1
|
Flerlage WJ, Dell’Acqua ML, Cox BM, Nugent FS. Emerging role of A-kinase anchoring protein 5 signaling in reward circuit function. Neural Regen Res 2025; 20:2913-2914. [PMID: 39610100 PMCID: PMC11826476 DOI: 10.4103/nrr.nrr-d-24-00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 11/30/2024] Open
Affiliation(s)
- William J. Flerlage
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, USA
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Brian M. Cox
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, USA
| | - Fereshteh S. Nugent
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, USA
| |
Collapse
|
2
|
Liu YY, Wu K, Dong YT, Jia R, Chen XH, Ge AY, Cao JL, Zhang YM. Lateral habenula induces cognitive and affective dysfunctions in mice with neuropathic pain via an indirect pathway to the ventral tegmental area. Neuropsychopharmacology 2025; 50:1039-1050. [PMID: 40089563 DOI: 10.1038/s41386-025-02084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Neuropathic pain, which has become a major public health concern, is frequently accompanied by the deterioration of affective behavior and cognitive function. However, the brain circuitry underlying these changes is poorly understood. Therefore, we aimed to identify in a mouse model the converging circuit that influences the sensory, affective, and cognitive consequences of neuropathic pain. The lateral habenula (LHb) and ventral tegmental area (VTA) have been confirmed to play critical roles in the regulation of pain, cognition, and depression. Given the essential role of the LHb in depression and cognition, we attempted to clarify how neural circuitry involving the LHb integrates pain-related information. Our data confirmed that the VTA receives projections from the LHb, but our results suggest that inhibition of this direct pathway has no effect on the behavior of mice with chronic neuropathic pain. The rostromedial tegmental nucleus (RMTg), a GABAergic structure believed to underlie the transient inhibition of DAergic neurons in the VTA, received glutamatergic inputs from the LHb and projected strongly to the VTA. Furthermore, our data suggest that a projection from LHb glutamatergic neurons to RMTg GABAergic neurons in the VTA, constituting an indirect LHbGlu → RMTgGABA → VTADA pathway, participates in peripheral nerve injury-induced nociceptive hypersensitivity, depressive-like behavior, and cognitive dysfunction. Ex vivo extracellular recordings of LHb neurons showed that the proportion of burst-firing cells in the LHb was significantly increased in indirect projections rather than in direct projections. This may explain the functional discrepancies between direct and indirect projections of the LHb to the VTA. Collectively, our study identifies a pivotal role of the LHbGlu → RMTgGABA → VTADA pathway in processing pain. This pathway may offer new therapeutic targets to treat neuropathic pain and its associated depressive-like and cognitive impairments.
Collapse
Affiliation(s)
- Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Dong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Ru Jia
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xing-Han Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - An-Yu Ge
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
3
|
Yang Z, Li L, Deng B, Xu Y, Du Y, Lv Y, Zhai X. Pharmacokinetics and brain distribution of ketamine after nasal administration. J Pharm Biomed Anal 2025; 264:116945. [PMID: 40375400 DOI: 10.1016/j.jpba.2025.116945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/23/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025]
Abstract
Major depressive disorder is a severe mental condition characterized by abnormalities in the structure and function of the brain. Ketamine is a novel antidepressant that has rapid effects on depression. This drug is clinically used to treat depression in patients with acute suicidal ideation or behavior. It is typically administered at a dose of 84 mg. However, the distribution of ketamine in the body after intranasal administration, particularly in the brain, remains unknown. In the present study, we utilized a high-performance liquid chromatography-tandem mass spectrometry method to measure ketamine concentrations in rat plasma and several tissues. The measurement ranges were 5-8000 ng/mL for the plasma samples and 5-5000 ng/mL for the tissue samples. The pharmacokinetic profile revealed that the rat plasma ketamine concentration rapidly spiked to a peak of 8002 ng/mL within about 5 min, followed by a rapid decline, nearly reaching 0 ng/mL by about 3 h; the half-life was 27 min. Tissue distribution results revealed that ketamine concentrations in different tissues peaked at 5 min. The highest concentration was noted in the kidneys, followed by the liver. In the rat brain regions, ketamine was primarily concentrated in the hypothalamus and hippocampus, with lower concentrations in the striatum and prefrontal cortex. Our novel methodological approach and findings provide a significant theoretical foundation for using ketamine in clinical settings.
Collapse
Affiliation(s)
- Zihe Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linjie Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yusen Xu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujing Du
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongning Lv
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Centre for Precision Medicine for Critical Illness, Wuhan, China.
| | - Xuejia Zhai
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Centre for Precision Medicine for Critical Illness, Wuhan, China.
| |
Collapse
|
4
|
Qiao R, Liu Y, Pu J, Gui S, Wang D, Zhong X, Chen W, Chen X, Chen Y, Chen X, Jiang Y, Ye S, Chen Y, Tang W, Hua B, Wu H, Liu C, Xie P. An integrated analysis revealing that Sirt1-mediated decreased autophagy in the hippocampus of animal models of depression. J Affect Disord 2025; 385:119345. [PMID: 40339719 DOI: 10.1016/j.jad.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 04/19/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Depression is a complex and prevalent mental disorder. Numerous studies have reported there were significant metabolomic and proteomic changes in hippocampus of depressed patients. However, few researches have systematically integrated these two omics data to identify key molecular mechanisms underlying depression. METHODS Based on the data of Protein and Metabolite Network of Depression Database (ProMENDA), we integrate the significantly altered metabolites and proteins of hippocampus in animal models of depression. Pathway analysis was performed using IPA software to explore biological functional disturbance underlying these molecules. Finally, animal model construction, molecular biology experiments, and lentiviral transfection in vitro for gene knockout were performed to verify potential pathways. RESULTS A total of 682 altered metabolites and 2300 altered proteins were retrieved. Pathway enrichment analysis identified 394 significantly enriched pathways, with the sirtuin signaling mediated autophagy being of particular interest. Further biological validations revealed the decrease of Sirt1, the autophagy-related genes, and autophagy markers in hippocampus of both mouse and Macaca fascicularis models of depression. Lastly, Sirt1 knockdown in primary neurons inhibited autophagy. CONCLUSION This study expanded our understanding of multi-omics alterations in the hippocampus of depression by revealing that Sirt1 may mediate neuronal autophagy in the hippocampus of animal models of depression, which could further contribute to the pathophysiology of depression.
Collapse
Affiliation(s)
- Renjie Qiao
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siwen Gui
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongfang Wang
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaogang Zhong
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyi Chen
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaopeng Chen
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Chen
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Chen
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanyi Jiang
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songyuan Ye
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Chen
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tang
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Hua
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hailin Wu
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chi Liu
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Jinfeng Laboratory, Chongqing, China; Chongqing Institute for Brain and Intelligence, Chongqing, China.
| |
Collapse
|
5
|
Yang L, Guo C, Zheng Z, Dong Y, Xie Q, Lv Z, Li M, Lu Y, Guo X, Deng R, Liu Y, Feng Y, Mu R, Zhang X, Ma H, Chen Z, Zhang Z, Dong Z, Yang W, Zhang X, Cui Y. Stress dynamically modulates neuronal autophagy to gate depression onset. Nature 2025; 641:427-437. [PMID: 40205038 PMCID: PMC12058529 DOI: 10.1038/s41586-025-08807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
Chronic stress remodels brain homeostasis, in which persistent change leads to depressive disorders1. As a key modulator of brain homeostasis2, it remains elusive whether and how brain autophagy is engaged in stress dynamics. Here we discover that acute stress activates, whereas chronic stress suppresses, autophagy mainly in the lateral habenula (LHb). Systemic administration of distinct antidepressant drugs similarly restores autophagy function in the LHb, suggesting LHb autophagy as a common antidepressant target. Genetic ablation of LHb neuronal autophagy promotes stress susceptibility, whereas enhancing LHb autophagy exerts rapid antidepressant-like effects. LHb autophagy controls neuronal excitability, synaptic transmission and plasticity by means of on-demand degradation of glutamate receptors. Collectively, this study shows a causal role of LHb autophagy in maintaining emotional homeostasis against stress. Disrupted LHb autophagy is implicated in the maladaptation to chronic stress, and its reversal by autophagy enhancers provides a new antidepressant strategy.
Collapse
Affiliation(s)
- Liang Yang
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Chen Guo
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zhiwei Zheng
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yiyan Dong
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qifeng Xie
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zijian Lv
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Min Li
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Lu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Xiaonan Guo
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongshan Deng
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqin Liu
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yirong Feng
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Mu
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xuliang Zhang
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Huan Ma
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institute of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhaoqi Dong
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangnan Zhang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
| | - Yihui Cui
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Brown KA, Ajibola MI, Gould TD. Rapid hippocampal synaptic potentiation induced by ketamine metabolite (2R,6R)-hydroxynorketamine persistently primes synaptic plasticity. Neuropsychopharmacology 2025; 50:928-940. [PMID: 40097740 PMCID: PMC12032166 DOI: 10.1038/s41386-025-02085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
The pharmacologically active (R,S)-ketamine (ketamine) metabolite (2 R,6 R)-hydroxynorketamine (HNK) maintains ketamine's preclinical antidepressant profile without adverse effects. While hypotheses have been proposed to explain how ketamine and its metabolites initiate their antidepressant-relevant effects, it remains unclear how sustained therapeutic actions arise following drug elimination. To distinguish the physiological mechanisms involved in the rapid from sustained actions of HNK, we utilized extracellular electrophysiology combined with pharmacology to develop an in vitro hippocampal slice incubation model that exhibited pharmacological fidelity to the 1) rapid synaptic potentiation induced by HNK at the Schaffer collateral-CA1 (SC-CA1) synapse during bath-application to slices collected from mice, and 2) maintenance of metaplastic (priming) activity that enhanced N-methyl-D-aspartate receptor (NMDAR) activation-dependent long-term potentiation (LTP) hours after in vivo dosing. We used this model to reveal novel mechanisms engaged in HNK's temporally-sensitive antidepressant-relevant synaptic actions, finding that the induction of synaptic potentiation by HNK did not require NMDAR activity, but NMDAR activity was necessary to maintain synaptic priming. HNK required protein kinase A (PKA) activity to rapidly potentiate SC-CA1 neurotransmission to facilitate synaptic priming that persistently promoted LTP formation. HNK's rapid actions were blocked by inhibitors of adenylyl cyclase 1 (AC1), but not an AC5 inhibitor. We conclude that HNK rapidly potentiates SC-CA1 synaptic efficacy, which then stimulates priming mechanisms that persistently favor plasticity. Targeting such priming mechanisms may be an effective antidepressant strategy, and our incubation model may aid in revealing novel pharmacological targets.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Musa I Ajibola
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
- Department of Pharmacology and Physiology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
- Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
7
|
Xin Q, Wang J, Zheng J, Tan Y, Jia X, Ni Z, Xu Z, Feng J, Wu Z, Li Y, Li XM, Ma H, Hu H. Neuron-astrocyte coupling in lateral habenula mediates depressive-like behaviors. Cell 2025:S0092-8674(25)00411-8. [PMID: 40280131 DOI: 10.1016/j.cell.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/08/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
The lateral habenula (LHb) neurons and astrocytes have been strongly implicated in depression etiology, but it was not clear how the two dynamically interact during depression onset. Here, using multi-brain-region calcium photometry recording in freely moving mice, we discover that stress induces a most rapid astrocytic calcium rise and a bimodal neuronal response in the LHb. LHb astrocytic calcium requires the α1A-adrenergic receptor and depends on a recurrent neural network between the LHb and locus coeruleus (LC). Through the gliotransmitter glutamate and ATP/adenosine, LHb astrocytes mediate the second-wave LHb neuronal activation and norepinephrine (NE) release. Activation or inhibition of LHb astrocytic calcium signaling facilitates or prevents stress-induced depressive-like behaviors, respectively. These results identify a stress-induced positive feedback loop in the LHb-LC axis, with astrocytes being a critical signaling relay. The identification of this prominent neuron-glia interaction may shed light on stress management and depression prevention.
Collapse
Affiliation(s)
- Qianqian Xin
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Junying Wang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jinkun Zheng
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yi Tan
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaoning Jia
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zheyi Ni
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zijie Xu
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Xiao-Ming Li
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Huan Ma
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hailan Hu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.
| |
Collapse
|
8
|
Delcourte S, Bouloufa A, Rovera R, Brunet E, Le HD, Williams AE, Panda S, Azmani R, Raineteau O, Dkhissi-Benyahya O, Haddjeri N. Lateral habenula astroglia modulate the potentiating antidepressant-like effects of bright light stimulation in intractable depression. Front Pharmacol 2025; 16:1592909. [PMID: 40337515 PMCID: PMC12055791 DOI: 10.3389/fphar.2025.1592909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Background Beside image vision, light plays a pivotal role in regulating diverse non-visual functions, including affective behaviors. Recently, bright light stimulation (BLS) was revealed to be beneficial for treating non-seasonal depression, although its mechanism of action is not fully understood. Methods We developed a novel mouse model of refractory depression, induced through social isolation and chronic despair during the active (dark) phase of the animal, and we have tested if antidepressant treatments, including BLS, could protect against anxio-depressive-like behavior. Results We report that anxiety- and depressive-like behaviors are resistant to BLS as well as to both conventional and new antidepressants, including ketamine. Remarkably, we unveil that BLS potentiates the effect of antidepressants, and this beneficial effect is mediated via rod retinal photoreceptors. Furthermore, we demonstrate that both chemogenetic activation of lateral habenula (LHb) astroglia and serotonin (5-HT) depletion prevent the potentiating effect of BLS on chronic despair. Conclusion These results reveal, for the first time, that BLS enhances the efficacy of antidepressants through an unexpectedly circuit involving rods, LHb astroglia and 5-HT.
Collapse
Affiliation(s)
- Sarah Delcourte
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron, France
| | - Amel Bouloufa
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron, France
| | - Renaud Rovera
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron, France
| | - Elie Brunet
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron, France
| | - Hiep D. Le
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - April E. Williams
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Rihab Azmani
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron, France
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron, France
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron, France
| |
Collapse
|
9
|
Cao Q, Xu X, Wang X, He F, Lin Y, Guo D, Bai W, Guo B, Zheng X, Liu T. Mesoscale brain-wide fluctuation analysis: revealing ketamine's rapid antidepressant across multiple brain regions. Transl Psychiatry 2025; 15:155. [PMID: 40253356 PMCID: PMC12009331 DOI: 10.1038/s41398-025-03375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/16/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
Depression has been linked to cortico-limbic brain regions, and ketamine is known for its rapid antidepressant effects. However, how these brain regions encode depression collaboratively and how ketamine regulates these regions to exert its prompt antidepressant effects through mesoscale brain-wide fluctuations remain elusive. In this study, we used a multidisciplinary approach, including multi-region in vivo recordings in mice, chronic social defeat stress (CSDS), and machine learning, to construct a Mesoscale Brain-Wide Fluctuation Analysis platform (MBFA-platform). This platform analyzes the mesoscale brain-wide fluctuations of multiple brain regions from the perspective of local field potential oscillations and network dynamics. The decoder results demonstrate that our MBFA platform can accurately classify the Control/CSDS and ketamine/saline-treated groups based on neural oscillation and network activities among the eight brain regions. We found that multiple-region LFPs patterns are disrupted in CSDS-induced social avoidance, with the basolateral amygdala playing a key role. Ketamine primarily exerts the compensatory effects through network dynamics, contributing to its rapid antidepressant effect. These findings highlight the MBFA platform as an interdisciplinary tool for revealing mesoscale brain-wide fluctuations underlying complex emotional pathologies, providing insights into the etiology of psychiatry. Furthermore, the platform's evaluation capabilities present a novel approach for psychiatric therapeutic interventions.
Collapse
Affiliation(s)
- Qingying Cao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xiaojun Xu
- Bioland Laboratory, Guangdong Province, Guangzhou, China
| | - Xinyu Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Fengkai He
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Yichao Lin
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Dongyong Guo
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenwen Bai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
10
|
Wang F, Tian ZC, Ding H, Yang XJ, Wang FD, Ji RX, Xu L, Cao ZX, Ma SB, Zhang M, Cui YT, Cong XY, Chu WG, Li ZZ, Han WJ, Gao YH, Yu YW, Zhao XH, Wang WT, Xie RG, Wu SX, Luo C. A sensory-motor-sensory circuit underlies antinociception ignited by primary motor cortex in mice. Neuron 2025:S0896-6273(25)00246-6. [PMID: 40239652 DOI: 10.1016/j.neuron.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025]
Abstract
Sensory-motor integration is crucial in the processing of chronic pain. The primary motor cortex (M1) is emerging as a promising target for chronic pain treatment. However, it remains elusive how nociceptive sensory inputs influence M1 activity and how rectifying M1 defects, in turn, regulates pain processing at cellular and network levels. We show that injury/inflammation leads to hypoactivity of M1Glu pyramidal neurons by excitation-inhibition imbalance between the primary somatosensory cortex (S1) and the M1. The impaired M1 output further weakens inputs to excitatory parvalbumin neurons of the lateral hypothalamus (LHPV) and impairs the descending inhibitory system, hence exacerbating spinal nociceptive sensitivity. When rectifying M1 defects with repetitive transcranial magnetic stimulation (rTMS), the imbalance of the S1-M1 microcircuitry can be effectively reversed, which aids in restoring the ability of the M1 to trigger the descending inhibitory system, thereby alleviating nociceptive hypersensitivity. Thus, a sensory-motor-sensory loop is identified for pain-related interactions between the sensory and motor systems and can be potentially exploited for treating chronic pain.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Shaanxi Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Cardiovascular Diseases, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Zhi-Cheng Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hui Ding
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xin-Jiang Yang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; Department of Rehabilitation and Physical Therapy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fu-Dong Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ruo-Xin Ji
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lei Xu
- The Sixteenth Squadron of Fourth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Zi-Xuan Cao
- The Twenty-Second Squadron of Sixth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Sui-Bin Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ya-Ting Cui
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiang-Yu Cong
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wen-Guang Chu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Zhen-Zhen Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wen-Juan Han
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yong-Heng Gao
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yuan-Wang Yu
- Shaanxi Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Cardiovascular Diseases, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiang-Hui Zhao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wen-Ting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; Innovation Research Institute, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
11
|
Sun X, Li C, Xu L, Lin X, Zhang Z, Lin C, Li J, Wei P. Effect and safety of perioperative ketamine/esketamine administration on postoperative pain and depression after breast cancer surgery: a systematic review and meta-analysis. Front Pharmacol 2025; 16:1532524. [PMID: 40223927 PMCID: PMC11985805 DOI: 10.3389/fphar.2025.1532524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Background Patients with breast cancer experience varying degrees of pain, depression, and anxiety after surgery, which affect their postoperative recovery. Although ketamine/esketamine exhibit potential for opioid-sparing and controlling postoperative pain and depression, their effects on postoperative pain and depression remain unclear. This meta-analysis aimed to evaluate whether perioperative administration of ketamine/esketamine could reduce postoperative pain and depression, improve postoperative recovery, and reduce the incidence of adverse events in patients after breast cancer surgery. Material and methods PubMed, Embase, Web of Science, Cochrane Library, and Clinical Trials were searched from inception until June 2, 2024 for randomized controlled trials in English language on the effect of perioperative ketamine/esketamine on postoperative pain in patients undergoing breast cancer surgery. The primary outcome was the postoperative pain score, and the secondary outcomes were the postoperative depression score, quality of postoperative recovery, incidence of adverse events, and extubation time. The standardized mean difference and 95% confidence interval (CI) were calculated for continuous outcomes, and the risk ratio and 95% CI were calculated for binary variables. Results Seven studies involving 748 patients were included in this meta-analysis. No significant differences were found in postoperative pain scores at 2 h, 4 h, 1 day, 3 days, 7 days, and 3 months after surgery. Postoperative depression scores at 3 and 7 days after surgery were lower in the ketamine/esketamine group. The incidence of dizziness was lower in ketamine/esketamine group. No statistically significant differences were observed in postoperative depression scores at 30 days after surgery, quality of postoperative recovery at 1 and 3 days after surgery, extubation time, or the incidence of nausea, vomiting, and nightmares. Conclusion Perioperative ketamine/esketamine administration did not significantly reduce postoperative pain in patients undergoing breast cancer surgery; however, it may reduce depression within a short period after the surgery. Clinical Trial Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42024572414, identifier CRD42024572414.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
12
|
He M, Wan H, Cong P, Li X, Cheng C, Huang X, Zhang Q, Wu H, Tian L, Xu K, Xiong L. Structural basis for the inhibition of cystathionine-β-synthase by isoflurane and its role in anaesthesia-induced social dysfunction in mice. Br J Anaesth 2025; 134:746-758. [PMID: 39603853 PMCID: PMC11867083 DOI: 10.1016/j.bja.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Anaesthesia has been shown to impair social functioning, but the underlying mechanisms remain largely unknown. The volatile anaesthetic isoflurane potentially disrupts the methionine cycle and trans-sulphuration pathway, contributing to social deficits. Cystathionine-β-synthase (CBS), a key enzyme in this pathway, might be targeted by isoflurane. We investigated the CBS-isoflurane interaction and its role in neuronal function and social behaviour. METHODS Mice aged 3-15 months were anaesthetised with 2 vol% isoflurane for 2 h, and social behaviours were tested 24 h after exposure. Alterations in neuronal activity were assessed using electrophysiological analysis in vivo. Pharmacological activators (S-adenosylmethionine [SAM]) or inhibitors (amino-oxyacetic acid [AOAA]), and adeno-associated virus (AAV) were used to modulate CBS activity. The binding site of isoflurane on CBS was determined using X-ray crystallography. A novel transgenic model with a point mutation knock-in was constructed to eliminate the CBS-isoflurane interaction. RESULTS Isoflurane inhibited CBS activity (by 0.35-fold [0.07] vs 1.00-fold [0.05]; P<0.001), leading to neuronal hypoactivity in the anterior cingulate cortex (ACC) and social impairments in adult and elderly mice. SAM, AOAA, and AAV interventions demonstrated a causal link. Structural and functional analysis identified the lysine 273 (K273) in CBS to be involved in isoflurane inhibition. CBS K273A knock-in mice exhibited increased CBS activity compared with wild-type littermates after isoflurane exposure (2.2-fold [0.22] vs 1.0-fold [0.28]; P<0.001), with successful alleviation of ACC neuronal hypoactivity and social dysfunction. CONCLUSIONS These findings reveal a crucial role for CBS inhibition by isoflurane in anaesthesia-induced social impairment.
Collapse
Affiliation(s)
- Mengfan He
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hanxi Wan
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peilin Cong
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyang Li
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chun Cheng
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinwei Huang
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Zhang
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huanghui Wu
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Tian
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Ke Xu
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Centre for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
13
|
Ren P, Wang JY, Xu MJ, Chen HL, Duan JY, Li YF. Sigma-1 receptor activation produces faster antidepressant-like effect through enhancement of hippocampal neuroplasticity: Focus on sigma-1-5-HT1A heteroreceptor complex. Neurochem Int 2025; 184:105937. [PMID: 39884578 DOI: 10.1016/j.neuint.2025.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/06/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
The sigma-1 receptor (S1R) has garnered significant attention as a potential target for rapid-onset antidepressant-like effects, particularly owing to its ability to swiftly stimulate serotonergic neurons in the dorsal raphe nucleus (DRN). However, the precise mechanisms underlying its regulatory effects remain unclear. Therefore, this study aims to examine the interaction between SA-4503 (a selective S1R agonist) and 8-OH-DPAT (a serotonin1A (5-HT1A) receptor agonist) in mice with depressive-like behavior induced by chronic restraint stress (CRS). Preliminary studies were conducted to explore the potential mechanisms underlying the accelerated antidepressant-like effects resulting from the combined activation of S1R and 5-HT1A receptors. The results showed that the coadministration of SA4503 (1.0 mg/kg, orally) and 8-OH-DPAT (0.3 mg/kg, i. g.) produced antidepressant-like effects. However, the doses of 8-OH-DPAT used in this study did not exhibit intrinsic antidepressant-like activity in this model. Moreover, using an in-situ proximity ligation assay provided the first evidence of S1R-5-HT1A heteroreceptor complexes in the midbrain DRN and dentate gyrus (DG) of the forebrain in mice. The formation of these heterocomplexes was influenced by pharmacological agents and was closely associated with depressive-like behavior development in mice. Mechanistic analysis revealed that the combined activation of S1R and 5-HT1A receptors synergistically enhanced neurogenesis and plasticity in the dorsal DG region of the hippocampus in mice subjected to CRS. These findings significantly advance our understanding of S1R-mediated neuroplasticity, suggesting potential therapeutic strategies for developing rapid-acting antidepressants.
Collapse
Affiliation(s)
- Peng Ren
- Beijing Institute of Basic Medical Sciences, 100850, Beijing, People's Republic of China; Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, People's Republic of China.
| | - Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, 100850, Beijing, People's Republic of China.
| | - Meng-Jie Xu
- Beijing Institute of Basic Medical Sciences, 100850, Beijing, People's Republic of China
| | - Hong-Lei Chen
- Beijing Institute of Basic Medical Sciences, 100850, Beijing, People's Republic of China
| | - Jing-Yao Duan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, 100850, Beijing, People's Republic of China
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, 100850, Beijing, People's Republic of China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, 100850, Beijing, People's Republic of China.
| |
Collapse
|
14
|
Ruggiero A, Heim LR, Susman L, Hreaky D, Shapira I, Katsenelson M, Rosenblum K, Slutsky I. NMDA receptors regulate the firing rate set point of hippocampal circuits without altering single-cell dynamics. Neuron 2025; 113:244-259.e7. [PMID: 39515323 DOI: 10.1016/j.neuron.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/05/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Understanding how neuronal circuits stabilize their activity is a fundamental yet poorly understood aspect of neuroscience. Here, we show that hippocampal network properties, such as firing rate distribution and dimensionality, are actively regulated, despite perturbations and single-cell drift. Continuous inhibition of N-methyl-D-aspartate receptors (NMDARs) ex vivo lowers the excitation/inhibition ratio and network firing rates while preserving resilience to perturbations. This establishes a new network firing rate set point via NMDAR-eEF2K signaling pathway. NMDARs' capacity to modulate and stabilize network firing is mediated by excitatory synapses and the intrinsic excitability of parvalbumin-positive neurons, respectively. In behaving mice, continuous NMDAR blockade in CA1 reduces network firing without altering single-neuron drift or triggering a compensatory response. These findings expand NMDAR function beyond their canonical role in synaptic plasticity and raise the possibility that some NMDAR-dependent behavioral effects are mediated by their unique regulation of population activity set points.
Collapse
Affiliation(s)
- Antonella Ruggiero
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Leore R Heim
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Lee Susman
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544, USA
| | - Dema Hreaky
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Maxim Katsenelson
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel; Sieratzki Institute for Advances in Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
15
|
Wang N, Zhu S, Chen S, Zou J, Zeng P, Tan S. Neurological mechanism-based analysis of the role and characteristics of physical activity in the improvement of depressive symptoms. Rev Neurosci 2025:revneuro-2024-0147. [PMID: 39829004 DOI: 10.1515/revneuro-2024-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Depression is a common mental disorder characterized by a high prevalence and significant adverse effects, making the searching for effective interventions an urgent priority. In recent years, physical activity (PA) has increasingly been recognized as a standard adjunctive treatment for mental disorders owing to its low cost, easy application, and high efficiency. Epidemiological data shows positive preventive and therapeutic effects of PA on mental illnesses such as depression. This article systematically describes the prophylactic and therapeutic effects of PA on depression and its biological basis. A comprehensive literature analysis reveals that PA significantly improves depressive symptoms by upregulating the expression of "exerkines" such as irisin, adiponectin, and BDNF to positively impacting neuropsychiatric conditions. In particular, lactate could also play a critical role in the ameliorating effects of PA on depression due to the findings about protein lactylation as a novel protein post-transcriptional modification. The literature also suggests that in terms of brain structure, PA may improve hippocampal volume, basal ganglia (neostriatum, caudate-crustal nucleus) and PFC density in patients with MDD. In summary, this study elucidates the multifaceted positive effects of PA on depression and its potential biological mechanisms with a particular emphasis on the roles of various exerkines. Future research may further investigate the effects of different types, intensities, and durations of PA on depression, as well as how to better integrate PA interventions into existing treatment strategies to achieve optimal outcomes in mental health interventions.
Collapse
Affiliation(s)
- Nan Wang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Shanshan Zhu
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Shuyang Chen
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Peng Zeng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China
| |
Collapse
|
16
|
Cameron S, Weston-Green K, Newell KA. The disappointment centre of the brain gets exciting: a systematic review of habenula dysfunction in depression. Transl Psychiatry 2024; 14:499. [PMID: 39702626 DOI: 10.1038/s41398-024-03199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The habenula is an epithalamic brain structure that acts as a neuroanatomical hub connecting the limbic forebrain to the major monoamine centres. Abnormal habenula activity is increasingly implicated in depression, with a surge in publications on this topic in the last 5 years. Direct activation of the habenula is sufficient to induce a depressive phenotype in rodents, suggesting a causative role in depression. However, the molecular basis of habenula dysfunction in depression remains elusive and it is unclear how the preclinical advancements translate to the clinical field. METHODS A systematic literature search was conducted following the PRISMA guidelines. The two search terms depress* and habenula* were applied across Scopus, Web of Science and PubMed databases. Studies eligible for inclusion must have examined the habenula in clinical cases of depression or preclinical models of depression and compared their measures to an appropriate control. RESULTS Preclinical studies (n = 63) measured markers of habenula activity (n = 16) and neuronal firing (n = 22), largely implicating habenula hyperactivity in depression. Neurotransmission was briefly explored (n = 15), suggesting imbalances within excitatory and inhibitory habenula signalling. Additional preclinical studies reported neuroconnectivity (n = 1), inflammatory (n = 3), genomic (n = 3) and circadian rhythm (n = 3) abnormalities. Seven preclinical studies (11%) included both males and females. From these, 5 studies (71%) reported a significant difference between the sexes in at least one habenula measure taken. Clinical studies (n = 24) reported abnormalities in habenula connectivity (n = 15), volume (n = 6) and molecular markers (n = 3). Clinical studies generally included male and female subjects (n = 16), however, few of these studies examined sex as a biological variable (n = 6). CONCLUSIONS Both preclinical and clinical evidence suggest the habenula is disrupted in depression. However, there are opportunities for sex-specific analyses across both areas. Preclinical evidence consistently suggests habenula hyperactivity as a primary driver for the development of depressive symptoms. Clinical studies support gross habenula abnormalities such as altered activation, connectivity, and volume, with emerging evidence of blood brain barrier dysfunction, however, progress is limited by a lack of detailed molecular analyses and limited imaging resolution.
Collapse
Affiliation(s)
- Sarah Cameron
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Katrina Weston-Green
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Kelly A Newell
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
17
|
Li X, Liu X, Liu J, Zhou F, Li Y, Zhao Y, Yin X, Shi Y, Shi H. Neuronal TCF7L2 in Lateral Habenula Is Involved in Stress-Induced Depression. Int J Mol Sci 2024; 25:12404. [PMID: 39596468 PMCID: PMC11594340 DOI: 10.3390/ijms252212404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Depression is a complex psychiatric disorder that has substantial implications for public health. The lateral habenula (LHb), a vital brain structure involved in mood regulation, and the N-methyl-D-aspartate receptor (NMDAR) within this structure are known to be associated with depressive behaviors. Recent research has identified transcription factor 7-like 2 (TCF7L2) as a crucial transcription factor in the Wnt signaling pathway, influencing diverse neuropsychiatric processes. In this study, we explore the role of TCF7L2 in the LHb and its effect on depressive-like behaviors in mice. By using behavioral tests, AAV-mediated gene knockdown or overexpression, and pharmacological interventions, we investigated the effects of alterations in TCF7L2 expression in the LHb. Our results indicate that TCF7L2 expression is reduced in neurons within the LHb of male ICR mice exposed to chronic mild stress (CMS), and neuron-specific knockdown of TCF7L2 in LHb neurons leads to notable antidepressant activity, as evidenced by reduced immobility time in the tail suspension test (TST) and forced swimming test (FST). Conversely, the overexpression of TCF7L2 in LHb neurons induces depressive behaviors. Furthermore, the administration of the NMDAR agonist NMDA reversed the antidepressant activity of TCF7L2 knockdown, and the NMDAR antagonist memantine alleviated the depressive behaviors induced by TCF7L2 overexpression, indicating the involvement of NMDAR. These findings offer novel insights into the molecular mechanisms of depression, highlighting the potential of TCF7L2 as both a biomarker and a therapeutic target for depression. Exploring the relationship between TCF7L2 signaling and LHb function may lead to innovative therapeutic approaches for alleviating depressive symptoms.
Collapse
Affiliation(s)
- Xincheng Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Xiaoyu Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Jiaxin Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Fei Zhou
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Yunluo Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Xueyong Yin
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
- Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Early Life Health Promotion, College of Nursing, Hebei Medical University, Shijiazhuang 050031, China
| |
Collapse
|
18
|
Bharmauria V, Ramezanpour H, Ouelhazi A, Yahia Belkacemi Y, Flouty O, Molotchnikoff S. KETAMINE: Neural- and network-level changes. Neuroscience 2024; 559:188-198. [PMID: 39245312 DOI: 10.1016/j.neuroscience.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Ketamine is a widely used clinical drug that has several functional and clinical applications, including its use as an anaesthetic, analgesic, anti-depressive, anti-suicidal agent, among others. Among its diverse behavioral effects, it influences short-term memory and induces psychedelic effects. At the neural level across different brain areas, it modulates neural firing rates, neural tuning, brain oscillations, and modularity, while promoting hypersynchrony and random connectivity between neurons. In our recent studies we demonstrated that topical application of ketamine on the visual cortex alters neural tuning and promotes vigorous connectivity between neurons by decreasing their firing variability. Here, we begin with a brief review of the literature, followed by results from our lab, where we synthesize a dendritic model of neural tuning and network changes following ketamine application. This model has potential implications for focused modulation of cortical networks in clinical settings. Finally, we identify current gaps in research and suggest directions for future studies, particularly emphasizing the need for more animal experiments to establish a platform for effective translation and synergistic therapies combining ketamine with other protocols such as training and adaptation. In summary, investigating ketamine's broader systemic effects, not only provides deeper insight into cognitive functions and consciousness but also paves the way to advance therapies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Vishal Bharmauria
- The Tampa Human Neurophysiology Lab & Department of Neurosurgery and Brain Repair, Morsani College of Medicine, 2 Tampa General Circle, University of South Florida, Tampa, FL 33606, USA; Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| | - Hamidreza Ramezanpour
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Afef Ouelhazi
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Yassine Yahia Belkacemi
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Oliver Flouty
- The Tampa Human Neurophysiology Lab & Department of Neurosurgery and Brain Repair, Morsani College of Medicine, 2 Tampa General Circle, University of South Florida, Tampa, FL 33606, USA
| | - Stéphane Molotchnikoff
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
19
|
Brown KA, Ajibola MI, Gould TD. Rapid Hippocampal Synaptic Potentiation Induced by Ketamine Metabolite ( 2R , 6R )-Hydroxynorketamine Persistently Primes Synaptic Plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619152. [PMID: 39484512 PMCID: PMC11526997 DOI: 10.1101/2024.10.18.619152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The pharmacologically active ( R , S )-ketamine (ketamine) metabolite ( 2R , 6R )-hydroxynorketamine (HNK) maintains ketamine's preclinical antidepressant profile without adverse effects. While hypotheses have been proposed to explain how ketamine and its metabolites initiate their antidepressant-relevant effects, it remains unclear how sustained therapeutic actions arise following drug elimination. To distinguish the physiological mechanisms involved in the rapid from sustained actions of HNK, we utilized extracellular electrophysiology combined with pharmacology to develop an in vitro hippocampal slice incubation model that exhibited pharmacological fidelity to the 1) rapid synaptic potentiation induced by HNK at the Schaffer collateral-CA1 (SC-CA1) synapse during bath-application to slices collected from mice, and 2) maintenance of metaplastic (priming) activity that lowered the threshold for N- methyl-D-aspartate receptor (NMDAR) activation-dependent long-term potentiation (LTP) hours after in vivo dosing. We then used this model to reveal novel druggable mechanisms engaged in HNK's temporally-sensitive antidepressant synaptic actions, finding that the induction of synaptic potentiation by HNK did not require NMDAR activity, but NMDAR activity was necessary to maintain synaptic priming. HNK required protein kinase A (PKA) activity to rapidly potentiate SC-CA1 neurotransmission to facilitate synaptic priming that persistently promoted LTP formation. HNK's rapid actions were blocked by inhibitors of adenylyl cyclase 1 (AC1), but not an AC5 inhibitor. We conclude that HNK rapidly potentiates SC-CA1 synaptic efficacy, which then stimulates priming mechanisms that persistently favor antidepressant-relevant plasticity. Targeting such priming mechanisms may be an effective antidepressant strategy, and using approaches such as our incubation model may aid in revealing novel pharmacological targets.
Collapse
|
20
|
Silva JCH, Proulx CD. Locking away depression. Science 2024; 385:608-609. [PMID: 39116256 DOI: 10.1126/science.adq9566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The antidepressant ketamine blocks neuroreceptors in hyperactive brain regions.
Collapse
|