1
|
Gu S, Maurya S, Lona A, Borrega Roman L, Salanga C, Gonzalez DJ, Kufareva I, Handel TM. Traffic control: Mechanisms of ligand-specific internalization and intracellular distribution of CCR5. Mol Pharmacol 2025; 107:100020. [PMID: 40199068 DOI: 10.1016/j.molpha.2025.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 04/10/2025] Open
Abstract
CC chemokine receptor (CCR) 5 promotes inflammatory responses by driving cell migration and scavenging chemokine. A CCR5 inhibitor Maraviroc has been approved for blocking HIV entry; however, inhibitors for the treatment of other diseases have had limited success, likely because of the complexity of CCR5 pharmacology and biology. CCR5 is activated by natural and engineered chemokines that elicit distinct signaling and trafficking responses, including receptor sequestration inside the cell. Intracellular sequestration may be therapeutically exploitable as a strategy for receptor inhibition, but the mechanisms by which different ligands promote receptor intracellular retention versus presence on the cell membrane are poorly understood. In this study, we systematically compared the time-dependent trafficking behavior of CCR5 following stimulation with its endogenous agonist, CCL5, and 2 CCL5 variants that promote CCR5 intracellular retention. Using a broad panel of pharmacologic assays, fluorescence microscopy, and live cell ascorbic acid peroxidase proximity labeling proteomics, we identified distinct ligand-dependent CCR5 trafficking patterns with temporal and spatial resolution. All 3 chemokines internalize CCR5 via β-arrestin-dependent, clathrin-mediated endocytosis but to different extents, with different kinetics and varying dependencies on G protein-coupled receptor kinase subtypes. The agonists differ in their ability to target the receptor to lysosomes for degradation, as well as to the Golgi compartment and the trans-Golgi network, and these trafficking patterns translate into distinct levels of ligand scavenging. The results provide insight into the cellular mechanisms behind CCR5 intracellular sequestration and suggest how trafficking can be exploited for the development of functional antagonists of CCR5. SIGNIFICANCE STATEMENT: CC chemokine receptor (CCR) 5 plays a crucial role in the immune system and is important in numerous physiological and pathological processes such as inflammation, cancer, and transmission of HIV. It responds to different ligands with distinct signaling and trafficking behaviors; notably, some ligands induce retention of the receptor inside the cell. This study reveals the cellular basis for receptor sequestration that can be exploited as a therapeutic strategy for inhibiting CCR5 function.
Collapse
Affiliation(s)
- Siyi Gu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Svetlana Maurya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Alexis Lona
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Leire Borrega Roman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Catherina Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pharmacology, University of California San Diego, La Jolla, California
| | - David J Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California.
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pharmacology, University of California San Diego, La Jolla, California.
| |
Collapse
|
2
|
Parvanian S, Ge X, Garris CS. Recent developments in myeloid immune modulation in cancer therapy. Trends Cancer 2025; 11:365-375. [PMID: 39794212 DOI: 10.1016/j.trecan.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Myeloid cells play a crucial dual role in cancer progression and response to therapy, promoting tumor growth, enabling immune suppression, and contributing to metastatic spread. The ability of these cells to modulate the immune system has made them attractive targets for therapeutic strategies aimed at shifting their function from tumor promotion to fostering antitumor immunity. Therapeutic approaches targeting myeloid cells focus on modifying their numbers, genetics, metabolism, and interactions within the tumor microenvironment. These strategies aim to reverse their suppressive functions and redirect them to support antitumor immune responses by inhibiting immunosuppressive pathways, targeting specific receptors, and promoting their differentiation into less immunosuppressive phenotypes. Here, we discuss recent approaches to clinically target tumor myeloid cells, focusing on reprogramming myeloid cells to promote antitumor immunity.
Collapse
Affiliation(s)
- Sepideh Parvanian
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
| | - Xinying Ge
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA; Master's Program in Immunology Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | - Christopher S Garris
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Brückner DB, Hannezo E. Tissue Active Matter: Integrating Mechanics and Signaling into Dynamical Models. Cold Spring Harb Perspect Biol 2025; 17:a041653. [PMID: 38951023 PMCID: PMC11960702 DOI: 10.1101/cshperspect.a041653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The importance of physical forces in the morphogenesis, homeostatic function, and pathological dysfunction of multicellular tissues is being increasingly characterized, both theoretically and experimentally. Analogies between biological systems and inert materials such as foams, gels, and liquid crystals have provided striking insights into the core design principles underlying multicellular organization. However, these connections can seem surprising given that a key feature of multicellular systems is their ability to constantly consume energy, providing an active origin for the forces that they produce. Key emerging questions are, therefore, to understand whether and how this activity grants tissues novel properties that do not have counterparts in classical materials, as well as their consequences for biological function. Here, we review recent discoveries at the intersection of active matter and tissue biology, with an emphasis on how modeling and experiments can be combined to understand the dynamics of multicellular systems. These approaches suggest that a number of key biological tissue-scale phenomena, such as morphogenetic shape changes, collective migration, or fate decisions, share unifying design principles that can be described by physical models of tissue active matter.
Collapse
Affiliation(s)
- David B Brückner
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
4
|
Wollner G, Hruska F, Ettel P, Weichhart T, Koenig FRM, Negrin LL. MIP-3-Alpha and MIP-3-Beta as Early Predictors of Pneumonia in Polytraumatized Patients. Lung 2025; 203:44. [PMID: 40074940 PMCID: PMC11903586 DOI: 10.1007/s00408-025-00799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION Pneumonia is one of the most common complications in patients suffering multiple traumas and is associated with an exceptionally high mortality rate. MIP-3-alpha and MIP-3-beta are pro-inflammatory chemokines expressed in the pulmonary mucosa and are reported to play a crucial role in inflammation. Thus, the present study aimed to investigate whether there is an association between MIP-3-alpha- and MIP-3-beta expression and manifestation of pneumonia in patients suffering polytrauma. MATERIAL AND METHODS This prospective outcome study was conducted at our level I trauma center, and 110 polytraumatized patients (Injury Severity Score ≥ 16, ≥ 2 body regions) were prospectively enrolled (median age, 39 years; median Injury Severity Score (ISS), 33; 70.9% male) over four years. Protein levels were assessed at admission (day 0) and subsequently on days 1, 3, 5, 7, and 10 during routine blood draws, utilizing one separation gel tube for each measurement. Furthermore, the correlation between MIP-3-alpha- and MIP-3-beta expression and the manifestation of pneumonia was calculated. RESULTS We observed significantly higher levels of MIP-3-beta expression over the entire time course in the pneumonia cohort. MIP-3-alpha levels were elevated on days 3, 5, 7, and 10 post-trauma in patients suffering from pneumonia. In contrast, no comparable pattern was observed for other pro- and anti-inflammatory cytokines (e.g., IL-6 or TNF-alpha). A peak of serum level expression was documented on day 5 in both biomarkers (MIP-3-alpha 51.8 pg/mL; MIP-3-beta 328.0 pg/mL). ROC analysis provided a cut-off value of 19.3 pg/mL (sensitivity 0.87, specificity 0.33; AUC 0.757) for MIP-3-alpha, whereas a cut-off value of 209.5 pg/mL (sensitivity 0.78, specificity 0.34; AUC 0.757) was determined for MIP-3-beta on day 5. CONCLUSION The present study demonstrated elevated MIP-3-alpha and MIP-3-beta levels as sensitive pneumonia predictors in patients with multiple traumas. These biomarkers allow for identifying patients at high risk of developing pneumonia at an early stage.
Collapse
Affiliation(s)
- Gregor Wollner
- Department of Orthopedics and Trauma-Surgery, Medical University of Vienna, 1090, Vienna, Austria.
| | - Florian Hruska
- Department of Orthopedics and Trauma-Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Paul Ettel
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Felix R M Koenig
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Lukas L Negrin
- Department of Orthopedics and Trauma-Surgery, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
5
|
Meloun A, León B. Beyond CCR7: dendritic cell migration in type 2 inflammation. Front Immunol 2025; 16:1558228. [PMID: 40093008 PMCID: PMC11906670 DOI: 10.3389/fimmu.2025.1558228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Conventional dendritic cells (cDCs) are crucial antigen-presenting cells that initiate and regulate T cell responses, thereby shaping immunity against pathogens, innocuous antigens, tumors, and self-antigens. The migration of cDCs from peripheral tissues to draining lymph nodes (dLNs) is essential for their function in immune surveillance. This migration allows cDCs to convey the conditions of peripheral tissues to antigen-specific T cells in the dLNs, facilitating effective immune responses. Migration is primarily mediated by chemokine receptor CCR7, which is upregulated in response to homeostatic and inflammatory cues, guiding cDCs to dLNs. However, during type 2 immune responses, such as those triggered by parasites or allergens, a paradox arises-cDCs exhibit robust migration to dLNs despite low CCR7 expression. This review discusses how type 2 inflammation relies on additional signaling pathways, including those induced by membrane-derived bioactive lipid mediators like eicosanoids, sphingolipids, and oxysterols, which cooperate with CCR7 to enhance cDC migration and T helper 2 (Th2) differentiation. We explore the potential regulatory mechanisms of cDC migration in type 2 immunity, offering insights into the differential control of cDC trafficking in diverse immune contexts and its impact on immune responses.
Collapse
Affiliation(s)
- Audrey Meloun
- Innate Cells and Th2 Immunity Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Beatriz León
- Innate Cells and Th2 Immunity Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Parween F, Singh SP, Kathuria N, Zhang HH, Ashida S, Otaizo-Carrasquero FA, Shamsaddini A, Gardina PJ, Ganesan S, Kabat J, Lorenzi HA, Riley DJ, Myers TG, Pittaluga S, Bielekova B, Farber JM. Migration arrest and transendothelial trafficking of human pathogenic-like Th17 cells are mediated by differentially positioned chemokines. Nat Commun 2025; 16:1978. [PMID: 40000641 PMCID: PMC11861662 DOI: 10.1038/s41467-025-57002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Human Th17/type 17 cells express the chemokine receptor CCR6, but the functions of CCR6 and other chemokine receptors in human type 17 Th cell extravasation have not been fully delineated. Here we show that human peripheral blood CD4+CCR6+ T cells co-expressing CCR2 have a pathogenic Th17 signature, can produce inflammatory cytokines without T cell receptor activation, and show enhanced expression of pathogenicity-associated and activation-associated genes in the cerebrospinal fluid of patients with multiple sclerosis as compared to controls. In flow chambers with activated endothelial cell (EC) monolayers, CD4+CCR6+CCR2+ T cells are efficient at transendothelial migration (TEM). Ligands for CCR5, CCR6 and CXCR3 localize to EC surfaces and mediate only arrest, whereas CCR2 ligands fail to bind well to ECs and mediate only TEM. Conversely, expressing a chimeric CCR2 ligand engineered to bind glycosaminoglycans on ECs results in CCR2-mediated arrest but blocks TEM induction. Our results from human pathogenic-like type 17 cells thus suggest that T cell migration arrest requires chemokine bound to EC surfaces, whereas TEM requires a transendothelial chemokine gradient.
Collapse
Affiliation(s)
- Farhat Parween
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Satya P Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nausheen Kathuria
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongwei H Zhang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shinji Ashida
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francisco A Otaizo-Carrasquero
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amirhossein Shamsaddini
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul J Gardina
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hernan A Lorenzi
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deanna J Riley
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timothy G Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bibiana Bielekova
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua M Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Ronchese F, Webb GR, Ochiai S, Lamiable O, Brewerton M. How type-2 dendritic cells induce Th2 differentiation: Instruction, repression, or fostering T cell-T cell communication? Allergy 2025; 80:395-407. [PMID: 39324367 PMCID: PMC11804308 DOI: 10.1111/all.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Allergic disease is caused by the activation of allergen-specific CD4+ type-2 T follicular helper cells (Tfh2) and T helper 2 (Th2) effector cells that secrete the cytokines IL-4, IL-5, IL-9, and IL-13 upon allergen encounter, thereby inducing IgE production by B cells and tissue inflammation. While it is accepted that the priming and differentiation of naïve CD4+ T cells into Th2 requires allergen presentation by type 2 dendritic cells (DC2s), the underlying signals remain unidentified. In this review we focus on the interaction between allergen-presenting DC2s and naïve CD4+ T cells in lymph node (LN), and the potential mechanisms by which DC2s might instruct Th2 differentiation. We outline recent advances in characterizing DC2 development and heterogeneity. We review mechanisms of allergen sensing and current proposed mechanisms of Th2 differentiation, with specific consideration of the role of DC2s and how they might contribute to each mechanism. Finally, we assess recent publications reporting a detailed analysis of DC-T cell interactions in LNs and how they support Th2 differentiation. Together, these studies are starting to shape our understanding of this key initial step of the allergic immune response.
Collapse
Affiliation(s)
| | - Greta R. Webb
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| | - Sotaro Ochiai
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| | | | - Maia Brewerton
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
- Department of Clinical Immunology and AllergyAuckland City HospitalAucklandNew Zealand
| |
Collapse
|
8
|
Wang J, Tao Q, Huang K, Wang Y, Hu L, Ren A, Wang H, Wan Y, Li J, Yi L, Ruan Y, Wanyan Z, Wu F, Zhai Z, Liu C. Chemotherapy-induced cellular senescence promotes stemness of aggressive B-cell non-Hodgkin's lymphoma via CCR7/ARHGAP18/IKBα signaling activation. J Immunother Cancer 2025; 13:e009356. [PMID: 39773566 PMCID: PMC11749403 DOI: 10.1136/jitc-2024-009356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Resistance to existing therapies is a major cause of treatment failure in patients with refractory and relapsed B-cell non-Hodgkin's lymphoma (r/r B-NHL). Therapy-induced senescence (TIS) is one of the most important mechanisms of drug resistance. METHODS This study used single-cell RNA sequencing to analyze doxorubicin-induced senescent B-NHL cells. C-C chemokine receptor 7 (CCR7) expression in patients with aggressive B-NHL was assessed using immunohistochemistry and flow cytometry. Lentiviral transfection was used to target CCR7 expression in Raji and SU-DHL-2 cells. Protein localization was visualized through immunofluorescence, while western blotting and co-immunoprecipitation were used to analyze protein expression and interactions. Cell proliferation was measured with the Cell Counting Kit-8 assay, and senescent cells were detected using senescence-associated β-galactosidase staining. The stemness of cells was evaluated through colony and sphere formation assays. Transwell assays assessed cell migration and invasion. Finally, inhibitors GS143 and Y27632 were used to examine the effect of IKBα and ARHGAP/RhoA inhibition on B-NHL-TIS. RESULTS Here we identified a distinct group of TIS, composed of memory B-cell population characterized by strong positive expression of CCR7, which was significantly elevated in TIS population compared with normal proliferating and autonomously senescent lymphoma cell populations. Additionally, CCR7 expression was significantly upregulated in patients with r/r B-NHL, and was an independent prognostic factor in B-NHL, with high CCR7 expression being strongly associated with poor prognosis. In vitro results indicated that CCL21 induced migration and invasion of B-NHL cells via CCR7, while blocking CCR7 reduced doxorubicin-induced migration and invasion of these cells. Furthermore, B-NHL-TIS regulated by CCR7 and exhibited enhanced phenotypic and functional stemness features, including the upregulation of stemness markers, increased colony-forming, invasive and migratory capabilities. Mechanistically, blocking CCR7 reversed the stemness characteristics of senescent B-NHL cells by inhibiting the activation of ARHGAP18/IKBα signaling. CONCLUSIONS Together, TIS promotes the stemness of B-NHL cells via CCR7/ARHGAP18/IKBα signaling activation and targeting CCR7/ARHGAP18 might overcome the chemoresistance of senescent B-NHL cells by inhibiting stemness acquisition and maintenance.
Collapse
Affiliation(s)
- Jiyu Wang
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianshan Tao
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Keke Huang
- Department of Internal Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yangyang Wang
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Linhui Hu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huiping Wang
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Wan
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinlan Li
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liuying Yi
- Department of Hematology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yanjie Ruan
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhixiang Wanyan
- Department of Emergency, The Third People's Hospital of Hefei, Hefei, Anhui, China
| | - Fan Wu
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhimin Zhai
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Zhang Y, Gu A, An Z, Huang S, Zhang C, Zhong X, Hu Y. B cells enhance EphA2 chimeric antigen receptor T cells cytotoxicity against glioblastoma via improving persistence. Hum Immunol 2024; 85:111093. [PMID: 39243423 DOI: 10.1016/j.humimm.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a powerful adoptive immunotherapy against blood cancers, but the therapeutic effect was not efficient enough on solid tumors. B cells have been reported to play a critical role in regulating memory T differentiation and cytotoxic T development. However, as of yet the influence of such B cells on CAR T cells has not been discussed. In this study, using ephrin type-A receptor 2 (EphA2) specific CAR T cells, we cultured B cells successfully to stimulate CAR T cells in vitro, and investigated the cell differentiation and anti-tumor efficiency. We observed that EphA2-CAR T cells stimulated by B cells performed increased interferon γ (IFN γ) production and upregulated OX40 expression, as well as the enhanced anti-tumor activity and reduced PD-1 expression. The persistence of CAR T cells was enhanced after B cells stimulation for more than 7 days with the increased subset of central memory T cells (TCM). In addition, next generation sequencing was performed to explore the underlying mechanisms. The up-regulated genes clustered in, immune response activation, chemokine signaling pathway, calcium signaling pathway, cGMP-PKG signaling pathway and et al. which contributed to the upregulated anti-glioblastoma (GBM) activity of CAR T cells stimulated by B cell. Furthermore, MEF2C, CD40, SYK and TNFRSF13B were upregulated in CAR T cells after co-culturing with B cells. These genes functionally enriched in promoting lymphocytes proliferation and may contribute to the enhanced persistence of CAR T cells. In conclusion, these results indicated the critical role of B cells in prolonging CAR T cells longevity and enhancing anti-tumor activity, which paves the way for the therapeutic exploitation of EphA2-CAR T cells against GBM in the future.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Aiqin Gu
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Zhijing An
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Shuai Huang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Can Zhang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaosong Zhong
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yi Hu
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
10
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K, Zheng L. Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol 2024; 17:92. [PMID: 39390609 PMCID: PMC11468220 DOI: 10.1186/s13045-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer remains one of the most aggressive solid tumors. As a systemic disease, despite the improvement of multi-modality treatment strategies, the prognosis of pancreatic cancer was not improved dramatically. For resectable or borderline resectable patients, the surgical strategy centered on improving R0 resection rate is consensus; however, the role of neoadjuvant therapy in resectable patients and the optimal neoadjuvant therapy of chemotherapy with or without radiotherapy in borderline resectable patients were debated. Postoperative adjuvant chemotherapy of gemcitabine/capecitabine or mFOLFIRINOX is recommended regardless of the margin status. Chemotherapy as the first-line treatment strategy for advanced or metastatic patients included FOLFIRINOX, gemcitabine/nab-paclitaxel, or NALIRIFOX regimens whereas 5-FU plus liposomal irinotecan was the only standard of care second-line therapy. Immunotherapy is an innovative therapy although anti-PD-1 antibody is currently the only agent approved by for MSI-H, dMMR, or TMB-high solid tumors, which represent a very small subset of pancreatic cancers. Combination strategies to increase the immunogenicity and to overcome the immunosuppressive tumor microenvironment may sensitize pancreatic cancer to immunotherapy. Targeted therapies represented by PARP and KRAS inhibitors are also under investigation, showing benefits in improving progression-free survival and objective response rate. This review discusses the current treatment modalities and highlights innovative therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jie Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Amol Narang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jin He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
11
|
Caruso AP, Logue JS. The biophysics of cell motility through mechanochemically challenging environments. Curr Opin Cell Biol 2024; 90:102404. [PMID: 39053178 PMCID: PMC11392632 DOI: 10.1016/j.ceb.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Challenging mechanochemical environments (i.e., with varied mechanical and adhesive properties) are now known to induce a wide range of adaptive phenomena in motile cells. For instance, confinement and low adhesion may trigger a phenotypic transition to fast amoeboid (leader bleb-based) migration. The molecular mechanisms that underly these phenomena are beginning to be understood. Due to its size, the mechanical properties of the nucleus have been shown to limit and facilitate cell migration. Additionally, the activity of various transient receptor potential (TRP) channels is now known to be integral to cell migration in response to a multitude of biophysical stimuli. How cells integrate signals from the nucleus and plasma membrane, however, is unclear. The development of therapeutics that suppress cancer or enhance immune cell migration for immuno-oncology applications, etc., will require additional work to completely understand the molecular mechanisms that enable cells to navigate mechanochemically challenging environments.
Collapse
Affiliation(s)
- Alexa P Caruso
- Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA
| | - Jeremy S Logue
- Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA.
| |
Collapse
|
12
|
Li C, Huang Y, Wu C, Qiu Y, Zhang L, Xu J, Zheng J, Zhang X, Li F, Xia D. Astilbin inhibited neutrophil extracellular traps in gouty arthritis through suppression of purinergic P2Y6 receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155754. [PMID: 38820662 DOI: 10.1016/j.phymed.2024.155754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Gouty arthritis (GA), a common inflammatory condition triggered by monosodium urate crystal accumulation, often necessitates safer treatment alternatives due to the limitations of current therapies. Astilbin, a flavonoid from Smilax glabra Roxb, has demonstrated potential in traditional Chinese medicine for its anti-inflammatory properties. However, the anti-GA effect and its underlying mechanism have not been fully elucidated. PURPOSE This study aimed to investigate the therapeutic potential of astilbin in GA, focusing on its effects on neutrophil extracellular traps (NETs), as well as the potential molecular target of GA both in vitro and in vivo. STUDY DESIGN Firstly, astilbin inhibited the citrullinated histone H3 (Cit h3) protein levels and reduced the NETs formation in neutrophils stimulated by monosodium urate (MSU). Secondly, we wondered the effect of astilbin on migration of neutrophils and dimethyl-sulfoxide (DMSO)-differentiated HL-60 (dHL-60) cells under the stimulation of MSU. Then, the effect of astilbin on suppressing NETs through purinergic P2Y6 receptor (P2Y6R) and Interlukin-8 (IL-8)/ CXC chemokine receptor 2 (CXCR2) pathway was investigated. Also, the relationship between P2Y6R and IL-8/CXCR2 was explored in dHL-60 cells under stimulation of MSU. Finally, we testified the effect of astilbin on reducing NETs in GA through suppressing P2Y6R and then down-regulating IL-8/CXCR2 pathway. METHODS MSU was used to induce NETs in neutrophils and dHL-60 cells. Real-time formation of NETs and migration of neutrophils were monitored by cell living imaging with or without MSU. Then, the effect of astilbin on NETs formation, P2Y6R and IL-8/CXCR2 pathway were detected by immunofluorescence (IF) and western blotting. P2Y6R knockdown dHL-60 cells were established by small interfering RNA to investigate the association between P2Y6R and IL-8/CXCR2 pathway. Also, plasmid of P2Y6R was used to overexpress P2Y6R in dHL-60 cells, which was employed to explore the role of P2Y6R in astilbin inhibiting NETs. Within the conditions of knockdown and overexpression of P2Y6R, migration and NETs formation were assessed by transmigration assay and IF staining, respectively. In vivo, MSU-induced GA mice model was established to assess the effect of astilbin on inflammation by haematoxylin-eosin and ELISA. Additionally, the effects of astilbin on neutrophils infiltration, NETs, P2Y6R and IL-8/CXCR2 pathway were analyzed by IF, ELISA, immunohistochemistry (IHC) and western blotting. RESULTS Under MSU stimulation, astilbin significantly suppressed the level of Cit h3 and NETs formation including the fluorescent expressions of Cit h3, neutrophils elastase, myeloperoxidase, and intra/extracellular DNA. Also, results showed that MSU caused NETs release in neutrophils as well as a trend towards recruitment of dHL-60 cells to MSU. Astilbin could markedly decrease expressions of P2Y6R and IL-8/CXCR2 pathway which were upregulated by MSU. By silencing P2Y6R, the expression of IL-8/CXCR2 pathway and migration of dHL-60 cells were inhibited, leading to the suppression of NETs. These findings indicated the upstream role of P2Y6R in the IL-8/CXCR2 pathway. Moreover, overexpression of P2Y6R was evidently inhibited by astilbin, causing a downregulation in IL-8/CXCR2 pathway, migration of dHL-60 cells and NETs formation. These results emphasized that astilbin inhibited the IL-8/CXCR2 pathway primarily through P2Y6R. In vivo, astilbin administration led to marked reductions in ankle swelling, inflammatory infiltration as well as neutrophils infiltration. Expressions of P2Y6R and IL-8/CXCR2 pathway were evidently decreased by astilbin and P2Y6R inhibitor MRS2578 either alone or in combination. Also, astilbin and MRS2578 showed notable effect on reducing MSU-induced NETs formation and IL-8/CXCR2 pathway whether used alone or in combination, parallelly demonstrating that astilbin decreased NETs formation mainly through P2Y6R. CONCLUSION This study revealed that astilbin suppressed NETs formation via downregulating P2Y6R and subsequently the IL-8/CXCR2 pathway, which evidently mitigated GA induced by MSU. It also highlighted the potential of astilbin as a promising natural therapeutic for GA.
Collapse
Affiliation(s)
- Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Yu Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Lu Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Jiaman Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Junna Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Xiaoxi Zhang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, PR China.
| |
Collapse
|
13
|
Ercilla-Rodríguez P, Sánchez-Díez M, Alegría-Aravena N, Quiroz-Troncoso J, Gavira-O'Neill CE, González-Martos R, Ramírez-Castillejo C. CAR-T lymphocyte-based cell therapies; mechanistic substantiation, applications and biosafety enhancement with suicide genes: new opportunities to melt side effects. Front Immunol 2024; 15:1333150. [PMID: 39091493 PMCID: PMC11291200 DOI: 10.3389/fimmu.2024.1333150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment with strategies like checkpoint blockade antibodies and adoptive T cell transfer. Chimeric antigen receptor T cells (CAR-T) have emerged as a promising approach to combine these strategies and overcome their limitations. This review explores CAR-T cells as a living drug for cancer treatment. CAR-T cells are genetically engineered immune cells designed to target and eliminate tumor cells by recognizing specific antigens. The study involves a comprehensive literature review on CAR-T cell technology, covering structure optimization, generations, manufacturing processes, and gene therapy strategies. It examines CAR-T therapy in haematologic cancers and solid tumors, highlighting challenges and proposing a suicide gene-based mechanism to enhance safety. The results show significant advancements in CAR-T technology, particularly in structure optimization and generation. The manufacturing process has improved for broader clinical application. However, a series of inherent challenges and side effects still need to be addressed. In conclusion, CAR-T cells hold great promise for cancer treatment, but ongoing research is crucial to improve efficacy and safety for oncology patients. The proposed suicide gene-based mechanism offers a potential solution to mitigate side effects including cytokine release syndrome (the most common toxic side effect of CAR-T therapy) and the associated neurotoxicity.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Genes, Transgenic, Suicide
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/genetics
- T-Lymphocytes/immunology
- Animals
- Genetic Therapy/adverse effects
- Genetic Therapy/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
| | - Marta Sánchez-Díez
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nicolás Alegría-Aravena
- Grupo de Biología y Producción de Cérvidos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, Albacete, Spain
- Asociación Española Contra el Cáncer (AECC)-Fundación Científica AECC, Albacete, Spain
| | - Josefa Quiroz-Troncoso
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Clara E. Gavira-O'Neill
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Sección de Oncología, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Raquel González-Martos
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Carmen Ramírez-Castillejo
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Sección de Oncología, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| |
Collapse
|
14
|
Song MS, Nam JH, Noh KE, Lim DS. Dendritic Cell-Based Immunotherapy: The Importance of Dendritic Cell Migration. J Immunol Res 2024; 2024:7827246. [PMID: 38628676 PMCID: PMC11019573 DOI: 10.1155/2024/7827246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that are crucial for maintaining self-tolerance, initiating immune responses against pathogens, and patrolling body compartments. Despite promising aspects, DC-based immunotherapy faces challenges that include limited availability, immune escape in tumors, immunosuppression in the tumor microenvironment, and the need for effective combination therapies. A further limitation in DC-based immunotherapy is the low population of migratory DC (around 5%-10%) that migrate to lymph nodes (LNs) through afferent lymphatics depending on the LN draining site. By increasing the population of migratory DCs, DC-based immunotherapy could enhance immunotherapeutic effects on target diseases. This paper reviews the importance of DC migration and current research progress in the context of DC-based immunotherapy.
Collapse
Affiliation(s)
- Min-Seon Song
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Ji-Hee Nam
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Kyung-Eun Noh
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Dae-Seog Lim
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
15
|
He J, Zhu T, Mao N, Cai G, Gu P, Song Z, Lu X, Yang Y, Wang D. Cistanche deserticola polysaccharide-functionalized dendritic fibrous nano-silica as oral vaccine adjuvant delivery enhancing both the mucosal and systemic immunity. Int J Biol Macromol 2024; 262:129982. [PMID: 38354941 DOI: 10.1016/j.ijbiomac.2024.129982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Oral vaccines are a safe and convenient alternative to injected vaccines and have great potential to prevent major infectious diseases. However, the harsh gastrointestinal (GI) environment, mucus barriers, low immunogenicity, and lack of effective and safe mucosal adjuvants are the major challenges for oral vaccine delivery. In recent years, nanoparticle-based strategies have become attractive for improving oral vaccine delivery. Here, the dendritic fibrous nano-silica (DFNS) grafted with Cistanche deserticola polysaccharide (CDP) nanoparticles (CDP-DFNS) were prepared and investigated how to impact the immune responses. CDP-DFNS facilitated the antigen uptake in mouse bone marrow-derived dendritic cells (BMDCs), and induce the activation of DCs in vitro. Furthermore, in vivo experiments, the result showed that the uptake efficiency by Peyer's patches (PPs) of CDP-DFNS/BSA was the best. And CDP-DFNS/BSA then significantly activated the DCs in lamina propria (LP), and T/B cells in PPs and mesenteric lymph nodes (MLNs). Moreover, the memory T cell responses in later period of vaccination was stronger than other groups. In addition, CDP-DFNS/BSA enhanced BSA-specific antibody IgG, IgA production, and SIgA secretion, was effective at inducing a strong mixed Th1/Th2 response and mucosal antibody responses. These results indicated that CDP-DFNS deserves further consideration as an oral vaccine adjuvant delivery system.
Collapse
Affiliation(s)
- Jin He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ningning Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Gaofeng Cai
- Collage of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Pengfei Gu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Zuchen Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuanqi Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
16
|
Boylan BT, Hwang M, Bergmann CC. The Impact of Innate Components on Viral Pathogenesis in the Neurotropic Coronavirus Encephalomyelitis Mouse Model. Viruses 2023; 15:2400. [PMID: 38140641 PMCID: PMC10747027 DOI: 10.3390/v15122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Recognition of viruses invading the central nervous system (CNS) by pattern recognition receptors (PRRs) is crucial to elicit early innate responses that stem dissemination. These innate responses comprise both type I interferon (IFN-I)-mediated defenses as well as signals recruiting leukocytes to control the infection. Focusing on insights from the neurotropic mouse CoV model, this review discusses how early IFN-I, fibroblast, and myeloid signals can influence protective anti-viral adaptive responses. Emphasis is placed on three main areas: the importance of coordinating the distinct capacities of resident CNS cells to induce and respond to IFN-I, the effects of select IFN-stimulated genes (ISGs) on host immune responses versus viral control, and the contribution of fibroblast activation and myeloid cells in aiding the access of T cells to the parenchyma. By unraveling how the dysregulation of early innate components influences adaptive immunity and viral control, this review illustrates the combined effort of resident CNS cells to achieve viral control.
Collapse
Affiliation(s)
- Brendan T. Boylan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (B.T.B.); (M.H.)
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mihyun Hwang
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (B.T.B.); (M.H.)
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Cornelia C. Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (B.T.B.); (M.H.)
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
- School of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
17
|
Riedl M, Sixt M. The excitable nature of polymerizing actin and the Belousov-Zhabotinsky reaction. Front Cell Dev Biol 2023; 11:1287420. [PMID: 38020899 PMCID: PMC10643615 DOI: 10.3389/fcell.2023.1287420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The intricate regulatory processes behind actin polymerization play a crucial role in cellular biology, including essential mechanisms such as cell migration or cell division. However, the self-organizing principles governing actin polymerization are still poorly understood. In this perspective article, we compare the Belousov-Zhabotinsky (BZ) reaction, a classic and well understood chemical oscillator known for its self-organizing spatiotemporal dynamics, with the excitable dynamics of polymerizing actin. While the BZ reaction originates from the domain of inorganic chemistry, it shares remarkable similarities with actin polymerization, including the characteristic propagating waves, which are influenced by geometry and external fields, and the emergent collective behavior. Starting with a general description of emerging patterns, we elaborate on single droplets or cell-level dynamics, the influence of geometric confinements and conclude with collective interactions. Comparing these two systems sheds light on the universal nature of self-organization principles in both living and inanimate systems.
Collapse
Affiliation(s)
- Michael Riedl
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | |
Collapse
|
18
|
Reali E, Ferrari D. From the Skin to Distant Sites: T Cells in Psoriatic Disease. Int J Mol Sci 2023; 24:15707. [PMID: 37958689 PMCID: PMC10648543 DOI: 10.3390/ijms242115707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Human skin has long been known as a protective organ, acting as a mechanical barrier towards the external environment. More recent is the acquisition that in addition to this fundamental role, the complex architecture of the skin hosts a variety of immune and non-immune cells playing preeminent roles in immunological processes aimed at blocking infections, tumor progression and migration, and elimination of xenobiotics. On the other hand, dysregulated or excessive immunological response into the skin leads to autoimmune reactions culminating in a variety of skin pathological manifestations. Among them is psoriasis, a multifactorial, immune-mediated disease with a strong genetic basis. Psoriasis affects 2-3% of the population; it is associated with cardiovascular comorbidities, and in up to 30% of the cases, with psoriatic arthritis. The pathogenesis of psoriasis is due to the complex interplay between the genetic background of the patient, environmental factors, and both innate and adaptive responses. Moreover, an autoimmune component and the comprehension of the mechanisms linking chronic skin inflammation with systemic and joint manifestations in psoriatic patients is still a major challenge. The understanding of these mechanisms may offer a valuable chance to find targetable molecules to treat the disease and prevent its progression to severe systemic conditions.
Collapse
Affiliation(s)
- Eva Reali
- Department of Translational Medicine, University of Ferrara, 44100 Ferrara, Italy
| | - Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
19
|
Shergold AL, Devlin RM, Young AL, Roberts EW. Chemotaxis: Dendritic cells as trendsetters of the immune response. Curr Biol 2023; 33:R957-R959. [PMID: 37751709 DOI: 10.1016/j.cub.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
A new study reports that dendritic cells actively shape the CCL19 chemokine gradient to which they respond and that the chemokine receptor CCR7 both senses CCL19 and mediates its internalisation. Generation of local changes in chemokines allows coordination of movement over longer distances than previous models could explain.
Collapse
Affiliation(s)
- Amy L Shergold
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, UK
| | - Ryan M Devlin
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, UK
| | - Alex L Young
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, UK
| | - Ed W Roberts
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, UK; School of Cancer Studies, University of Glasgow, Glasgow, UK.
| |
Collapse
|
20
|
Donnelly H, Mandrou E, Insall R. Sinking while you swim: A dual role for CCR7 in leukocyte migration. Sci Immunol 2023; 8:eadj3102. [PMID: 37656778 DOI: 10.1126/sciimmunol.adj3102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The CCR7 receptor allows dendritic cells to sense the chemokine CCL19. It also depletes CCL19 from the environment by endocytosis, leading to local gradients that can steer cells accurately and robustly through tissues, even over long distances (see related Research Article by Alanko et al.).
Collapse
Affiliation(s)
- Hannah Donnelly
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Elena Mandrou
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Robert Insall
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| |
Collapse
|