1
|
Junge K, Hughes J. Spatially distributed biomimetic compliance enables robust anthropomorphic robotic manipulation. COMMUNICATIONS ENGINEERING 2025; 4:76. [PMID: 40287513 PMCID: PMC12033370 DOI: 10.1038/s44172-025-00407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
The impressive capabilities of humans to robustly perform manipulation stems from compliant interactions, enabled by the structure and materials distributed in the hands. We propose that mimicking this spatially distributed compliance in an anthropomorphic robotic hand enhances open-loop manipulation robustness and leads to human-like behaviors. Here we introduce the ADAPT Hand, equipped with configurable compliant elements on the skin, fingers, and wrist. After quantifying the effect of compliance on individual components against a rigid configuration, we experimentally analyze the performance of the full hand. Through automated pick-and-place tests, we show the grasping robustness mirrors the estimated geometric theoretical limit, while stress-testing the robot to perform 800+ grasps. Finally, 24 items with varying geometries are grasped in a constrained environment with a 93% success rate. We demonstrate that the hand-object self-organization behavior, driven by passive adaptation, underpins this robustness. The hand exhibits different grasp types based on object geometries, with a 68% similarity to natural human grasps.
Collapse
Affiliation(s)
- Kai Junge
- CREATE Lab, EPFL, Lausanne, Switzerland.
| | | |
Collapse
|
2
|
Wu R, Girardi L, Mintchev S. Encoding mechanical intelligence using ultraprogrammable joints. SCIENCE ADVANCES 2025; 11:eadv2052. [PMID: 40267192 PMCID: PMC12017317 DOI: 10.1126/sciadv.adv2052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
Animal bodies act as physical controllers, with their finely tuned passive mechanical responses physically "encoding" complex movements and environmental interactions. This capability allows animals to perform challenging tasks with minimal muscular or neural activities, a phenomenon known as embodied intelligence. However, realizing such robots remains challenging due to the lack of mechanically intelligent bodies with abundant tunable parameters-such as tunable stiffness-which is a critical factor akin to the programmable parameters of a neural network. We introduce an elastic rolling cam (ERC) with accurately inverse-designable rotational stiffness. The ERC can closely replicate 100,000 randomly generated stiffness profiles in simulation. Prototypes ranging from millimeters to centimeters were manufactured. To illustrate the mechanical intelligence encoded by programming the ERC's stiffness response, we designed a bipedal robot with optimized ERC passive knees, achieving energy-efficient, open-loop stable walking across uneven terrain. We also demonstrated a quadcopter drone with ERC joints encoding an impact-activated, dual-state morphing.
Collapse
Affiliation(s)
- Rui Wu
- Environmental Robotics Laboratory, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, UK
| | - Luca Girardi
- Environmental Robotics Laboratory, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
| | - Stefano Mintchev
- Environmental Robotics Laboratory, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
| |
Collapse
|
3
|
Kiss B, Buchmann A, Renjewski D, Badri-Spröwitz A. Passive knee flexion increases forward impulse of the trailing leg during the step-to-step transition. Sci Rep 2025; 15:12915. [PMID: 40234481 PMCID: PMC12000429 DOI: 10.1038/s41598-025-95589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/21/2025] [Indexed: 04/17/2025] Open
Abstract
During walking, the brain and nervous system coordinate muscle activity to efficiently regulate body movement. Simultaneously, passive structures in the legs interact with the ground, generating reaction forces that contribute to leg and body motion. A well-known example of this active-passive coordination is the human ankle, which plays a crucial role in propelling both the leg and the entire body forward with each step. Human walking efficiency relies on the elastic recoil of the Achilles tendon, facilitated by a "catapult mechanism" that stores energy during stance and releases it during push-off. The catapult release mechanism could include the passive flexion of the knee, as the main part of knee flexion was reported to happen passively after leading leg touch-down. This study is the first to investigate the effects of passive versus active knee flexion initiation, using the bipedal EcoWalker-2 robot with passive ankles. By leveraging the precision of robotic measurements, this study aimed to elucidate the importance of timing of gait events and its impact on momentum and kinetic energy changes of the robot. The EcoWalker-2 walked successfully with both initiation methods, maintaining toe clearance. Passive knee flexion initiation delayed the onset of ankle plantar flexion by 3% of the gait cycle compared to active knee flexion initiation, leading to 87% larger increase in the trailing leg horizontal momentum, and 188% larger magnitude increase in the center of mass momentum vector during the step-to-step transition. The findings highlight the role of knee flexion in the release of the catapult and timing of gait events. These insights contribute to improving the control and mechanics of human-centered robotic and assistive devices. Specifically, enabling passive knee flexion initiation could be beneficial in humanoid robots with passive ankles, and in ankle-knee prostheses and orthoses with passive ankles for saving on control effort, and reducing hardware complexity otherwise required for active knee flexion before the step-to-step transition. Additionally, this approach enhances horizontal momentum gain in the trailing leg during the step-to-step transition, with the potential to improve locomotion efficiency.
Collapse
Affiliation(s)
- Bernadett Kiss
- Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany.
| | - Alexandra Buchmann
- Chair of Applied Mechanics, TUM School of Engineering & Design, Department of Mechanical Engineering, Technical University of Munich, Garching near Munich, 85748, Germany
| | - Daniel Renjewski
- Chair of Applied Mechanics, TUM School of Engineering & Design, Department of Mechanical Engineering, Technical University of Munich, Garching near Munich, 85748, Germany
| | - Alexander Badri-Spröwitz
- Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
- Department of Mechanical Engineering, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
4
|
Su J, He K, Li Y, Tu J, Chen X. Soft Materials and Devices Enabling Sensorimotor Functions in Soft Robots. Chem Rev 2025. [PMID: 40163535 DOI: 10.1021/acs.chemrev.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sensorimotor functions, the seamless integration of sensing, decision-making, and actuation, are fundamental for robots to interact with their environments. Inspired by biological systems, the incorporation of soft materials and devices into robotics holds significant promise for enhancing these functions. However, current robotics systems often lack the autonomy and intelligence observed in nature due to limited sensorimotor integration, particularly in flexible sensing and actuation. As the field progresses toward soft, flexible, and stretchable materials, developing such materials and devices becomes increasingly critical for advanced robotics. Despite rapid advancements individually in soft materials and flexible devices, their combined applications to enable sensorimotor capabilities in robots are emerging. This review addresses this emerging field by providing a comprehensive overview of soft materials and devices that enable sensorimotor functions in robots. We delve into the latest development in soft sensing technologies, actuation mechanism, structural designs, and fabrication techniques. Additionally, we explore strategies for sensorimotor control, the integration of artificial intelligence (AI), and practical application across various domains such as healthcare, augmented and virtual reality, and exploration. By drawing parallels with biological systems, this review aims to guide future research and development in soft robots, ultimately enhancing the autonomy and adaptability of robots in unstructured environments.
Collapse
Affiliation(s)
- Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiaqi Tu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
5
|
Wen Q, Zhang M, Sun J, Li W, Chu J, Wang Z, Zhang S, Ren L. Legged Robot with Tensegrity Feature Bionic Knee Joint. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411351. [PMID: 39899684 PMCID: PMC11948042 DOI: 10.1002/advs.202411351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/20/2024] [Indexed: 02/05/2025]
Abstract
Legged robots, designed to emulate human functions, have greatly influenced numerous sectors. However, the focus on continuously improving the joint motors and control systems of existing legged robots not only increases costs and complicates maintenance but also results in failure to accurately mimic the functionality of the human skeletal‒muscular system. This study introduces a bionic legged robot structure that leverages the tensegrity principle, drawing inspiration from the human leg's structural morphology and kinematic mechanisms. By designing a system that distinguishes between rolling and sliding movements, the human knee's variable instantaneous center of rotation (ICR), is successfully replicated showcasing its capabilities in achieving gait resemblance and vibration absorption. The tensegrity unit's features, including remarkable deformability, self-recovery, and the four-bar mechanism's singular position characteristic, alongside a rope unlocking mechanism reminiscent of human muscles, facilitate in situ compliance-rigid-compliance transitions of the knee joint without the need for knee joint motors, relying solely on ground contact through the foot. This innovation overcomes the conventional dependency of legged robots on joint motors, as the system requires only a single DC motor positioned at the hip joint and a straightforward control program to seamlessly execute a complete cycle of a single leg's movement.
Collapse
Affiliation(s)
- Qi Wen
- School of Mechatronic EngineeringChangchun University of TechnologyChangchun130012China
| | - Meiling Zhang
- School of Mechatronic EngineeringChangchun University of TechnologyChangchun130012China
| | - Jianwei Sun
- School of Mechatronic EngineeringChangchun University of TechnologyChangchun130012China
| | - Weijia Li
- School of Mechatronic EngineeringChangchun University of TechnologyChangchun130012China
| | - Jinkui Chu
- School of Mechanical EngineeringDalian University of TechnologyDalian116024China
| | - Zhenyu Wang
- School of Mechanical EngineeringDalian University of TechnologyDalian116024China
| | - Songyu Zhang
- School of Mechatronic EngineeringChangchun University of TechnologyChangchun130012China
| | - Luquan Ren
- Key Laboratory of Bionic EngineeringJilin UniversityChangchun130022China
| |
Collapse
|
6
|
Biewener AA, Wilson AM. Integrating biomechanics, energetics and ecology perspectives in locomotion. J Exp Biol 2025; 228:JEB249585. [PMID: 39973191 DOI: 10.1242/jeb.249585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Scientific fields evolve a culture and vocabulary that create a group identity but may result in reduced understanding by people in apparently adjacent but different fields. Here, a series of articles written by scientists active in biomechanics, energetics and ecology relevant to locomotion forms the basis of researchers striving to bridge those divides and providing a common language and perspective.
Collapse
Affiliation(s)
- Andrew A Biewener
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Bedford, MA 01730, USA
| | - Alan M Wilson
- Structure & Motion Laboratory, The Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| |
Collapse
|
7
|
Lin Y, Rankin JW, Lamas LP, Moazen M, Hutchinson JR. Hindlimb kinematics, kinetics and muscle dynamics during sit-to-stand and sit-to-walk transitions in emus (Dromaius novaehollandiae). J Exp Biol 2024; 227:jeb247519. [PMID: 39445465 PMCID: PMC11708823 DOI: 10.1242/jeb.247519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Terrestrial animals not only need to walk and run but also lie prone to rest and then stand up. Sit-to-stand (STS) and sit-to-walk (STW) transitions are vital behaviours little studied in species other than humans so far, but likely impose biomechanical constraints on limb design because they involve near-maximal excursions of limb joints that should require large length changes and force production from muscles. By integrating data from experiments into musculoskeletal simulations, we analysed joint motions, ground reaction forces, and muscle dynamics during STS and STW in a large terrestrial, bipedal and cursorial bird: the emu (Dromaius novaehollandiae; body mass ∼30 kg). Simulation results suggest that in both STS and STW, emus operate near the functional limits (∼50% of shortening/lengthening) of some of their hindlimb muscles, particularly in distal muscles with limited capacity for length change and leverage. Both movements involved high muscle activations (>50%) and force generation of the major joint extensor muscles early in the transition. STW required larger net joint moments and non-sagittal motions than STS, entailing greater demands for muscle capacity. Whilst our study involves multiple assumptions, our findings lay the groundwork for future studies to understand, for example, how tendon contributions may reduce excessive muscle demands, especially in the distal hindlimb. As the first investigation into how an avian species stands up, this study provides a foundational framework for future comparative studies investigating organismal morphofunctional specialisations and evolution, offering potential robotics and animal welfare applications.
Collapse
Affiliation(s)
- Yuting Lin
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Jeffery W. Rankin
- Pathokinesiology Laboratory, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Luís P. Lamas
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Lisbon 1300-477, Portugal
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| |
Collapse
|
8
|
Shin WD, Phan HV, Daley MA, Ijspeert AJ, Floreano D. Fast ground-to-air transition with avian-inspired multifunctional legs. Nature 2024; 636:86-91. [PMID: 39633193 DOI: 10.1038/s41586-024-08228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024]
Abstract
Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-off for transitions into flight1. These capabilities have inspired engineers to aim for similar multimodality in aerial robots, expanding their range of applications across diverse environments. However, challenges remain in reproducing multimodal locomotion, across gaits with distinct kinematics and propulsive characteristics, such as walking and jumping, while preserving lightweight mass for flight. This trade-off between mechanical complexity and versatility2 limits most existing aerial robots to only one additional locomotor mode3-5. Here we overcome the complexity-versatility trade-off with RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments), which uses its bird-inspired multifunctional legs to jump rapidly into flight, walk on the ground, and hop over obstacles and gaps similar to the multimodal locomotion of birds. We show that jumping for take-off contributes substantially to the initial flight take-off speed6-9 and, remarkably, that it is more energy efficient than taking off without the jump. Our analysis suggests an important trade-off in mass distribution between legs and body among birds adapted for different locomotor strategies, with greater investment in leg mass among terrestrial birds with multimodal gait demands. Multifunctional robot legs expand the opportunities to deploy traditional fixed-wing aircraft in complex terrains through autonomous take-offs and multimodal gaits.
Collapse
Affiliation(s)
- Won Dong Shin
- Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Hoang-Vu Phan
- Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Monica A Daley
- Neuromechanics Lab, University of California, Irvine, Irvine, CA, USA
| | - Auke J Ijspeert
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dario Floreano
- Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Urbina-Meléndez D, Azadjou H, Valero-Cuevas FJ. Brain-body-task co-adaptation can improve autonomous learning and speed of bipedal walking. BIOINSPIRATION & BIOMIMETICS 2024; 19:066008. [PMID: 39374630 PMCID: PMC11499933 DOI: 10.1088/1748-3190/ad8419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Inspired by animals that co-adapt their brain and body to interact with the environment, we present a tendon-driven and over-actuated (i.e.njoint,n+1 actuators) bipedal robot that (i) exploits its backdrivable mechanical properties to manage body-environment interactions without explicit control,and(ii) uses a simple 3-layer neural network to learn to walk after only 2 min of 'natural' motor babbling (i.e. an exploration strategy that is compatible with leg and task dynamics; akin to childsplay). This brain-body collaboration first learns to produce feet cyclical movements 'in air' and, without further tuning, can produce locomotion when the biped is lowered to be in slight contact with the ground. In contrast, training with 2 min of 'naïve' motor babbling (i.e. an exploration strategy that ignores leg task dynamics), does not produce consistent cyclical movements 'in air', and produces erratic movements and no locomotion when in slight contact with the ground. When further lowering the biped and making the desired leg trajectories reach 1 cm below ground (causing the desired-vs-obtained trajectories error to be unavoidable), cyclical movements based on either natural or naïve babbling presented almost equally persistent trends, and locomotion emerged with naïve babbling. Therefore, we show how continual learning of walking in unforeseen circumstances can be driven by continual physical adaptation rooted in the backdrivable properties of the plant and enhanced by exploration strategies that exploit plant dynamics. Our studies also demonstrate that the bio-inspired co-design and co-adaptations of limbs and control strategies can produce locomotion without explicit control of trajectory errors.
Collapse
Affiliation(s)
- Darío Urbina-Meléndez
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | - Hesam Azadjou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | - Francisco J Valero-Cuevas
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90089, United States of America
| |
Collapse
|
10
|
Zeng X, Wang Y, Morishima K. Design and Demonstration of Hingeless Pneumatic Actuators Inspired by Plants. Biomimetics (Basel) 2024; 9:597. [PMID: 39451803 PMCID: PMC11506502 DOI: 10.3390/biomimetics9100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Soft robots have often been proposed for medical applications, creating human-friendly machines, and dedicated subject operation, and the pneumatic actuator is a representative example of such a robot. Plants, with their hingeless architecture, can take advantage of morphology to achieve a predetermined deformation. To improve the modes of motion, two pneumatic actuators that mimic the principles of the plants (the birds-of-paradise plant and the waterwheel plant) were designed, simulated, and tested using physical models in this study. The most common deformation pattern of the pneumatic actuator, bending deformation, was utilized and hingeless structures based on the plants were fabricated for a more complex motion of the lobes. Here, an ABP (actuator inspired by the birds-of-paradise plant) could bend its midrib downward to open the lobes, but an AWP (actuator inspired by the waterwheel plant) could bend its midrib upward to open the two lobes. In both the computational and physical models, the associated movements of the midrib and lobes could be observed and measured. As it lacks multiple parts that have to be assembled using joints, the actuator would be simpler to fabricate, have a variety of deformation modes, and be applicable in more fields.
Collapse
Affiliation(s)
| | | | - Keisuke Morishima
- Department of Mechanical Engineering, Osaka University, Osaka 565-0871, Japan; (X.Z.); (Y.W.)
| |
Collapse
|
11
|
van Bijlert PA, van Soest AJ, Schulp AS, Bates KT. Muscle-controlled physics simulations of bird locomotion resolve the grounded running paradox. SCIENCE ADVANCES 2024; 10:eado0936. [PMID: 39321289 PMCID: PMC11423892 DOI: 10.1126/sciadv.ado0936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Humans and birds use very different running styles. Unlike humans, birds adopt "grounded running" at intermediate speeds-a running gait where at least one foot always maintains ground contact. Avian grounded running is a paradox: Animals usually minimize locomotor energy expenditure, but birds prefer grounded running despite incurring higher energy costs. Using predictive gait simulations of the emu (Dromaius novaehollandiae), we resolve this paradox by demonstrating that grounded running represents an optimal gait for birds, from both energetics and muscle excitations perspectives. Our virtual experiments decoupled effects of posture and tendon elasticity, biomechanically relevant anatomical features that cannot be isolated in real birds. The avian body plan prevents (near) vertical leg postures, making the running style used by humans impossible. Under this anatomical constraint, grounded running is optimal if the muscles produce the highest forces in crouched postures, as is true in most birds. Shared anatomical features suggest that, as a behavior, avian grounded running first evolved within non-avian dinosaurs.
Collapse
Affiliation(s)
- Pasha A van Bijlert
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz Building A, Princetonlaan 8A, 3584 CB Utrecht, Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
| | - A J van Soest
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, Netherlands
| | - Anne S Schulp
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz Building A, Princetonlaan 8A, 3584 CB Utrecht, Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
| | - Karl T Bates
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
12
|
Buchner TJK, Fukushima T, Kazemipour A, Gravert SD, Prairie M, Romanescu P, Arm P, Zhang Y, Wang X, Zhang SL, Walter J, Keplinger C, Katzschmann RK. Electrohydraulic musculoskeletal robotic leg for agile, adaptive, yet energy-efficient locomotion. Nat Commun 2024; 15:7634. [PMID: 39251597 PMCID: PMC11385520 DOI: 10.1038/s41467-024-51568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Robotic locomotion in unstructured terrain demands an agile, adaptive, and energy-efficient architecture. To traverse such terrains, legged robots use rigid electromagnetic motors and sensorized drivetrains to adapt to the environment actively. These systems struggle to compete with animals that excel through their agile and effortless motion in natural environments. We propose a bio-inspired musculoskeletal leg architecture driven by antagonistic pairs of electrohydraulic artificial muscles. Our leg is mounted on a boom arm and can adaptively hop on varying terrain in an energy-efficient yet agile manner. It can also detect obstacles through capacitive self-sensing. The leg performs powerful and agile gait motions beyond 5 Hz and high jumps up to 40 % of the leg height. Our leg's tunable stiffness and inherent adaptability allow it to hop over grass, sand, gravel, pebbles, and large rocks using only open-loop force control. The electrohydraulic leg features a low cost of transport (0.73), and while squatting, it consumes only a fraction of the energy (1.2 %) compared to its conventional electromagnetic counterpart. Its agile, adaptive, and energy-efficient properties would open a roadmap toward a new class of musculoskeletal robots for versatile locomotion and operation in unstructured natural environments.
Collapse
Affiliation(s)
| | - Toshihiko Fukushima
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | | | | | - Manon Prairie
- Soft Robotics Lab, D-MAVT, ETH Zurich, 8092, Zurich, Switzerland
| | - Pascal Romanescu
- Soft Robotics Lab, D-MAVT, ETH Zurich, 8092, Zurich, Switzerland
| | - Philip Arm
- Soft Robotics Lab, D-MAVT, ETH Zurich, 8092, Zurich, Switzerland
- Robotic Systems Lab, D-MAVT, ETH Zurich, 8092, Zurich, Switzerland
| | - Yu Zhang
- Soft Robotics Lab, D-MAVT, ETH Zurich, 8092, Zurich, Switzerland
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Xingrui Wang
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Steven L Zhang
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Johannes Walter
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Christoph Keplinger
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Robert K Katzschmann
- Soft Robotics Lab, D-MAVT, ETH Zurich, 8092, Zurich, Switzerland.
- ETH AI Center, ETH Zurich, 8050, Zurich, Switzerland.
| |
Collapse
|
13
|
Lin J, Ke J, Xiao R, Jiang X, Li M, Xiao X, Guo Z. Bioinspired Bidirectional Stiffening Soft Actuators Enable Versatile and Robust Grasping. Soft Robot 2024; 11:494-507. [PMID: 38386775 DOI: 10.1089/soro.2022.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
The bending stiffness modulation mechanism for soft grippers has gained considerable attention to improve grasping versatility, capacity, and stability. However, lateral stability is usually ignored or hard to achieve at the same time with good bending stiffness modulation performance. Therefore, this article presents a bioinspired bidirectional stiffening soft actuator (BISA), enabling compliant and stable performance. BISA combines the air tendon actuation (ATA) and a bone-like structure (BLS). The ATA is the main actuation of the BISA, and the bending stiffness can be modulated with a maximum stiffness of about 0.7 N/mm and a maximum magnification of three times when the bending angle is 45°. Inspired by the morphological structure of the phalanx, the lateral stiffness can be modulated by changing the pulling force of the BLS. The actuator with BLSs can improve the lateral stiffness by about 3.9 times compared to the one without BLSs. The maximum lateral stiffness can reach 0.46 N/mm. And the lateral stiffness can be modulated by decoupling about 1.3 times (e.g., from 0.35 to 0.46 N/mm when the bending angle is 45°). The test results show that the influence of the rigid structures on bending is small with about 1.5 mm maximum position errors of the distal point of the actuator in different pulling forces. The advantages brought by the proposed method enable versatile four-finger grasping. The performance of this gripper is characterized and demonstrated on multiscale, multiweight, and multimodal grasping tasks.
Collapse
Affiliation(s)
- Jianfeng Lin
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, China
| | - Jingwei Ke
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, China
| | - Ruikang Xiao
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, China
| | - Xiangtao Jiang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, China
| | - Miao Li
- Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Xiaohui Xiao
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, China
| | - Zhao Guo
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Krimsky E, Collins SH. Elastic energy-recycling actuators for efficient robots. Sci Robot 2024; 9:eadj7246. [PMID: 38507474 DOI: 10.1126/scirobotics.adj7246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Electric motors are widely used in robots but waste energy in many applications. We introduce an elastic energy-recycling actuator that maintains the versatility of motors while improving energy efficiency in cyclic tasks. The actuator comprises a motor in parallel with an array of springs that can be individually engaged and disengaged, while retaining stored energy, by pairs of low-power electroadhesive clutches. We developed a prototype actuator and tested it in five repetitive tasks with features common in robotic applications but difficult to perform efficiently. The actuator reduced power consumption by at least 50% in all cases and by 97% in the best case. Elastic energy recovery, controlled by low-power clutches, can improve the efficiency of mobile robots, assistive devices, and other engineered systems.
Collapse
Affiliation(s)
- Erez Krimsky
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Steven H Collins
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Silva AB, Murcia M, Mohseni O, Takahashi R, Forner-Cordero A, Seyfarth A, Hosoda K, Sharbafi MA. Design of Low-Cost Modular Bio-Inspired Electric-Pneumatic Actuator (EPA)-Driven Legged Robots. Biomimetics (Basel) 2024; 9:164. [PMID: 38534849 DOI: 10.3390/biomimetics9030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Exploring the fundamental mechanisms of locomotion extends beyond mere simulation and modeling. It necessitates the utilization of physical test benches to validate hypotheses regarding real-world applications of locomotion. This study introduces cost-effective modular robotic platforms designed specifically for investigating the intricacies of locomotion and control strategies. Expanding upon our prior research in electric-pneumatic actuation (EPA), we present the mechanical and electrical designs of the latest developments in the EPA robot series. These include EPA Jumper, a human-sized segmented monoped robot, and its extension EPA Walker, a human-sized bipedal robot. Both replicate the human weight and inertia distributions, featuring co-actuation through electrical motors and pneumatic artificial muscles. These low-cost modular platforms, with considerations for degrees of freedom and redundant actuation, (1) provide opportunities to study different locomotor subfunctions-stance, swing, and balance; (2) help investigate the role of actuation schemes in tasks such as hopping and walking; and (3) allow testing hypotheses regarding biological locomotors in real-world physical test benches.
Collapse
Affiliation(s)
- Alessandro Brugnera Silva
- Lauflabor Locomotion Laboratory, Centre for Cognitive Science, Technical University of Darmstadt, 64289 Darmstadt, Germany
- Biomechatronics Laboratory, Department of Mechatronics and Mechanical Systems of the Polytechnic School of the University of São Paulo (USP), São Paulo 05508-030, SP, Brazil
| | - Marc Murcia
- Lauflabor Locomotion Laboratory, Centre for Cognitive Science, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Omid Mohseni
- Lauflabor Locomotion Laboratory, Centre for Cognitive Science, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Ryu Takahashi
- Adaptive Robotics Laboratory, Graduate School of Engineering Science, Osaka University, Toyonaka 560-0043, Japan
| | - Arturo Forner-Cordero
- Biomechatronics Laboratory, Department of Mechatronics and Mechanical Systems of the Polytechnic School of the University of São Paulo (USP), São Paulo 05508-030, SP, Brazil
| | - Andre Seyfarth
- Lauflabor Locomotion Laboratory, Centre for Cognitive Science, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Koh Hosoda
- Adaptive Robotics Laboratory, Graduate School of Engineering Science, Osaka University, Toyonaka 560-0043, Japan
- Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Maziar Ahmad Sharbafi
- Lauflabor Locomotion Laboratory, Centre for Cognitive Science, Technical University of Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
16
|
Abourachid A, Chevallereau C, Pelletan I, Wenger P. An upright life, the postural stability of birds: a tensegrity system. J R Soc Interface 2023; 20:20230433. [PMID: 37963555 PMCID: PMC10645509 DOI: 10.1098/rsif.2023.0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Birds are so stable that they can rest and even sleep standing up. We propose that stable static balance is achieved by tensegrity. The rigid bones can be held together by tension in the tendons, allowing the system to stabilize under the action of gravity. We used the proportions of the bird's osteomuscular system to create a mathematical model. First, the extensor muscles and tendons of the leg are replaced by a single cable that follows the leg and is guided by joint pulleys. Analysis of the model shows that it can achieve balance. However, it does not match the biomechanical characteristics of the bird's body and is not stable. We then replaced the single cable with four cables, roughly corresponding to the extensor groups, and added a ligament loop at the knee. The model is then able to reach a stable equilibrium and the biomechanical characteristics are satisfied. Some of the anatomical features used in our model correspond to innovations unique to the avian lineage. We propose that tensegrity, which allows light and stable mechanical systems, is fundamental to the evolution of the avian body plan. It can also be used as an alternative model for bipedal robots.
Collapse
Affiliation(s)
- Anick Abourachid
- Muséum National d'Histoire Naturelle CNRS, Mecadev, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | | | - Idriss Pelletan
- Muséum National d'Histoire Naturelle CNRS, Mecadev, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | - Philippe Wenger
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, 44000 Nantes, France
| |
Collapse
|
17
|
Ijspeert AJ, Daley MA. Integration of feedforward and feedback control in the neuromechanics of vertebrate locomotion: a review of experimental, simulation and robotic studies. J Exp Biol 2023; 226:jeb245784. [PMID: 37565347 DOI: 10.1242/jeb.245784] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Animal locomotion is the result of complex and multi-layered interactions between the nervous system, the musculo-skeletal system and the environment. Decoding the underlying mechanisms requires an integrative approach. Comparative experimental biology has allowed researchers to study the underlying components and some of their interactions across diverse animals. These studies have shown that locomotor neural circuits are distributed in the spinal cord, the midbrain and higher brain regions in vertebrates. The spinal cord plays a key role in locomotor control because it contains central pattern generators (CPGs) - systems of coupled neuronal oscillators that provide coordinated rhythmic control of muscle activation that can be viewed as feedforward controllers - and multiple reflex loops that provide feedback mechanisms. These circuits are activated and modulated by descending pathways from the brain. The relative contributions of CPGs, feedback loops and descending modulation, and how these vary between species and locomotor conditions, remain poorly understood. Robots and neuromechanical simulations can complement experimental approaches by testing specific hypotheses and performing what-if scenarios. This Review will give an overview of key knowledge gained from comparative vertebrate experiments, and insights obtained from neuromechanical simulations and robotic approaches. We suggest that the roles of CPGs, feedback loops and descending modulation vary among animals depending on body size, intrinsic mechanical stability, time required to reach locomotor maturity and speed effects. We also hypothesize that distal joints rely more on feedback control compared with proximal joints. Finally, we highlight important opportunities to address fundamental biological questions through continued collaboration between experimentalists and engineers.
Collapse
Affiliation(s)
- Auke J Ijspeert
- BioRobotics Laboratory, EPFL - Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Monica A Daley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Wang Z, Ge W, Zhang Y, Liu B, Liu B, Jin S, Li Y. Optimization Design and Performance Analysis of a Bionic Knee Joint Based on the Geared Five-Bar Mechanism. Bioengineering (Basel) 2023; 10:bioengineering10050582. [PMID: 37237651 DOI: 10.3390/bioengineering10050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Animal joint motion is a combination of rotation and translational motion, which brings high stability, high energy utilization, and other advantages. At present, the hinge joint is widely used in the legged robot. The simple motion characteristic of the hinge joint rotating around the fixed axis limits the improvement of the robot's motion performance. In this paper, by imitating the knee joint of a kangaroo, we propose a new bionic geared five-bar knee joint mechanism to improve the energy utilization rate of the legged robot and reduce the required driving power. Firstly, based on image processing technology, the trajectory curve of the instantaneous center of rotation (ICR) of the kangaroo knee joint was quickly obtained. Then, the bionic knee joint was designed by the single-degree-of-freedom geared five-bar mechanism and the parameters for each part of the mechanism were optimized. Finally, based on the inverted pendulum model and the Newton-Euler recursive method, the dynamics model of the single leg of the robot in the landing stage was established, and the influence of the designed bionic knee joint and hinge joint on the robot's motion performance was compared and analyzed. The proposed bionic geared five-bar knee joint mechanism can more closely track the given trajectory of the total center of mass motion, has abundant motion characteristics, and can effectively reduce the power demand and energy consumption of the robot knee actuators under the high-speed running and jumping gait.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenjie Ge
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yonghong Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bo Liu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bin Liu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shikai Jin
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuzhu Li
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
19
|
Mo A, Izzi F, Gönen EC, Haeufle D, Badri-Spröwitz A. Slack-based tunable damping leads to a trade-off between robustness and efficiency in legged locomotion. Sci Rep 2023; 13:3290. [PMID: 36841875 PMCID: PMC9968281 DOI: 10.1038/s41598-023-30318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Animals run robustly in diverse terrain. This locomotion robustness is puzzling because axon conduction velocity is limited to a few tens of meters per second. If reflex loops deliver sensory information with significant delays, one would expect a destabilizing effect on sensorimotor control. Hence, an alternative explanation describes a hierarchical structure of low-level adaptive mechanics and high-level sensorimotor control to help mitigate the effects of transmission delays. Motivated by the concept of an adaptive mechanism triggering an immediate response, we developed a tunable physical damper system. Our mechanism combines a tendon with adjustable slackness connected to a physical damper. The slack damper allows adjustment of damping force, onset timing, effective stroke, and energy dissipation. We characterize the slack damper mechanism mounted to a legged robot controlled in open-loop mode. The robot hops vertically and planarly over varying terrains and perturbations. During forward hopping, slack-based damping improves faster perturbation recovery (up to 170%) at higher energetic cost (27%). The tunable slack mechanism auto-engages the damper during perturbations, leading to a perturbation-trigger damping, improving robustness at a minimum energetic cost. With the results from the slack damper mechanism, we propose a new functional interpretation of animals' redundant muscle tendons as tunable dampers.
Collapse
Affiliation(s)
- An Mo
- Dynamic Locomotion Group, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
| | - Fabio Izzi
- grid.419534.e0000 0001 1015 6533Dynamic Locomotion Group, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany ,grid.10392.390000 0001 2190 1447Hertie Institute for Clinical Brain Research and Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Emre Cemal Gönen
- grid.419534.e0000 0001 1015 6533Dynamic Locomotion Group, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Daniel Haeufle
- grid.10392.390000 0001 2190 1447Hertie Institute for Clinical Brain Research and Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany ,grid.5719.a0000 0004 1936 9713Institute for Modelling and Simulation of Biomechanical Systems, Computational Biophysics and Biorobotics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Badri-Spröwitz
- grid.419534.e0000 0001 1015 6533Dynamic Locomotion Group, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany ,grid.5596.f0000 0001 0668 7884Department of Mechanical Engineering, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
20
|
Fukuhara A, Gunji M, Masuda Y. Comparative anatomy of quadruped robots and animals: a review. Adv Robot 2022. [DOI: 10.1080/01691864.2022.2086018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Akira Fukuhara
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | - Megu Gunji
- Department of Life Sciences, Faculty of Life Sciences, Toyo University, Gunma, Japan
| | - Yoichi Masuda
- Department of Mechanical Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
21
|
Schwaner MJ, Nishikawa KC, Daley MA. Kinematic trajectories in response to speed perturbations in walking suggest modular task-level control of leg angle and length. Integr Comp Biol 2022; 62:icac057. [PMID: 35612979 DOI: 10.1093/icb/icac057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Navigating complex terrains requires dynamic interactions between the substrate, musculoskeletal and sensorimotor systems. Current perturbation studies have mostly used visible terrain height perturbations, which do not allow us to distinguish among the neuromechanical contributions of feedforward control, feedback-mediated and mechanical perturbation responses. Here, we use treadmill belt speed perturbations to induce a targeted perturbation to foot speed only, and without terrain-induced changes in joint posture and leg loading at stance onset. Based on previous studies suggesting a proximo-distal gradient in neuromechanical control, we hypothesized that distal joints would exhibit larger changes in joint kinematics, compared to proximal joints. Additionally, we expected birds to use feedforward strategies to increase the intrinsic stability of gait. To test these hypotheses, seven adult guinea fowl were video recorded while walking on a motorized treadmill, during both steady and perturbed trials. Perturbations consisted of repeated exposures to a deceleration and acceleration of the treadmill belt speed. Surprisingly, we found that joint angular trajectories and center of mass fluctuations remain very similar, despite substantial perturbation of foot velocity by the treadmill belt. Hip joint angular trajectories exhibit the largest changes, with the birds adopting a slightly more flexed position across all perturbed strides. Additionally, we observed increased stride duration across all strides, consistent with feedforward changes in the control strategy. The speed perturbations mainly influenced the timing of stance and swing, with the largest kinematic changes in the strides directly following a deceleration. Our findings do not support the general hypothesis of a proximo-distal gradient in joint control, as distal joint kinematics remain largely unchanged. Instead, we find that leg angular trajectory and the timing of stance and swing are most sensitive to this specific perturbation, and leg length actuation remains largely unchanged. Our results are consistent with modular task-level control of leg length and leg angle actuation, with different neuromechanical control and perturbation sensitivity in each actuation mode. Distal joints appear to be sensitive to changes in vertical loading but not foot fore-aft velocity. Future directions should include in vivo studies of muscle activation and force-length dynamics to provide more direct evidence of the sensorimotor control strategies for stability in response to belt speed perturbations.
Collapse
Affiliation(s)
- M J Schwaner
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - K C Nishikawa
- Center for Integrative Movement Sciences, University of California, Irvine, CA 92697
- Department of Biology, Northern Arizona University, Flagstaff, AZ 86011
| | - M A Daley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
- Center for Integrative Movement Sciences, University of California, Irvine, CA 92697
| |
Collapse
|
22
|
Abstract
Recapitulating avian locomotion opens the door for simple and economical control of legged robots without sensory feedback systems.
Collapse
Affiliation(s)
- Jonas Rubenson
- Biomechanics Laboratory, Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
- Integrative and Biomedical Physiology Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Gregory S Sawicki
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|