1
|
Chen Y, Liu Y, Yu R, Zhao Y, Lu J, Chen G, Zheng Y, Ye C. Dynamically Switchable 3D Shape-Morphing and Rotation from Liquid Crystal Elastomer Actuators. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40420566 DOI: 10.1021/acsami.5c08979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Polymer-based soft actuators capable of responsive shape morphing hold great potential for developing untethered soft robotics with dexterous motion under complex surroundings. To realize this potential, achieving fast, dynamically tunable shape morphing that can generate sufficient mechanical force is essential. Here, soft actuators composed of liquid crystal elastomer (LCE) bilayer film are constructed via direct ink writing (DIW), which exhibit rapid and sequential 3D-to-3D́ morphological reconfiguration within seconds under temperature stimulus. The dynamic shape morphing is facilitated by the bidirectional bending of the LCE film, which possesses anisotropic mesogen orientation and distinct phase transition temperatures. By balancing the two LCE layers in terms of differential contraction, layer sequence, and two-dimensional (2D) geometry, its bending directions, amplitude, and sequence can be programmed, thus enabling diverse three-dimensional (3D) shape reconfigurations, such as biomimetic "orchid" blooming and "palm" gesture switching. Beyond shape morphing, the LCE actuator is capable of converting shape morphing into rotational kinetic energy in different directions. As a prototype, it generates sufficient torque to drive the rotation of an LCE rotor, exhibiting switchable clockwise, "self-oscillating", and anticlockwise motions. With the merits of dynamic shape morphing and mechanical energy harvesting, the LCE actuator presents a promising platform for advancing soft robotics with adaptive and diverse locomotion for performing tasks in complex environments.
Collapse
Affiliation(s)
- Yang Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Yuxiang Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Runze Yu
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Yingshuai Zhao
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Juntong Lu
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Yijun Zheng
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Chunhong Ye
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
2
|
Ma S, Xue P, Valenzuela C, Liu Y, Chen Y, Feng Y, Bi R, Yang X, Yang Y, Sun C, Xu X, Wang L. 4D-Printed Adaptive and Programmable Shape-Morphing Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2505018. [PMID: 40376888 DOI: 10.1002/adma.202505018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/26/2025] [Indexed: 05/18/2025]
Abstract
Shape-morphing batteries that can reconfigure their shape to adapt to different tasks are highly desirable for emerging soft electronics in diverse fields. However, it is a challenging task to develop advanced shape-morphing batteries with on-demand programmability and adaptive responsiveness. Here, 4D-printed programmable shape-morphing batteries by sequentially direct-ink-writing of shape-programmable liquid crystal elastomers (LCEs) and in-situ covalent crosslinked flexible zinc-ion microbatteries, where tough covalent bonding is built at the interface, are reported. The resulting shape-morphing batteries exhibit controllable, reversible, and programmable shape-morphing by controlling sophisticated molecular alignment of LCEs, which enables them to adaptively alter configurations to accommodate different functionalities. Importantly, diverse origami batteries with excellent spatiotemporal controllability are demonstrated by precisely designing active hinges to achieve adaptive transformations from folded to deployed configurations. The programmable shape-morphing mechanisms of the batteries are revealed by finite element analyses. As a proof-of-concept illustration, adaptive shape-morphing battery systems capable of interactive communication and controllable sensing are developed through the incorporation of an elaborate all-MXene-printed near-field-communication antenna, which can adaptively tune its deployment configuration according to variations in environmental humidity or dust content. This work brings new insights for the development of next-generation shape-morphing power sources, human-machine interactive electronics, and swarm intelligence.
Collapse
Affiliation(s)
- Shaoshuai Ma
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Pan Xue
- Xi'an Rare Metal Materials Institute Co. Ltd, Xi'an, 710018, China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yufan Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ran Bi
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xinnuo Yang
- Beijing Royal School, Beijing, 102299, China
| | - Yanzhao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - CaiXia Sun
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xinhua Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Binhai Industrial Research Institute, Tianjin University, Tianjin, 300452, China
| |
Collapse
|
3
|
Das A, McCracken JM, Saeed MH, Nepal D, White TJ. Photodriven Aquatic Locomotion in Liquid Crystalline Elastomer Composites with Tunable Wettability. Angew Chem Int Ed Engl 2025:e202505300. [PMID: 40308041 DOI: 10.1002/anie.202505300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/19/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Photodriven liquid crystalline elastomer (LCE) composites with thiol-functionalized Ti₃C₂Tx MXene nanosheets are introduced as a versatile material system for achieving controlled aquatic locomotion. By incorporating superhydrophobic or superhydrophilic coatings, these composites demonstrate distinct modalities at the air-water interface and underwater. The stimuli-responsive behavior of the LCE nanocomposites is enhanced through the homogeneous dispersion of MXene platelets within the LCE matrix, facilitated by thiol-functionalization. Superhydrophobic coatings increase buoyancy and reduce drag, enabling locomotion akin to water striders at the air-water interface. Conversely, superhydrophilic coatings submerse the composites to allow photomechanical actuation to drive underwater locomotion against gravity. By combining tunable wettability with robust photothermal performance, these MXene-LCE composites open new opportunities for designing and integrating stimuli-responsive materials in aquatic actuation systems.
Collapse
Affiliation(s)
- Avijit Das
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, 80309, USA
| | - Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, 80309, USA
| | - Mohsin Hassan Saeed
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, 80309, USA
| | - Dhriti Nepal
- Air Force Research Laboratory, Composite Materials Branch, 2941 Hobson Way, Wright-Patterson AFB, OH, 4543-7750, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, 80309, USA
- Material Science and Engineering Program, University of Colorado Boulder, 596 UCB, Boulder, CO, 80309, USA
| |
Collapse
|
4
|
Wu C, Liu H, Lin S, Lam J, Xi N, Chen Y. Shape morphing of soft robotics by pneumatic torsion strip braiding. Nat Commun 2025; 16:3787. [PMID: 40263355 PMCID: PMC12015459 DOI: 10.1038/s41467-025-59051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Shape morphing technologies are significant in soft robotic applications. To this end, we introduce a new shape morphing approach using pneumatic torsion strips, inspired by the shape of a Möbius strip. A pneumatic torsion strip is simply formed by bending and twisting a ribbon of bladder. When locating a pneumatic torsion strip on a braided soft body, its intrinsic elastic energy always tends to bend the soft body. Meanwhile, its elastic energy is adjustable and correlated with the geometry and internal-pressure dependent material properties. Compared with common strain-mismatch based morphing methods, pneumatic torsion strips directly exert bending torque to the soft body without generating in-plane strain and affecting rigidity. As such, the local bending of a soft body over a large curvature range at almost any position can be realized through pneumatic torsion strips. A mathematical model describing the geometry and elastic energy of a pneumatic torsion strip is also established to explain its basic shape morphing mechanism. Finally, we provide several case studies to illustrate their performance and advantages in practical shape morphing applications, such as a 2 kg meter-scale transformable carpet that can curl like plant tendrils.
Collapse
Affiliation(s)
- Changchun Wu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hao Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| | - Senyuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| | - James Lam
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ning Xi
- Department of Data and Systems Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yonghua Chen
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Zhang Y, Wang X, Zhang X, Wang W, Yao Y, Pan J, Shao G, Bi S, Chen N, Jiang J, Shao H. Tunable photo-responsive liquid crystal elastomer fibers via disperse dyeing for smart textiles. MATERIALS HORIZONS 2025. [PMID: 40245020 DOI: 10.1039/d5mh00357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Active fibers, responding autonomously to environmental changes, are the basis of the development of smart textiles. However, there are still challenges in achieving responsive specificity and self-resilience of these fibers, which restrict the implementation of precise and complex actuation behaviors. Herein, an efficient strategy with a combination of a two-step crosslinking and disperse dyeing method was proposed to integrate multiple independent and non-interfering photo-thermal conversion nanoparticles into liquid crystal elastomer fibers (LCEFs). Three dyed LCEFs that selectively respond to 532 nm, 808 nm, and 980 nm wavelengths of light have been achieved. Based on this, a Delta robot was constructed with the capability of identifying specific light. The dyed LCEFs were also successfully incorporated into functional textiles through different fabrication technologies, demonstrating an embroidered anti-counterfeit logo, a 2D to 3D transformable disc-woven bionic flower, and an adaptive breathing knitted fabric. This work may facilitate the development of untethered soft robots with tunable and complex actuation, as well as the advancement of novel smart fabrics.
Collapse
Affiliation(s)
- Ye Zhang
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Xuan Wang
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Xin Zhang
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Wendi Wang
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Yichen Yao
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Junjie Pan
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Guangwei Shao
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Siyi Bi
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Nanliang Chen
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Jinhua Jiang
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Huiqi Shao
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, P. R. China.
| |
Collapse
|
6
|
Kalulu M, Chilikwazi B, Hu J, Fu G. Soft Actuators and Actuation: Design, Synthesis, and Applications. Macromol Rapid Commun 2025; 46:e2400282. [PMID: 38850266 DOI: 10.1002/marc.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Soft actuators are one of the most promising technological advancements with potential solutions to diverse fields' day-to-day challenges. Soft actuators derived from hydrogel materials possess unique features such as flexibility, responsiveness to stimuli, and intricate deformations, making them ideal for soft robotics, artificial muscles, and biomedical applications. This review provides an overview of material composition and design techniques for hydrogel actuators, exploring 3D printing, photopolymerization, cross-linking, and microfabrication methods for improved actuation. It examines applications of hydrogel actuators in biomedical, soft robotics, bioinspired systems, microfluidics, lab-on-a-chip devices, and environmental, and energy systems. Finally, it discusses challenges, opportunities, advancements, and regulatory aspects related to hydrogel actuators.
Collapse
Affiliation(s)
- Mulenga Kalulu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Bright Chilikwazi
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| |
Collapse
|
7
|
Su J, He K, Li Y, Tu J, Chen X. Soft Materials and Devices Enabling Sensorimotor Functions in Soft Robots. Chem Rev 2025. [PMID: 40163535 DOI: 10.1021/acs.chemrev.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sensorimotor functions, the seamless integration of sensing, decision-making, and actuation, are fundamental for robots to interact with their environments. Inspired by biological systems, the incorporation of soft materials and devices into robotics holds significant promise for enhancing these functions. However, current robotics systems often lack the autonomy and intelligence observed in nature due to limited sensorimotor integration, particularly in flexible sensing and actuation. As the field progresses toward soft, flexible, and stretchable materials, developing such materials and devices becomes increasingly critical for advanced robotics. Despite rapid advancements individually in soft materials and flexible devices, their combined applications to enable sensorimotor capabilities in robots are emerging. This review addresses this emerging field by providing a comprehensive overview of soft materials and devices that enable sensorimotor functions in robots. We delve into the latest development in soft sensing technologies, actuation mechanism, structural designs, and fabrication techniques. Additionally, we explore strategies for sensorimotor control, the integration of artificial intelligence (AI), and practical application across various domains such as healthcare, augmented and virtual reality, and exploration. By drawing parallels with biological systems, this review aims to guide future research and development in soft robots, ultimately enhancing the autonomy and adaptability of robots in unstructured environments.
Collapse
Affiliation(s)
- Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiaqi Tu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
8
|
Terentjev EM. Liquid Crystal Elastomers: 30 Years After. Macromolecules 2025; 58:2792-2806. [PMID: 40160994 PMCID: PMC11948470 DOI: 10.1021/acs.macromol.4c01997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
This is a Review that attempts to cast a look at the whole history of liquid crystal elastomers and the evolution of this field from its inception to the current state of the art. The exposition is limited by deliberately omitting several important elements of this field, such as densely cross-linked networks or smectic elastomers, focusing solely on the nematic phase of these elastomers. In this more narrow topic, we first discuss the current developments and perspectives in the materials chemistry. This is followed by three sections, each dedicated to one of the three main points of interest in the nematic liquid crystal elastomers: the reversible actuation, the soft elasticity, and the viscoelastic dynamics of nematic elastomers. In each of these directions, there have been significant developments over recent years but equally significant new avenues emerging for the research to follow.
Collapse
Affiliation(s)
- Eugene M. Terentjev
- Cavendish Laboratory, Cambridge
University, JJ Thomson
Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
9
|
Yi J, Yang S, Yue L, Lei IM. Digital light processing 3D printing of flexible devices: actuators, sensors and energy devices. MICROSYSTEMS & NANOENGINEERING 2025; 11:51. [PMID: 40108126 PMCID: PMC11923083 DOI: 10.1038/s41378-025-00885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 03/22/2025]
Abstract
Flexible devices are increasingly crucial in various aspects of our lives, including healthcare devices and human-machine interface systems, revolutionizing human life. As technology evolves rapidly, there is a high demand for innovative manufacturing methods that enable rapid prototyping of custom and multifunctional flexible devices with high quality. Recently, digital light processing (DLP) 3D printing has emerged as a promising manufacturing approach due to its capabilities of creating intricate customized structures, high fabrication speed, low-cost technology and widespread adoption. This review provides a state-of-the-art overview of the recent advances in the creation of flexible devices using DLP printing, with a focus on soft actuators, flexible sensors and flexible energy devices. We emphasize how DLP printing and the development of DLP printable materials enhance the structural design, sensitivity, mechanical performance, and overall functionality of these devices. Finally, we discuss the challenges and perspectives associated with DLP-printed flexible devices. We anticipate that the continued advancements in DLP printing will foster the development of smarter flexible devices, shortening the design-to-manufacturing cycles.
Collapse
Affiliation(s)
- Jiuhong Yi
- Department of Electromechanical Engineering, University of Macau, Macao, 999078, China
- Centre for Artificial Intelligence and Robotics, University of Macau, Macao, 999078, China
| | - Shuqi Yang
- Department of Electromechanical Engineering, University of Macau, Macao, 999078, China
- Centre for Artificial Intelligence and Robotics, University of Macau, Macao, 999078, China
| | - Liang Yue
- Smart Manufacturing Thrust, Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Iek Man Lei
- Department of Electromechanical Engineering, University of Macau, Macao, 999078, China.
- Centre for Artificial Intelligence and Robotics, University of Macau, Macao, 999078, China.
| |
Collapse
|
10
|
Sun Y, Sun B, Cui X, Li W, Zhang Y, He L, Nong S, Zhu Z, Wu J, Li D, Li X, Zhang S, Li X, Li M. Addressable and perceptible dynamic reprogram of ferromagnetic soft machines. Nat Commun 2025; 16:2267. [PMID: 40050263 PMCID: PMC11885537 DOI: 10.1038/s41467-025-57454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Soft machines actuated by external magnetic fields have gained significant attention for their potential to interact with living organisms and complex environments. However, their adaptability and functionality are often limited by rigid magnetization during operation. In this work, we introduce dynamically reprogrammable magnetic soft machines with in situ reconfigurable magnetization profiles during operations, achieved through the synergy of various magnetic fields. A flexible resonant circuit is integrated into the machine body, enabling addressable and perceptible heating of specific regions via high-frequency fields of varying frequencies. The machine body is composed of microbeads made from a low-melting-point alloy and NdFeB microparticles. When heated, the alloy liquefies, allowing the rotation of NdFeB microparticles under a 40 mT pulsed programming field. Upon cooling, the new configuration is locked in place. This reprogramming process is equally effective for single or multiple machines, enabling versatile multi-pattern deformation of individual machines and cooperation of multiple ones. Furthermore, by incorporating addressable thermal actuation, we demonstrate in situ assembly of multiple robots. This work may enable a broad spectrum of magnetic soft machines with enhanced functionalities.
Collapse
Affiliation(s)
- Yuxuan Sun
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Boxi Sun
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Xiang Cui
- School of Computer Science and Technology, University of Science and Technology of China, 230026, Hefei, China
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yue Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230000, Hefei, Anhui, China
| | - Li He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230000, Hefei, Anhui, China
| | - Shutong Nong
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Zhengqing Zhu
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Jiyang Wu
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Dongxiao Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Xingxiang Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Shiwu Zhang
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China.
| | - Xiangyang Li
- School of Computer Science and Technology, University of Science and Technology of China, 230026, Hefei, China.
| | - Mujun Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
11
|
Li Y, Coodley SN, Chen S, Dong P, Li S, Yao S. Thermally responsive spatially programmable soft actuators with multiple response states enabled by Grayscale UV light processing. MATERIALS HORIZONS 2025; 12:1568-1580. [PMID: 39652336 DOI: 10.1039/d4mh01209g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Soft actuators hold great promise for applications in biomimetic robots, artificial muscles, and drug delivery systems due to their adaptability in diverse environments. A critical aspect of designing thermally responsive soft actuators is to achieve spatially programmable actuation under a global thermal stimulus. Different local actuation behaviors can be encoded in one actuator to enable complex morphing structures for different tasks. However, it is challenging to achieve programmability beyond one or binary states. This work introduces a new grayscale ultraviolet (UV) light processing method to fabricate soft actuators with spatially tunable Young's modulus, enabling multiple programmable states in one actuator. Together with a liquid crystal elastomer actuation layer and a photothermal heating layer, the LCE programming layer with spatially programmable moduli allows different regions of the soft actuator to bend to controllable extents under a global thermal stimulus. Various shape morphing patterns can be encoded using UV photomasks with spatially controlled grayscales. Additionally, caterpillar-inspired robots capable of bi-directional crawling and octopus-arm-inspired structures for object manipulation are demonstrated. This work represents advancements in the programmability of thermally responsive soft actuators, laying the foundation for their applications in advanced soft robotic systems.
Collapse
Affiliation(s)
- Yizong Li
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Sooyeon Noh Coodley
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Si Chen
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Penghao Dong
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Su Li
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Shanshan Yao
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
12
|
Dupont RL, Xu Y, Borbora A, Wang X, Azadi F, Havener K, Lewis B, Deng W, Tan BW, Li S, Zhang R, Yao Y, Manna U, Wang X. Synergistic Adhesion and Shape Deformation in Nanowire-Structured Liquid Crystal Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414695. [PMID: 39828612 PMCID: PMC11881676 DOI: 10.1002/adma.202414695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Nature provides many examples of the benefits of nanoscopic surface structures in areas of adhesion and antifouling. Herein, the design, fabrication, and characterization of liquid crystal elastomer (LCE) films are presented with nanowire surface structures that exhibit tunable stimuli-responsive deformations and enhanced adhesion properties. The LCE films are shown to curl toward the side with the nanowires when stimulated by heat or organic solvent vapors. In contrast, when a droplet of the same solvent is placed on the film, it curls away from the nanowire side due to nanowire-induced capillary forces that cause unequal swelling. This characteristic curling deformation is shown to be reversible and can be optimized to match curved substrates, maximizing adhesive shear forces. By using chemical modification, the LCE nanowire films can be given underwater superoleophobicity, enabling oil repellency under a range of harsh conditions. This is combined with the nanowire-induced frictional asymmetry and the reversible shape deformation to create an underwater droplet mixing robot, capable of performing chemical reactions in aqueous environments. These findings demonstrate the potential of nanowire-augmented LCE films for advanced applications in soft robotics, adaptive adhesion, and easy chemical modification, with implications for designing responsive materials that integrate mechanical flexibility with surface functionality.
Collapse
Affiliation(s)
- Robert L. Dupont
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
- School of Materials Science and EngineeringTongji UniversityShanghai201804China
| | - Angana Borbora
- Department of ChemistryIndian Institute of TechnologyGuwahatiAssam781039India
| | - Xinyu Wang
- Department of PhysicsThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SARChina
| | - Fatemeh Azadi
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Kaden Havener
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Broderick Lewis
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Weichen Deng
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Benjamin W. Tan
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Shucong Li
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA
| | - Rui Zhang
- Department of PhysicsThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SARChina
| | - Yuxing Yao
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SARChina
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| | - Uttam Manna
- Department of ChemistryIndian Institute of TechnologyGuwahatiAssam781039India
- Centre for NanotechnologyIndian Institute of TechnologyGuwahatiAssam781039India
- Jyoti and Bhupat Mehta School of Health Science & TechnologyIndian Institute of TechnologyGuwahatiAssam781039India
| | - Xiaoguang Wang
- Sustainability InstituteThe Ohio State UniversityColumbusOH43210USA
| |
Collapse
|
13
|
Li D, Sun Y, Li X, Li X, Zhu Z, Sun B, Nong S, Wu J, Pan T, Li W, Zhang S, Li M. 3D Printing of Near-Ambient Responsive Liquid Crystal Elastomers with Enhanced Nematic Order and Pluralized Transformation. ACS NANO 2025; 19:7075-7087. [PMID: 39948496 DOI: 10.1021/acsnano.4c15521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Liquid crystal elastomers with near-ambient temperature-responsiveness (NAT-LCEs) have been extensively studied for building biocompatible, low-power consumption devices and robotics. However, conventional manufacturing methods face limitations in programmability (e.g., molding) or low nematic order (e.g., DIW printing). Here, a hybrid cooling strategy is proposed for programmable three-dimensional (3D) printing of NAT-LCEs with enhanced nematic order, intricate shape forming, and morphing capability. By integrating a low-temperature nozzle and a cooling platform into a 3D printer, the resulting temperature field synergistically facilitates mesogen alignment during extrusion and disruption-free ultraviolet (UV) cross-linking. This method achieves a nematic order 3000% higher than NAT-LCEs fabricated using traditional room temperature 3D printing. Enabled by shifting of transition temperature during hybrid cooling printing, printed sheets spontaneously turn into 3D structures after release from the platform, exhibiting bidirectional deformation with heating and cooling. By adjusting the nozzle and plate temperatures, NAT-LCEs with graded properties can be fabricated for intricate shape morphing. A wristband system with enhanced heart rate monitoring is also developed based on 3D-printed NAT-LCE. Our method facilitates developments in soft robotics, biomedical devices, and wearable electronics.
Collapse
Affiliation(s)
- Dongxiao Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yuxuan Sun
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Xingjian Li
- School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
| | - Xingxiang Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Zhengqing Zhu
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Boxi Sun
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Shutong Nong
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiyang Wu
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Tingrui Pan
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shiwu Zhang
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Mujun Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Roh J, Park S, Kim H, Kim W, Kim J, Park C, Choi H, Song S, Choi E, Choi Y. Polymorphing Hydrogels Regulated by Photo-reactive DNA Cross-links. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414648. [PMID: 39617981 DOI: 10.1002/adma.202414648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/10/2024] [Indexed: 02/06/2025]
Abstract
Polymorphing hydrogels can morph into another structure on demand with reprogrammable features. This concept extends the degree of morphing beyond that of traditional shape-morphing hydrogels, which predetermine their morphing capabilities at the fabrication stage. However, current polymorphing hydrogels face limitations due to the need for complex, non-sustained responsiveness or additional chemical steps for reconfigurable morphing. Here, photo-reactive DNA-cross-linked polymorphing hydrogels are presented that enable polymorphing under patterned light. The photo-reactive DNA cross-links act as a regulator in changing the shapes of the hydrogels by adjusting the lengths of the cross-links depending on the wavelength of light, which allows precise and dynamic morphing in a programmable way through a one-pot reaction. The high programmability involving spatiotemporal controllability and reprogrammable features offers advanced solutions for multifunctional soft machines and applications requiring complex processes.
Collapse
Affiliation(s)
- Junho Roh
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seongjun Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Hoeseong Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Woojin Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jinho Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Cheolheon Park
- Bio-MAX Institute, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Electrical and Computer Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hansol Choi
- Bio-MAX Institute, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Electrical and Computer Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Biological Chemistry and Molecular Pharmacology (BCMP), Boston, MA, 02115, USA
| | - Seowoo Song
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Eunjin Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Yeongjae Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|
15
|
Telles R, Kotikian A, Freychet G, Zhernenkov M, Wąsik P, Yavitt BM, Barrera JL, Cook CC, Pindak R, Davidson EC, Lewis JA. Spatially programmed alignment and actuation in printed liquid crystal elastomers. Proc Natl Acad Sci U S A 2025; 122:e2414960122. [PMID: 39813252 PMCID: PMC11761666 DOI: 10.1073/pnas.2414960122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
Liquid crystal elastomers (LCEs) exhibit reversible shape morphing behavior when cycled above their nematic-to-isotropic transition temperature. During extrusion-based 3D printing, LCE inks are subjected to coupled shear and extensional flows that can be harnessed to spatially control the alignment of their nematic director along prescribed print paths. Here, we combine experiment and modeling to elucidate the effects of ink composition, nozzle geometry, and printing parameters on director alignment. From rheological measurements, we quantify the dimensionless Weissenberg number (Wi) for the flow field each ink experiences as a function of printing conditions and demonstrate that Wi is a strong predictor of LCE alignment. We find that director alignment in LCE filaments printed through a tapered nozzle varies radially when Wi < 1, while it is uniform when Wi ≫ 1. Based on COMSOL simulations and in operando X-ray measurements, we show that LCE inks printed through nozzles with an internal hyperbolic geometry exhibit a more uniform director alignment for a given Wi compared to those through tapered nozzles. Concomitantly, the stiffness along the print direction and actuation strain of printed LCEs increases substantially under such conditions. By varying Wi during printing through adjusting the flow rate "on the fly", LCE architectures with uniform composition, yet locally encoded shape morphing transitions can be realized.
Collapse
Affiliation(s)
- Rodrigo Telles
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Arda Kotikian
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Guillaume Freychet
- Complex Scattering Program, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY11973
| | - Mikhail Zhernenkov
- Complex Scattering Program, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY11973
| | - Patryk Wąsik
- Complex Scattering Program, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY11973
| | - Benjamin M. Yavitt
- Complex Scattering Program, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY11973
| | - Jorge-Luis Barrera
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Caitlyn C. Cook
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Ronald Pindak
- Complex Scattering Program, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY11973
| | - Emily C. Davidson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ08544
| | - Jennifer A. Lewis
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| |
Collapse
|
16
|
Feng W, He Q, Zhang L. Embedded Physical Intelligence in Liquid Crystalline Polymer Actuators and Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312313. [PMID: 38375751 PMCID: PMC11733722 DOI: 10.1002/adma.202312313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/27/2024] [Indexed: 02/21/2024]
Abstract
Responsive materials possess the inherent capacity to autonomously sense and respond to various external stimuli, demonstrating physical intelligence. Among the diverse array of responsive materials, liquid crystalline polymers (LCPs) stand out for their remarkable reversible stimuli-responsive shape-morphing properties and their potential for creating soft robots. While numerous reviews have extensively detailed the progress in developing LCP-based actuators and robots, there exists a need for comprehensive summaries that elucidate the underlying principles governing actuation and how physical intelligence is embedded within these systems. This review provides a comprehensive overview of recent advancements in developing actuators and robots endowed with physical intelligence using LCPs. This review is structured around the stimulus conditions and categorizes the studies involving responsive LCPs based on the fundamental control and stimulation logic and approach. Specifically, three main categories are examined: systems that respond to changing stimuli, those operating under constant stimuli, and those equip with learning and logic control capabilities. Furthermore, the persisting challenges that need to be addressed are outlined and discuss the future avenues of research in this dynamic field.
Collapse
Affiliation(s)
- Wei Feng
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| | - Qiguang He
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| | - Li Zhang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
17
|
Bartkowski P, Pawliszak Ł, Lusawa A, Sypniewska S, Ciemiorek M, Park YL. Flexible Electrical Energy Storage Structure with Variable Stiffness for Soft Robotics and Wearable Electronics. Soft Robot 2024. [PMID: 39718943 DOI: 10.1089/soro.2024.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Based on the analysis of the structures of robots and electronics developed so far, it should be noted that a majority of them need a reservoir for electrical energy storage. Unfortunately, most off-the-shelf devices commercially available nowadays are based on rigid parts that heavily limit the possibilities of incorporating such products into soft robots and wearable electronics. To address these issues, a new type of flexible structure for electrical energy storage, which consists of small battery cells connected by liquid metal paths, was proposed. It can achieve a low value of Young's modulus (about 0.13 MPa) while maintaining electrochemical stability for large stretches (max. capacity reduction-2%). We proposed an individual layer structure as well as a sandwich structure with a granular core, which by way of granular jamming phenomena can change the stiffness (almost 300%). This article describes the concept and working principle of the proposed flexible electrical energy storage structure, followed by the mechanical and electrical characterization, electrochemical impedance spectroscopy, and galvanostatic battery cell cycling. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to characterize the electrodes. The article also includes numerical simulations and potential applications of the studied structure.
Collapse
Affiliation(s)
- Piotr Bartkowski
- Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Łukasz Pawliszak
- Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Agata Lusawa
- Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Sabina Sypniewska
- Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Marta Ciemiorek
- Faculty of Materials Science Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Yong-Lae Park
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
18
|
McCracken JM, Bauman GE, Williams G, Santos M, Smith L, MacCurdy R, White TJ. Cuboidal Deformation of Multimaterial Composites Prepared by 3-D Printing of Liquid Crystalline Elastomers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69851-69857. [PMID: 39630564 DOI: 10.1021/acsami.4c14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Multimaterial 3-D printing (3DP) of isotropic (IsoE) and liquid crystalline elastomers (LCE) yields spatially programmed elements that undergo a cuboidal shape transformation upon heating. The thermomechanical deformation of 3DP elements is determined by the geometry and extent of the isotropic and anisotropic regions. The synthesis and experimental characterization of the 3DP elements are complemented by finite element analysis (FEA). Calculations emphasize that the cuboidal deformation of the myriad 3DP elements is a manifestation of local stress gradients imparted by local control of the material composition and anisotropy. Varying the rectilinear spatial distribution of the multimaterial elastomer composites produces complex, multistable states that provide insights into how stress gradients drive multimaterial elastomer actuation. The thermomechanical stimuli response of the multimaterial elements is explored as a tactile element.
Collapse
Affiliation(s)
- Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Grant E Bauman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Graham Williams
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Misael Santos
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lawrence Smith
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Robert MacCurdy
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
19
|
Li S, Yang M, Wu Y, Asghar W, Lu X, Zhang H, Cui E, Fang Z, Shang J, Liu Y, Li RW. A flexible dual-mode sensor with decoupled strain and temperature sensing for smart robots. MATERIALS HORIZONS 2024; 11:6361-6370. [PMID: 39364564 DOI: 10.1039/d4mh00841c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Flexible dual mode strain-temperature sensors that mimic human skin functions are highly desired for wearable devices and intelligent robots. However, integrating dual sensing characteristics into a single sensor for simultaneous and decoupled strain-temperature detection still remains a challenge. Herein, we report a flexible dual-modal sensor that uses a "neutral surface" structural design technique to integrate an independently prepared temperature sensing layer (TSL) and strain sensing layer (SSL), for simultaneous monitoring of strain and temperature, in a decoupled manner. The TSL consists of a PDMS/BaTiO3 based dielectric layer whose dielectric constant and thickness change in response to temperature fluctuations. The SSL consists of a resistive type Ni80Cr20 film whose resistance changes in response to external strain. After optimizing the temperature and strain sensing characteristics of the TSL and SSL, the obtained dual-modal flexible sensor has shown a broad temperature sensing range (30 to 200 °C), with high temperature sensitivity (-160.90 fF °C-1), excellent linearity (0.998), and highly discernible temperature resolution (0.1 °C). Additionally, the sensor has also exhibited a wide strain monitoring range (20 to 1000 με), good strain resolution (20 με or 0.002%), and a fast strain response time (54 ms). When practically demonstrated, our sensor has successfully shown independent perception of strain and temperature, which highlights its promising application potential in the fields of smart robotics and intelligent prosthetics.
Collapse
Affiliation(s)
- Shiying Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Mengyu Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Waqas Asghar
- Mechanical Engineering Department, University of Engineering and Technology Taxila, 47050, Taxila, Pakistan
| | - Xingjian Lu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Haifeng Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Enhong Cui
- Shandong Aluminum Valley Testing Center, Shandong Aluminum Valley Industrial Technology Institute, Bingzhou, 256200, P. R. China
| | - Zaojun Fang
- Zhejiang Key Laboratory of Robots and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Sun L, Che L, Li M, Chen K, Leng X, Long Y, Guo X, Palma M, Lu Y. Reinforced Nacre-Like MXene/Sodium Alginate Composite Films for Bioinspired Actuators Driven by Moisture and Sunlight. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406832. [PMID: 39370651 DOI: 10.1002/smll.202406832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Indexed: 10/08/2024]
Abstract
MXene-based soft actuators have attracted increasing attention and shown competitive performance in various intelligent devices such as supercapacitors, bionic robots and artificial muscles. However, the development of robust MXene-based actuators with multi-stimuli responsiveness remains challenging. In this study, a nacre-like structure soft actuator based on MXene and sodium alginate (SA) composite films is prepared using a straightforward solvent casting self-assembly method, which not only enhances the mechanical performance (tensile strength of 72 MPa) but also diversifies the stimuli responsiveness of the material. The composite actuators can be powered by external stimuli from renewable energy sources, from moisture inducing a maximum bending angle of 190 degrees at a relative humidity (RH) of 91%, and sunlight irradiation generating a maximum curvature of 1.45 cm-1 under 100 mW cm-2. The feasibility of practical applications, including moisture-responsive flowers and walkers, sunlight-responsive oscillators, and smart switches, is demonstrated through comprehensive experimental characterization and performance evaluation. The work presented here provides insight into the design of robust actuators via the utilization and conversion of environmentally renewable energy sources.
Collapse
Affiliation(s)
- Linchao Sun
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Lixuan Che
- State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Ming Li
- State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kai Chen
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Xu Leng
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yaojia Long
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Xiaoxi Guo
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Matteo Palma
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
21
|
Herard N, Annapooranan R, Henry T, Kröger M, Cai S, Boechler N, Sliozberg Y. Modeling nematic phase main-chain liquid crystal elastomer synthesis, mechanics, and thermal actuation via coarse-grained molecular dynamics. SOFT MATTER 2024; 20:9219-9231. [PMID: 39539115 DOI: 10.1039/d4sm00528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This paper presents a coarse-grained molecular dynamics simulation study of the synthesis, mechanics, and thermal actuation of nematic phase main-chain liquid crystal elastomers (LCEs), a type of soft, temperature-responsive, polymeric actuating material. The simulations herein model the crosslinking, mechanical stretching, and additional crosslinking synthesis process, following which, the simulated LCE exhibits a direction-dependent thermal actuation and mechanical response. The thermal actuation response shows good qualitative agreement with experimental results, including the variation of a global order parameter that describes the orientation of the mesogen domains comprising the LCE. The mechanical response due to applied deformation shows less agreement, but manifests the key features observed in experiments on LCEs, namely soft strain and hyperelasticity that is present when loaded perpendicularly and in-line, respectively, to the mesogen alignment direction. We also present a topological analysis of the simulated LCEs, which, in conjunction with the simulated thermomechanical responses, allows us to infer the relative contribution of entanglements and chemical crosslinks on those responses. We suggest that the model proposed herein will help enable improved LCE formulations via mechanistic insights that can be gained via the use of such a relatively computationally inexpensive coarse-grained molecular dynamics model, which may be of further value to application areas including soft robotics, bio-mimicking devices, artificial muscles, and adaptive materials.
Collapse
Affiliation(s)
- Nicolas Herard
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Raja Annapooranan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Todd Henry
- DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland, 21005, USA.
| | - Martin Kröger
- Magnetism and Interface Physics & Computational Polymer Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Nicholas Boechler
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yelena Sliozberg
- DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland, 21005, USA.
| |
Collapse
|
22
|
Ge D, Hong Q, Liu X, Liang H. Self-Oscillation of Liquid Crystal Elastomer Fiber-Slide System Driven by Self-Flickering Light Source. Polymers (Basel) 2024; 16:3298. [PMID: 39684043 DOI: 10.3390/polym16233298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Self-oscillation, a control approach inspired by biological systems, demonstrates an autonomous, continuous, and regular response to constant external environmental stimuli. Until now, most self-oscillation systems have relied on a static external environment that continuously supplies energy, while materials typically absorb ambient energy only intermittently. In this article, we propose an innovative self-oscillation of liquid crystal elastomer (LCE) fiber-slide system driven by a self-flickering light source, which can efficiently regulate the energy input in sync with the self-oscillating behavior under constant voltage. This system primarily consists of a photo-responsive LCE fiber, a slider that includes a conductive segment and an insulating segment, a light source, and a conductive track. Using the dynamic LCE model, we derive the governing equation for the motion of the LCE fiber-slider system. Numerical simulations show that the LCE fiber-slide system under constant voltage exhibits two distinct motion phases, namely the stationary phase and the self-oscillation phase. The self-oscillation occurs due to the photo-induced contraction of the LCE fiber when the light source is activated. We also investigate the critical conditions required to initiate self-oscillation, and examine key system parameters influencing its frequency and amplitude. Unlike the continuous energy release from the static environmental field in most self-oscillation systems, our LCE fiber-slide self-oscillation system is driven by a self-flickering light source, which dynamically adjusts the energy input under a constant voltage to synchronize with the self-oscillating behavior. Our design features advantages such as spontaneous periodic lighting, a simple structure, energy efficiency, and ease of operation. It shows significant promise for dynamic circuit systems, monitoring devices, and optical applications.
Collapse
Affiliation(s)
- Dali Ge
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Institute of Advanced Technology, University of Science and Technology of China, Hefei 241200, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Qingrui Hong
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Xin Liu
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Haiyi Liang
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Institute of Advanced Technology, University of Science and Technology of China, Hefei 241200, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
Bartkowski P, Pawliszak Ł, Chevale SG, Pełka P, Park YL. Programmable Shape-Shifting Soft Robotic Structure Using Liquid Metal Electromagnetic Actuators. Soft Robot 2024; 11:802-811. [PMID: 38598718 DOI: 10.1089/soro.2023.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
Constant development of soft robots, stretchable electronics, or flexible medical devices forces the research to look for new flexible structures that can change their shapes under external physical stimuli. This study presents a soft robotic structure that can change its shape into different three-dimensional (3D) configurations in response to electric current flown through the embedded liquid-metal conductors enabling electromagnetic actuation. The proposed structure is composed of volumetric pixels (voxels) connected in series where each can be independently controlled by the inputs of electrical current and vacuum pressure. A single voxel is made up of a granular core (GC) with an outer shell made of silicone rubber. The shell has embedded channels filled with liquid metal. The structure changes its shape under the Lorentz force produced by the liquid metal channel under applied electrical current. The GC allows the structure to maintain its shape after deformation even when the current is shut off. This is possible due to the granular jamming effect. In this study, we show the concept, the results of multiphysics simulation, and experimental characterization, including among other techniques, such as 3D digital image correlation or 3D magnetic field scanning, to study the different properties of the structure. We prove that the proposed structure can morph into many different shapes with the amplitude higher than 10 mm, and this process can be both fully reversible and repeatable.
Collapse
Affiliation(s)
- Piotr Bartkowski
- Department of Machine Design Fundamentals, Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Łukasz Pawliszak
- Department of Machine Design Fundamentals, Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Siddhi G Chevale
- Department of Machine Design Fundamentals, Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Paweł Pełka
- Department of Machine Design Fundamentals, Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Yong-Lae Park
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
24
|
Cheng Q, Lu X, Tai Y, Luo T, Yang R. Light-Driven Microrobots for Targeted Drug Delivery. ACS Biomater Sci Eng 2024; 10:5562-5594. [PMID: 39147594 DOI: 10.1021/acsbiomaterials.4c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
As a new micromanipulation tool with the advantages of small size, flexible movement and easy manipulation, light-driven microrobots have a wide range of prospects in biomedical fields such as drug targeting and cell manipulation. Recently, microrobots have been controlled in various ways, and light field has become a research hotspot by its advantages of noncontact manipulation, precise localization, fast response, and biocompatibility. It utilizes the force or deformation generated by the light field to precisely control the microrobot, and combines with the drug release technology to realize the targeted drug application. Therefore, this paper provides an overview of light-driven microrobots with drug targeting to provide new ideas for the manipulation of microrobots. Here, this paper briefly categorizes the driving mechanisms and materials of light-driven microrobots, which mainly include photothermal, photochemical, and biological. Then, typical designs of light-driven microrobots with different driving mechanisms and control strategies for multiple physical fields are summarized. Finally, the applications of microrobots in the fields of drug targeting and bioimaging are presented as well as the future prospects of light-driven microrobots in the biomedical field are demonstrated.
Collapse
Affiliation(s)
- Qilong Cheng
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Xingqi Lu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yunhao Tai
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
25
|
Wang J, Wen Y, Pan D, Lin S, Chinnappan A, He Q, Liu C, Huang Z, Cai S, Ramakrishna S, Shin S. High Thermal Conductive Liquid Crystal Elastomer Nanofibers. NANO LETTERS 2024; 24:9990-9997. [PMID: 39101516 DOI: 10.1021/acs.nanolett.4c02752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Liquid crystal elastomers (LCEs), consisting of polymer networks and liquid crystal mesogens, show a reversible phase change under thermal stimuli. However, the kinetic performance is limited by the inherently low thermal conductivity of the polymers. Transforming amorphous bulk into a fiber enhances thermal conductivity through the alignment of polymer chains. Challenges are present due to their rigid networks, while cross-links are crucial for deformation. Here, we employ hydrodynamic alignment to orient the LCE domains assisted by controlled in situ cross-linking and to remarkably reduce the diameter to submicrons. We report that the intrinsic thermal conductivity of LCE fibers at room temperature reaches 1.44 ± 0.32 W/m-K with the sub-100 nm diameter close to the upper limit determined in the quasi-1D regime. Combining the outstanding thermal conductivity and thin diameters, we anticipate these fibers to exhibit a rapid response and high force output in thermomechanical systems. The fabrication method is expected to apply to other cross-linked polymers.
Collapse
Affiliation(s)
- Jingxuan Wang
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Yue Wen
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Duo Pan
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Shulang Lin
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Amutha Chinnappan
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Qiguang He
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Zhiwei Huang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, United States of America
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Sunmi Shin
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
26
|
Yan W, Jones T, Jawetz CL, Lee RH, Hopkins JB, Mehta A. Self-deployable contracting-cord metamaterials with tunable mechanical properties. MATERIALS HORIZONS 2024; 11:3805-3818. [PMID: 39005193 DOI: 10.1039/d4mh00584h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Recent advances in active materials and fabrication techniques have enabled the production of cyclically self-deployable metamaterials with an expanded functionality space. However, designing metamaterials that possess continuously tunable mechanical properties after self-deployment remains a challenge, notwithstanding its importance. Inspired by push puppets, we introduce an efficient design strategy to create reversibly self-deployable metamaterials with continuously tunable post-deployment stiffness and damping. Our metamaterial comprises contracting actuators threaded through beads with matching conical concavo-convex interfaces in networked chains. The slack network conforms to arbitrary shapes, but when actuated, it self-assembles into a preprogrammed configuration with beads gathered together. Further contraction of the actuators can dynamically tune the assembly's mechanical properties through the beads' particle jamming, while maintaining the overall structure with minimal change. We show that, after deployment, such metamaterials exhibit pronounced tunability in bending-dominated configurations: they can become more than 35 times stiffer and change their damping capability by over 50%. Through systematic analysis, we find that the beads' conical angle can introduce geometric nonlinearity, which has a major effect on the self-deployability and tunability of the metamaterial. Our work provides routes towards reversibly self-deployable, lightweight, and tunable metamaterials, with potential applications in soft robotics, reconfigurable architectures, and space engineering.
Collapse
Affiliation(s)
- Wenzhong Yan
- Electrical and Computer Engineering Department, UCLA, USA.
- Mechanical and Aerospace Engineering Department, UCLA, USA
| | - Talmage Jones
- Mechanical and Aerospace Engineering Department, UCLA, USA
| | - Christopher L Jawetz
- Mechanical and Aerospace Engineering Department, UCLA, USA
- Woodruff School of Mechanical Engineering, Georgia Tech, USA
| | - Ryan H Lee
- Mechanical and Aerospace Engineering Department, UCLA, USA
| | | | - Ankur Mehta
- Electrical and Computer Engineering Department, UCLA, USA.
| |
Collapse
|
27
|
Wan X, Xiao Z, Tian Y, Chen M, Liu F, Wang D, Liu Y, Bartolo PJDS, Yan C, Shi Y, Zhao RR, Qi HJ, Zhou K. Recent Advances in 4D Printing of Advanced Materials and Structures for Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312263. [PMID: 38439193 DOI: 10.1002/adma.202312263] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Indexed: 03/06/2024]
Abstract
4D printing has attracted tremendous worldwide attention during the past decade. This technology enables the shape, property, or functionality of printed structures to change with time in response to diverse external stimuli, making the original static structures alive. The revolutionary 4D-printing technology offers remarkable benefits in controlling geometric and functional reconfiguration, thereby showcasing immense potential across diverse fields, including biomedical engineering, electronics, robotics, and photonics. Here, a comprehensive review of the latest achievements in 4D printing using various types of materials and different additive manufacturing techniques is presented. The state-of-the-art strategies implemented in harnessing various 4D-printed structures are highlighted, which involve materials design, stimuli, functionalities, and applications. The machine learning approach explored for 4D printing is also discussed. Finally, the perspectives on the current challenges and future trends toward further development in 4D printing are summarized.
Collapse
Affiliation(s)
- Xue Wan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhongmin Xiao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Feng Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Dong Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Paulo Jorge Da Silva Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hang Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
28
|
Kotikian A, Watkins AA, Bordiga G, Spielberg A, Davidson ZS, Bertoldi K, Lewis JA. Liquid Crystal Elastomer Lattices with Thermally Programmable Deformation via Multi-Material 3D Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310743. [PMID: 38189562 DOI: 10.1002/adma.202310743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/09/2023] [Indexed: 01/09/2024]
Abstract
An integrated design, modeling, and multi-material 3D printing platform for fabricating liquid crystal elastomer (LCE) lattices in both homogeneous and heterogeneous layouts with spatially programmable nematic director order and local composition is reported. Depending on their compositional topology, these lattices exhibit different reversible shape-morphing transformations upon cycling above and below their respective nematic-to-isotropic transition temperatures. Further, it is shown that there is good agreement between their experimentally observed deformation response and model predictions for all LCE lattice designs evaluated. Lastly, an inverse design model is established and the ability to print LCE lattices with the predicted deformation behavior is demonstrated. This work opens new avenues for creating architected LCE lattices that may find potential application in energy-dissipating structures, microfluidic pumping, mechanical logic, and soft robotics.
Collapse
Affiliation(s)
- Arda Kotikian
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Audrey A Watkins
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Giovanni Bordiga
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Andrew Spielberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Zoey S Davidson
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Katia Bertoldi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Jennifer A Lewis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
29
|
Zhang Y, Zhou X, Liu L, Wang S, Zhang Y, Wu M, Lu Z, Ming Z, Tao J, Xiong J. Highly-Aligned All-Fiber Actuator with Asymmetric Photothermal-Humidity Response and Autonomous Perceptivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404696. [PMID: 38923035 DOI: 10.1002/adma.202404696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Soft robots adapt to complex environments for autonomous locomotion, manipulation, and perception are attractive for robot-environment interactions. Strategies to reconcile environment-triggered actuation and self-powered sensing responses to different stimuli remain challenging. By tuning the in situ vapor phase solvent exchange effect in continuous electrospinning, an asymmetric highly-aligned all-fiber membrane (HAFM) with a hierarchical "grape-like" nanosphere-assembled microfiber structure (specific surface area of 13.6 m2 g-1) and excellent mechanical toughness (tensile stress of 5.5 MPa, and fracture toughness of 798 KJ m-3) is developed, which shows efficient asymmetric actuation to both photothermal and humidity stimuli. The HAFM consists of a metal-organic framework (MOF)-enhanced moisture-responsive layer and an MXene-improved photothermal-responsive layer, which achieves substantial actuation with a bending curvature up to ≈7.23 cm-1 and a fast response of 0.60 cm-1 s-1. By tailoring the fiber alignment and bi-layer thickness ratio, different types of micromanipulators, automatic walking robots, and plant robots with programmable structures are demonstrated, which are realized for self-powered information perception of material type, object moisture, and temperature by integrating the autonomous triboelectric effect induced by photothermal-moisture actuation. This work presents fiber materials with programable hierarchical asymmetries and inspires a common strategy for self-powered organism-interface robots to interact with complex environments.
Collapse
Affiliation(s)
- Yufan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xinran Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Luyun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Shuang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yue Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Mengjie Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zeren Lu
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zechang Ming
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jin Tao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
- Department of Textile, Garment and Design, Changshu Institute of Technology, Suzhou, 215500, China
| | - Jiaqing Xiong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
30
|
Chen M, Hou Y, An R, Qi HJ, Zhou K. 4D Printing of Reprogrammable Liquid Crystal Elastomers with Synergistic Photochromism and Photoactuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303969. [PMID: 37432879 DOI: 10.1002/adma.202303969] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
4D printing of liquid crystal elastomers (LCEs) via direct ink writing has opened up great opportunities to create stimuli-responsive actuations for applications such as soft robotics. However, most 4D-printed LCEs are limited to thermal actuation and fixed shape morphing, posing a challenge for achieving multiple programmable functionalities and reprogrammability. Here, a 4D-printable photochromic titanium-based nanocrystal (TiNC)/LCE composite ink is developed, which enables the reprogrammable photochromism and photoactuation of a single 4D-printed architecture. The printed TiNC/LCE composite exhibits reversible color-switching between white and black in response to ultraviolet (UV) irradiation and oxygen exposure. Upon near-infrared (NIR) irradiation, the UV-irradiated region can undergo photothermal actuation, allowing for robust grasping and weightlifting. By precisely controlling the structural design and the light irradiation, the single 4D-printed TiNC/LCE object can be globally or locally programmed, erased, and reprogrammed to achieve desirable photocontrollable color patterns and 3D structure constructions, such as barcode patterns and origami- and kirigami-inspired structures. This work provides a novel concept for designing and engineering adaptive structures with unique and tunable multifunctionalities, which have potential applications in biomimetic soft robotics, smart construction engineering, camouflage, multilevel information storage, etc.
Collapse
Affiliation(s)
- Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yanbei Hou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ran An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - H Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
31
|
Zang T, Fu S, Cheng J, Zhang C, Lu X, Hu J, Xia H, Zhao Y. 4D Printing of Shape-Morphing Liquid Crystal Elastomers. CHEM & BIO ENGINEERING 2024; 1:488-515. [PMID: 39974607 PMCID: PMC11835177 DOI: 10.1021/cbe.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 02/21/2025]
Abstract
In nature, biological systems can sense environmental changes and alter their performance parameters in real time to adapt to environmental changes. Inspired by these, scientists have developed a range of novel shape-morphing materials. Shape-morphing materials are a kind of "intelligent" materials that exhibit responses to external stimuli in a predetermined way and then display a preset function. Liquid crystal elastomer (LCE) is a typical representative example of shape-morphing materials. The emergence of 4D printing technology can effectively simplify the preparation process of shape-morphing LCEs, by changing the printing material compositions and printing conditions, enabling precise control and macroscopic design of the shape-morphing modes. At the same time, the layer-by-layer stacking method can also endow the shape-morphing LCEs with complex, hierarchical orientation structures, which gives researchers a great degree of design freedom. 4D printing has greatly expanded the application scope of shape-morphing LCEs as soft intelligent materials. This review systematically reports the recent progress of 3D/4D printing of shape-morphing LCEs, discusses various 4D printing technologies, synthesis methods and actuation modes of 3D/4D printed LCEs, and summarizes the opportunities and challenges of 3D/4D printing technologies in preparing shape-morphing LCEs.
Collapse
Affiliation(s)
- Tongzhi Zang
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
- Center
for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Shuang Fu
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Junpeng Cheng
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Chun Zhang
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Xili Lu
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Jianshe Hu
- Center
for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Hesheng Xia
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Yue Zhao
- Département
de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
32
|
Zhang X, Wei J, Qin L, Yu Y. Liquid crystal polymer actuators with complex and multiple actuations. J Mater Chem B 2024; 12:6757-6773. [PMID: 38916076 DOI: 10.1039/d4tb01055h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Deformable liquid crystal polymers (LCPs), which exhibit both entropic elasticity of polymer networks and anisotropic properties originating from ordered mesogens, have gained more and more interest for use as biomedical soft actuators. Especially, LCP actuators with controllable mesogen alignment, sophisticated geometry and reprogrammability are a rising star on the horizon of soft actuators, since they enable complex and multiple actuations. This review focuses on two topics: (1) the regulation of mesogen alignment and geometry of LCP actuators for complex actuations; (2) newly designed reprogrammable LCP materials for multiple actuations. First, basic actuation mechanisms are briefly introduced. Then, LCP actuators with complex actuations are demonstrated. Special attention is devoted to the improvement of fabrication methods, which profoundly influence the available complexity of the mesogen alignment and geometry. Subsequently, reprogrammable LCP actuators featuring dynamic networks or shape memory effects are discussed, with an emphasis on their multiple actuations. Finally, perspectives on the current challenges and potential development trends toward more intelligent LCP actuators are discussed, which may shed light on future investigations in this field.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| | - Jia Wei
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| | - Lang Qin
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| | - Yanlei Yu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
33
|
Zhu QL, Liu W, Khoruzhenko O, Breu J, Bai H, Hong W, Zheng Q, Wu ZL. Closed Twisted Hydrogel Ribbons with Self-Sustained Motions under Static Light Irradiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314152. [PMID: 38652466 DOI: 10.1002/adma.202314152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Self-sustained motions are widespread in biological systems by harvesting energy from surrounding environments, which inspire scientists to develop autonomous soft robots. However, most-existing soft robots require dynamic heterogeneous stimuli or complex fabrication with different components. Recently, control of topological geometry has been promising to afford soft robots with physical intelligence and thus life-like motions. Reported here are a series of closed twisted ribbon robots, which exhibit self-sustained flipping and rotation under constant light irradiation. Both Möbius strip and Seifert ribbon robots are devised for the first time by using an identical hydrogel, which responds to light irradiation on either side. Experiment and simulation results indicate that the self-regulated motions of the hydrogel robots are related to fast and reversible response of muscle-like gel, self-shadowing effect, and topology-facilitated refresh of light-exposed regions. The motion speeds and directions of the hydrogel robots can be tuned over a wide range. These closed twisted ribbon hydrogels are further applied to execute specific tasks in aqueous environments, such as collecting plastic balls, climbing a vertical rod, and transporting objects. This work presents new design principle for autonomous hydrogel robots by benefiting from material response and topology geometry, which may be inspirative for the robotics community.
Collapse
Affiliation(s)
- Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Weixuan Liu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Olena Khoruzhenko
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Huiying Bai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wei Hong
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
34
|
Liu C, Li K, Yu X, Yang J, Wang Z. A Multimodal Self-Propelling Tensegrity Structure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314093. [PMID: 38561911 DOI: 10.1002/adma.202314093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Tensegrity structure is composed of tensile cables and compressive rods, offering high stiffness-to-mass ratio, deploy ability, and excellent energy damping capability. The active and dynamic tensegrity designs demonstrate great potential for soft robots. In previous designs, the movement has relied on carefully controlled input power or manually controlled light irradiation, limiting their potential applications. Here, a hybrid tensegrity structure (HTS) is constructed by integrating thermally responsive cables, nonresponsive cables, and stiff rods. The HTS can self-propel continuously on a hot surface due to its unique geometry. The HTS allows for the easy achievement of multimodal self-propelled locomotive modes, which has been challenging for previously demonstrated self-propelling structures. Additionally, using Velcro tapes to adhere the rods and cables together, a modulable and reassemblable HTS is created. The HTS introduced in this study presents a new strategy and offers a large design space for constructing self-propelling and modulable robots.
Collapse
Affiliation(s)
- Changyue Liu
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Kai Li
- Department of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui, 230601, China
| | - Xinzi Yu
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Jiping Yang
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhijian Wang
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Xixi Octagon City, Yuhang District, Hangzhou, 310023, China
| |
Collapse
|
35
|
Yang J, Shankar MR, Zeng H. Photochemically responsive polymer films enable tunable gliding flights. Nat Commun 2024; 15:4684. [PMID: 38824184 PMCID: PMC11144244 DOI: 10.1038/s41467-024-49108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
Miniaturized passive fliers based on smart materials face challenges in precise control of shape-morphing for aerodynamics and contactless modulation of diverse gliding modes. Here, we present the optical control of gliding performances in azobenzene-crosslinked liquid crystal networks films through photochemical actuation, enabling reversible and bistable shape-morphing. First, an actuator film is integrated with additive constructs to form a rotating glider, inspired by the natural maple samara, surpassing natural counterparts in reversibly optical tuning of terminal velocity, rotational rate, and circling position. We demonstrate optical modulation dispersion of landing points for the photo-responsive microfliers indoors and outdoors. Secondly, we show the scalability of polymer film geometry for miniature gliders with similar light tunability. Thirdly, we extend the material platform to other three gliding modes: Javan cucumber seed-like glider, parachute and artificial dandelion seed. The findings pave the way for distributed microflier with contactless flight dynamics control.
Collapse
Affiliation(s)
- Jianfeng Yang
- Light Robots, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, Finland
| | - M Ravi Shankar
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hao Zeng
- Light Robots, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, Finland.
| |
Collapse
|
36
|
Kong X, Dong M, Du M, Qian J, Yin J, Zheng Q, Wu ZL. Recent Progress in 3D Printing of Polymer Materials as Soft Actuators and Robots. CHEM & BIO ENGINEERING 2024; 1:312-329. [PMID: 39974466 PMCID: PMC11835162 DOI: 10.1021/cbe.4c00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 02/21/2025]
Abstract
With inspiration from natural systems, various soft actuators and robots have been explored in recent years with versatile applications in biomedical and engineering fields. Soft active materials with rich stimulus-responsive characteristics have been an ideal candidate to devise these soft machines by using different manufacturing technologies. Among these technologies, three-dimensional (3D) printing shows advantages in fabricating constructs with multiple materials and sophisticated architectures. In this Review, we aim to provide an overview of recent progress on 3D printing of soft materials, robotics performances, and representative applications. Typical 3D printing techniques are briefly introduced, followed by state-of-the-art advances in 3D printing of hydrogels, shape memory polymers, liquid crystalline elastomers, and their hybrids as soft actuators and robots. From the perspective of material properties, the commonly used printing techniques and action-generation principles for typical printed constructs are discussed. Actuation performances, locomotive behaviors, and representative applications of printed soft materials are summarized. The relationship between printing structures and action performances of soft actuators and robots is also briefly discussed. Finally, the advantages and limitations of each soft material are compared, and the remaining challenges and future directions in this field are prospected.
Collapse
Affiliation(s)
- Xiangren Kong
- Key
Laboratory of Soft Machines and Smart Devices of Zhejiang Province,
Department of Engineering Mechanics, Zhejiang
University, Hangzhou 310027, China
- Ministry
of Education Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Min Dong
- Ministry
of Education Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Miao Du
- Ministry
of Education Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jin Qian
- Key
Laboratory of Soft Machines and Smart Devices of Zhejiang Province,
Department of Engineering Mechanics, Zhejiang
University, Hangzhou 310027, China
| | - Jun Yin
- The
State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory
of 3D Printing Process and Equipment of Zhejiang Province, School
of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qiang Zheng
- Ministry
of Education Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zi Liang Wu
- Ministry
of Education Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
Li H, Zhang B, Ye H, Jian B, He X, Cheng J, Sun Z, Wang R, Chen Z, Lin J, Xiao R, Liu Q, Ge Q. Reconfigurable 4D printing via mechanically robust covalent adaptable network shape memory polymer. SCIENCE ADVANCES 2024; 10:eadl4387. [PMID: 38748786 PMCID: PMC11095468 DOI: 10.1126/sciadv.adl4387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
4D printing enables 3D printed structures to change shape over "time" in response to environmental stimulus. Because of relatively high modulus, shape memory polymers (SMPs) have been widely used for 4D printing. However, most SMPs for 4D printing are thermosets, which only have one permanent shape. Despite the efforts that implement covalent adaptable networks (CANs) into SMPs to achieve shape reconfigurability, weak thermomechanical properties of the current CAN-SMPs exclude them from practical applications. Here, we report reconfigurable 4D printing via mechanically robust CAN-SMPs (MRC-SMPs), which have high deformability at both programming and reconfiguration temperatures (>1400%), high Tg (75°C), and high room temperature modulus (1.06 GPa). The high printability for DLP high-resolution 3D printing allows MRC-SMPs to create highly complex SMP 3D structures that can be reconfigured multiple times under large deformation. The demonstrations show that the reconfigurable 4D printing allows one printed SMP structure to fulfill multiple tasks.
Collapse
Affiliation(s)
- Honggeng Li
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Advanced Engineering, Great Bay University, Dongguan, China
| | - Biao Zhang
- Xi’an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, China
| | - Haitao Ye
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Bingcong Jian
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xiangnan He
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianxiang Cheng
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zechu Sun
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Rong Wang
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhe Chen
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ji Lin
- Center for Mechanics Plus under Extreme Environments, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, China
- State Key Laboratory of Fluid Power and Mechatronic System, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Rui Xiao
- State Key Laboratory of Fluid Power and Mechatronic System, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Qingjiang Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Qi Ge
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
38
|
Dong M, Liu W, Dai CF, Jiao D, Zhu QL, Hong W, Yin J, Zheng Q, Wu ZL. Photo-steered rapid and multimodal locomotion of 3D-printed tough hydrogel robots. MATERIALS HORIZONS 2024; 11:2143-2152. [PMID: 38376773 DOI: 10.1039/d3mh02247a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Hydrogels are an ideal material to develop soft robots. However, it remains a grand challenge to develop miniaturized hydrogel robots with mechanical robustness, rapid actuation, and multi-gait motions. Reported here is a facile strategy to fabricate hydrogel-based soft robots by three-dimensional (3D) printing of responsive and nonresponsive tough gels for programmed morphing and locomotion upon stimulations. Highly viscoelastic poly(acrylic acid-co-acrylamide) and poly(acrylic acid-co-N-isopropyl acrylamide) aqueous solutions, as well as their mixtures, are printed with multiple nozzles into 3D constructs followed by incubation in a solution of zirconium ions to form robust carboxyl-Zr4+ coordination complexes, to produce tough metallo-supramolecular hydrogel fibers. Gold nanorods are incorporated into ink to afford printed gels with response to light. Owing to the mechanical excellence and small diameter of gel fibers, the printed hydrogel robots exhibit high robustness, fast response, and agile motions when remotely steered by dynamic light. The design of printed constructs and steering with spatiotemporal light allow for multimodal motions with programmable trajectories of the gel robots. The hydrogel robots can walk, turn, flip, and transport cargos upon light stimulations. Such printed hydrogels with good mechanical performances, fast response, and agile locomotion may open opportunities for soft robots in biomedical and engineering fields.
Collapse
Affiliation(s)
- Min Dong
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Weixuan Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Fei Dai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Dejin Jiao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Wei Hong
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering Zhejiang University, Hangzhou 310058, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
39
|
Jung Y, Kwon K, Lee J, Ko SH. Untethered soft actuators for soft standalone robotics. Nat Commun 2024; 15:3510. [PMID: 38664373 PMCID: PMC11045848 DOI: 10.1038/s41467-024-47639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Soft actuators produce the mechanical force needed for the functional movements of soft robots, but they suffer from critical drawbacks since previously reported soft actuators often rely on electrical wires or pneumatic tubes for the power supply, which would limit the potential usage of soft robots in various practical applications. In this article, we review the new types of untethered soft actuators that represent breakthroughs and discuss the future perspective of soft actuators. We discuss the functional materials and innovative strategies that gave rise to untethered soft actuators and deliver our perspective on challenges and opportunities for future-generation soft actuators.
Collapse
Affiliation(s)
- Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kangkyu Kwon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Engineering Research / Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
40
|
Qu H, Gao C, Liu K, Fu H, Liu Z, Kouwer PHJ, Han Z, Ruan C. Gradient matters via filament diameter-adjustable 3D printing. Nat Commun 2024; 15:2930. [PMID: 38575640 PMCID: PMC10994943 DOI: 10.1038/s41467-024-47360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Gradient matters with hierarchical structures endow the natural world with excellent integrity and diversity. Currently, direct ink writing 3D printing is attracting tremendous interest, and has been used to explore the fabrication of 1D and 2D hierarchical structures by adjusting the diameter, spacing, and angle between filaments. However, it is difficult to generate complex 3D gradient matters owing to the inherent limitations of existing methods in terms of available gradient dimension, gradient resolution, and shape fidelity. Here, we report a filament diameter-adjustable 3D printing strategy that enables conventional extrusion 3D printers to produce 1D, 2D, and 3D gradient matters with tunable heterogeneous structures by continuously varying the volume of deposited ink on the printing trajectory. In detail, we develop diameter-programmable filaments by customizing the printing velocity and height. To achieve high shape fidelity, we specially add supporting layers at needed locations. Finally, we showcase multi-disciplinary applications of our strategy in creating horizontal, radial, and axial gradient structures, letter-embedded structures, metastructures, tissue-mimicking scaffolds, flexible electronics, and time-driven devices. By showing the potential of this strategy, we anticipate that it could be easily extended to a variety of filament-based additive manufacturing technologies and facilitate the development of functionally graded structures.
Collapse
Affiliation(s)
- Huawei Qu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
| | - Chongjian Gao
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kaizheng Liu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongya Fu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
| | - Zhiyuan Liu
- Research Center for Neural Engineering, Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Zhenyu Han
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China.
| | - Changshun Ruan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
41
|
Zheng Z, Han J, Shi Q, Demir SO, Jiang W, Sitti M. Single-step precision programming of decoupled multiresponsive soft millirobots. Proc Natl Acad Sci U S A 2024; 121:e2320386121. [PMID: 38513101 PMCID: PMC10990116 DOI: 10.1073/pnas.2320386121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Stimuli-responsive soft robots offer new capabilities for the fields of medical and rehabilitation robotics, artificial intelligence, and soft electronics. Precisely programming the shape morphing and decoupling the multiresponsiveness of such robots is crucial to enable them with ample degrees of freedom and multifunctionality, while ensuring high fabrication accuracy. However, current designs featuring coupled multiresponsiveness or intricate assembly processes face limitations in executing complex transformations and suffer from a lack of precision. Therefore, we propose a one-stepped strategy to program multistep shape-morphing soft millirobots (MSSMs) in response to decoupled environmental stimuli. Our approach involves employing a multilayered elastomer and laser scanning technology to selectively process the structure of MSSMs, achieving a minimum machining precision of 30 μm. The resulting MSSMs are capable of imitating the shape morphing of plants and hand gestures and resemble kirigami, pop-up, and bistable structures. The decoupled multistimuli responsiveness of the MSSMs allows them to conduct shape morphing during locomotion, perform logic circuit control, and remotely repair circuits in response to humidity, temperature, and magnetic field. This strategy presents a paradigm for the effective design and fabrication of untethered soft miniature robots with physical intelligence, advancing the decoupled multiresponsive materials through modular tailoring of robotic body structures and properties to suit specific applications.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Jie Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an710054, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an710054, China
| | - Qing Shi
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing100081, China
| | - Sinan Ozgun Demir
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Weitao Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an710054, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an710054, China
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Turkey
| |
Collapse
|
42
|
Wang Y, Ye H, He J, Ge Q, Xiong Y. Electrothermally controlled origami fabricated by 4D printing of continuous fiber-reinforced composites. Nat Commun 2024; 15:2322. [PMID: 38485752 PMCID: PMC10940589 DOI: 10.1038/s41467-024-46591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Active origami capable of precise deployment control, enabling on-demand modulation of its properties, is highly desirable in multi-scenario and multi-task applications. While 4D printing with shape memory composites holds great promise to realize such active origami, it still faces challenges such as low load-bearing capacity and limited transformable states. Here, we report a fabrication-design-actuation method of precisely controlled electrothermal origami with excellent mechanical performance and spatiotemporal controllability, utilizing 4D printing of continuous fiber-reinforced composites. The incorporation of continuous carbon fibers empowers electrothermal origami with a controllable actuation process via Joule heating, increased actuation force through improved heat conduction, and enhanced mechanical properties as a result of reinforcement. By modeling the multi-physical and highly nonlinear deploying process, we attain precise control over the active origami, allowing it to be reconfigured and locked into any desired configuration by manipulating activation parameters. Furthermore, we showcase the versatility of electrothermal origami by constructing reconfigurable robots, customizable architected materials, and programmable wings, which broadens the practical engineering applications of origami.
Collapse
Affiliation(s)
- Yaohui Wang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haitao Ye
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jian He
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
43
|
Leanza S, Wu S, Sun X, Qi HJ, Zhao RR. Active Materials for Functional Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302066. [PMID: 37120795 DOI: 10.1002/adma.202302066] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.
Collapse
Affiliation(s)
- Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
44
|
Wang Z, Chen Y, Ma Y, Wang J. Bioinspired Stimuli-Responsive Materials for Soft Actuators. Biomimetics (Basel) 2024; 9:128. [PMID: 38534813 DOI: 10.3390/biomimetics9030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Biological species can walk, swim, fly, jump, and climb with fast response speeds and motion complexity. These remarkable functions are accomplished by means of soft actuation organisms, which are commonly composed of muscle tissue systems. To achieve the creation of their biomimetic artificial counterparts, various biomimetic stimuli-responsive materials have been synthesized and developed in recent decades. They can respond to various external stimuli in the form of structural or morphological transformations by actively or passively converting input energy into mechanical energy. They are the core element of soft actuators for typical smart devices like soft robots, artificial muscles, intelligent sensors and nanogenerators. Significant progress has been made in the development of bioinspired stimuli-responsive materials. However, these materials have not been comprehensively summarized with specific actuation mechanisms in the literature. In this review, we will discuss recent advances in biomimetic stimuli-responsive materials that are instrumental for soft actuators. Firstly, different stimuli-responsive principles for soft actuators are discussed, including fluidic, electrical, thermal, magnetic, light, and chemical stimuli. We further summarize the state-of-the-art stimuli-responsive materials for soft actuators and explore the advantages and disadvantages of using electroactive polymers, magnetic soft composites, photo-thermal responsive polymers, shape memory alloys and other responsive soft materials. Finally, we provide a critical outlook on the field of stimuli-responsive soft actuators and emphasize the challenges in the process of their implementation to various industries.
Collapse
Affiliation(s)
- Zhongbao Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixin Chen
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Ma
- Department of Mechanical Engineering, Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jing Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
45
|
Zhang C, Fei G, Lu X, Xia H, Zhao Y. Liquid Crystal Elastomer Artificial Tendrils with Asymmetric Core-Sheath Structure Showing Evolutionary Biomimetic Locomotion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307210. [PMID: 37805917 DOI: 10.1002/adma.202307210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Indexed: 10/09/2023]
Abstract
The sophisticated and complex haptonastic movements in response to environmental-stimuli of living organisms have always fascinated scientists. However, how to fundamentally mimic the sophisticated hierarchical architectures of living organisms to provide the artificial counterparts with similar or even beyond-natural functions based on the underlying mechanism remains a major scientific challenge. Here, liquid crystal elastomer (LCE) artificial tendrils showing evolutionary biomimetic locomotion are developed following the structure-function principle that is used in nature to grow climbing plants. These elaborately designed tendril-like LCE actuators possess an asymmetric core-sheath architecture which shows a higher-to-lower transition in the degree of LC orientation from the sheath-to-core layer across the semi-ellipse cross-section. Upon heating and cooling, the LCE artificial tendril can undergo reversible tendril-like shape-morphing behaviors, such as helical coiling/winding, and perversion. The fundamental mechanism of the helical shape-morphing of the artificial tendril is revealed by using theoretical models and finite element simulations. Besides, the incorporation of metal-ligand coordination into the LCE network provides the artificial tendril with reconfigurable shape-morphing performances such as helical transitions and rotational deformations. Finally, the abilities of helical and rotational deformations are integrated into a new reprogrammed flagellum-like architecture to perform evolutionary locomotion mimicking the haptonastic movements of the natural flagellum.
Collapse
Affiliation(s)
- Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Guoxia Fei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xili Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yue Zhao
- Département de chimie Université de Sherbrooke Sherbrooke, Québec, J1K 2R1, Canada
| |
Collapse
|
46
|
Kim J, Bae J. Self-Locking Pneumatic Actuators Formed from Origami Shape-Morphing Sheets. Soft Robot 2024; 11:32-42. [PMID: 37616544 DOI: 10.1089/soro.2022.0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
Abstract
The art of origami has gained traction in various fields such as architecture, the aerospace industry, and soft robotics, owing to the exceptional versatility of flat sheets to exhibit complex shape transformations. Despite the promise that origami robots hold, their use in high-capacity environments has been limited due to the lack of rigidity. This article introduces novel, origami-inspired, self-locking pneumatic modular actuators (SPMAs), enabling them to operate in such environments. Our innovative approach is based on origami patterns that allow for various types of shape morphing, including linear and rotational motion. We have significantly enhanced the stiffness of the actuators by embedding magnets in composite sheets, thus facilitating their application in real-world scenarios. In addition, the embedded self-adjustable valves facilitate the control of sequential origami actuations, making it possible to simplify the pneumatic system for actuating multimodules. With just one actuation source and one solenoid valve, the valves enable efficient control of our SPMAs. The SPMAs can control robotic arms operating in confined spaces, and the entire system can be modularized to accomplish various tasks. Our results demonstrate the potential of origami-inspired designs to achieve more efficient and reliable robotic systems, thus opening up new avenues for the development of robotic systems for various applications.
Collapse
Affiliation(s)
- Juri Kim
- Bio-Robotics and Control Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | - Joonbum Bae
- Bio-Robotics and Control Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| |
Collapse
|
47
|
Espíndola-Pérez E, Campo J, Sánchez-Somolinos C. Multimodal and Multistimuli 4D-Printed Magnetic Composite Liquid Crystal Elastomer Actuators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2704-2715. [PMID: 38150329 PMCID: PMC10797586 DOI: 10.1021/acsami.3c14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
Liquid crystal elastomer (LCE)-based soft actuators are being studied for their significant shape-changing abilities when they are exposed to heat or light. Nevertheless, their relatively slow response compared with soft magnetic materials limits their application possibilities. Integration of magnetic responsiveness with LCEs has been previously attempted; however, the LCE response is typically jeopardized in high volumes of magnetic microparticles (MMPs). Here, a multistimuli, magnetically active LCE (MLCE), capable of producing programmable and multimodal actuation, is presented. The MLCE, composed of MMPs within an LCE matrix, is generated through extrusion-based 4D printing that enables digital control of mesogen orientation even at a 1:1 (LCE:MMPs) weight ratio, a challenging task to accomplish with other methods. The printed actuators can significantly deform when thermally actuated as well as exhibit fast response to magnetic fields. When combining thermal and magnetic stimuli, modes of actuation inaccessible with only one input are achieved. For instance, the actuator is reconfigured into various states by using the heat-mediated LCE response, followed by subsequent magnetic addressing. The multistimuli capabilities of the MLCE composite expand its applicability where common LCE actuators face limitations in speed and precision. To illustrate, a beam-steering device developed by using these materials is presented.
Collapse
Affiliation(s)
- Erick
R. Espíndola-Pérez
- Departamento
de Física de la Materia Condensada, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad
de Zaragoza, Zaragoza 50009, Spain
| | - Javier Campo
- Departamento
de Física de la Materia Condensada, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad
de Zaragoza, Zaragoza 50009, Spain
| | - Carlos Sánchez-Somolinos
- Departamento
de Física de la Materia Condensada, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad
de Zaragoza, Zaragoza 50009, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina, Instituto
de Salud Carlos III, Zaragoza 50018, Spain
| |
Collapse
|
48
|
Tabrizi M, Clement JA, Babaei M, Martinez A, Gao J, Ware TH, Shankar MR. Three-dimensional blueprinting of molecular patterns in liquid crystalline polymers. SOFT MATTER 2024; 20:511-522. [PMID: 38113054 DOI: 10.1039/d3sm01374j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Exploiting the interplay of anisotropic diamagnetic susceptibility of liquid crystalline monomers and site selective photopolymerization enables the fabrication of 3D freeforms with highly refined microstructures. Utilizing chain transfer agents in the mesogenic inks presents a pathway for broadly tuning the mechanical properties of liquid crystalline polymers and their response to stimuli. In particular, the combination of 1,4-benzenedimethanethiol and tetrabromomethane is shown to enable voxelated blueprinting of molecular order, while allowing for a modulation of the crosslink density and the mechanical properties. The formulation of these monomers allows for the resolution of the voxels to approach the limits set by the coherence lengths defined by the anchoring from surfaces. These compositions demonstrate the expected thermotropic responses while allowing for their functionalization with photochromic switches to elicit photomechanical responses. Actuation strains are shown to outstrip that accomplished with prior systems that did not access chain transfer agents to modulate the structure of the macromolecular network. Test cases of this system are shown to create freeform actuators that exploit the refined director patterns during high-resolution printing. These include topological defects, hierarchically-structured light responsive grippers, and biomimetic flyers whose flight dynamics can be actively modulated via irradiation with light.
Collapse
Affiliation(s)
- Mohsen Tabrizi
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261, USA.
| | - J Arul Clement
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261, USA.
| | - Mahnoush Babaei
- Department of Aerospace Engineering & Engineering Mechanics, University of Texas at Austin, 2617 Wichita Street, C0600, Austin, TX 78712, USA.
| | - Angel Martinez
- Department of Applied Physics and Materials Science, Northern Arizona University, Science Annex, 525 S Beaver St, Flagstaff, AZ 86011, USA.
| | - Junfeng Gao
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261, USA.
| | - Taylor H Ware
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, 209 Reed McDonald Building, College Station, TX 77843, USA.
| | - M Ravi Shankar
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261, USA.
| |
Collapse
|
49
|
Zhu QL, Liu W, Khoruzhenko O, Breu J, Hong W, Zheng Q, Wu ZL. Animating hydrogel knotbots with topology-invoked self-regulation. Nat Commun 2024; 15:300. [PMID: 38182606 PMCID: PMC10770334 DOI: 10.1038/s41467-023-44608-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
Steering soft robots in a self-regulated manner remains a grand challenge, which often requires continuous symmetry breaking and recovery steps for persistent motion. Although structural morphology is found significant for robotic functions, geometric topology has rarely been considered and appreciated. Here we demonstrate a series of knotbots, namely hydrogel-based robots with knotted structures, capable of autonomous rolling and spinning/rotating motions. With symmetry broken by external stimuli and restored by self-regulation, the coupling between self-constraint-induced prestress and photothermal strain animates the knotbots continuously. Experiments and simulations reveal that nonequilibrium processes are regulated dynamically and cooperatively by self-constraints, active deformations, and self-shadowing effect of the photo-responsive gel. The active motions enable the knotbots to execute tasks including gear rotation and rod climbing. This work paves the way to devise advanced soft robots with self-regulated sustainable motions by harnessing the topology.
Collapse
Affiliation(s)
- Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Weixuan Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Olena Khoruzhenko
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Wei Hong
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China.
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
50
|
Bauman GE, White TJ. Rheology of oligomer melts in the nematic and isotropic states. SOFT MATTER 2023; 19:8882-8888. [PMID: 37955179 DOI: 10.1039/d3sm01084h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Oligomers prepared by chain extension of liquid crystalline monomers are thermotropic. The alignment of liquid crystalline oligomers to shear flow via direct ink write printing is an increasingly popular approach to prepare aligned and 3-D printed liquid crystalline elastomers (LCEs). Here, we are concerned with the contribution of order and thermal history on the rheological properties of liquid crystalline. When the oligomers begin in a polydomain nematic state, the transition to an aligned nematic state occurs gradually over a wide range of shear rates. Conversely, when the oligomers begin in an isotropic state they behave as a Newtonian fluid until a critical shear rate is reached, at which point they align in a critical manner. It is shown that by either decreasing liquid crystalline content or increasing temperature, the viscosity of the oligomer melt decreases while this critical shear rate increases. In addition, the normal stress of oligomers is positive over all shear rates but decreases significantly in magnitude with increasing temperature. By combining the analysis of both temperature and liquid crystalline content, it is demonstrated that the temperature relative to the nematic-isotropic transition temperature is key to the oligomers' unique flow behaviors.
Collapse
Affiliation(s)
- Grant E Bauman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA.
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA.
- Materials Science and Engineering Program, University of Colorado Boulder, 027 UCB, Boulder, CO 80303, USA
| |
Collapse
|