1
|
Ponte ME, Prom JC, Newcomb MA, Jordan AB, Comfort LL, Hu J, Puchalska P, Koestler DC, Geisler CE, Hayes MR, Morris EM. Reduced liver mitochondrial energy metabolism impairs food intake regulation following gastric preloads and fasting. Mol Metab 2025; 97:102167. [PMID: 40368160 DOI: 10.1016/j.molmet.2025.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025] Open
Abstract
OBJECTIVE The capacity of the liver to serve as a peripheral sensor in the regulation of food intake has been debated for over half a century. The anatomical position and physiological roles of the liver suggest it is a prime candidate to serve as an interoceptive sensor of peripheral tissue and systemic energy state. Importantly, maintenance of liver ATP levels and within-meal food intake inhibition is impaired in human subjects with obesity and obese pre-clinical models. Previously, we have shown decreased hepatic mitochondrial energy metabolism (i.e., oxidative metabolism & ADP-dependent respiration) in male liver-specific, heterozygous PGC1a mice results in increased short-term diet-induced weight gain with increased within meal food intake. Herein, we tested the hypothesis that decreased liver mitochondrial energy metabolism impairs meal termination following nutrient oral pre-loads. METHODS Liver mitochondrial respiratory response to changes in ΔGATP and adenine nucleotide concentration following fasting were examined in male liver-specific, heterozygous PGC1a mice. Further, food intake and feeding behavior during basal conditions, following nutrient oral pre-loads, and following fasting were investigated. RESULTS We observed male liver-specific, heterozygous PGC1a mice have reduced mitochondrial response to changes in ΔGATP and tissue ATP following fasting. These impairments in liver energy state are associated with larger and longer meals during chow feeding, impaired dose-dependent food intake inhibition in response to mixed and individual nutrient oral pre-loads, and greater acute fasting-induced food intake. CONCLUSIONS These data support previous work proposing liver-mediated food intake regulation through modulation of peripheral satiation signals.
Collapse
Affiliation(s)
- Michael E Ponte
- Depatment of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - John C Prom
- Depatment of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mallory A Newcomb
- Depatment of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Annabelle B Jordan
- Depatment of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lucas L Comfort
- Depatment of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jiayin Hu
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Caroline E Geisler
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - E Matthew Morris
- Depatment of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS, USA; Center for Children's Healthy Lifestyle and Nutrition, Children's Mercy Hospital, Kansas City, MO, USA; University of Kansas Diabetes Institute, Kansas City, KS, USA.
| |
Collapse
|
2
|
Guo Y, Chen Y, Guo H, Wang B, Xiong Y, Ding J, Li J. Genome-wide association study revealed candidate genes associated with egg-laying time traits in layer chicken. Poult Sci 2025; 104:105255. [PMID: 40344708 DOI: 10.1016/j.psj.2025.105255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
In modern intensive caged laying hen production, variations in egg-laying time (ELT) among layers often increase the workload for egg collection, thereby raising the costs of labor or power and reducing overall efficiency. For management purpose, early and synchronized ELT is also advantageous, particularly to large-scale layer farm. However, the underlying genetic mechanisms of ELT remain unclear. In this study, through the development of video and artificial intelligence-based software, ELT records during the peak laying period (27-32 weeks) from 507 layers, and their earlier laying performance (21-32 weeks) were collected. Via whole genome sequencing data of all the individuals, the estimated heritabilities of traditional egg production traits ranged from 0.23 to 0.36, consistent with previous reports. The heritability of average egg-laying time (AELT) was estimated as 0.46. Furthermore, individuals with earlier AELT tended to exhibit superior egg production performance. Genome-wide association study revealed three SNPs associated with AELT traits, located at 170,867,650 bp on chromosome 1, at 5,548,087 and 5,817,488 bp on chromosome 9. Across the region of 5.4 to 7.0 Mb on chromosome 9, mutations were also identified to be strongly linked with the two AELT-associated SNPs. Genes located in this region may be responsible for the differences in AELT among hens. These results indicate that ELT has the potential to be integrated into the production system of caged layers. If ELT is to be included as a breeding objective in the future, its reliability needs to be validated in larger populations and over longer periods.
Collapse
Affiliation(s)
- Yifan Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Yuqi Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Huanjie Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Binghui Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Yiwei Xiong
- Hubei Shendi Agricultural Science and Trade Co., Ltd. Shendi Industrial Park, Jingshan Economic Development Zone, 431899 Jingmen, PR China
| | - Jun Ding
- Hubei Shendi Agricultural Science and Trade Co., Ltd. Shendi Industrial Park, Jingshan Economic Development Zone, 431899 Jingmen, PR China; Jingshan Animal Disease Prevention and Control Center, 431899 Jingmen, PR China
| | - Jingyi Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, PR China.
| |
Collapse
|
3
|
Rodrigues AJ, Marmerstein JT, Kotamraju BP, McCallum GA, Durand DM. Effect of Anesthesia and Diurnal Variation on Chronic Vagus Nerve Activity in Rats. J Neurosci Res 2025; 103:e70045. [PMID: 40391824 PMCID: PMC12090706 DOI: 10.1002/jnr.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 04/12/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025]
Abstract
The vagus nerve, serving as a pivotal link between the brain and vital organs, regulates crucial physiological functions. It plays a central role in maintaining homeostasis within the body and must dynamically adapt to changing conditions such as anesthesia or sleep. While vagal tone, typically estimated indirectly from heart rate variability, has been extensively studied, direct measurement of vagal activity during sleep and anesthesia remains unreported to date. Recent technological advancements have facilitated the recording of vagus nerve activity in freely moving rodents using small, highly flexible carbon nanotube yarns. Consequently, it is now feasible to directly investigate vagal activity during events known to impact homeostasis, such as diurnal variations and anesthesia. In this study, we explore the relationship between anesthesia and vagus nerve activity by comparing the effects of 2% isoflurane anesthesia with activity in freely moving male Sprague Dawley rats. The findings reveal that 2% isoflurane anesthesia significantly suppresses vagus nerve activity, and normal activity levels do not resume until 2 h after the termination of the anesthesia supply. Additionally, we examine the influence of diurnal variations on vagus nerve activity and observe a notable presence of diurnal variations in vagal activity patterns. These results provide insights into the interaction among anesthesia, diurnal variations, and vagal tone, offering valuable understanding of the autonomic nervous system during critical physiological states.
Collapse
Affiliation(s)
- Aaron J. Rodrigues
- Neural Engineering Center, Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Joseph T. Marmerstein
- Neural Engineering Center, Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Bhanu P. Kotamraju
- Neural Engineering Center, Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Grant A. McCallum
- Neural Engineering Center, Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Dominique M. Durand
- Neural Engineering Center, Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
4
|
Krieger JP, Skibicka KP. From Physiology to Psychiatry: Key role of vagal interoceptive pathways in emotional control. Biol Psychiatry 2025:S0006-3223(25)01145-X. [PMID: 40287121 DOI: 10.1016/j.biopsych.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 04/06/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Interoception is the awareness of bodily sensations, conveyed by both hormonal and neural signals. The vagus nerve is the primary neural interoceptive conduit, responsible for transmitting information from peripheral organs to the brain. It is widely accepted that vagal signals are essential for purely physiological functions like blood pressure maintenance, or nutrient intake homeostasis. However, a growing body of evidence, taking advantage of new technological advances, suggests that the vagus nerve also orchestrates or tunes emotions. Disruption of vagal interoceptive feedback prevents normal emotional control in rodents. Importantly, accumulating evidence indicates that pathological disruption of vagal afferent signals also occurs in humans and may constitute an important risk factor for emotional disorders. Hence, alleviating vagal interoceptive deficits may constitute a new therapeutic avenue for neurotic and affective disorders. Considering the technical and safety challenges for direct stimulation of brain regions relevant to emotionality disorders, the vagus nerve offers a safer and more practical route of potentially achieving similar outcomes. Here we will highlight the earliest studies which examined the consequences of manipulations of the vagal afferent neurons on anxiety, fear, and mood, and integrate these older findings with new research investigating the necessity of vagal afferent neurons in mediating the anxiety or mood-altering effects of physiological signals. We will also discuss the evolutionary significance of vagal control over emotional states within the boundaries of "normal" physiology and conclude by discussing the challenges of engaging the vagal interoception as novel therapeutics in mental health disorders.
Collapse
Affiliation(s)
- Jean-Philippe Krieger
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse, University of Zurich, Switzerland; Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden.
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
5
|
Mravec B, Szantova M. Liver Neurobiology: Regulation of Liver Functions by the Nervous System. Semin Liver Dis 2025. [PMID: 40239709 DOI: 10.1055/a-2562-2000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The nervous system plays an important role in the regulation of liver functions during physiological as well as pathological conditions. This regulatory effect is based on the processing of signals transmitted to the brain by sensory nerves innervating the liver tissue and other visceral organs and by humoral pathways transmitting signals from peripheral tissues and organs. Based on these signals, the brain modulates metabolism, detoxification, regeneration, repair, inflammation, and other processes occurring in the liver. The nervous system thus determines the functional and morphological characteristics of the liver. Liver innervation also mediates the influence of psychosocial factors on liver functions. The aim of this review is to describe complexity of bidirectional interactions between the brain and liver and to characterize the mechanisms and pathways through which the nervous system influences liver function during physiological conditions and maintains liver and systemic homeostasis.
Collapse
Affiliation(s)
- Boris Mravec
- Department of Physiology Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maria Szantova
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
6
|
Gachon F, Bugianesi E, Castelnuovo G, Oster H, Pendergast JS, Montagnese S. Potential bidirectional communication between the liver and the central circadian clock in MASLD. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:15. [PMID: 40225783 PMCID: PMC11981938 DOI: 10.1038/s44324-025-00058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
Most aspects of physiology and behaviour fluctuate every 24 h in mammals. These circadian rhythms are orchestrated by an autonomous central clock located in the suprachiasmatic nuclei that coordinates the timing of cellular clocks in tissues throughout the body. The critical role of this circadian system is emphasized by increasing evidence associating disruption of circadian rhythms with diverse pathologies. Accordingly, mounting evidence suggests a bidirectional relationship where disruption of rhythms by circadian misalignment may contribute to liver diseases while liver diseases alter the central clock and circadian rhythms in other tissues. Therefore, liver pathophysiology may broadly impact the circadian system and may provide a mechanistic framework for understanding and targeting metabolic diseases and adjust metabolic setpoints.
Collapse
Affiliation(s)
- Frédéric Gachon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | | | | | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | | | - Sara Montagnese
- Department of Medicine, University of Padova, Padova, Italy
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
7
|
Su K, Zeng D, Zhang W, Peng F, Cui B, Liu Q. Integrating cancer medicine into metabolic rhythms. Trends Endocrinol Metab 2025:S1043-2760(25)00053-0. [PMID: 40199622 DOI: 10.1016/j.tem.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Circadian rhythms are cell-intrinsic time-keeping mechanisms that allow organisms to adapt to 24-h environmental changes, ensuring coordinated physiological functions by aligning internal metabolic oscillations with external timing cues. Disruption of daily metabolic rhythms is associated with pathological events such as cancer development, yet the mechanisms by which perturbed metabolic rhythms contribute to tumorigenesis remain unclear. Herein we review how circadian clocks drive balanced rhythmic metabolism which in turn governs physiological functions of locomotor, immune, and neuroendocrine systems. Misaligned metabolic rhythms cause pathological states which further drive cancer initiation, progression, and metastasis. Restoring the balance of metabolic rhythms with chemical, hormonal, and behavioral interventions serves as a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Deshun Zeng
- State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Weiru Zhang
- State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Henneman NF, Panasyuk G. Enhancer binding as a KEysTONE of fasting response. Trends Endocrinol Metab 2025; 36:298-300. [PMID: 40057442 PMCID: PMC11979617 DOI: 10.1016/j.tem.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 04/10/2025]
Abstract
Fasting is a recurrent daily energy stress that benefits healthspan and lifespan. While ketones fuel fasting in vertebrates, the underlying transcriptional mechanism remains incompletely understood. Recently, Korenfeld et al. revealed peroxisome proliferator-activated receptor alpha (PPARα)-dependent enhancer priming as a keystone for ketone production, increasing our understanding of mechanisms underlying metabolic benefits of alternate-day fasting (ADF).
Collapse
Affiliation(s)
- Nathaniel F Henneman
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253; Paris, 75015, France; Université de Paris Cité; Paris, 75006, France
| | - Ganna Panasyuk
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253; Paris, 75015, France; Université de Paris Cité; Paris, 75006, France.
| |
Collapse
|
9
|
Chen J, Xiang J, Zhou M, Huang R, Zhang J, Cui Y, Jiang X, Li Y, Zhou R, Xin H, Li J, Li L, Lam SM, Zhu J, Chen Y, Yang Q, Xie Z, Shui G, Deng F, Zhang Z, Li MD. Dietary timing enhances exercise by modulating fat-muscle crosstalk via adipocyte AMPKα2 signaling. Cell Metab 2025:S1550-4131(25)00065-8. [PMID: 40088888 DOI: 10.1016/j.cmet.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/16/2025] [Accepted: 02/22/2025] [Indexed: 03/17/2025]
Abstract
Feeding rhythms regulate exercise performance and muscle energy metabolism. However, the mechanisms regulating adipocyte functions remain unclear. Here, using multi-omics analyses, involving (phospho-)proteomics and lipidomics, we found that day-restricted feeding (DRF) regulates diurnal rhythms of the mitochondrial proteome, neutral lipidome, and nutrient-sensing pathways in mouse gonadal white adipose tissue (GWAT). Adipocyte-specific knockdown of Prkaa2 (the gene encoding AMPKα2) impairs physical endurance. This defect is associated with altered rhythmicity in acyl-coenzyme A (CoA) metabolism-related genes, a loss of rhythmicity in the GWAT lipidome, and circadian remodeling of serum metabolites-in particular, lactate and succinate. We also found that adipocyte Prkaa2 regulates muscle clock genes during DRF. Notably, oral administration of the AMPK activator C29 increases endurance and muscle functions in a time-of-day manner, which requires intact adipocyte AMPKα2 signaling. Collectively, our work defines adipocyte AMPKα2 signaling as a critical regulator of circadian metabolic coordination between fat and muscle, thereby enhancing exercise performance.
Collapse
Affiliation(s)
- Jianghui Chen
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Jing Xiang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Meiyu Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Rongfeng Huang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China; Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610072, China
| | - Jianxin Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China; Department of Cardiology, The 960th Hospital of the PLA Joint Service Support Force, Jinan 250000, China
| | - Yuanting Cui
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Xiaoqing Jiang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Yang Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Runchao Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Haoran Xin
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Jie Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Lihua Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; LipidALL Technologies Company Limited, Changzhou, China
| | - Jianfang Zhu
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Yanxiu Chen
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Qingyuan Yang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China.
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China.
| |
Collapse
|
10
|
Chen J, Xiang J, Zhou M, Huang R, Zhang J, Cui Y, Jiang X, Li Y, Zhou R, Xin H, Li J, Li L, Lam SM, Zhu J, Chen Y, Yang Q, Xie Z, Shui G, Deng F, Zhang Z, Li MD. Dietary timing enhances exercise by modulating fat-muscle crosstalk via adipocyte AMPKα2 signaling. Cell Metab 2025. [DOI: pmid: 40088888 doi: 10.1016/j.cmet.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
|
11
|
Hwang J, Lee S, Okada J, Liu L, Pessin JE, Chua SC, Schwartz GJ, Jo YH. Liver-innervating vagal sensory neurons are indispensable for the development of hepatic steatosis and anxiety-like behavior in diet-induced obese mice. Nat Commun 2025; 16:991. [PMID: 39856118 PMCID: PMC11759694 DOI: 10.1038/s41467-025-56328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The visceral organ-brain axis, mediated by vagal sensory neurons, is essential for maintaining various physiological functions. Here, we investigate the impact of liver-projecting vagal sensory neurons on energy balance, hepatic steatosis, and anxiety-like behavior in mice under obesogenic conditions. A small subset of vagal sensory neurons innervate the liver and project centrally to the nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus, and peripherally to the periportal areas in the liver. The loss of these neurons prevents diet-induced obesity, and these outcomes are associated with increased energy expenditure. Although males and females exhibit improved glucose homeostasis following disruption of liver-projecting vagal sensory neurons, only male mice display increased insulin sensitivity. Furthermore, the loss of liver-projecting vagal sensory neurons limits the progression of hepatic steatosis. Intriguingly, mice lacking liver-innervating vagal sensory neurons also exhibit less anxiety-like behavior compared to control mice. Modulation of the liver-brain axis may aid in designing effective treatments for both psychiatric and metabolic disorders associated with obesity and MAFLD.
Collapse
Affiliation(s)
- Jiyeon Hwang
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Sangbhin Lee
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Junichi Okada
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Li Liu
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Jeffrey E Pessin
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, USA
| | - Streamson C Chua
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA
| | - Gary J Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA
| | - Young-Hwan Jo
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA.
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, USA.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA.
| |
Collapse
|
12
|
Kelsey R. Hepatic vagus nerve relays signals to the brain that can alter food intake. Nat Rev Gastroenterol Hepatol 2025; 22:7. [PMID: 39613861 DOI: 10.1038/s41575-024-01028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
|
13
|
Woodie LN, Alberto AJ, Krusen BM, Melink LC, Lazar MA. Genetic synchronization of the brain and liver molecular clocks defend against chrono-metabolic disease. Proc Natl Acad Sci U S A 2024; 121:e2417678121. [PMID: 39665757 DOI: 10.1073/pnas.2417678121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Nearly every cell of the body contains a circadian clock mechanism that is synchronized with the light-entrained clock in the suprachiasmatic nucleus (SCN). Desynchrony between the SCN and the external environment leads to metabolic dysfunction in shift workers. Similarly, mice with markedly shortened endogenous period due to the deletion of circadian REV-ERBα/β nuclear receptors in the SCN (SCN DKO) exhibit increased sensitivity to diet-induced obesity (DIO) on a 24 h light:dark cycle while mice with REV-ERBs deleted in hepatocytes (HepDKO) display exacerbated hepatosteatosis in response to a high-fat diet. Here, we show that inducing deletion of hepatocyte REV-ERBs in SCN DKO mice (Hep-SCN DDKO) rescued the exacerbated DIO and hepatic triglyceride accumulation, without affecting the shortened behavioral period. These findings suggest that metabolic disturbances due to environmental desynchrony with the central clock are due to effects on peripheral clocks which can be mitigated by matching peripheral and central clock periods even in a desynchronous environment. Thus, maintaining synchrony within an organism, rather than between endogenous and exogenous clocks, may be a viable target for the treatment of metabolic disorders associated with circadian disruption.
Collapse
Affiliation(s)
- Lauren N Woodie
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Ahren J Alberto
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Brianna M Krusen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Lily C Melink
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|