells with abundant mucin, exhibiting positivity for both napsin-A and neuroendocrine markers, were partially found in the acinar adenocarcinoma component and extensively observed in the solid adenocarcinoma component. Next-generation sequencing using extracted genomic DNA from the three components revealed homozygous TP53 (missense) and STK11 (nonsense) mutations in all three components, suggesting monoclonal origin. Furthermore, MYC gene amplification, recently presumed to be a pivotal driver in neuroendocrine transformation, was observed in both the solid adenocarcinoma and large-cell neuroendocrine carcinoma components. These genetic findings corresponded to pre- and post-transformation morphology, providing compelling evidence that some kinds of adenocarcinomas may serve as a precursor of large-cell neuroendocrine carcinoma.
Collapse
Affiliation(s)
- Tetsuhiro Yamakado
- Department of Pathology, National Hospital Organization, Hokkaido Medical Center, Hokkaido, Japan
- Department of Cancer Pathology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Hanako Sato-Yazawa
- Department of Pathology, School of Medicine and Graduate School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Jun Ishii
- Department of Pathology, School of Medicine and Graduate School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Korehito Kashiwagi
- Department of Pathology, School of Medicine and Graduate School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Taichi Kimura
- Department of Pathology, National Hospital Organization, Hokkaido Medical Center, Hokkaido, Japan
- Department of Cancer Pathology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Zen-Ichi Tanei
- Department of Cancer Pathology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Takuya Yazawa
- Department of Pathology, School of Medicine and Graduate School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Yusuke Ishida
- Department of Pathology, National Hospital Organization, Hokkaido Medical Center, Hokkaido, Japan
- Department of Cancer Pathology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Zhou F, Guo H, Xia Y, Le X, Tan DSW, Ramalingam SS, Zhou C. The changing treatment landscape of EGFR-mutant non-small-cell lung cancer. Nat Rev Clin Oncol 2025; 22:95-116. [PMID: 39614090 DOI: 10.1038/s41571-024-00971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
The discovery of the association between EGFR mutations and the efficacy of EGFR tyrosine-kinase inhibitors (TKIs) has revolutionized the treatment paradigm for patients with non-small-cell lung cancer (NSCLC). Currently, third-generation EGFR TKIs, which are often characterized by potent central nervous system penetrance, are the standard-of-care first-line treatment for advanced-stage EGFR-mutant NSCLC. Rational combinations of third-generation EGFR TKIs with anti-angiogenic drugs, chemotherapy, the EGFR-MET bispecific antibody amivantamab or local tumour ablation are being investigated as strategies to delay drug resistance and increase clinical benefit. Furthermore, EGFR TKIs are being evaluated in patients with early stage or locally advanced EGFR-mutant NSCLC, with the ambitious aim of achieving cancer cure. Despite the inevitable challenge of acquired resistance, emerging treatments such as new TKIs, antibody-drug conjugates, new immunotherapeutic approaches and targeted protein degraders have shown considerable promise in patients with progression of EGFR-mutant NSCLC on or after treatment with EGFR TKIs. In this Review, we describe the current first-line treatment options for EGFR-mutant NSCLC, provide an overview of the mechanisms of acquired resistance to third-generation EGFR TKIs and explore novel promising treatment strategies. We also highlight potential avenues for future research that are aimed at improving the survival outcomes of patients with this disease.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuning Le
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Duke-NUS Medical School, Singapore, Singapore
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, USA
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Chen Z, Wang G, Wang N, Liu J, Yao Y, Ma H, Luo J, Xie K. Impact of chemoradiotherapy for first primary lung cancer on the prognosis and re-chemoradiotherapy sensitivity of second primary lung cancer. Front Immunol 2025; 16:1492501. [PMID: 39931060 PMCID: PMC11808144 DOI: 10.3389/fimmu.2025.1492501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Background Despite undergoing surgery and chemoradiotherapy, patients with first primary lung cancer (FPLC) remain at risk for second primary lung cancer (SPLC), which is associated with a poor prognosis. The effects of FPLC chemoradiotherapy on SPLC prognosis and its sensitivity to re-chemoradiotherapy have not been adequately investigated. Methods This cohort study analyzed data from 23,827 patients who underwent FPLC surgery during 1973-2021, drawn from the Surveillance, Epidemiology, and End Results database. Among these, 5,302 FPLC patients developed SPLC within 5 years of their initial diagnosis. We employed the Fine-Gray competitive risk model, Cox proportional hazards model, and restricted mean survival time analysis to assess the effects of FPLC radiotherapy and chemotherapy on SPLC risk and survival differences. Results The competitive risk model indicated that FPLC radiotherapy and chemotherapy did not significantly change the risk of developing SPLC. However, the Cox proportional hazards model revealed that FPLC radiotherapy was associated with decreased overall survival (OS; HR=1.251, P<0.001) and cancer-specific survival (CSS; HR=1.228, P=0.001) in patients with SPLC. Conversely, FPLC chemotherapy was linked to improved OS (HR=0.881, P=0.012) in this population. Patients with SPLC who received combined chemoradiotherapy for FPLC exhibited significantly reduced survival times (OS: HR=1.157, P=0.030; CSS: HR=1.198, P=0.018), a finding confirmed across multiple models. For SPLC patients with prior FPLC chemoradiotherapy, subsequent SPLC radiotherapy significantly improved prognosis. Notably, this benefit is even more pronounced in patients who have not received prior chemoradiotherapy. While SPLC chemotherapy enhanced OS for patients who did not receive FPLC chemotherapy, it was associated with reduced CSS for those who had. Conclusions Overall, FPLC chemoradiotherapy influences SPLC prognosis and influences sensitivity to treatment. Tailoring SPLC management to FPLC treatment regimens may improve survival outcomes.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaoming Wang
- Department of Thoracic Surgery, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Nan Wang
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiangjiang Liu
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Yao
- Department of Respiratory Medicine, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haitao Ma
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kai Xie
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Zou J, Han W, Hu Y, Zeng C, Li J, Lei W, Cao J, Fei Q, Shao M, Yi J, Cheng Z, Wang L, Wu F, Liu W. Gene mutation, clinical characteristics and pathology in resectable lung adenocarcinoma. World J Surg Oncol 2025; 23:16. [PMID: 39844176 PMCID: PMC11752792 DOI: 10.1186/s12957-025-03680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/19/2025] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVE With the wide use of CT scan in clinical practice, more lung cancer was diagnosed in resectable stage. Pathological examination and genetic testing have become a routine procedure for lung adenocarcinoma following radical resection. This study analyzed special pathological components and gene mutations to explore their relationship with clinical characteristics and overall survival. METHODS Clinical, pathological, and gene mutation data from 1,118 patients were collected. All patients underwent surgery at the Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University. Patients were grouped based on pathological components and gene mutations. Differences in clinical features and overall survival were analyzed as well. RESULTS Patients with mucinous, neuroendocrine, and poor-differentiated components were presented with more prognostic risk factors, including pleural invasion, carcinothrombosis, STAS, and advanced stages, along with varying frequencies of gene mutations. These factors significantly shortened overall survival. ALK and KRAS mutations were also associated with risk factors such as solid nodules, pleural invasion, STAS, and later stages. However, a significant reduction in overall survival was observed only in patients with the KRAS mutation. Relationship between gene mutations and pathological components still requires further investigation. CONCLUSION Special pathological components (mucinous, neuroendocrine, and poor-differentiated) and gene mutations had an influence on biological behavior of tumors, resulting in different clinical characteristics and prognosis.
Collapse
Affiliation(s)
- Ji'an Zou
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Han
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chao Zeng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jina Li
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weixuan Lei
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jieming Cao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Quanming Fei
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mengqi Shao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Junqi Yi
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zeyu Cheng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wenliang Liu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
17
|
Joshi A, Bhaskar N, Pearson JD. Neuroendocrine Transformation as a Mechanism of Resistance to Targeted Lung Cancer Therapies: Emerging Mechanisms and Their Therapeutic Implications. Cancers (Basel) 2025; 17:260. [PMID: 39858043 PMCID: PMC11763869 DOI: 10.3390/cancers17020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/24/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, highlighting a major clinical challenge. Lung cancer is broadly classified into two histologically distinct subtypes, termed small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC). Identification of various oncogenic drivers of NSCLC has facilitated the development of targeted therapies that have dramatically improved patient outcomes. However, acquired resistance to these targeted therapies is common, which ultimately results in patient relapse. Several on-target and off-target resistance mechanisms have been described for targeted therapies in NSCLC. One common off-target mechanism of resistance to these therapies is histological transformation of the initial NSCLC into SCLC, a highly aggressive form of lung cancer that exhibits neuroendocrine histology. This mechanism of resistance presents a significant clinical challenge, since there are very few treatments available for these relapsed patients. Although the phenomenon of NSCLC-to-SCLC transformation was described almost 20 years ago, only recently have we begun to understand the mechanisms underlying this therapy-driven response. These recent discoveries will be key to identifying novel biomarkers and therapeutic strategies to improve outcomes of patients that undergo NSCLC-to-SCLC transformation. Here, we highlight these recent advances and discuss the potential therapeutic strategies that they have uncovered to target this mechanism of resistance.
Collapse
Affiliation(s)
- Asim Joshi
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 0T6, Canada; (A.J.); (N.B.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Nivitha Bhaskar
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 0T6, Canada; (A.J.); (N.B.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Joel D. Pearson
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 0T6, Canada; (A.J.); (N.B.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
18
|
Yazawa T. What is the cell of origin of lung neuroendocrine carcinoma? Respir Investig 2025; 63:40-41. [PMID: 39632325 DOI: 10.1016/j.resinv.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Takuya Yazawa
- Department of Pathology, Dokkyo Medical University, 880 Kita-kobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan.
| |
Collapse
|
19
|
Chen X, Wang K, Liao X, Zheng X, Yang S, Han C, Lu C, Wang X, Jin L, Kang H, Han Y, Wei J, Fan L, Zhang Z, Kong W. Single-Cell RNA Sequencing Reveals the Cellular Origin and Evolution of Small-Cell Neuroendocrine Carcinoma of the Cervix. J Med Virol 2025; 97:e70183. [PMID: 39831355 DOI: 10.1002/jmv.70183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/14/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Small-cell neuroendocrine cancer (SCNEC) of the uterine cervix is an exceedingly rare, highly aggressive tumor with an extremely poor prognosis. The cellular heterogeneity, origin, and tumorigenesis trajectories of SCNEC of the cervix remain largely unclear. We performed single-cell RNA sequencing and whole-exome sequencing on tumor tissues and adjacent normal cervical tissues from two patients diagnosed with SCNEC of the cervix. Here, we provide the first comprehensive insights into the cellular composition, HPV infection-related features, and gene expression profiles of SCNEC of the cervix at single-cell resolution. Correlation analyses suggested that SCNEC of the cervix may originate from squamous epithelial cells, and this observation was validated with bulk RNA-seq data from external cervical neuroendocrine cancer. Furthermore, sex-determining region Y-box 2 (SOX2), a key transcription factor that functions in direct neural differentiation, was located in the copy number gain region and highly expressed in neuroendocrine tumor cells from both patients. Notable, the distributions of the HPV-infected epithelium and SOX2 highly expressed epithelium were consistent with each other. Therefore, we supposed that high-risk HPV infection and amplification of SOX2 in the squamous epithelium may contribute to the progression of small-cell neuroendocrine tumorigenesis in the cervix.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Kunyu Wang
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xingyu Liao
- Familial & Hereditary Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Xingzheng Zheng
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Shuli Yang
- Department of Gynecology Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Chao Han
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Chang Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Xiaodan Wang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Lingge Jin
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Haili Kang
- Department of Gynecology Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Yiding Han
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Jiacong Wei
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Linyuan Fan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Zhan Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Weimin Kong
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| |
Collapse
|
20
|
Varuzhanyan G, Chen CC, Freeland J, He T, Tran W, Song K, Wang L, Cheng D, Xu S, Dibernardo GA, Esedebe FN, Bhatia V, Han M, Abt ER, Park JW, Memarzadeh S, Shackelford DB, Lee JK, Graeber TG, Shirihai OS, Witte ON. PGC-1α drives small cell neuroendocrine cancer progression toward an ASCL1-expressing subtype with increased mitochondrial capacity. Proc Natl Acad Sci U S A 2024; 121:e2416882121. [PMID: 39589879 PMCID: PMC11626175 DOI: 10.1073/pnas.2416882121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Adenocarcinomas from multiple tissues can converge to treatment-resistant small cell neuroendocrine (SCN) cancers composed of ASCL1, POU2F3, NEUROD1, and YAP1 subtypes. We investigated how mitochondrial metabolism influences SCN cancer (SCNC) progression. Extensive bioinformatics analyses encompassing thousands of patient tumors and human cancer cell lines uncovered enhanced expression of proliferator-activatedreceptor gamma coactivator 1-alpha (PGC-1α), a potent regulator of mitochondrial oxidative phosphorylation (OXPHOS), across several SCNCs. PGC-1α correlated tightly with increased expression of the lineage marker Achaete-scute homolog 1, (ASCL1) through a positive feedback mechanism. Analyses using a human prostate tissue-based SCN transformation system showed that the ASCL1 subtype has heightened PGC-1α expression and OXPHOS activity. PGC-1α inhibition diminished OXPHOS, reduced SCNC cell proliferation, and blocked SCN prostate tumor formation. Conversely, PGC-1α overexpression enhanced OXPHOS, validated by small-animal Positron Emission Tomography mitochondrial imaging, tripled the SCN prostate tumor formation rate, and promoted commitment to the ASCL1 lineage. These results establish PGC-1α as a driver of SCNC progression and subtype determination, highlighting metabolic vulnerabilities in SCNCs across different tissues.
Collapse
Affiliation(s)
- Grigor Varuzhanyan
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Chia-Chun Chen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Jack Freeland
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA90095
| | - Tian He
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Wendy Tran
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Kai Song
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Liang Wang
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Donghui Cheng
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Gabriella A. Dibernardo
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Favour N. Esedebe
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA90095
| | - Vipul Bhatia
- Division of Hematology/Oncology, Department of Medicine University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Mingqi Han
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Evan R. Abt
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Jung Wook Park
- Department of Pathology, Duke University School of Medicine, Durham, NC27710
| | - Sanaz Memarzadeh
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- The Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA90073
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - David B. Shackelford
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - John K. Lee
- Division of Hematology/Oncology, Department of Medicine University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Thomas G. Graeber
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA90095
- California NanoSystems Institute, University of California, Los Angeles, CA90095
- UCLA Metabolomics Center, University of California, Los Angeles, CA90095
| | - Orian S. Shirihai
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA90095
- University of California Los Angeles Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Clinical Biochemistry, School of Medicine, Ben Gurion University of The Negev, Beer-Sheva8410501, Israel
| | - Owen N. Witte
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, CA90095
| |
Collapse
|
21
|
Wang W, Li J, Qie X. Comprehensive utilization of in silico approach and in vitro experiment to unveil the molecular mechanisms of mono (2-ethylhexyl) phthalate-induced lung adenocarcinoma. Bioorg Chem 2024; 153:107947. [PMID: 39520789 DOI: 10.1016/j.bioorg.2024.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Mono (2-ethylhexyl) phthalate (MEHP), the main bioactive metabolite of commonly used plasticizer Di (2-ethylhexyl) phthalate, has received increasing attention due to its carcinogenic toxicity. This study aims to systematically explore the molecular mechanisms underlying MEHP-induced lung adenocarcinoma (LUAD). Firstly, network toxicology was employed to construct the interaction network of MEHP-targeted LUAD-related proteins and identify core proteins. Subsequently, functional analyses were used to determine the key pathways of these proteins enriched. Next, expression and survival analyses of multiple public datasets were conducted to emphasize the importance of core genes, and an optimized prognostic model was constructed based on independent prognostic genes to explore the relationship of gene risk with immune infiltration and immunotherapy. Ultimately, molecular docking and dynamics simulation were used to predict the binding modes and affinities of MEHP with core proteins, and surface plasmon resonance experiments were utilized to further validate their direct interactions. The findings demonstrated that MEHP targets 167 LUAD-related proteins, including 28 core target proteins. These proteins form the critical networks that regulate cancer and immune-associated pathways to induce the occurrence and development of LUAD, and further coordinate patient prognosis and treatment by altering the immune microenvironment. Most importantly, their direct interactions (especially PTGS2) lay the structural foundation of MEHP regulating core proteins, greatly supporting its LUAD toxicity. In conclusion, this study introduces a novel approach for evaluating the safety of plasticizers and elucidates the molecular mechanisms behind MEHP-induced LUAD, thus offering new and effective targets and strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Wenwen Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, China.
| | - Junying Li
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, Guangdong, China
| | - Xingwang Qie
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, HymonBio Co., Ltd, Suzhou 215434, Jiangsu, China
| |
Collapse
|
22
|
Xu Y, Li M, Bai L. Pulmonary Epithelium Cell Fate Determination: Chronic Obstructive Pulmonary Disease, Lung Cancer, or Both. Am J Respir Cell Mol Biol 2024; 71:632-645. [PMID: 39078237 DOI: 10.1165/rcmb.2023-0448tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/30/2024] [Indexed: 07/31/2024] Open
Abstract
The concurrence of chronic obstructive pulmonary disease (COPD) and lung cancer has been widely reported and extensively addressed by pulmonologists and oncologists. However, most studies have focused on shared risk factors, DNA damage pathways, immune microenvironments, inflammation, and imbalanced proteases/antiproteases. In the present review, we explore the association between COPD and lung cancer in terms of airway pluripotent cell fate determination and discuss the various cell types and signaling pathways involved in the maintenance of lung epithelium homeostasis and their involvement in the pathogenesis of co-occurring COPD and lung cancer.
Collapse
Affiliation(s)
- Yu Xu
- Department of Clinical Oncology, Army Medical Center, and
| | - Mengxia Li
- Department of Clinical Oncology, Army Medical Center, and
| | - Li Bai
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
23
|
Ireland AS, Hawgood SB, Xie DA, Barbier MW, Lucas-Randolph S, Tyson DR, Zuo LY, Witt BL, Govindan R, Dowlati A, Moser JC, Puri S, Rudin CM, Chan JM, Elliott A, Oliver TG. Basal cell of origin resolves neuroendocrine-tuft lineage plasticity in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623500. [PMID: 39605338 PMCID: PMC11601426 DOI: 10.1101/2024.11.13.623500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Neuroendocrine and tuft cells are rare, chemosensory epithelial lineages defined by expression of ASCL1 and POU2F3 transcription factors, respectively1,2. Neuroendocrine cancers, including small cell lung cancer (SCLC), frequently display tuft-like subsets, a feature linked to poor patient outcomes3-13. The mechanisms driving neuroendocrine-tuft tumour heterogeneity, and the origins of tuft-like cancers are unknown. Using multiple genetically-engineered animal models of SCLC, we demonstrate that a basal cell of origin (but not the accepted neuroendocrine origin) generates neuroendocrine-tuft-like tumours that highly recapitulate human SCLC. Single-cell clonal analyses of basal-derived SCLC further uncovers unexpected transcriptional states and lineage trajectories underlying neuroendocrine-tuft plasticity. Uniquely in basal cells, introduction of genetic alterations enriched in human tuft-like SCLC, including high MYC, PTEN loss, and ASCL1 suppression, cooperate to promote tuft-like tumours. Transcriptomics of 944 human SCLCs reveal a basal-like subset and a tuft-ionocyte-like state that altogether demonstrate remarkable conservation between cancer states and normal basal cell injury response mechanisms14-18. Together, these data suggest that the basal cell is a plausible origin for SCLC and other neuroendocrine-tuft cancers that can explain neuroendocrine-tuft heterogeneity-offering new insights for targeting lineage plasticity.
Collapse
Affiliation(s)
- Abbie S. Ireland
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Sarah B. Hawgood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Daniel A. Xie
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Margaret W. Barbier
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | | | - Darren R. Tyson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Lisa Y. Zuo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Benjamin L. Witt
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - Sonam Puri
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph M. Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
24
|
Romero R, Chu T, González Robles TJ, Smith P, Xie Y, Kaur H, Yoder S, Zhao H, Mao C, Kang W, Pulina MV, Lawrence KE, Gopalan A, Zaidi S, Yoo K, Choi J, Fan N, Gerstner O, Karthaus WR, DeStanchina E, Ruggles KV, Westcott PMK, Chaligné R, Pe'er D, Sawyers CL. The neuroendocrine transition in prostate cancer is dynamic and dependent on ASCL1. NATURE CANCER 2024; 5:1641-1659. [PMID: 39394434 PMCID: PMC11584404 DOI: 10.1038/s43018-024-00838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/06/2024] [Indexed: 10/13/2024]
Abstract
Lineage plasticity is a hallmark of cancer progression that impacts therapy outcomes, yet the mechanisms mediating this process remain unclear. Here, we introduce a versatile in vivo platform to interrogate neuroendocrine lineage transformation throughout prostate cancer progression. Transplanted mouse prostate organoids with human-relevant driver mutations (Rb1-/-; Trp53-/-; cMyc+ or Pten-/-; Trp53-/-; cMyc+) develop adenocarcinomas, but only those with Rb1 deletion advance to aggressive, ASCL1+ neuroendocrine prostate cancer (NEPC) resistant to androgen receptor signaling inhibitors. Notably, this transition requires an in vivo microenvironment not replicated by conventional organoid culture. Using multiplexed immunofluorescence and spatial transcriptomics, we reveal that ASCL1+ cells arise from KRT8+ luminal cells, progressing into transcriptionally heterogeneous ASCL1+;KRT8- NEPC. Ascl1 loss in established NEPC causes transient regression followed by recurrence, but its deletion before transplantation abrogates lineage plasticity, resulting in castration-sensitive adenocarcinomas. This dynamic model highlights the importance of therapy timing and offers a platform to identify additional lineage plasticity drivers.
Collapse
Affiliation(s)
- Rodrigo Romero
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tinyi Chu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tania J González Robles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Perianne Smith
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yubin Xie
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harmanpreet Kaur
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara Yoder
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chenyi Mao
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wenfei Kang
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria V Pulina
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kayla E Lawrence
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anuradha Gopalan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kwangmin Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Ning Fan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivia Gerstner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wouter R Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa DeStanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelly V Ruggles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Ronan Chaligné
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
25
|
Tan N, Li Y, Ying J, Chen W. Histological transformation in lung adenocarcinoma: Insights of mechanisms and therapeutic windows. J Transl Int Med 2024; 12:452-465. [PMID: 39513032 PMCID: PMC11538883 DOI: 10.1515/jtim-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Histological transformation from lung adenocarcinoma (ADC) to small cell lung carcinoma (SCLC), large cell neuroendocrine carcinoma (LCNEC), squamous cell carcinoma (SCC), and sarcomatoid carcinoma (PSC) after targeted therapies is recognized as a mechanism of resistance in ADC treatments. Patients with transformed lung cancer typically experience a poor prognosis and short survival time. However, effective treatment options for these patients are currently lacking. Therefore, understanding the mechanisms underlying histological transformation is crucial for the development of effective therapies. Hypotheses including intratumoral heterogeneity, cancer stem cells, and alteration of suppressor genes have been proposed to explain the mechanism of histological transformation. In this review, we provide a comprehensive overview of the known molecular features and signaling pathways of transformed tumors, and summarized potential therapies based on previous findings.
Collapse
Affiliation(s)
- Nuopei Tan
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqing Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Gorelov R, Hochedlinger K. A cellular identity crisis? Plasticity changes during aging and rejuvenation. Genes Dev 2024; 38:823-842. [PMID: 39293862 PMCID: PMC11535162 DOI: 10.1101/gad.351728.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Cellular plasticity in adult multicellular organisms is a protective mechanism that allows certain tissues to regenerate in response to injury. Considering that aging involves exposure to repeated injuries over a lifetime, it is conceivable that cell identity itself is more malleable-and potentially erroneous-with age. In this review, we summarize and critically discuss the available evidence that cells undergo age-related shifts in identity, with an emphasis on those that contribute to age-associated pathologies, including neurodegeneration and cancer. Specifically, we focus on reported instances of programs associated with dedifferentiation, biased differentiation, acquisition of features from alternative lineages, and entry into a preneoplastic state. As some of the most promising approaches to rejuvenate cells reportedly also elicit transient changes to cell identity, we further discuss whether cell state change and rejuvenation can be uncoupled to yield more tractable therapeutic strategies.
Collapse
Affiliation(s)
- Rebecca Gorelov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA;
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
27
|
Li Y, Xie T, Wang S, Yang L, Hao X, Wang Y, Hu X, Wang L, Li J, Ying J, Xing P. Mechanism exploration and model construction for small cell transformation in EGFR-mutant lung adenocarcinomas. Signal Transduct Target Ther 2024; 9:261. [PMID: 39353908 PMCID: PMC11445518 DOI: 10.1038/s41392-024-01981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 10/03/2024] Open
Abstract
Small-cell lung cancer (SCLC) transformation accounts for 3-14% of resistance in EGFR-TKI relapsed lung adenocarcinomas (LUADs), with unknown molecular mechanisms and optimal treatment strategies. We performed transcriptomic analyses (including bulk and spatial transcriptomics) and multiplex immunofluorescence on pre-treated samples from LUADs without transformation after EGFR-TKI treatment (LUAD-NT), primary SCLCs (SCLC-P) and LUADs with transformation after EGFR-TKI treatment (before transformation: LUAD-BT; after transformation: SCLC-AT). Our study found that LUAD-BT exhibited potential transcriptomic characteristics for transformation compared with LUAD-NT. We identified several pathways that shifted during transformation, and the transformation might be promoted by epigenetic alterations (such as HDAC10, HDAC1, DNMT3A) within the tumor cells instead of within the tumor microenvironment. For druggable pathways, transformed-SCLC were proved to be less dependent on EGF signaling but more relied on FGF signaling, while VEGF-VEGFR pathway remained active, indicating potential treatments after transformation. We also found transformed-SCLC showed an immuno-exhausted status which was associated with the duration of EGFR-TKI before transformation. Besides, SCLC-AT exhibited distinct molecular subtypes from SCLC-P. Moreover, we constructed an ideal 4-marker model based on transcriptomic and IHC data to predict SCLC transformation, which obtained a sensitivity of 100% and 87.5%, a specificity of 95.7% and 100% in the training and test cohorts, respectively. We provided insights into the molecular mechanisms of SCLC transformation and the differences between SCLC-AT and SCLC-P, which might shed light on prevention strategies and subsequent therapeutic strategies for SCLC transformation in the future.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Molecular Oncology, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Centre of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shouzheng Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Lin Yang
- State Key Laboratory of Molecular Oncology, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuezhi Hao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianming Ying
- State Key Laboratory of Molecular Oncology, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
28
|
Jiang J, Han D, Wang J, Wen W, Zhang R, Qin W. Neuroendocrine transdifferentiation in human cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e761. [PMID: 39372390 PMCID: PMC11450264 DOI: 10.1002/mco2.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Neuroendocrine transdifferentiation (NEtD), also commonly referred to as lineage plasticity, emerges as an acquired resistance mechanism to molecular targeted therapies in multiple cancer types, predominately occurs in metastatic epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors and metastatic castration-resistant prostate cancer treated with androgen receptor targeting therapies. NEtD tumors are the lethal cancer histologic subtype with unfavorable prognosis and limited treatment. A comprehensive understanding of molecular mechanism underlying targeted-induced plasticity could greatly facilitate the development of novel therapies. In the past few years, increasingly elegant studies indicated that NEtD tumors share key the convergent genomic and phenotypic characteristics irrespective of their site of origin, but also embrace distinct change and function of molecular mechanisms. In this review, we provide a comprehensive overview of the current understanding of molecular mechanism in regulating the NEtD, including genetic alterations, DNA methylation, histone modifications, dysregulated noncoding RNA, lineage-specific transcription factors regulation, and other proteomic alterations. We also provide the current management of targeted therapies in clinical and preclinical practice.
Collapse
Affiliation(s)
- Jun Jiang
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
- Department of Health Service, Base of Health ServiceAir Force Medical UniversityXi'anChina
| | - Donghui Han
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jiawei Wang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, and National Translational Science Center for Molecular MedicineAir Force Medical UniversityXi'anChina
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Rui Zhang
- State Key Laboratory of Cancer BiologyDepartment of ImmunologyAir Force Medical UniversityXi'anChina
| | - Weijun Qin
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
29
|
Redin E, Quintanal-Villalonga Á, Rudin CM. Small cell lung cancer profiling: an updated synthesis of subtypes, vulnerabilities, and plasticity. Trends Cancer 2024; 10:935-946. [PMID: 39164163 PMCID: PMC12107680 DOI: 10.1016/j.trecan.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Small cell lung cancer (SCLC) is a devastating disease with high proliferative and metastatic capacity. SCLC has been classified into molecular subtypes based on differential expression of lineage-defining transcription factors. Recent studies have proposed new subtypes that are based on both tumor-intrinsic and -extrinsic factors. SCLC demonstrates substantial intratumoral subtype heterogeneity characterized by highly plastic transcriptional states, indicating that the initially dominant subtype can shift during disease progression and in association with resistance to therapy. Strategies to promote or constrain plasticity and cell fate transitions have nominated novel targets that could prompt the development of more durably effective therapies for patients with SCLC. In this review, we describe the latest advances in SCLC subtype classification and their biological and clinical implications.
Collapse
Affiliation(s)
- Esther Redin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Álvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Pharmacology Program, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
30
|
Sun F, Ding Z, Shao F, Gao X, Tian H, Zhang X, Chen H, Wang C. Albumin-Based MUC13 Peptide Nanomedicine Suppresses Liver Cancer Stem Cells via JNK-ERK Signaling Pathway-Mediated Autophagy Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38968-38978. [PMID: 39024013 DOI: 10.1021/acsami.4c06034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Targeting liver cancer stem cells (LCSCs) is a promising strategy for hepatocellular carcinoma (HCC) therapy. Target selection and corresponding inhibitor screening are of vital importance for eliminating the stemness of LCSCs. Peptide-based agents are hopeful but have long been hindered for in vivo application. Herein, we selected a clinically significant target MUC13 and screened out a suitable peptide for preparation of an albumin-based MUC13 peptide nanomedicine, P3@HSA, which suppressed liver cancer stem cells via JNK-ERK signaling pathway-mediated autophagy inhibition. The selected target MUC13 was highly expressed in LCSCs and associated with the prognosis of liver cancer patients. Encouraged by this observation, we screened the corresponding peptide-based inhibitor P3 for further evaluation. P3 could interact with albumin through the intrinsic hydrophobic force and formed the nanomedicine P3@HSA. The prepared nanomedicine could inhibit LCSCs through JNK-ERK signaling pathway-mediated autophagy inhibition and exert potent antitumor effect both in vitro and in vivo. Together, this study provides a promising peptide-based nanomedicine for high-performance HCC treatment.
Collapse
Affiliation(s)
- Fen Sun
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zongyao Ding
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Fengying Shao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiaoyang Gao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Haina Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaqing Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Changlong Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
31
|
Ku SY, Wang Y, Garcia MM, Yamada Y, Mizuno K, Long MD, Rosario S, Chinnam M, Al Assaad M, Puca L, Kim MJ, Bakht MK, Venkadakrishnan VB, Robinson BD, Acosta AM, Wadosky KM, Mosquera JM, Goodrich DW, Beltran H. Notch signaling suppresses neuroendocrine differentiation and alters the immune microenvironment in advanced prostate cancer. J Clin Invest 2024; 134:e175217. [PMID: 39024561 PMCID: PMC11364388 DOI: 10.1172/jci175217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Notch signaling can have either an oncogenic or tumor-suppressive function in cancer depending on the cancer type and cellular context. While Notch can be oncogenic in early prostate cancer, we identified significant downregulation of the Notch pathway during prostate cancer progression from adenocarcinoma to neuroendocrine (NE) prostate cancer, where it functions as a tumor suppressor. Activation of Notch in NE and Rb1/Trp53-deficient prostate cancer models led to phenotypic conversion toward a more indolent, non-NE state with glandular features and expression of luminal lineage markers. This was accompanied by upregulation of MHC and type I IFN and immune cell infiltration. Overall, these data support Notch signaling as a suppressor of NE differentiation in advanced prostate cancer and provide insights into how Notch signaling influences lineage plasticity and the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Maria Mica Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Spencer Rosario
- Department of Pharmacology and Therapeutics and
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | | | | | - Loredana Puca
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Min Jin Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Martin K. Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | - Andrés M. Acosta
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | | | - David W. Goodrich
- Department of Pharmacology and Therapeutics and
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Oh S, Kim TM. Histological transformation to small-cell carcinoma. Nat Rev Cancer 2024; 24:447. [PMID: 38698127 DOI: 10.1038/s41568-024-00697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Songji Oh
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Yang C, Ma S, Zhang J, Han Y, Wan L, Zhou W, Dong X, Yang W, Chen Y, Gao L, Cui W, Jia L, Yang J, Wu C, Wang Q, Wang L. EHMT2-mediated transcriptional reprogramming drives neuroendocrine transformation in non-small cell lung cancer. Proc Natl Acad Sci U S A 2024; 121:e2317790121. [PMID: 38814866 PMCID: PMC11161775 DOI: 10.1073/pnas.2317790121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) is a recognized resistance mechanism and a hindrance to therapies using epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The paucity of pretranslational/posttranslational clinical samples limits the deeper understanding of resistance mechanisms and the exploration of effective therapeutic strategies. Here, we developed preclinical neuroendocrine (NE) transformation models. Next, we identified a transcriptional reprogramming mechanism that drives resistance to erlotinib in NE transformation cell lines and cell-derived xenograft mice. We observed the enhanced expression of genes involved in the EHMT2 and WNT/β-catenin pathways. In addition, we demonstrated that EHMT2 increases methylation of the SFRP1 promoter region to reduce SFRP1 expression, followed by activation of the WNT/β-catenin pathway and TKI-mediated NE transformation. Notably, the similar expression alterations of EHMT2 and SFRP1 were observed in transformed SCLC samples obtained from clinical patients. Importantly, suppression of EHMT2 with selective inhibitors restored the sensitivity of NE transformation cell lines to erlotinib and delayed resistance in cell-derived xenograft mice. We identify a transcriptional reprogramming process in NE transformation and provide a potential therapeutic target for overcoming resistance to erlotinib.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Shuxiang Ma
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou450008, China
| | - Jie Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Yuchen Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Li Wan
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Wenlong Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Xiaoyu Dong
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Weiming Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Yu Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Lingyue Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou450008, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| |
Collapse
|
34
|
Romero R, Chu T, González-Robles TJ, Smith P, Xie Y, Kaur H, Yoder S, Zhao H, Mao C, Kang W, Pulina MV, Lawrence KE, Gopalan A, Zaidi S, Yoo K, Choi J, Fan N, Gerstner O, Karthaus WR, DeStanchina E, Ruggles KV, Westcott PM, Chaligné R, Pe’er D, Sawyers CL. The neuroendocrine transition in prostate cancer is dynamic and dependent on ASCL1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588557. [PMID: 38645223 PMCID: PMC11030418 DOI: 10.1101/2024.04.09.588557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Lineage plasticity is a recognized hallmark of cancer progression that can shape therapy outcomes. The underlying cellular and molecular mechanisms mediating lineage plasticity remain poorly understood. Here, we describe a versatile in vivo platform to identify and interrogate the molecular determinants of neuroendocrine lineage transformation at different stages of prostate cancer progression. Adenocarcinomas reliably develop following orthotopic transplantation of primary mouse prostate organoids acutely engineered with human-relevant driver alterations (e.g., Rb1-/-; Trp53-/-; cMyc+ or Pten-/-; Trp53-/-; cMyc+), but only those with Rb1 deletion progress to ASCL1+ neuroendocrine prostate cancer (NEPC), a highly aggressive, androgen receptor signaling inhibitor (ARSI)-resistant tumor. Importantly, we show this lineage transition requires a native in vivo microenvironment not replicated by conventional organoid culture. By integrating multiplexed immunofluorescence, spatial transcriptomics and PrismSpot to identify cell type-specific spatial gene modules, we reveal that ASCL1+ cells arise from KRT8+ luminal epithelial cells that progressively acquire transcriptional heterogeneity, producing large ASCL1+;KRT8- NEPC clusters. Ascl1 loss in established NEPC results in transient tumor regression followed by recurrence; however, Ascl1 deletion prior to transplantation completely abrogates lineage plasticity, yielding adenocarcinomas with elevated AR expression and marked sensitivity to castration. The dynamic feature of this model reveals the importance of timing of therapies focused on lineage plasticity and offers a platform for identification of additional lineage plasticity drivers.
Collapse
Affiliation(s)
- Rodrigo Romero
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tinyi Chu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tania J. González-Robles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY 10061, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10061, USA
| | - Perianne Smith
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yubin Xie
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Harmanpreet Kaur
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sara Yoder
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chenyi Mao
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wenfei Kang
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria V. Pulina
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kayla E. Lawrence
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuradha Gopalan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kwangmin Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Ning Fan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olivia Gerstner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wouter R. Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa DeStanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kelly V. Ruggles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY 10061, USA
| | | | - Ronan Chaligné
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe’er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
35
|
Berns A. Transforming lung cancer types. Science 2024; 383:590-591. [PMID: 38330129 DOI: 10.1126/science.adn5218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Lung cancer cells can escape targeted therapy by switching oncogenic drivers and cell identity.
Collapse
Affiliation(s)
- Anton Berns
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|