1
|
He S, Yu H, Kouwenhoven MBN, Paoletti P, Dijkstra M, Xuan C. Rolling of stimuli-bent cylindrical robots using contact finite element simulations. SOFT MATTER 2025; 21:3480-3491. [PMID: 40066626 PMCID: PMC11894519 DOI: 10.1039/d5sm00080g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Curved cylinders, if rigid, cannot roll on a surface like straight cylinders, but soft cylinders bent by specific stimuli can! Studying the autonomous locomotion of these soft robots and their interactions with the environment using finite element analysis is challenging due to the complex multiphysics of stimuli-responsive soft materials and nonlinear contact mechanics. In this pioneering work, we simulate the rolling of stimuli-bent cylinders on a surface using contact finite elements and introduce a simple yet effective pseudo-thermal field method. Our approach successfully reproduces several modes of autonomous locomotion observed experimentally, including phototropic locomotion, phototropic climbing on a slanted surface, steering under partial illumination, and backward rolling under alternating heat-light stimuli. Parametric analysis demonstrates strong agreement between the experiments and our numerical results, validating the effectiveness of our approach. This study reveals the intriguing and highly nonintuitive dynamics of photo- or thermally bent cylindrical soft robots, and serves as a paradigm for modelling and simulating such rolling robots.
Collapse
Affiliation(s)
- Shaobo He
- Department of Foundational Mathematics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
- School of Engineering, University of Liverpool, Liverpool L69 3BX, UK
| | - Hao Yu
- Department of Physics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - M B N Kouwenhoven
- Department of Physics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Paolo Paoletti
- School of Engineering, University of Liverpool, Liverpool L69 3BX, UK
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Chen Xuan
- Department of Foundational Mathematics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Soft Condensed Matter & Biophysics group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- XJTLU-JITRI Academy of Industrial Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Advanced Materials Research Center, Department of Chemistry and Materials Science, School of Science, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China
| |
Collapse
|
2
|
Yan J, Yang S, Chen J, Wu X, Qing Y. Dynamic BO bonds-induced viscoelasticity and surface adhesion regulation for constructing konjac glucomannan-based soft actuators with superior mobility and capturability. Int J Biol Macromol 2025; 305:141033. [PMID: 39954880 DOI: 10.1016/j.ijbiomac.2025.141033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
In all soft actuators, achieving both outstanding mobility and capturability is crucial; however, these properties are usually mutually exclusive due to the lack of an effective mechanism for controlling the viscoelasticity of the switching polymer matrix while maintaining a moderate surface adhesion. In this study, we propose a dynamic bond cross-linking strategy to successfully develop a magnetically responsive soft hydrogel (MRSH) with exceptional mobility (117.56 mm/s) and capturability. By introducing dynamic BO bonds into the KGM@Fe3O4@PSSMA NPs composite matrix, the crosslinking density and overall cohesion of MRSH can be precisely controlled, resulting in unique non-Newtonian fluid characteristics. Additionally, the dynamic BO bonds transition between associative and dissociative states with the hydroxyl groups on the KGM molecular chains, which can effectively regulate the amount of hydroxyl groups on the surface of MRSH, thereby achieving demonstrate moderate surface adhesion. As a result, the synthesized MRSH exhibits remarkable capturability on various target surfaces and maintains outstanding mobility, even in underwater environments. This work paves the way for new possibilities in the field of soft actuators and engineering by overcoming the limitations of traditional soft actuators in terms of surface adhesion and responsiveness through innovative structural design and material combinations.
Collapse
Affiliation(s)
- Jie Yan
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Suwen Yang
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianshan Chen
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xianzhang Wu
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yan Qing
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
3
|
Chen Q, Huang J, Feng X, Xie H, Zhou S. Controlling Self-Oscillation of a Single-Layer Liquid Crystal Elastomer at the Air-Water Interface via Light Programming for Water Strider-Inspired Aquatic Robots. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17433-17444. [PMID: 40042360 DOI: 10.1021/acsami.5c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Biomimicking aquatic organisms offers many opportunities for designing intelligent robots that can freely move on water. However, most works were focused on multilayered materials or assembled structures and faced limitations in stability, versatility, and motion navigation. Here, we develop an assembly-free water-strider-like aquatic robot using a single layer of light-programmable liquid-crystal elastomer (LCE) that could be used to create asymmetric structures. The LCE strider mimics both the shape and functions of natural water striders; it is designed with four legs, with the fore and hind legs being programmed respectively via light. Consequently, the LCE strider shows self-oscillation and self-propulsion behaviors on low-grade thermal water with a temperature gradient at the air-water interface, owing to unbalanced changes in the contact areas and tensions between the legs and water. Furthermore, the trajectories of the LCE strider are manipulated by NIR light after selectively depositing polydopamine with photothermal conversion. In this way, path navigation is realized, that is, moving straight and on-demand turning, similar to the movement of natural water striders. This study should inspire the development of soft intelligent robots using shape-morphing materials.
Collapse
Affiliation(s)
- Qiuyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinhui Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xinran Feng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
4
|
Zhou Y, Zhao Y, Zhao D, Guan X, Zhang K, Pi Y, Zhong J. Sensing-actuating integrated asymmetric multilayer hydrogel muscle for soft robotics. MICROSYSTEMS & NANOENGINEERING 2025; 11:40. [PMID: 40032815 DOI: 10.1038/s41378-025-00884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Achieving autonomously responding to external stimuli and providing real-time feedback on their motion state are key challenges in soft robotics. Herein, we propose an asymmetric three-layer hydrogel muscle with integrated sensing and actuating performances. The actuating layer, made of p(NIPAm-HEMA), features an open pore structure, enabling it to achieve 58% volume shrinkage in just 8 s. The customizable heater allows for efficient programmable deformation of the actuating layer. A strain-responsive hydrogel layer, with a linear response of up to 50% strain, is designed to sense the deformation process. Leveraging these actuating and sensing capabilities, we develop an integrated hydrogel muscle that can recognize lifted objects with various weights or grasped objects of different sizes. Furthermore, we demonstrate a self-crawling robot to showcase the application potential of the hydrogel muscle for soft robots working in aquatic environments. This robot, featuring a modular distributed sensing and actuating layer, can autonomously move forward under closed-loop control based on self-detected resistance signals. The strategy of modular distributed stimuli-responsive sensing and actuating materials offers unprecedented capabilities for creating smart and multifunctional soft robotics.
Collapse
Affiliation(s)
- Yexi Zhou
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Yu Zhao
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Dazhe Zhao
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Xiao Guan
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Kaijun Zhang
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Yucong Pi
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Junwen Zhong
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China.
| |
Collapse
|
5
|
Zhou J, Zhang Y, Zhang M, Yang D, Huang W, Zheng A, Cao L. High-Performance MXene Hydrogel for Self-Propelled Marangoni Swimmers and Water-Enabled Electricity Generator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408161. [PMID: 39556720 PMCID: PMC11727138 DOI: 10.1002/advs.202408161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Developing multifunctional materials that integrate self-propulsion and self-power generation is a significant challenge. This study introduces a high-performance MXene-chitosan composite hydrogel (CM) that successfully combines these functionalities. Utilizing Schiff base bond and hydrogen bond interactions, the CM hydrogel, composed of chitosan, vanillin, and MXene, achieves exceptional self-propulsion on water driven by Marangoni forces. The hydrogel demonstrates rapid movement, extended operation, and controllable trajectories. Notably, the CM hydrogel also exhibits superior degradability, recyclability, and repeatability. Furthermore, the nano-confined channels within the hydrogel play a crucial role in enhancing its water-enabled electricity generation (WEG) performance. By efficiently adsorbing water molecules and selectively transporting cations through these channels, the hydrogel can generate electricity from water molecules and cations more efficiently. As a result, the CM-WEG achieves a stable open-circuit voltage of up to 0.83 V and a short-circuit current of 0.107 mA on seawater, with further improvements in K2CO3-containing water, reaching 1.26 V and 0.922 mA. Leveraging its unique combination of self-propulsion and WEG functionalities, the CM hydrogel is successfully used for cargo delivery while simultaneously powering electronic devices. This research represents a significant step toward the development of self-powered, autonomous soft robotics, opening new research directions in the field.
Collapse
Affiliation(s)
- Jiayi Zhou
- School of Material Science and EngineeringShanghai University of Engineering ScienceShanghai201620P. R. China
| | - Yan Zhang
- School of Material Science and EngineeringShanghai University of Engineering ScienceShanghai201620P. R. China
| | - Ming Zhang
- School of Material Science and EngineeringShanghai University of Engineering ScienceShanghai201620P. R. China
| | - Dongye Yang
- School of Material Science and EngineeringShanghai University of Engineering ScienceShanghai201620P. R. China
| | - Wenwei Huang
- School of Material Science and EngineeringShanghai University of Engineering ScienceShanghai201620P. R. China
| | - Ao Zheng
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- College of StomatologyShanghai Jiao Tong UniversityShanghai200011P. R. China
| | - Lingyan Cao
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- College of StomatologyShanghai Jiao Tong UniversityShanghai200011P. R. China
| |
Collapse
|
6
|
Zhang L, Ren L, Li S, Xiong M, Cao Y, Chen Y, Lu W, Liu C, Luo S. A water strider-inspired intestinal stent actuator for controllable adhesion and unidirectional biofluid picking. Mater Today Bio 2024; 28:101216. [PMID: 39280113 PMCID: PMC11402441 DOI: 10.1016/j.mtbio.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Soft-bodied aquatic organisms exhibit extraordinary navigation and mobility in liquid environments which inspiring the development of biomimetic actuators with complex movements. Stimulus-responsive soft materials including hydrogels and shape-memory polymers are replacing traditional rigid parts that leading to dynamic and responsive soft actuators. In this study, we took inspiration from water strider to develop a biomimetic actuator for targeted stimulation and pH sensing in the gastrointestinal tract. We designed a soft and water-based Janus adhesive hydrogel patch that attaches to specific parts of the intestine and responds to pH changes through external stimulation. The hydrogel patch that forms the belly of the water strider driver incorporates an inverse opal microstructure that enables pH responsive behavior. The hydrogel patch on the water strider's leg uses a sandwich structure of Cu particles to convert light into heat and bend under infrared light to mimic the water strider's leg simulating the efficient and steady movement of the water strider's leg which transporting the biological fluid in one direction. This miniature bionic actuator demonstrates controlled adhesion and unidirectional biofluid delivery capabilities, proving its potential for targeted stimulus response and pH sensing in the gastrointestinal tract, thus opening up new possibilities for medical applications in the growing field of soft actuators.
Collapse
Affiliation(s)
- Lihao Zhang
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 20024, China
| | - Lehao Ren
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sunlong Li
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 20024, China
| | - Minli Xiong
- Outpatient Department of Shanghai University of International Business and Economics, Shanghai, 210620, China
| | - Yue Cao
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 20024, China
| | - Yufei Chen
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 20024, China
| | - Weipeng Lu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 20024, China
| | - Cihui Liu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 20024, China
| | - Shengzheng Luo
- Department of Gastroenterology, Ningde Municipal Hospital, Ningde Normal University, Ningde, Fujian, 352100, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xin SongJiang Road, 201620, Shanghai, China
| |
Collapse
|
7
|
Chimerad M, Borjian P, Pathak P, Fasano J, Cho HJ. A Miniaturized, Fuel-Free, Self-Propelled, Bio-Inspired Soft Actuator for Copper Ion Removal. MICROMACHINES 2024; 15:1208. [PMID: 39459082 PMCID: PMC11509375 DOI: 10.3390/mi15101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
We present a novel miniaturized, gear-shaped, fuel-free actuator capable of autonomously propelling itself in an aquatic environment to absorb heavy metals, such as copper ions. While hydrogel-based absorbents are promising solutions for cationic pollutant remediation, their stationary nature limits their effectiveness in areas where contaminants are unevenly distributed. To address this, we developed a bio-inspired soft actuator that mimics natural propulsion mechanisms. The Marangoni effect, driven by its inherent chemical properties, demonstrated a self-propelled motion without requiring external fuel. The proof-of-concept actuator generated a plane motion lasting up to 2 h and swept over an area approximately 400 times bigger than its size. By harnessing the chemical and optical properties of the hydrogel, we efficiently removed and quantitatively analyzed copper ions through a colorimetric method. This innovative integration of self-propelled movement and efficient copper ion absorption underscores its potential for advancing miniaturized devices in environmental remediation, paving the way for more active and efficient pollutant removal systems in challenging aquatic environments.
Collapse
Affiliation(s)
| | | | | | | | - Hyoung J. Cho
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, FL 32816, USA; (M.C.); (P.B.); (P.P.); (J.F.)
| |
Collapse
|
8
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
9
|
Wang X, Li S, Chang JC, Liu J, Axinte D, Dong X. Multimodal locomotion ultra-thin soft robots for exploration of narrow spaces. Nat Commun 2024; 15:6296. [PMID: 39060231 PMCID: PMC11282246 DOI: 10.1038/s41467-024-50598-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
From power plants on land to bridges over the sea, safety-critical built environments require periodic inspections for detecting issues to avoid functional discontinuities of these installations. However, navigation paths in these environments are usually challenging as they often contain difficult-to-access spaces (near-millimetre and submillimetre-high gaps) and multiple domains (solid, liquid and even aerial). In this paper, we address these challenges by developing a class of Thin Soft Robots (TS-Robot: thickness, 1.7 mm) that can access narrow spaces and perform cross-domain multimodal locomotion. We adopted a dual-actuation sandwich structure with a tuneable Poisson's ratio tensioning mechanism for developing the TS-Robots driven by dielectric elastomers, providing them with two types of gaits (linear and undulating), remarkable output force ( ~ 41 times their weight) and speed (1.16 times Body Length/s and 13.06 times Body Thickness/s). Here, we demonstrated that TS-Robots can crawl, climb, swim and collaborate for transitioning between domains in environments with narrow entries.
Collapse
Affiliation(s)
- Xi Wang
- Rolls-Royce University Technology Centre in Manufacturing and On-Wing Technology, Faculty of Engineering, University of Nottingham, NG7 2GX, Nottingham, UK
| | - Siqian Li
- Rolls-Royce University Technology Centre in Manufacturing and On-Wing Technology, Faculty of Engineering, University of Nottingham, NG7 2GX, Nottingham, UK
| | - Jung-Che Chang
- Rolls-Royce University Technology Centre in Manufacturing and On-Wing Technology, Faculty of Engineering, University of Nottingham, NG7 2GX, Nottingham, UK
| | - Jing Liu
- Rolls-Royce University Technology Centre in Manufacturing and On-Wing Technology, Faculty of Engineering, University of Nottingham, NG7 2GX, Nottingham, UK
| | - Dragos Axinte
- Rolls-Royce University Technology Centre in Manufacturing and On-Wing Technology, Faculty of Engineering, University of Nottingham, NG7 2GX, Nottingham, UK
| | - Xin Dong
- Rolls-Royce University Technology Centre in Manufacturing and On-Wing Technology, Faculty of Engineering, University of Nottingham, NG7 2GX, Nottingham, UK.
| |
Collapse
|
10
|
Zhou C, Tang X, Shi R, Liu C, Zhu P, Wang L. All-Aqueous Soft Milli-swimmers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042714 DOI: 10.1021/acsami.4c05914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Microscale swimmers are attractive for targeted drug delivery, noninvasive microsurgery and environmental remediation at different length scales, among which, Marangoni-based swimmers have garnered considerable attention due to their independence of external energy supply. However, applications of most existing chemical swimmers are limited by complex fabrication, high cost, utilization of organic (or even toxic) solvents, poor motility performance, and lack of controllability. To address these challenges, we propose an approach for all-aqueous soft milli-swimmers that utilizes biodegradable hydrogels and biocompatible fuels. This innovative method achieves swimmer body generation and fuel loading in one step by simply dripping one aqueous solution into another, saving fabrication time and minimizing fuel loss during transfer. These all-aqueous soft milli-swimmers have rove beetle-like self-propulsion, which stores low-surface-energy compounds within their body for propulsion on liquid surfaces. Isotropic and anisotropic all-aqueous soft milli-swimmers are formed with precise control over their dimension, morphology, and movement velocity. Through their motion within engineered channels, intricate labyrinths, dynamic air-liquid interfaces, and collective self-assemblies, their remarkable adaptability in complex aqueous environments is demonstrated. Furthermore, the integration of functional nanoparticles endows these all-aqueous milli-swimmers with multifunctionality, expanding their applications in cargo transportation, sensing, and environmental remediation.
Collapse
Affiliation(s)
- Chunmei Zhou
- Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xin Tang
- Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Rui Shi
- College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Caihong Liu
- Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
11
|
Zhu G, Zhang S, Lu G, Peng B, Lin C, Zhang L, Shi F, Zhang Q, Cheng M. ON-OFF Control of Marangoni Self-propulsion via A Supra-amphiphile Fuel and Switch. Angew Chem Int Ed Engl 2024; 63:e202405287. [PMID: 38712847 DOI: 10.1002/anie.202405287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
Marangoni self-propulsion refers to motion of liquid or solid driven by a surface tension gradient, and has applications in soft robots/devices, cargo delivery, self-assembly etc. However, two problems remain to be addressed for motion control (e.g., ON-OFF) with conventional surfactants as Marangoni fuel: (1) limited motion lifetime due to saturated interfacial adsorption of surfactants; (2) in- situ motion stop is difficult once Marangoni flows are triggered. Instead of covalent surfactants, supra-amphiphiles with hydrophilic and hydrophobic parts linked noncovalently, hold promise to solve these problems owing to its dynamic and reversible surface activity responsively. Here, we propose a new concept of 'supra-amphiphile fuel and switch' based on the facile synthesis of disodium-4-azobenzene-amino-1,3-benzenedisulfonate (DABS) linked by a Schiff base, which has amphiphilicity for self-propulsion, hydrolyzes timely to avoid saturated adsorption, and provides pH-responsive control over ON-OFF motion. The self-propulsion lifetime is extended by 50-fold with DABS and motion control is achieved. The mechanism is revealed with coupled interface chemistry involving two competitive processes of interfacial adsorption and hydrolysis of DABS based on both experiments and simulation. The concept of 'supra-amphiphile fuel and switch' provides an active solution to prolong and control Marangoni self-propulsive devices for the advance of intelligent material systems.
Collapse
Affiliation(s)
- Guiqiang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Shu Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Guoxin Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Benwei Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Cuiling Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Liqun Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Feng Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Qian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Mengjiao Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
12
|
Yu S, Liu C, Sui M, Wei H, Cheng H, Chen Y, Zhu Y, Wang H, Ma P, Wang L, Li T. Magnetic-acoustic actuated spinous microrobot for enhanced degradation of organic pollutants. ULTRASONICS SONOCHEMISTRY 2024; 102:106714. [PMID: 38113586 PMCID: PMC10772293 DOI: 10.1016/j.ultsonch.2023.106714] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
A growing interest in the development of efficient strategies for the removal of organic pollutants from polluted water is emerging. As such, artificial micro/nano machines performing excellent water purification tasks have recently attracted more research attention of scientists. Hereby a spinous Fe3O4@PPy microrobot is presented that towards an efficient organic pollutant removal by enhancing Fenton-like reaction. The microrobot is fabricated by wrapping polypyrrole (PPy) on a spiny magnetic template prepared from sunflowers pollen. Modulating the sound pressure and frequency of the ultrasonic field enables the Fe3O4@PPy microrobot to present multimode motion, such as violent eruption-like motion caused by local cavitation (ELM), march-like unific motion (MLM), and typhoon-like rotation toward the center gathered motion (TLM). This multimode motion achieves the sufficient locomotion of microrobots in three-dimensional space and effective contact with organic pollutants in polluted water. Furthermore, a 5.2-fold increase in the degradation rate of methylene blue has been realized using Fe3O4@PPy microrobots under low-concentration hydrogen peroxide conditions. Also, the magnetically controlled recovery of microrobots from water after the completion of the degradation task has been demonstrated. The magnetic-acoustic actuated spinous microrobot can be extrapolated to other catalytic microrobot, developing a new strategy for an easier implementation and recovery of microrobot in real applications of water purification.
Collapse
Affiliation(s)
- Shimin Yu
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Chenlu Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Mingyang Sui
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Haiqiang Wei
- The Twelfth Oil Production Plant of Changqing Oilfield Company, Qingyang 745400, China
| | - Haoyuan Cheng
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Yujing Chen
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Penglei Ma
- College of Engineering, Ocean University of China, Qingdao 266100, China.
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute of HIT, Chongqing 401151, China.
| |
Collapse
|
13
|
Huang H, Yang S, Ying Y, Chen X, Puigmartí-Luis J, Zhang L, Pané S. 3D Motion Manipulation for Micro- and Nanomachines: Progress and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305925. [PMID: 37801654 DOI: 10.1002/adma.202305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Indexed: 10/08/2023]
Abstract
In the past decade, micro- and nanomachines (MNMs) have made outstanding achievements in the fields of targeted drug delivery, tumor therapy, microsurgery, biological detection, and environmental monitoring and remediation. Researchers have made significant efforts to accelerate the rapid development of MNMs capable of moving through fluids by means of different energy sources (chemical reactions, ultrasound, light, electricity, magnetism, heat, or their combinations). However, the motion of MNMs is primarily investigated in confined two-dimensional (2D) horizontal setups. Furthermore, three-dimensional (3D) motion control remains challenging, especially for vertical movement and control, significantly limiting its potential applications in cargo transportation, environmental remediation, and biotherapy. Hence, an urgent need is to develop MNMs that can overcome self-gravity and controllably move in 3D spaces. This review delves into the latest progress made in MNMs with 3D motion capabilities under different manipulation approaches, discusses the underlying motion mechanisms, explores potential design concepts inspired by nature for controllable 3D motion in MNMs, and presents the available 3D observation and tracking systems.
Collapse
Affiliation(s)
- Hai Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, China
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Li Zhang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, Zürich, CH-8092, Switzerland
| |
Collapse
|
14
|
Wang H, Liu C, Yang X, Ji F, Song W, Zhang G, Wang L, Zhu Y, Yu S, Zhang W, Li T. Multimode microdimer robot for crossing tissue morphological barrier. iScience 2023; 26:108320. [PMID: 38026188 PMCID: PMC10665815 DOI: 10.1016/j.isci.2023.108320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Swimming microrobot energized by magnetic fields exhibits remotely propulsion and modulation in complex biological experiment with high precision. However, achieving high environment adaptability and multiple tasking capability in one configuration is still challenging. Here, we present a strategy that use oriented magnetized Janus spheres to assemble the microdimer robots with two magnetic distribution configurations of head-to-side configuration (HTS-config) and head-to-head configuration (HTH-config), achieving performance of multiple tasks through multimode transformation and locomotion. Modulating the magnetic frequency enables multimode motion transformation between tumbling, rolling, and swing motion with different velocities. The dual-asynchronization mechanisms of HTS-config and HTH-config robot dependent on magnetic dipole-dipole angle are investigated by molecular dynamic simulation. In addition, the microdimer robot can transport cell crossing morphological rugae or complete drug delivery on tissues by switching motion modes. This microdimer robot can provide versatile motion modes to address environmental variations or multitasking requirements.
Collapse
Affiliation(s)
- Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Chenlu Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Xiaopeng Yang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Fengtong Ji
- Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Wenping Song
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- Chongqing Research Institute of Harbin Institute of Technology Chongqing, Chongqing, China
| | - Guangyu Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao, China
| | - Weiwei Zhang
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, China
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- Chongqing Research Institute of Harbin Institute of Technology Chongqing, Chongqing, China
| |
Collapse
|
15
|
Feng K, Chen L, Zhang X, Gong J, Qu J, Niu R. Collective Behaviors of Isotropic Micromotors: From Assembly to Reconstruction and Motion Control under External Fields. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2900. [PMID: 37947744 PMCID: PMC10650937 DOI: 10.3390/nano13212900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Swarms of self-propelled micromotors can mimic the processes of natural systems and construct artificial intelligent materials to perform complex collective behaviors. Compared to self-propelled Janus micromotors, the isotropic colloid motors, also called micromotors or microswimmers, have advantages in self-assembly to form micromotor swarms, which are efficient in resistance to external disturbance and the delivery of large quantity of cargos. In this minireview, we summarize the fundamental principles and interactions for the assembly of isotropic active particles to generate micromotor swarms. Recent discoveries based on either catalytic or external physical field-stimulated micromotor swarms are also presented. Then, the strategy for the reconstruction and motion control of micromotor swarms in complex environments, including narrow channels, maze, raised obstacles, and high steps/low gaps, is summarized. Finally, we outline the future directions of micromotor swarms and the remaining challenges and opportunities.
Collapse
Affiliation(s)
- Kai Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
| | - Ling Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
| | - Xinle Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, National Engineering Research Center of Novel Equipment for Polymer Processing, School of Mechanical and Automotive Engineering, South China University of Technology, Ministry of Education, Guangzhou 510641, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
| |
Collapse
|
16
|
Cao Q, Chen W, Zhong Y, Ma X, Wang B. Biomedical Applications of Deformable Hydrogel Microrobots. MICROMACHINES 2023; 14:1824. [PMID: 37893261 PMCID: PMC10609176 DOI: 10.3390/mi14101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023]
Abstract
Hydrogel, a material with outstanding biocompatibility and shape deformation ability, has recently become a hot topic for researchers studying innovative functional materials due to the growth of new biomedicine. Due to their stimulus responsiveness to external environments, hydrogels have progressively evolved into "smart" responsive (such as to pH, light, electricity, magnetism, temperature, and humidity) materials in recent years. The physical and chemical properties of hydrogels have been used to construct hydrogel micro-nano robots which have demonstrated significant promise for biomedical applications. The different responsive deformation mechanisms in hydrogels are initially discussed in this study; after which, a number of preparation techniques and a variety of structural designs are introduced. This study also highlights the most recent developments in hydrogel micro-nano robots' biological applications, such as drug delivery, stem cell treatment, and cargo manipulation. On the basis of the hydrogel micro-nano robots' current state of development, current difficulties and potential future growth paths are identified.
Collapse
Affiliation(s)
- Qinghua Cao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| | - Wenjun Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.Z.); (X.M.)
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ying Zhong
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.Z.); (X.M.)
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.Z.); (X.M.)
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bo Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| |
Collapse
|
17
|
Xin C, Ren Z, Zhang L, Yang L, Wang D, Hu Y, Li J, Chu J, Zhang L, Wu D. Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing. Nat Commun 2023; 14:4273. [PMID: 37460571 DOI: 10.1038/s41467-023-40038-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Inspired by the flexible joints of humans, actuators containing soft joints have been developed for various applications, including soft grippers, artificial muscles, and wearable devices. However, integrating multiple microjoints into soft robots at the micrometer scale to achieve multi-deformation modalities remains challenging. Here, we propose a two-in-one femtosecond laser writing strategy to fabricate microjoints composed of hydrogel and metal nanoparticles, and develop multi-joint microactuators with multi-deformation modalities (>10), requiring short response time (30 ms) and low actuation power (<10 mW) to achieve deformation. Besides, independent joint deformation control and linkage of multi-joint deformation, including co-planar and spatial linkage, enables the microactuator to reconstruct a variety of complex human-like modalities. Finally, as a proof of concept, the collection of multiple microcargos at different locations is achieved by a double-joint micro robotic arm. Our microactuators with multiple modalities will bring many potential application opportunities in microcargo collection, microfluid operation, and cell manipulation.
Collapse
Affiliation(s)
- Chen Xin
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Zhongguo Ren
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Leran Zhang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Liang Yang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Minde Building, Renai Road, 215123, Suzhou, P. R. China
| | - Dawei Wang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Yanlei Hu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Jiawen Li
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Jiaru Chu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Dong Wu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
18
|
Song SW, Lee S, Choe JK, Lee AC, Shin K, Kang J, Kim G, Yeom H, Choi Y, Kwon S, Kim J. Pen-drawn Marangoni swimmer. Nat Commun 2023; 14:3597. [PMID: 37328461 DOI: 10.1038/s41467-023-39186-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
Pen-drawing is an intuitive, convenient, and creative fabrication method for delivering emergent and adaptive design to real devices. To demonstrate the application of pen-drawing to robot construction, we developed pen-drawn Marangoni swimmers that perform complex programmed tasks using a simple and accessible manufacturing process. By simply drawing on substrates using ink-based Marangoni fuel, the swimmers demonstrate advanced robotic motions such as polygon and star-shaped trajectories, and navigate through maze. The versatility of pen-drawing allows the integration of the swimmers with time-varying substrates, enabling multi-step motion tasks such as cargo delivery and return to the original place. We believe that our pen-based approach will significantly expand the potential applications of miniaturized swimming robots and provide new opportunities for simple robotic implementations.
Collapse
Affiliation(s)
- Seo Woo Song
- Bio-MAX Institute, Seoul National University, Seoul, South Korea.
- Basic Science and Engineering Initiative, Children's Heart Center, Stanford University, Stanford, CA, USA.
| | - Sumin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
- Meteor Biotech, Co. Ltd., Seoul, South Korea
| | - Jun Kyu Choe
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Amos Chungwon Lee
- Bio-MAX Institute, Seoul National University, Seoul, South Korea
- Meteor Biotech, Co. Ltd., Seoul, South Korea
| | - Kyoungseob Shin
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Junwon Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea
| | - Gyeongjun Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea
| | - Huiran Yeom
- Division of Data Science, College of Information and Communication Technology, The University of Suwon, Hwaseong, South Korea
| | - Yeongjae Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Sunghoon Kwon
- Bio-MAX Institute, Seoul National University, Seoul, South Korea.
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea.
- Inter-University Semiconductor Research Center, Seoul, 08826, South Korea.
| | - Jiyun Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
- Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
| |
Collapse
|
19
|
Li T, Yu S, Sun B, Li Y, Wang X, Pan Y, Song C, Ren Y, Zhang Z, Grattan KTV, Wu Z, Zhao J. Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels. SCIENCE ADVANCES 2023; 9:eadg4501. [PMID: 37146139 PMCID: PMC10162671 DOI: 10.1126/sciadv.adg4501] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Swimming microrobots guided in the circulation system offer considerable promise in precision medicine but currently suffer from problems such as limited adhesion to blood vessels, intensive blood flow, and immune system clearance-all reducing the targeted interaction. A swimming microrobot design with clawed geometry, a red blood cell (RBC) membrane-camouflaged surface, and magnetically actuated retention is discussed, allowing better navigation and inspired by the tardigrade's mechanical claw engagement, coupled to an RBC membrane coating, to minimize blood flow impact. Using clinical intravascular optical coherence tomography in vivo, the microrobots' activity and dynamics in a rabbit jugular vein was monitored, illustrating very effective magnetic propulsion, even against a flow of ~2.1 cm/s, comparable with rabbit blood flow characteristics. The equivalent friction coefficient with magnetically actuated retention is elevated ~24-fold, compared to magnetic microspheres, achieving active retention at 3.2 cm/s, for >36 hours, showing considerable promise across biomedical applications.
Collapse
Affiliation(s)
- Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Shimin Yu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery (Ministry of Education), the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yilong Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery (Ministry of Education), the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xinlong Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery (Ministry of Education), the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yunlu Pan
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Chunlei Song
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Zhanxiang Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Kenneth T V Grattan
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Science and Technology, University of London, London EC1V 0HB, UK
| | - Zhiguang Wu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Jie Zhao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
20
|
Wang B, Handschuh-Wang S, Shen J, Zhou X, Guo Z, Liu W, Pumera M, Zhang L. Small-Scale Robotics with Tailored Wettability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205732. [PMID: 36113864 DOI: 10.1002/adma.202205732] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Indexed: 05/05/2023]
Abstract
Small-scale robots (SSRs) have emerged as promising and versatile tools in various biomedical, sensing, decontamination, and manipulation applications, as they are uniquely capable of performing tasks at small length scales. With the miniaturization of robots from the macroscale to millimeter-, micrometer-, and nanometer-scales, the viscous and surface forces, namely adhesive forces and surface tension have become dominant. These forces significantly impact motion efficiency. Surface engineering of robots with both hydrophilic and hydrophobic functionalization presents a brand-new pathway to overcome motion resistance and enhance the ability to target and regulate robots for various tasks. This review focuses on the current progress and future perspectives of SSRs with hydrophilic and hydrophobic modifications (including both tethered and untethered robots). The study emphasizes the distinct advantages of SSRs, such as improved maneuverability and reduced drag forces, and outlines their potential applications. With continued innovation, rational surface engineering is expected to endow SSRs with exceptional mobility and functionality, which can broaden their applications, enhance their penetration depth, reduce surface fouling, and inhibit bacterial adhesion.
Collapse
Affiliation(s)
- Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, China
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, 999077, China
| |
Collapse
|
21
|
Hu L, Chee PL, Sugiarto S, Yu Y, Shi C, Yan R, Yao Z, Shi X, Zhi J, Kai D, Yu HD, Huang W. Hydrogel-Based Flexible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205326. [PMID: 36037508 DOI: 10.1002/adma.202205326] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Flexible electronics is an emerging field of research involving multiple disciplines, which include but not limited to physics, chemistry, materials science, electronic engineering, and biology. However, the broad applications of flexible electronics are still restricted due to several limitations, including high Young's modulus, poor biocompatibility, and poor responsiveness. Innovative materials aiming for overcoming these drawbacks and boost its practical application is highly desirable. Hydrogel is a class of 3D crosslinked hydrated polymer networks, and its exceptional material properties render it as a promising candidate for the next generation of flexible electronics. Here, the latest methods of synthesizing advanced functional hydrogels and the state-of-art applications of hydrogel-based flexible electronics in various fields are reviewed. More importantly, the correlation between properties of the hydrogel and device performance is discussed here, to have better understanding of the development of flexible electronics by using environmentally responsive hydrogels. Last, perspectives on the current challenges and future directions in the development of hydrogel-based multifunctional flexible electronics are provided.
Collapse
Affiliation(s)
- Lixuan Hu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Sigit Sugiarto
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Chuanqian Shi
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, P. R. China
| | - Ren Yan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Zhuoqi Yao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Xuewen Shi
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Jiacai Zhi
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Hai-Dong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
22
|
Zhu T, Ni Y, Biesold GM, Cheng Y, Ge M, Li H, Huang J, Lin Z, Lai Y. Recent advances in conductive hydrogels: classifications, properties, and applications. Chem Soc Rev 2023; 52:473-509. [PMID: 36484322 DOI: 10.1039/d2cs00173j] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogel-based conductive materials for smart wearable devices have attracted increasing attention due to their excellent flexibility, versatility, and outstanding biocompatibility. This review presents the recent advances in multifunctional conductive hydrogels for electronic devices. First, conductive hydrogels with different components are discussed, including pure single network hydrogels based on conductive polymers, single network hydrogels with additional conductive additives (i.e., nanoparticles, nanowires, and nanosheets), double network hydrogels based on conductive polymers, and double network hydrogels with additional conductive additives. Second, conductive hydrogels with a variety of functionalities, including self-healing, super toughness, self-growing, adhesive, anti-swelling, antibacterial, structural color, hydrophobic, anti-freezing, shape memory and external stimulus responsiveness are introduced in detail. Third, the applications of hydrogels in flexible devices are illustrated (i.e., strain sensors, supercapacitors, touch panels, triboelectric nanogenerator, bioelectronic devices, and robot). Next, the current challenges facing hydrogels are summarized. Finally, an imaginative but reasonable outlook is given, which aims to drive further development in the future.
Collapse
Affiliation(s)
- Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yan Cheng
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Mingzheng Ge
- School of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| |
Collapse
|
23
|
Wang Y, Shen J, Handschuh-Wang S, Qiu M, Du S, Wang B. Microrobots for Targeted Delivery and Therapy in Digestive System. ACS NANO 2023; 17:27-50. [PMID: 36534488 DOI: 10.1021/acsnano.2c04716] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Untethered miniature robots enable targeted delivery and therapy deep inside the gastrointestinal tract in a minimally invasive manner. By combining actuation systems and imaging tools, significant progress has been made toward the development of functional microrobots. These robots can be actuated by external fields and fuels while featuring real-time tracking feedback toward certain regions and can perform the therapeutic process by rational exertion of the local environment of the gastrointestinal tract (e.g., pH, enzyme). Compared with conventional surgical tools, such as endoscopic devices and catheters, miniature robots feature minimally invasive diagnosis and treatment, multifunctionality, high safety and adaptivity, embodied intelligence, and easy access to tortuous and narrow lumens. In addition, the active motion of microrobots enhances local penetration and retention of drugs in tissues compared to common passive oral drug delivery. Based on the dissimilar microenvironments in the various sections of the gastrointestinal tract, this review introduces the advances of miniature robots for minimally invasive targeted delivery and therapy of diseases along the gastrointestinal tract. The imaging modalities for the tracking and their application scenarios are also discussed. We finally evaluate the challenges and barriers that retard their applications and hint on future research directions in this field.
Collapse
Affiliation(s)
- Yun Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen518036, P.R. China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen518111, P.R. China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen518111, P.R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| |
Collapse
|
24
|
Wu B, Xue Y, Ali I, Lu H, Yang Y, Yang X, Lu W, Zheng Y, Chen T. The Dynamic Mortise-and-Tenon Interlock Assists Hydrated Soft Robots Toward Off-Road Locomotion. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0015. [PMID: 39290972 PMCID: PMC11407522 DOI: 10.34133/research.0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/01/2022] [Indexed: 09/19/2024]
Abstract
Natural locomotion such as walking, crawling, and swimming relies on spatially controlled deformation of soft tissues, which could allow efficient interaction with the external environment. As one of the ideal candidates for biomimetic materials, hydrogels can exhibit versatile bionic morphings. However, it remains an enormous challenge to transfer these in situ deformations to locomotion, particularly above complex terrains. Herein, inspired by the crawling mode of inchworms, an isotropic hydrogel with thermoresponsiveness could evolve to an anisotropic hydrogel actuator via interfacial diffusion polymerization, further evolving to multisection structure and exhibiting adaptive deformation with diverse degrees of freedom. Therefore, a dynamic mortise-and-tenon interlock could be generated through the interaction between the self-deformation of the hydrogel actuator and rough terrains, inducing continual multidimensional locomotion on various artificial rough substrates and natural sandy terrain. Interestingly, benefiting from the powerful mechanical energy transfer capability, the crawlable hydrogel actuators could also be utilized as hydrogel motors to activate static cargos to overstep complex terrains, which exhibit the potential application of a biomimetic mechanical discoloration device. Therefore, we believe that this design principle and control strategy may be of potential interest to the field of deformable materials, soft robots, and biomimetic devices.
Collapse
Affiliation(s)
- Baoyi Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yaoting Xue
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Israt Ali
- INRS-EMT, 1650 Boul. Lionel Boulet, Varennes J3X 0A1, Canada
| | - Huanhuan Lu
- College of Chemical Engineering, Ningbo Polytechnic, Ningbo 315800, China
| | - Yuming Yang
- Key Laboratory for Biomedical Engineering of Ministry of Education Ministry of China, Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xuxu Yang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yinfei Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education Ministry of China, Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
25
|
Wang Y, Guan Q, Lei D, Esmaeely Neisiany R, Guo Y, Gu S, You Z. Meniscus-Climbing System Inspired 3D Printed Fully Soft Robotics with Highly Flexible Three-Dimensional Locomotion at the Liquid-Air Interface. ACS NANO 2022; 16:19393-19402. [PMID: 36367434 DOI: 10.1021/acsnano.2c09066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soft robotics locomotion at the liquid-air interface has become more and more important for an intelligent society. However, existing locomotion of soft robotics is limited to two dimensions. It remains a formidable challenge to realize three-dimensional locomotion (X, Y, and Z axes) at the liquid-air two-phase interface due to the unbalanced mechanical environment. Inspired by meniscus-climbing beetle larva Pyrrhalta, the mechanism of a three-phase (liquid-solid-air) contact line is here proposed to address the aforementioned challenge. A corresponding 3D printed fully soft robotics (named larvobot) based on photoresponsive liquid crystal elastomer/carbon nanotubes composites endowed repeatable programmable deformation and high degree-of-freedom locomotion. Three-dimensional locomotion at the liquid-air interface including twisting and rolling-up has been developed. The equation of motion is established by analyzing the mechanics along the solid-water surface of the larvobot. Meanwhile, ANSYS is used to calculate the stress distribution, which coincides with the speculation. Moreover, soft robotics is remotely driven by light in a precise spatiotemporal control, which provides a great advantage for applications. As an example, we demonstrate the controllable locomotion of the soft robotics inside closed tubes, which could be used for drug delivery and intelligent transportation.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai201620, P. R. China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai201620, P. R. China
| | - Dong Lei
- Department of Cardiology, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, School of Medicine, Shanghai Jiao Tong University, Shanghai200011, P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar9617976487, Iran
| | - Yue Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai201620, P. R. China
| | - Shijia Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai201620, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai201620, P. R. China
| |
Collapse
|
26
|
Zhang Z, Qin C, Feng H, Xiang Y, Yu B, Pei X, Ma Y, Zhou F. Design of large-span stick-slip freely switchable hydrogels via dynamic multiscale contact synergy. Nat Commun 2022; 13:6964. [PMID: 36379942 PMCID: PMC9666504 DOI: 10.1038/s41467-022-34816-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Solid matter that can rapidly and reversibly switch between adhesive and non-adhesive states is desired in many technological domains including climbing robotics, actuators, wound dressings, and bioelectronics due to the ability for on-demand attachment and detachment. For most types of smart adhesive materials, however, reversible switching occurs only at narrow scales (nanoscale or microscale), which limits the realization of interchangeable surfaces with distinct adhesive states. Here, we report the design of a switchable adhesive hydrogel via dynamic multiscale contact synergy, termed as DMCS-hydrogel. The hydrogel rapidly switches between slippery (friction ~0.04 N/cm2) and sticky (adhesion ~3 N/cm2) states in the solid-solid contact process, exhibits large span, is switchable and dynamic, and features rapid adhesive switching. The design strategy of this material has wide applications ranging from programmable adhesive materials to intelligent devices.
Collapse
Affiliation(s)
- Zhizhi Zhang
- grid.9227.e0000000119573309State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, China ,grid.410726.60000 0004 1797 8419College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Chenxi Qin
- grid.9227.e0000000119573309State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, China ,grid.410726.60000 0004 1797 8419College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Haiyan Feng
- grid.9227.e0000000119573309State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, China ,grid.410726.60000 0004 1797 8419College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yangyang Xiang
- grid.9227.e0000000119573309State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Bo Yu
- grid.9227.e0000000119573309State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Xiaowei Pei
- grid.9227.e0000000119573309State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Yanfei Ma
- grid.9227.e0000000119573309State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Feng Zhou
- grid.9227.e0000000119573309State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, China
| |
Collapse
|
27
|
Hsieh TL, Garoff S, Tilton RD. Marangoni spreading time evolution and synergism in binary surfactant mixtures. J Colloid Interface Sci 2022; 623:685-696. [DOI: 10.1016/j.jcis.2022.05.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
|
28
|
Soft microswimmers: Material capabilities and biomedical applications. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Wang Y, Su G, Li J, Guo Q, Miao Y, Zhang X. Robust, Healable, Self-Locomotive Integrated Robots Enabled by Noncovalent Assembled Gradient Nanostructure. NANO LETTERS 2022; 22:5409-5419. [PMID: 35730755 DOI: 10.1021/acs.nanolett.2c01375] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Integration, being lightweight, and intelligence are important orientations for the future advancement of soft robots. However, existing soft robots are generally hydrogels or silicone rubber, which are inherently mechanically inferior and easily damaged and difficult to integrate functions. Here, inspired by nacre, an elastomer actuator with sulfonated graphene-based gradient nanostructures is constructed via supramolecular multiscale assembly. The resulting nanocomposite possesses an ultrahigh toughness of 141.19 MJ/m3 and high room-temperature self-healing efficiency (89%). The proof-of-concept robot is demonstrated to emphasize its maximum swimming speed of 2.67 body length per second, whose speed is comparable to that of plankton, representing the outperformance of most artificial soft robots. Furthermore, the robot can stably absorb pollutants and recover its robustness and functionality even when damaged. This study breaks the mutual exclusivity of functional execution and fast locomotions, and we anticipate that our nanostructural design will offer an effective extended path to other integrated robots that required multifunction integration.
Collapse
Affiliation(s)
- Yuyan Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jin Li
- Joint International Research Laboratory of Impact Dynamics and its Engineering Applications, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Quanquan Guo
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Faculty of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
| | - Yinggang Miao
- Joint International Research Laboratory of Impact Dynamics and its Engineering Applications, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
30
|
Zhang Z, Wang H, Yang H, Song W, Dai L, Yu S, Liu X, Li T. Magnetic microswarm for MRI contrast enhancer. Chem Asian J 2022; 17:e202200561. [DOI: 10.1002/asia.202200561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhanxiang Zhang
- Harbin Institute of Technology State Key Laboratory of Robotics and System CHINA
| | - Haocheng Wang
- Harbin Institute of Technology State Key Laboratory of Robotics and System CHINA
| | - Hua Yang
- Peking Union Medical College Hospital National Clinical Research Center for Obstetric & Gynecologic Diseases CHINA
| | - Wenping Song
- Harbin Institute of Technology State Key Laboratory of Robotics and System CHINA
| | - Lizhou Dai
- Harbin Institute of Technology State Key Laboratory of Robotics and System CHINA
| | - Shimin Yu
- Harbin Institute of Technology State Key Laboratory of Robotics and System CHINA
| | - Xuejia Liu
- The Fourth Affiliated Hospital of Harbin Medical University Department of Medical Imaging CHINA
| | - Tianlong Li
- Harbin Institute of Technology Mechanical Engineering 92 West Dazhi StreetMainhouse Room 125 150001 Harbin CHINA
| |
Collapse
|
31
|
He Y, Wang L, Zhao M, Fan Z, Rong W, Sun L. Flexible Magnetic Micropartners for Micromanipulation at Interfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22570-22581. [PMID: 35507761 DOI: 10.1021/acsami.2c01131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Microrobots working at liquid surfaces have immense potential for micromanipulation in tight and enclosed spaces, whereas constructing agile and functional microrobots with simple structures at liquid surfaces is a great challenge. Herein, a pair of magnetic circular microdisks working as partners at ethylene glycol (EG) surfaces are proposed in order to accomplish flexible locomotion and in situ micromanipulation tasks. The microdisks can be controlled to connect and separate by modulating the orientation of the applied magnetic field. After the two disks connect as an entity, they are transformed into micropartners under an oscillating magnetic field in 3D space. By changing the vertical component of the oscillating field, the micropartners can obtain controllable propulsion through paddling and wriggling modes, and the locomotion speed can reach approximately two body lengths per second. They can also climb a meniscus, and even crawl on a solid surface in a liquid. Finally, this pair of micropartners is demonstrated as a flexible microgripper to implement manipulations at the liquid surfaces, including cargo capture, delivery along prescribed paths, and release.
Collapse
Affiliation(s)
- Yuanzhe He
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Lefeng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Min Zhao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Zenghua Fan
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Weibin Rong
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Lining Sun
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
32
|
Zhang X, Xue P, Yang X, Valenzuela C, Chen Y, Lv P, Wang Z, Wang L, Xu X. Near-Infrared Light-Driven Shape-Programmable Hydrogel Actuators Loaded with Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11834-11841. [PMID: 35192332 DOI: 10.1021/acsami.1c24702] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Shape-programmable hydrogel-based soft actuators that can adaptively respond to external stimuli are of paramount significance for the development of bioinspired aquatic smart soft robots. Herein, we report the design and synthesis of near-infrared (NIR) light-driven hydrogel actuators through in situ photopolymerization of poly(N-isopropylacrylamide) (PNIPAM) hydrogels loaded with metal-organic frameworks (MOFs) onto the surface of the poly(dimethylsiloxane) (PDMS) thin film. The MOFs can not only function as an excellent photothermal nanotransducer but also accelerate the adsorption/desorption of water due to their porous nanostructure, which speeds up the response rate of the actuators. Shape-programmable hydrogel actuators are fabricated by tailoring the patterning of PDMS thin film, and thus different shape-morphing modes such as directional bending and chiral twisting are observed under the NIR light irradiations. As the proof-of-concept demonstrations, an artificial hand, biomimetic mimosa, and flower are conceptualized with light-driven MOF-containing hydrogel actuators. Interestingly, we are able to achieve an octopus-inspired light-driven soft swimmer upon cyclic NIR illumination due to the fast photoresponsiveness of as-prepared hydrogel actuators. This work can offer insights for fabricating programmable and reconfigurable smart aquatic soft actuators, thus shining a light into their potential applications in emerging fields including soft robots, biomedical devices, and beyond.
Collapse
Affiliation(s)
- Xinmu Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Pan Xue
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Pengfei Lv
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhaokai Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xinhua Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
33
|
Zhao H, Cheng X, Wu C, Liu TL, Zhao Q, Li S, Ni X, Yao S, Han M, Huang Y, Zhang Y, Rogers JA. Mechanically Guided Hierarchical Assembly of 3D Mesostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109416. [PMID: 35067974 DOI: 10.1002/adma.202109416] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/01/2022] [Indexed: 06/14/2023]
Abstract
3D, hierarchical micro/nanostructures formed with advanced functional materials are of growing interest due to their broad potential utility in electronics, robotics, battery technology, and biomedical engineering. Among various strategies in 3D micro/nanofabrication, a set of methods based on compressive buckling offers wide-ranging material compatibility, fabrication scalability, and precise process control. Previously reports on this type of approach rely on a single, planar prestretched elastomeric platform to transform thin-film precursors with 2D layouts into 3D architectures. The simple planar configuration of bonding sites between these precursors and their assembly substrates prevents the realization of certain types of complex 3D geometries. In this paper, a set of hierarchical assembly concepts is reported that leverage multiple layers of prestretched elastomeric substrates to induce not only compressive buckling of 2D precursors bonded to them but also of themselves, thereby creating 3D mesostructures mounted at multiple levels of 3D frameworks with complex, elaborate configurations. Control over strains used in these processes provides reversible access to multiple different 3D layouts in a given structure. Examples to demonstrate these ideas through both experimental and computational results span vertically aligned helices to closed 3D cages, selected for their relevance to 3D conformal bio-interfaces and multifunctional microsystems.
Collapse
Affiliation(s)
- Hangbo Zhao
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Changsheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Tzu-Li Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Qinai Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shuo Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Xinchen Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Shenglian Yao
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mengdi Han
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurological Surgery, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
34
|
Fang J, Zhuang Y, Liu K, Chen Z, Liu Z, Kong T, Xu J, Qi C. A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104347. [PMID: 35072360 PMCID: PMC8922102 DOI: 10.1002/advs.202104347] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/30/2021] [Indexed: 05/07/2023]
Abstract
Research field of soft robotics develops exponentially since it opens up many imaginations, such as human-interactive robot, wearable robots, and transformable robots in unpredictable environments. Wet environments such as sea and in vivo represent dynamic and unstructured environments that adaptive soft robots can reach their potentials. Recent progresses in soft hybridized robotics performing tasks underwater herald a diversity of interactive soft robotics in wet environments. Here, the development of soft robots in wet environments is reviewed. The authors recapitulate biomimetic inspirations, recent advances in soft matter materials, representative fabrication techniques, system integration, and exemplary functions for underwater soft robots. The authors consider the key challenges the field faces in engineering material, software, and hardware that can bring highly intelligent soft robots into real world.
Collapse
Affiliation(s)
- Jielun Fang
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Yanfeng Zhuang
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Kailang Liu
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Zhuo Chen
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Zhou Liu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Tiantian Kong
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Jianhong Xu
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Cheng Qi
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| |
Collapse
|
35
|
Sauleda ML, Hsieh TL, Xu W, Tilton RD, Garoff S. Surfactant spreading on a deep subphase: Coupling of Marangoni flow and capillary waves. J Colloid Interface Sci 2022; 614:511-521. [PMID: 35121509 DOI: 10.1016/j.jcis.2022.01.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 02/05/2023]
Abstract
HYPOTHESIS Surfactant-driven Marangoni spreading generates a fluid flow characterized by an outwardly moving "Marangoni ridge". Spreading on thin and/or high viscosity subphases, as most of the prior literature emphasizes, does not allow the formation of capillary waves. On deep, low viscosity subphases, Marangoni stresses may launch capillary waves coupled with the Marangoni ridge, and new dependencies emerge for key spreading characteristics on surfactant thermodynamic and kinetic properties. EXPERIMENTS AND MODELING Computational and physical experiments were performed using a broad range of surfactants to report the post-deposition motion of the surfactant front and the deformation of the subphase surface. Modeling coupled the Navier-Stokes and advective diffusion equations with an adsorption model. Separate experiments employed tracer particles or an optical density method to track surfactant front motion or surface deformation, respectively. FINDINGS Marangoni stresses on thick subphases induce capillary waves, the slowest of which is co-mingled with the Marangoni ridge. Changing Marangoni stresses by varying the surfactant system alters the surfactant front velocity and the amplitude - but not the velocity - of the slowest capillary wave. As spreading progresses, the surfactant front and its associated surface deformation separate from the slowest moving capillary wave.
Collapse
Affiliation(s)
- Madeline L Sauleda
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tsung-Lin Hsieh
- Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Wangrun Xu
- Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Robert D Tilton
- Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Stephen Garoff
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
36
|
Qi J, Chen Z, Jiang P, Hu W, Wang Y, Zhao Z, Cao X, Zhang S, Tao R, Li Y, Fang D. Recent Progress in Active Mechanical Metamaterials and Construction Principles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102662. [PMID: 34716676 PMCID: PMC8728820 DOI: 10.1002/advs.202102662] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Indexed: 05/03/2023]
Abstract
Active mechanical metamaterials (AMMs) (or smart mechanical metamaterials) that combine the configurations of mechanical metamaterials and the active control of stimuli-responsive materials have been widely investigated in recent decades. The elaborate artificial microstructures of mechanical metamaterials and the stimulus response characteristics of smart materials both contribute to AMMs, making them achieve excellent properties beyond the conventional metamaterials. The micro and macro structures of the AMMs are designed based on structural construction principles such as, phase transition, strain mismatch, and mechanical instability. Considering the controllability and efficiency of the stimuli-responsive materials, physical fields such as, the temperature, chemicals, light, electric current, magnetic field, and pressure have been adopted as the external stimuli in practice. In this paper, the frontier works and the latest progress in AMMs from the aspects of the mechanics and materials are reviewed. The functions and engineering applications of the AMMs are also discussed. Finally, existing issues and future perspectives in this field are briefly described. This review is expected to provide the basis and inspiration for the follow-up research on AMMs.
Collapse
Affiliation(s)
- Jixiang Qi
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Zihao Chen
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Peng Jiang
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Wenxia Hu
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Yonghuan Wang
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Zeang Zhao
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Xiaofei Cao
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Shushan Zhang
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Ran Tao
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Ying Li
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Daining Fang
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
37
|
Wu S, Shi H, Lu W, Wei S, Shang H, Liu H, Si M, Le X, Yin G, Theato P, Chen T. Aggregation‐Induced Emissive Carbon Dots Gels for Octopus‐Inspired Shape/Color Synergistically Adjustable Actuators. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuangshuang Wu
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Huihui Shi
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Shuxin Wei
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Hui Shang
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Hao Liu
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Muqing Si
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Guangqiang Yin
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Patrick Theato
- Soft Matter Synthesis Laboratory Institute for Biological Interfaces III Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) Engesser Str. 18 76131 Karlsruhe Germany
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| |
Collapse
|
38
|
Wu S, Shi H, Lu W, Wei S, Shang H, Liu H, Si M, Le X, Yin G, Theato P, Chen T. Aggregation-Induced Emissive Carbon Dots Gels for Octopus-Inspired Shape/Color Synergistically Adjustable Actuators. Angew Chem Int Ed Engl 2021; 60:21890-21898. [PMID: 34312961 DOI: 10.1002/anie.202107281] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 12/11/2022]
Abstract
Some living organisms such as the octopus have fantastic abilities to simultaneously swim away and alter body color/morphology for disguise and self-protection, especially when there is a threat perception. However, it is still quite challenging to construct artificial soft actuators with octopus-like synergistic shape/color change and directional locomotion behaviors, but such systems could enhance the functions of soft robotics dramatically. Herein, we proposed to utilize unique hydrophobic carbon dots (CDs) with rotatable surficial groups to construct the aggregation-induced emission (AIE) active glycol CDs polymer gel, which could be further employed to be interfacially bonded to an elastomer to produce anisotropic bilayer soft actuator. When putting the actuator on a water surface, glycol spontaneously diffused out from the gel layer to allow water intake, resulting in a color change from a blue dispersion fluorescence to red AIE and a shape deformation, as well as a large surface tension gradient that can promote its autonomous locomotion. Based on these findings, artificial soft swimming robots with octopus-like synergistic shape/color change and directional swimming motion were demonstrated. This study provides an elegant strategy to develop advanced multi-functional bio-inspired intelligent soft robotics.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Huihui Shi
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shuxin Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hui Shang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hao Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Muqing Si
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Guangqiang Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Patrick Theato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Str. 18, 76131, Karlsruhe, Germany
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
39
|
Song J, Chen Y. Self-propelled hydrogels that glide on water. Sci Robot 2021; 6:eabh1399. [PMID: 34043572 DOI: 10.1126/scirobotics.abh1399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 11/02/2022]
Abstract
Active hydrogels with dynamic wettability move spontaneously on the surface of water like a common water strider.
Collapse
Affiliation(s)
- Jinlong Song
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology, Dalian 116024, P. R. China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Yang Chen
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology, Dalian 116024, P. R. China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|