1
|
Zhang F, Tang Y, Zhou H, Li K, West JA, Griffin JL, Lilley KS, Zhang N. The Yeast Gsk-3 Kinase Mck1 Is Necessary for Cell Wall Remodeling in Glucose-Starved and Cell Wall-Stressed Cells. Int J Mol Sci 2025; 26:3534. [PMID: 40332024 PMCID: PMC12027387 DOI: 10.3390/ijms26083534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The cell wall integrity (CWI) pathway is responsible for transcriptional regulation of cell wall remodeling in response to cell wall stress. How cell wall remodeling mediated by the CWI pathway is effected by inputs from other signaling pathways is not well understood. Here, we demonstrate that the Mck1 kinase cooperates with Slt2, the MAP kinase of the CWI pathway, to promote cell wall thickening in glucose-starved cells. Integrative analyses of the transcriptome, proteome and metabolic profiling indicate that Mck1 is required for the accumulation of UDP-glucose (UDPG), the substrate for β-glucan synthesis, through the activation of two regulons: the Msn2/4-dependent stress response and the Cat8-/Adr1-mediated metabolic reprogram dependent on the SNF1 complex. Analysis of the phosphoproteome suggests that similar to mammalian Gsk-3 kinases, Mck1 is involved in the regulation of cytoskeleton-dependent cellular processes, metabolism, signaling and transcription. Specifically, Mck1 may be implicated in the Snf1-dependent metabolic reprogram through PKA inhibition and SAGA (Spt-Ada-Gcn5 acetyltransferase)-mediated transcription activation, a hypothesis further underscored by the significant overlap between the Mck1- and Gcn5-activated transcriptomes. Phenotypic analysis also supports the roles of Mck1 in actin cytoskeleton-mediated exocytosis to ensure plasma membrane homeostasis and cell wall remodeling in cell wall-stressed cells. Together, these findings not only reveal the novel functions of Mck1 in metabolic reprogramming and polarized growth but also provide valuable omics resources for future studies to uncover the underlying mechanisms of Mck1 and other Gsk-3 kinases in cell growth and stress response.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingzhi Tang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kaiqiang Li
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - James A. West
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Nianshu Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| |
Collapse
|
2
|
Müller J, Bayer FP, Wilhelm M, Schuh MG, Kuster B, The M. PTMNavigator: interactive visualization of differentially regulated post-translational modifications in cellular signaling pathways. Nat Commun 2025; 16:510. [PMID: 39779715 PMCID: PMC11711753 DOI: 10.1038/s41467-024-55533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Post-translational modifications (PTMs) play pivotal roles in regulating cellular signaling, fine-tuning protein function, and orchestrating complex biological processes. Despite their importance, the lack of comprehensive tools for studying PTMs from a pathway-centric perspective has limited our ability to understand how PTMs modulate cellular pathways on a molecular level. Here, we present PTMNavigator, a tool integrated into the ProteomicsDB platform that offers an interactive interface for researchers to overlay experimental PTM data with pathway diagrams. PTMNavigator provides ~3000 canonical pathways from manually curated databases, enabling users to modify and create custom diagrams tailored to their data. Additionally, PTMNavigator automatically runs kinase and pathway enrichment algorithms whose results are directly integrated into the visualization. This offers a comprehensive view of the intricate relationship between PTMs and signaling pathways. We demonstrate the utility of PTMNavigator by applying it to two phosphoproteomics datasets, showing how it can enhance pathway enrichment analysis, visualize how drug treatments result in a discernable flow of PTM-driven signaling, and aid in proposing extensions to existing pathways. By enhancing our understanding of cellular signaling dynamics and facilitating the discovery of PTM-pathway interactions, PTMNavigator advances our knowledge of PTM biology and its implications in health and disease.
Collapse
Affiliation(s)
- Julian Müller
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Florian P Bayer
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mathias Wilhelm
- Computational Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Maximilian G Schuh
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
- Organic Chemistry II, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Matthew The
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Stukey GJ, Han GS, Carman GM. Architecture and function of yeast phosphatidate phosphatase Pah1 domains/regions. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159547. [PMID: 39103045 PMCID: PMC11586075 DOI: 10.1016/j.bbalip.2024.159547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, provides a direct precursor for the synthesis of the storage lipid triacylglycerol and the membrane phospholipids phosphatidylcholine and phosphatidylethanolamine. The enzyme controlling the key phospholipid PA also plays a crucial role in diverse aspects of lipid metabolism and cell physiology. PA phosphatase is a peripheral membrane enzyme that is composed of multiple domains/regions required for its catalytic function and subcellular localization. In this review, we discuss the domains/regions of PA phosphatase from the yeast Saccharomyces cerevisiae with reference to the homologous enzyme from mammalian cells.
Collapse
Affiliation(s)
- Geordan J Stukey
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
4
|
Hurst V, Gerhold CB, Tarashev CVD, Challa K, Seeber A, Yamazaki S, Knapp B, Helliwell SB, Bodenmiller B, Harata M, Shimada K, Gasser SM. Loss of cytoplasmic actin filaments raises nuclear actin levels to drive INO80C-dependent chromosome fragmentation. Nat Commun 2024; 15:9910. [PMID: 39548059 PMCID: PMC11568269 DOI: 10.1038/s41467-024-54141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Loss of cytosolic actin filaments upon TORC2 inhibition triggers chromosome fragmentation in yeast, which results from altered base excision repair of Zeocin-induced lesions. To find the link between TORC2 kinase and this yeast chromosome shattering (YCS) we performed phosphoproteomics. YCS-relevant phospho-targets included plasma membrane-associated regulators of actin polymerization, such as Las17, the yeast Wiscott-Aldrich Syndrome protein. Induced degradation of Las17 was sufficient to trigger YCS in presence of Zeocin, bypassing TORC2 inhibition. In yeast, Las17 does not act directly at damage, but instead its loss, like TORC2 inhibition, raises nuclear actin levels. Nuclear actin, in complex with Arp4, forms an essential subunit of several nucleosome remodeler complexes, including INO80C, which facilitates DNA polymerase elongation. Here we show that the genetic ablation of INO80C activity leads to partial YCS resistance, suggesting that elevated levels of nuclear G-actin may stimulate INO80C to increase DNA polymerase processivity and convert single-strand lesions into double-strand breaks.
Collapse
Affiliation(s)
- Verena Hurst
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Christian B Gerhold
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Bühlmann Laboratories AG, Baselstrasse 55, 4124, Schönenbuch, Switzerland
| | - Cleo V D Tarashev
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Mechano-Genomic Group, Division of Biology and Chemistry, Paul-Scherrer Institute, Villigen, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Transition Bio Inc, 250 Arsenal St, Watertown, 02472, MA, USA
| | - Shota Yamazaki
- Lab. Molecular Biochemistry, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai, 980-8572, Japan
| | - Britta Knapp
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Fabrikstrasse 22, 4056, Basel, Switzerland
| | - Stephen B Helliwell
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Fabrikstrasse 22, 4056, Basel, Switzerland
- Cellvie AG, Zurich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Masahiko Harata
- Lab. Molecular Biochemistry, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai, 980-8572, Japan
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
- University of Lausanne, Department of Fundamental Microbiology, and Agora Cancer Center, ISREC Foundation, rue du Bugnon 25A, 1005, Lausanne, Switzerland.
| |
Collapse
|
5
|
Varela Salgado M, Piatti S. Septin Organization and Dynamics for Budding Yeast Cytokinesis. J Fungi (Basel) 2024; 10:642. [PMID: 39330402 PMCID: PMC11433133 DOI: 10.3390/jof10090642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Cytokinesis, the process by which the cytoplasm divides to generate two daughter cells after mitosis, is a crucial stage of the cell cycle. Successful cytokinesis must be coordinated with chromosome segregation and requires the fine orchestration of several processes, such as constriction of the actomyosin ring, membrane reorganization, and, in fungi, cell wall deposition. In Saccharomyces cerevisiae, commonly known as budding yeast, septins play a pivotal role in the control of cytokinesis by assisting the assembly of the cytokinetic machinery at the division site and controlling its activity. Yeast septins form a collar at the division site that undergoes major dynamic transitions during the cell cycle. This review discusses the functions of septins in yeast cytokinesis, their regulation and the implications of their dynamic remodelling for cell division.
Collapse
Affiliation(s)
- Maritzaida Varela Salgado
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293 Montpellier, France
| | - Simonetta Piatti
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293 Montpellier, France
| |
Collapse
|
6
|
Khondker S, Han GS, Carman GM. Protein kinase Hsl1 phosphorylates Pah1 to inhibit phosphatidate phosphatase activity and regulate lipid synthesis in Saccharomyces cerevisiae. J Biol Chem 2024; 300:107572. [PMID: 39009344 PMCID: PMC11342776 DOI: 10.1016/j.jbc.2024.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
In Saccharomyces cerevisiae, Pah1 phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, plays a key role in utilizing PA for the synthesis of the neutral lipid triacylglycerol and thereby controlling the PA-derived membrane phospholipids. The enzyme function is controlled by its subcellular location as regulated by phosphorylation and dephosphorylation. Pah1 is initially inactivated in the cytosol through phosphorylation by multiple protein kinases and then activated via its recruitment and dephosphorylation by the protein phosphatase Nem1-Spo7 at the nuclear/endoplasmic reticulum membrane where the PA phosphatase reaction occurs. Many of the protein kinases that phosphorylate Pah1 have yet to be characterized with the identification of the target residues. Here, we established Pah1 as a bona fide substrate of septin-associated Hsl1, a protein kinase involved in mitotic morphogenesis checkpoint signaling. The Hsl1 activity on Pah1 was dependent on reaction time and the amounts of protein kinase, Pah1, and ATP. The Hsl1 phosphorylation of Pah1 occurred on Ser-748 and Ser-773, and the phosphorylated protein exhibited a 5-fold reduction in PA phosphatase catalytic efficiency. Analysis of cells expressing the S748A and S773A mutant forms of Pah1 indicated that Hsl1-mediated phosphorylation of Pah1 promotes membrane phospholipid synthesis at the expense of triacylglycerol, and ensures the dependence of Pah1 function on the Nem1-Spo7 protein phosphatase. This work advances the understanding of how Hsl1 facilitates membrane phospholipid synthesis through the phosphorylation-mediated regulation of Pah1.
Collapse
Affiliation(s)
- Shoily Khondker
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
7
|
Wettstein R, Hugener J, Gillet L, Hernández-Armenta Y, Henggeler A, Xu J, van Gerwen J, Wollweber F, Arter M, Aebersold R, Beltrao P, Pilhofer M, Matos J. Waves of regulated protein expression and phosphorylation rewire the proteome to drive gametogenesis in budding yeast. Dev Cell 2024; 59:1764-1782.e8. [PMID: 38906138 DOI: 10.1016/j.devcel.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/25/2024] [Accepted: 05/20/2024] [Indexed: 06/23/2024]
Abstract
Sexually reproducing eukaryotes employ a developmentally regulated cell division program-meiosis-to generate haploid gametes from diploid germ cells. To understand how gametes arise, we generated a proteomic census encompassing the entire meiotic program of budding yeast. We found that concerted waves of protein expression and phosphorylation modify nearly all cellular pathways to support meiotic entry, meiotic progression, and gamete morphogenesis. Leveraging this comprehensive resource, we pinpointed dynamic changes in mitochondrial components and showed that phosphorylation of the FoF1-ATP synthase complex is required for efficient gametogenesis. Furthermore, using cryoET as an orthogonal approach to visualize mitochondria, we uncovered highly ordered filament arrays of Ald4ALDH2, a conserved aldehyde dehydrogenase that is highly expressed and phosphorylated during meiosis. Notably, phosphorylation-resistant mutants failed to accumulate filaments, suggesting that phosphorylation regulates context-specific Ald4ALDH2 polymerization. Overall, this proteomic census constitutes a broad resource to guide the exploration of the unique sequence of events underpinning gametogenesis.
Collapse
Affiliation(s)
- Rahel Wettstein
- Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Jannik Hugener
- Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Ludovic Gillet
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Yi Hernández-Armenta
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Adrian Henggeler
- Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Jingwei Xu
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Julian van Gerwen
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Florian Wollweber
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Meret Arter
- Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Pedro Beltrao
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland.
| | - Joao Matos
- Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
8
|
Joshi K, Luisi B, Wunderlin G, Saleh S, Lilly A, Okusolubo T, Farabaugh PJ. An evolutionarily conserved phosphoserine-arginine salt bridge in the interface between ribosomal proteins uS4 and uS5 regulates translational accuracy in Saccharomyces cerevisiae. Nucleic Acids Res 2024; 52:3989-4001. [PMID: 38340338 DOI: 10.1093/nar/gkae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
Protein-protein and protein-rRNA interactions at the interface between ribosomal proteins uS4 and uS5 are thought to maintain the accuracy of protein synthesis by increasing selection of cognate aminoacyl-tRNAs. Selection involves a major conformational change-domain closure-that stabilizes aminoacyl-tRNA in the ribosomal acceptor (A) site. This has been thought a constitutive function of the ribosome ensuring consistent accuracy. Recently, the Saccharomyces cerevisiae Ctk1 cyclin-dependent kinase was demonstrated to ensure translational accuracy and Ser238 of uS5 proposed as its target. Surprisingly, Ser238 is outside the uS4-uS5 interface and no obvious mechanism has been proposed to explain its role. We show that the true target of Ctk1 regulation is another uS5 residue, Ser176, which lies in the interface opposite to Arg57 of uS4. Based on site specific mutagenesis, we propose that phospho-Ser176 forms a salt bridge with Arg57, which should increase selectivity by strengthening the interface. Genetic data show that Ctk1 regulates accuracy indirectly; the data suggest that the kinase Ypk2 directly phosphorylates Ser176. A second kinase pathway involving TORC1 and Pkc1 can inhibit this effect. The level of accuracy appears to depend on competitive action of these two pathways to regulate the level of Ser176 phosphorylation.
Collapse
Affiliation(s)
- Kartikeya Joshi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Brooke Luisi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Grant Wunderlin
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Sima Saleh
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Anna Lilly
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Temiloluwa Okusolubo
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Philip J Farabaugh
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| |
Collapse
|
9
|
Niphadkar S, Karinje L, Laxman S. The PP2A-like phosphatase Ppg1 mediates assembly of the Far complex to balance gluconeogenic outputs and enables adaptation to glucose depletion. PLoS Genet 2024; 20:e1011202. [PMID: 38452140 PMCID: PMC10950219 DOI: 10.1371/journal.pgen.1011202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/19/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
To sustain growth in changing nutrient conditions, cells reorganize outputs of metabolic networks and appropriately reallocate resources. Signaling by reversible protein phosphorylation can control such metabolic adaptations. In contrast to kinases, the functions of phosphatases that enable metabolic adaptation as glucose depletes are poorly studied. Using a Saccharomyces cerevisiae deletion screen, we identified the PP2A-like phosphatase Ppg1 as required for appropriate carbon allocations towards gluconeogenic outputs-trehalose, glycogen, UDP-glucose, UDP-GlcNAc-after glucose depletion. This Ppg1 function is mediated via regulation of the assembly of the Far complex-a multi-subunit complex that tethers to the ER and mitochondrial outer membranes forming localized signaling hubs. The Far complex assembly is Ppg1 catalytic activity-dependent. Ppg1 regulates the phosphorylation status of multiple ser/thr residues on Far11 to enable the proper assembly of the Far complex. The assembled Far complex is required to maintain gluconeogenic outputs after glucose depletion. Glucose in turn regulates Far complex amounts. This Ppg1-mediated Far complex assembly, and Ppg1-Far complex dependent control of gluconeogenic outputs enables adaptive growth under glucose depletion. Our study illustrates how protein dephosphorylation is required for the assembly of a multi-protein scaffold present in localized cytosolic pools, to thereby alter gluconeogenic flux and enable cells to metabolically adapt to nutrient fluctuations.
Collapse
Affiliation(s)
- Shreyas Niphadkar
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lavanya Karinje
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) Bangalore, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) Bangalore, India
| |
Collapse
|
10
|
van Gerwen J, Masson SWC, Cutler HB, Vegas AD, Potter M, Stöckli J, Madsen S, Nelson ME, Humphrey SJ, James DE. The genetic and dietary landscape of the muscle insulin signalling network. eLife 2024; 12:RP89212. [PMID: 38329473 PMCID: PMC10942587 DOI: 10.7554/elife.89212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Metabolic disease is caused by a combination of genetic and environmental factors, yet few studies have examined how these factors influence signal transduction, a key mediator of metabolism. Using mass spectrometry-based phosphoproteomics, we quantified 23,126 phosphosites in skeletal muscle of five genetically distinct mouse strains in two dietary environments, with and without acute in vivo insulin stimulation. Almost half of the insulin-regulated phosphoproteome was modified by genetic background on an ordinary diet, and high-fat high-sugar feeding affected insulin signalling in a strain-dependent manner. Our data revealed coregulated subnetworks within the insulin signalling pathway, expanding our understanding of the pathway's organisation. Furthermore, associating diverse signalling responses with insulin-stimulated glucose uptake uncovered regulators of muscle insulin responsiveness, including the regulatory phosphosite S469 on Pfkfb2, a key activator of glycolysis. Finally, we confirmed the role of glycolysis in modulating insulin action in insulin resistance. Our results underscore the significance of genetics in shaping global signalling responses and their adaptability to environmental changes, emphasising the utility of studying biological diversity with phosphoproteomics to discover key regulatory mechanisms of complex traits.
Collapse
Affiliation(s)
- Julian van Gerwen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Stewart WC Masson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Harry B Cutler
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Alexis Diaz Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Meg Potter
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Søren Madsen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Marin E Nelson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
- Faculty of Medicine and Health, University of SydneySydneyAustralia
| |
Collapse
|
11
|
Blaszczak E, Pasquier E, Le Dez G, Odrzywolski A, Lazarewicz N, Brossard A, Fornal E, Moskalek P, Wysocki R, Rabut G. Dissecting Ubiquitylation and DNA Damage Response Pathways in the Yeast Saccharomyces cerevisiae Using a Proteome-Wide Approach. Mol Cell Proteomics 2024; 23:100695. [PMID: 38101750 PMCID: PMC10803944 DOI: 10.1016/j.mcpro.2023.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
In response to genotoxic stress, cells evolved with a complex signaling network referred to as the DNA damage response (DDR). It is now well established that the DDR depends upon various posttranslational modifications; among them, ubiquitylation plays a key regulatory role. Here, we profiled ubiquitylation in response to the DNA alkylating agent methyl methanesulfonate (MMS) in the budding yeast Saccharomyces cerevisiae using quantitative proteomics. To discover new proteins ubiquitylated upon DNA replication stress, we used stable isotope labeling by amino acids in cell culture, followed by an enrichment of ubiquitylated peptides and LC-MS/MS. In total, we identified 1853 ubiquitylated proteins, including 473 proteins that appeared upregulated more than 2-fold in response to MMS treatment. This enabled us to localize 519 ubiquitylation sites potentially regulated upon MMS in 435 proteins. We demonstrated that the overexpression of some of these proteins renders the cells sensitive to MMS. We also assayed the abundance change upon MMS treatment of a selection of yeast nuclear proteins. Several of them were differentially regulated upon MMS treatment. These findings corroborate the important role of ubiquitin-proteasome-mediated degradation in regulating the DDR.
Collapse
Affiliation(s)
- Ewa Blaszczak
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland; Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, Lublin, Poland.
| | - Emeline Pasquier
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Gaëlle Le Dez
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, Lublin, Poland
| | - Natalia Lazarewicz
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland; Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Audrey Brossard
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Emilia Fornal
- Department of Bioanalytics, Faculty of Biomedicine, Medical University of Lublin, Lublin, Poland
| | - Piotr Moskalek
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland.
| | - Gwenaël Rabut
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France.
| |
Collapse
|
12
|
Stephenson EH, Higgins JMG. Pharmacological approaches to understanding protein kinase signaling networks. Front Pharmacol 2023; 14:1310135. [PMID: 38164473 PMCID: PMC10757940 DOI: 10.3389/fphar.2023.1310135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Protein kinases play vital roles in controlling cell behavior, and an array of kinase inhibitors are used successfully for treatment of disease. Typical drug development pipelines involve biological studies to validate a protein kinase target, followed by the identification of small molecules that effectively inhibit this target in cells, animal models, and patients. However, it is clear that protein kinases operate within complex signaling networks. These networks increase the resilience of signaling pathways, which can render cells relatively insensitive to inhibition of a single kinase, and provide the potential for pathway rewiring, which can result in resistance to therapy. It is therefore vital to understand the properties of kinase signaling networks in health and disease so that we can design effective multi-targeted drugs or combinations of drugs. Here, we outline how pharmacological and chemo-genetic approaches can contribute to such knowledge, despite the known low selectivity of many kinase inhibitors. We discuss how detailed profiling of target engagement by kinase inhibitors can underpin these studies; how chemical probes can be used to uncover kinase-substrate relationships, and how these tools can be used to gain insight into the configuration and function of kinase signaling networks.
Collapse
Affiliation(s)
| | - Jonathan M. G. Higgins
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle uponTyne, United Kingdom
| |
Collapse
|
13
|
Leutert M, Barente AS, Fukuda NK, Rodriguez-Mias RA, Villén J. The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 2023; 30:1761-1773. [PMID: 37845410 PMCID: PMC10841839 DOI: 10.1038/s41594-023-01115-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
The cellular ability to react to environmental fluctuations depends on signaling networks that are controlled by the dynamic activities of kinases and phosphatases. Here, to gain insight into these stress-responsive phosphorylation networks, we generated a quantitative mass spectrometry-based atlas of early phosphoproteomic responses in Saccharomyces cerevisiae exposed to 101 environmental and chemical perturbations. We report phosphosites on 59% of the yeast proteome, with 18% of the proteome harboring a phosphosite that is regulated within 5 min of stress exposure. We identify shared and perturbation-specific stress response programs, uncover loss of phosphorylation as an integral early event, and dissect the interconnected regulatory landscape of kinase-substrate networks, as we exemplify with target of rapamycin signaling. We further reveal functional organization principles of the stress-responsive phosphoproteome based on phosphorylation site motifs, kinase activities, subcellular localizations, shared functions and pathway intersections. This information-rich map of 25,000 regulated phosphosites advances our understanding of signaling networks.
Collapse
Affiliation(s)
- Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Anthony S Barente
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Noelle K Fukuda
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
Niinae T, Sugiyama N, Ishihama Y. Validity of the cell-extracted proteome as a substrate pool for exploring phosphorylation motifs of kinases. Genes Cells 2023; 28:727-735. [PMID: 37658684 PMCID: PMC11447832 DOI: 10.1111/gtc.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Three representative protein kinases with different substrate preferences, ERK1 (Pro-directed), CK2 (acidophilic), and PKA (basophilic), were used to investigate phosphorylation sequence motifs in substrate pools consisting of the proteomes from three different cell lines, MCF7 (human mammary carcinoma), HeLa (human cervical carcinoma), and Jurkat (human acute T-cell leukemia). Specifically, recombinant kinases were added to the cell-extracted proteomes to phosphorylate the substrates in vitro. After trypsin digestion, the phosphopeptides were enriched and subjected to nanoLC/MS/MS analysis to identify their phosphorylation sites on a large scale. By analyzing the obtained phosphorylation sites and their surrounding sequences, phosphorylation motifs were extracted for each kinase-substrate proteome pair. We found that each kinase exhibited the same set of phosphorylation motifs, independently of the substrate pool proteome. Furthermore, the identified motifs were also consistent with those found using a completely randomized peptide library. These results indicate that cell-extracted proteomes can provide kinase phosphorylation motifs with sufficient accuracy, even though their sequences are not completely random, supporting the robustness of phosphorylation motif identification based on phosphoproteome analysis of cell extracts as a substrate pool for a kinase of interest.
Collapse
Affiliation(s)
- Tomoya Niinae
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Naoyuki Sugiyama
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
- Laboratory of Clinical and Analytical ChemistryNational Institute of Biomedical Innovation, Health and NutritionIbarakiOsakaJapan
| |
Collapse
|
15
|
Wagner ER, Gasch AP. Advances in S. cerevisiae Engineering for Xylose Fermentation and Biofuel Production: Balancing Growth, Metabolism, and Defense. J Fungi (Basel) 2023; 9:786. [PMID: 37623557 PMCID: PMC10455348 DOI: 10.3390/jof9080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Genetically engineering microorganisms to produce chemicals has changed the industrialized world. The budding yeast Saccharomyces cerevisiae is frequently used in industry due to its genetic tractability and unique metabolic capabilities. S. cerevisiae has been engineered to produce novel compounds from diverse sugars found in lignocellulosic biomass, including pentose sugars, like xylose, not recognized by the organism. Engineering high flux toward novel compounds has proved to be more challenging than anticipated since simply introducing pathway components is often not enough. Several studies show that the rewiring of upstream signaling is required to direct products toward pathways of interest, but doing so can diminish stress tolerance, which is important in industrial conditions. As an example of these challenges, we reviewed S. cerevisiae engineering efforts, enabling anaerobic xylose fermentation as a model system and showcasing the regulatory interplay's controlling growth, metabolism, and stress defense. Enabling xylose fermentation in S. cerevisiae requires the introduction of several key metabolic enzymes but also regulatory rewiring of three signaling pathways at the intersection of the growth and stress defense responses: the RAS/PKA, Snf1, and high osmolarity glycerol (HOG) pathways. The current studies reviewed here suggest the modulation of global signaling pathways should be adopted into biorefinery microbial engineering pipelines to increase efficient product yields.
Collapse
Affiliation(s)
- Ellen R. Wagner
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
16
|
Smolnig M, Fasching S, Stelzl U. De Novo Linear Phosphorylation Site Motifs for BCR-ABL Kinase Revealed by Phospho-Proteomics in Yeast. J Proteome Res 2023; 22:1790-1799. [PMID: 37053475 PMCID: PMC10243146 DOI: 10.1021/acs.jproteome.2c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 04/15/2023]
Abstract
BCR-ABL is the oncogenic fusion product of tyrosine kinase ABL1 and a highly frequent driver of acute lymphocytic leukemia (ALL) and chronic myeloid leukemia (CML). The kinase activity of BCR-ABL is strongly elevated; however, changes of substrate specificity in comparison to wild-type ABL1 kinase are less well characterized. Here, we heterologously expressed full-length BCR-ABL kinases in yeast. We exploited the proteome of living yeast as an in vivo phospho-tyrosine substrate for assaying human kinase specificity. Phospho-proteomic analysis of ABL1 and BCR-ABL isoforms p190 and p210 yielded a high-confidence data set of 1127 phospho-tyrosine sites on 821 yeast proteins. We used this data set to generate linear phosphorylation site motifs for ABL1 and the oncogenic ABL1 fusion proteins. The oncogenic kinases yielded a substantially different linear motif when compared to ABL1. Kinase set enrichment analysis with human pY-sites that have high linear motif scores well-recalled BCR-ABL driven cancer cell lines from human phospho-proteome data sets.
Collapse
Affiliation(s)
- Martin Smolnig
- Institute
of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Sandra Fasching
- Institute
of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, 8010 Graz, Austria
| | - Ulrich Stelzl
- Institute
of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field
of Excellence BioHealth - University of Graz, 8010 Graz, Austria
| |
Collapse
|
17
|
Xu Y, Zheng M, Gong L, Liu G, Qian S, Han Y, Kang J. Comprehensive Profiling of Rapamycin Interacting Proteins with Multiple Mass Spectrometry-Based Omics Techniques. Anal Chem 2023. [PMID: 37216191 DOI: 10.1021/acs.analchem.3c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Profiling drug-protein interactions is critical for understanding a drug's mechanism of action and predicting the possible adverse side effects. However, to comprehensively profile drug-protein interactions remains a challenge. To address this issue, we proposed a strategy that integrates multiple mass spectrometry-based omics analysis to provided global drug-protein interactions, including physical interactions and functional interactions, with rapamycin (Rap) as a model. Chemoproteomics profiling reveals 47 Rap binding proteins including the known target protein FKBP12 with high confidence. Gen Ontology enrichment analysis suggested that the Rap binding proteins are implicated in several important cellular processes, such as DNA replication, immunity, autophagy, programmed cell death, aging, transcription modulation, vesicle-mediated transport, membrane organization, and carbohydrate and nucleobase metabolic processes. The phosphoproteomics profiling revealed 255 down-regulated and 150 up-regulated phosphoproteins responding to Rap stimulation; they mainly involve the PI3K-Akt-mTORC1 signaling axis. Untargeted metabolomic profiling revealed 22 down-regulated metabolites and 75 up-regulated metabolites responding to Rap stimulation; they are mainly associated with the synthesis processes of pyrimidine and purine. The integrative multiomics data analysis provides deep insight into the drug-protein interactions and reveals Rap's complicated mechanism of action.
Collapse
Affiliation(s)
- Yao Xu
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Mengmeng Zheng
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Li Gong
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Guizhen Liu
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China
| | - Shanshan Qian
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Ying Han
- School of Life Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China
| | - Jingwu Kang
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China
| |
Collapse
|
18
|
DeMarco AG, Hall MC. Phosphoproteomic Approaches for Identifying Phosphatase and Kinase Substrates. Molecules 2023; 28:3675. [PMID: 37175085 PMCID: PMC10180314 DOI: 10.3390/molecules28093675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Protein phosphorylation is a ubiquitous post-translational modification controlled by the opposing activities of protein kinases and phosphatases, which regulate diverse biological processes in all kingdoms of life. One of the key challenges to a complete understanding of phosphoregulatory networks is the unambiguous identification of kinase and phosphatase substrates. Liquid chromatography-coupled mass spectrometry (LC-MS/MS) and associated phosphoproteomic tools enable global surveys of phosphoproteome changes in response to signaling events or perturbation of phosphoregulatory network components. Despite the power of LC-MS/MS, it is still challenging to directly link kinases and phosphatases to specific substrate phosphorylation sites in many experiments. Here, we survey common LC-MS/MS-based phosphoproteomic workflows for identifying protein kinase and phosphatase substrates, noting key advantages and limitations of each. We conclude by discussing the value of inducible degradation technologies coupled with phosphoproteomics as a new approach that overcomes some limitations of current methods for substrate identification of kinases, phosphatases, and other regulatory enzymes.
Collapse
Affiliation(s)
- Andrew G. DeMarco
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C. Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Higgins L, Gerdes H, Cutillas PR. Principles of phosphoproteomics and applications in cancer research. Biochem J 2023; 480:403-420. [PMID: 36961757 PMCID: PMC10212522 DOI: 10.1042/bcj20220220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
Phosphorylation constitutes the most common and best-studied regulatory post-translational modification in biological systems and archetypal signalling pathways driven by protein and lipid kinases are disrupted in essentially all cancer types. Thus, the study of the phosphoproteome stands to provide unique biological information on signalling pathway activity and on kinase network circuitry that is not captured by genetic or transcriptomic technologies. Here, we discuss the methods and tools used in phosphoproteomics and highlight how this technique has been used, and can be used in the future, for cancer research. Challenges still exist in mass spectrometry phosphoproteomics and in the software required to provide biological information from these datasets. Nevertheless, improvements in mass spectrometers with enhanced scan rates, separation capabilities and sensitivity, in biochemical methods for sample preparation and in computational pipelines are enabling an increasingly deep analysis of the phosphoproteome, where previous bottlenecks in data acquisition, processing and interpretation are being relieved. These powerful hardware and algorithmic innovations are not only providing exciting new mechanistic insights into tumour biology, from where new drug targets may be derived, but are also leading to the discovery of phosphoproteins as mediators of drug sensitivity and resistance and as classifiers of disease subtypes. These studies are, therefore, uncovering phosphoproteins as a new generation of disruptive biomarkers to improve personalised anti-cancer therapies.
Collapse
Affiliation(s)
- Luke Higgins
- Cell Signaling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, U.K
| | - Henry Gerdes
- Cell Signaling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, U.K
| | - Pedro R. Cutillas
- Cell Signaling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, U.K
- Alan Turing Institute, The British Library, London, U.K
- Digital Environment Research Institute, Queen Mary University of London, London, U.K
| |
Collapse
|
20
|
Sousa A, Dugourd A, Memon D, Petursson B, Petsalaki E, Saez‐Rodriguez J, Beltrao P. Pan-Cancer landscape of protein activities identifies drivers of signalling dysregulation and patient survival. Mol Syst Biol 2023; 19:e10631. [PMID: 36688815 PMCID: PMC9996241 DOI: 10.15252/msb.202110631] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Genetic alterations in cancer cells trigger oncogenic transformation, a process largely mediated by the dysregulation of kinase and transcription factor (TF) activities. While the mutational profiles of thousands of tumours have been extensively characterised, the measurements of protein activities have been technically limited until recently. We compiled public data of matched genomics and (phospho)proteomics measurements for 1,110 tumours and 77 cell lines that we used to estimate activity changes in 218 kinases and 292 TFs. Co-regulation of kinase and TF activities reflects previously known regulatory relationships and allows us to dissect genetic drivers of signalling changes in cancer. We find that loss-of-function mutations are not often associated with the dysregulation of downstream targets, suggesting frequent compensatory mechanisms. Finally, we identified the activities most differentially regulated in cancer subtypes and showed how these can be linked to differences in patient survival. Our results provide broad insights into the dysregulation of protein activities in cancer and their contribution to disease severity.
Collapse
Affiliation(s)
- Abel Sousa
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (i3s)PortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
- Graduate Program in Areas of Basic and Applied Biology (GABBA)Abel Salazar Biomedical Sciences Institute, University of PortoPortoPortugal
| | - Aurelien Dugourd
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational Biomedicine, Heidelberg UniversityHeidelbergGermany
- Faculty of MedicineInstitute of Experimental Medicine and Systems Biology, RWTH Aachen UniversityAachenGermany
| | - Danish Memon
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | - Borgthor Petursson
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | - Evangelia Petsalaki
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | - Julio Saez‐Rodriguez
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational Biomedicine, Heidelberg UniversityHeidelbergGermany
| | - Pedro Beltrao
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
| |
Collapse
|
21
|
Frando A, Boradia V, Gritsenko M, Beltejar C, Day L, Sherman DR, Ma S, Jacobs JM, Grundner C. The Mycobacterium tuberculosis protein O-phosphorylation landscape. Nat Microbiol 2023; 8:548-561. [PMID: 36690861 PMCID: PMC11376436 DOI: 10.1038/s41564-022-01313-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/16/2022] [Indexed: 01/25/2023]
Abstract
Bacterial phosphosignalling has been synonymous with two-component systems and their histidine kinases, but many bacteria, including Mycobacterium tuberculosis (Mtb), also code for Ser/Thr protein kinases (STPKs). STPKs are the main phosphosignalling enzymes in eukaryotes but the full extent of phosphorylation on protein Ser/Thr and Tyr (O-phosphorylation) in bacteria is untested. Here we explored the global signalling capacity of the STPKs in Mtb using a panel of STPK loss-of-function and overexpression strains combined with mass spectrometry-based phosphoproteomics. A deep phosphoproteome with >14,000 unique phosphosites shows that O-phosphorylation in Mtb is a vastly underexplored protein modification that affects >80% of the proteome and extensively interfaces with the transcriptional machinery. Mtb O-phosphorylation gives rise to an expansive, distributed and cooperative network of a complexity that has not previously been seen in bacteria and that is on par with eukaryotic phosphosignalling networks. A resource of >3,700 high-confidence direct substrate-STPK interactions and their transcriptional effects provides signalling context for >80% of Mtb proteins and allows the prediction and assembly of signalling pathways for mycobacterial physiology.
Collapse
Affiliation(s)
- Andrew Frando
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Vishant Boradia
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Claude Beltejar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Le Day
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - David R Sherman
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jon M Jacobs
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Christoph Grundner
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
Arfelli VC, Chang YC, Bagnoli JW, Kerbs P, Ciamponi FE, Paz LMDS, Pankivskyi S, de Matha Salone J, Maucuer A, Massirer KB, Enard W, Kuster B, Greif PA, Archangelo LF. UHMK1 is a novel splicing regulatory kinase. J Biol Chem 2023; 299:103041. [PMID: 36803961 PMCID: PMC10033318 DOI: 10.1016/j.jbc.2023.103041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
The U2AF Homology Motif Kinase 1 (UHMK1) is the only kinase that contains the U2AF homology motif, a common protein interaction domain among splicing factors. Through this motif, UHMK1 interacts with the splicing factors SF1 and SF3B1, known to participate in the 3' splice site recognition during the early steps of spliceosome assembly. Although UHMK1 phosphorylates these splicing factors in vitro, the involvement of UHMK1 in RNA processing has not previously been demonstrated. Here, we identify novel putative substrates of this kinase and evaluate UHMK1 contribution to overall gene expression and splicing, by integrating global phosphoproteomics, RNA-seq, and bioinformatics approaches. Upon UHMK1 modulation, 163 unique phosphosites were differentially phosphorylated in 117 proteins, of which 106 are novel potential substrates of this kinase. Gene Ontology analysis showed enrichment of terms previously associated with UHMK1 function, such as mRNA splicing, cell cycle, cell division, and microtubule organization. The majority of the annotated RNA-related proteins are components of the spliceosome but are also involved in several steps of gene expression. Comprehensive analysis of splicing showed that UHMK1 affected over 270 alternative splicing events. Moreover, splicing reporter assay further supported UHMK1 function on splicing. Overall, RNA-seq data demonstrated that UHMK1 knockdown had a minor impact on transcript expression and pointed to UHMK1 function in epithelial-mesenchymal transition. Functional assays demonstrated that UHMK1 modulation affects proliferation, colony formation, and migration. Taken together, our data implicate UHMK1 as a splicing regulatory kinase, connecting protein regulation through phosphorylation and gene expression in key cellular processes.
Collapse
Affiliation(s)
- Vanessa C Arfelli
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Yun-Chien Chang
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Johannes W Bagnoli
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University (LMU), Martinsried, Germany
| | - Paul Kerbs
- Laboratory for Experimental Leukemia and Lymphoma Research, Munich University Hospital, Ludwig-Maximilians University (LMU), Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felipe E Ciamponi
- Center for Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Laissa M da S Paz
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Serhii Pankivskyi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | | | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Katlin B Massirer
- Center for Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Wolfgang Enard
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University (LMU), Martinsried, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Philipp A Greif
- Laboratory for Experimental Leukemia and Lymphoma Research, Munich University Hospital, Ludwig-Maximilians University (LMU), Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leticia Fröhlich Archangelo
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
23
|
Irvali D, Schlottmann FP, Muralidhara P, Nadelson I, Kleemann K, Wood NE, Doncic A, Ewald JC. When yeast cells change their mind: cell cycle "Start" is reversible under starvation. EMBO J 2023; 42:e110321. [PMID: 36420556 PMCID: PMC9841329 DOI: 10.15252/embj.2021110321] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic cells decide in late G1 phase of the cell cycle whether to commit to another round of division. This point of cell cycle commitment is termed "Restriction Point" in mammals and "Start" in the budding yeast Saccharomyces cerevisiae. At Start, yeast cells integrate multiple signals such as pheromones and nutrients, and will not pass Start if nutrients are lacking. However, how cells respond to nutrient depletion after the Start decision remains poorly understood. Here, we analyze how post-Start cells respond to nutrient depletion, by monitoring Whi5, the cell cycle inhibitor whose export from the nucleus determines Start. Surprisingly, we find that cells that have passed Start can re-import Whi5 into the nucleus. In these cells, the positive feedback loop activating G1/S transcription is interrupted, and the Whi5 repressor re-binds DNA. Cells which re-import Whi5 become again sensitive to mating pheromone, like pre-Start cells, and CDK activation can occur a second time upon replenishment of nutrients. These results demonstrate that upon starvation, the commitment decision at Start can be reversed. We therefore propose that cell cycle commitment in yeast is a multi-step process, similar to what has been suggested for mammalian cells.
Collapse
Affiliation(s)
- Deniz Irvali
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Fabian P Schlottmann
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | | | - Iliya Nadelson
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Katja Kleemann
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - N Ezgi Wood
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Doncic
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer C Ewald
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
24
|
Kwiatek JM, Gutierrez B, Izgu EC, Han GS, Carman GM. Phosphatidic Acid Mediates the Nem1-Spo7/Pah1 Phosphatase Cascade in Yeast Lipid Synthesis. J Lipid Res 2022; 63:100282. [PMID: 36314526 PMCID: PMC9587005 DOI: 10.1016/j.jlr.2022.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the PAH1-encoded Mg2+-dependent phosphatidate (PA) phosphatase Pah1 regulates the bifurcation of PA to diacylglycerol (DAG) for triacylglycerol (TAG) synthesis and to CDP-DAG for phospholipid synthesis. Pah1 function is mainly regulated via control of its cellular location by phosphorylation and dephosphorylation. Pah1 phosphorylated by multiple protein kinases is sequestered in the cytosol apart from its substrate PA in the membrane. The phosphorylated Pah1 is then recruited and dephosphorylated by the protein phosphatase complex Nem1 (catalytic subunit)-Spo7 (regulatory subunit) in the endoplasmic reticulum. The dephosphorylated Pah1 hops onto and scoots along the membrane to recognize PA for its dephosphorylation to DAG. Here, we developed a proteoliposome model system that mimics the Nem1-Spo7/Pah1 phosphatase cascade to provide a tool for studying Pah1 regulation. Purified Nem1-Spo7 was reconstituted into phospholipid vesicles prepared in accordance with the phospholipid composition of the nuclear/endoplasmic reticulum membrane. The Nem1-Spo7 phosphatase reconstituted in the proteoliposomes, which were measured 60 nm in an average diameter, was catalytically active on Pah1 phosphorylated by Pho85-Pho80, and its active site was located at the external side of the phospholipid bilayer. Moreover, we determined that PA stimulated the Nem1-Spo7 activity, and the regulatory effect was governed by the nature of the phosphate headgroup but not by the fatty acyl moiety of PA. The reconstitution system for the Nem1-Spo7/Pah1 phosphatase cascade, which starts with the phosphorylation of Pah1 by Pho85-Pho80 and ends with the production of DAG, is a significant advance to understand a regulatory cascade in yeast lipid synthesis.
Collapse
Affiliation(s)
- Joanna M Kwiatek
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Bryan Gutierrez
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Enver Cagri Izgu
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey, USA; Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
25
|
Müller H, Lesur A, Dittmar G, Gentzel M, Kettner K. Proteomic consequences of TDA1 deficiency in Saccharomyces cerevisiae: Protein kinase Tda1 is essential for Hxk1 and Hxk2 serine 15 phosphorylation. Sci Rep 2022; 12:18084. [PMID: 36302925 PMCID: PMC9613766 DOI: 10.1038/s41598-022-21414-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
Hexokinase 2 (Hxk2) of Saccharomyces cerevisiae is a dual function hexokinase, acting as a glycolytic enzyme and being involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by phosphorylation of Hxk2 at serine 15, which has been attributed to the protein kinase Tda1. To explore the role of Tda1 beyond Hxk2 phosphorylation, the proteomic consequences of TDA1 deficiency were investigated by difference gel electrophoresis (2D-DIGE) comparing a wild type and a Δtda1 deletion mutant. To additionally address possible consequences of glucose repression/derepression, both were grown at 2% and 0.1% (w/v) glucose. A total of eight protein spots exhibiting a minimum twofold enhanced or reduced fluorescence upon TDA1 deficiency was detected and identified by mass spectrometry. Among the spot identities are-besides the expected Hxk2-two proteoforms of hexokinase 1 (Hxk1). Targeted proteomics analyses in conjunction with 2D-DIGE demonstrated that TDA1 is indispensable for Hxk2 and Hxk1 phosphorylation at serine 15. Thirty-six glucose-concentration-dependent protein spots were identified. A simple method to improve spot quantification, approximating spots as rotationally symmetric solids, is presented along with new data on the quantities of Hxk1 and Hxk2 and their serine 15 phosphorylated forms at high and low glucose growth conditions. The Δtda1 deletion mutant exhibited no altered growth under high or low glucose conditions or on alternative carbon sources. Also, invertase activity, serving as a reporter for glucose derepression, was not significantly altered. Instead, an involvement of Tda1 in oxidative stress response is suggested.
Collapse
Affiliation(s)
- Henry Müller
- grid.4488.00000 0001 2111 7257Institute of Physiological Chemistry, Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Antoine Lesur
- grid.451012.30000 0004 0621 531XLuxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Gunnar Dittmar
- grid.451012.30000 0004 0621 531XLuxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg ,grid.16008.3f0000 0001 2295 9843Department of Life Sciences and Medicine, University of Luxembourg, 6 Avenue de Swing, 4367 Belvaux, Luxembourg
| | - Marc Gentzel
- grid.4488.00000 0001 2111 7257Center for Molecular and Cellular Bioengineering (CMCB), TP Molecular Analysis / Mass Spectrometry, Technische Universität Dresden, Tatzberg 46/47, 01307 Dresden, Germany
| | - Karina Kettner
- grid.4488.00000 0001 2111 7257Institute of Physiological Chemistry, Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
26
|
Khondker S, Kwiatek JM, Han GS, Carman GM. Glycogen synthase kinase homolog Rim11 regulates lipid synthesis through the phosphorylation of Pah1 phosphatidate phosphatase in yeast. J Biol Chem 2022; 298:102221. [PMID: 35780834 PMCID: PMC9352556 DOI: 10.1016/j.jbc.2022.102221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
Pah1 phosphatidate (PA) phosphatase plays a major role in triacylglycerol synthesis in Saccharomyces cerevisiae by producing its precursor diacylglycerol and concurrently regulates de novo phospholipid synthesis by consuming its precursor PA. The function of Pah1 requires its membrane localization, which is controlled by its phosphorylation state. Pah1 is dephosphorylated by the Nem1-Spo7 protein phosphatase, whereas its phosphorylation occurs by multiple known and unknown protein kinases. In this work, we show that Rim11, a yeast homolog of mammalian glycogen synthase kinase-3β, is a protein kinase that phosphorylates Pah1 on serine (Ser12, Ser602, and Ser818) and threonine (Thr163, Thr164, Thr522) residues. Enzymological characterization of Rim11 showed that its Km for Pah1 (0.4 μM) is similar to those of other Pah1-phosphorylating protein kinases, but its Km for ATP (30 μM) is significantly higher than those of these same kinases. Furthermore, we demonstrate Rim11 phosphorylation of Pah1 does not require substrate prephosphorylation but was increased ∼2-fold upon its prephosphorylation by the Pho85-Pho80 protein kinase. In addition, we show Rim11-phosphorylated Pah1 was a substrate for dephosphorylation by Nem1-Spo7. Finally, we demonstrate the Rim11 phosphorylation of Pah1 exerted an inhibitory effect on its PA phosphatase activity by reduction of its catalytic efficiency. Mutational analysis of the major phosphorylation sites (Thr163, Thr164, and Ser602) indicated that Rim11-mediated phosphorylation at these sites was required to ensure Nem1-Spo7-dependent localization of the enzyme to the membrane. Overall, these findings advance our understanding of the phosphorylation-mediated regulation of Pah1 function in lipid synthesis.
Collapse
Affiliation(s)
- Shoily Khondker
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Joanna M Kwiatek
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
27
|
Ugbogu EA, Schweizer LM, Schweizer M. Contribution of Model Organisms to Investigating the Far-Reaching Consequences of PRPP Metabolism on Human Health and Well-Being. Cells 2022; 11:1909. [PMID: 35741038 PMCID: PMC9221600 DOI: 10.3390/cells11121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Phosphoribosyl pyrophosphate synthetase (PRS EC 2.7.6.1) is a rate-limiting enzyme that irreversibly catalyzes the formation of phosphoribosyl pyrophosphate (PRPP) from ribose-5-phosphate and adenosine triphosphate (ATP). This key metabolite is required for the synthesis of purine and pyrimidine nucleotides, the two aromatic amino acids histidine and tryptophan, the cofactors nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), all of which are essential for various life processes. Despite its ubiquity and essential nature across the plant and animal kingdoms, PRPP synthetase displays species-specific characteristics regarding the number of gene copies and architecture permitting interaction with other areas of cellular metabolism. The impact of mutated PRS genes in the model eukaryote Saccharomyces cerevisiae on cell signalling and metabolism may be relevant to the human neuropathies associated with PRPS mutations. Human PRPS1 and PRPS2 gene products are implicated in drug resistance associated with recurrent acute lymphoblastic leukaemia and progression of colorectal cancer and hepatocellular carcinoma. The investigation of PRPP metabolism in accepted model organisms, e.g., yeast and zebrafish, has the potential to reveal novel drug targets for treating at least some of the diseases, often characterized by overlapping symptoms, such as Arts syndrome and respiratory infections, and uncover the significance and relevance of human PRPS in disease diagnosis, management, and treatment.
Collapse
Affiliation(s)
- Eziuche A. Ugbogu
- School of Life Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK; (E.A.U.); (L.M.S.)
| | - Lilian M. Schweizer
- School of Life Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK; (E.A.U.); (L.M.S.)
| | - Michael Schweizer
- Institute of Biological Chemistry, Biophysics & Engineering (IB3), School of Engineering &Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
28
|
Grossbach J, Gillet L, Clément‐Ziza M, Schmalohr CL, Schubert OT, Schütter M, Mawer JSP, Barnes CA, Bludau I, Weith M, Tessarz P, Graef M, Aebersold R, Beyer A. The impact of genomic variation on protein phosphorylation states and regulatory networks. Mol Syst Biol 2022; 18:e10712. [PMID: 35574625 PMCID: PMC9109056 DOI: 10.15252/msb.202110712] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Genomic variation impacts on cellular networks by affecting the abundance (e.g., protein levels) and the functional states (e.g., protein phosphorylation) of their components. Previous work has focused on the former, while in this context, the functional states of proteins have largely remained neglected. Here, we generated high-quality transcriptome, proteome, and phosphoproteome data for a panel of 112 genomically well-defined yeast strains. Genetic effects on transcripts were generally transmitted to the protein layer, but specific gene groups, such as ribosomal proteins, showed diverging effects on protein levels compared with RNA levels. Phosphorylation states proved crucial to unravel genetic effects on signaling networks. Correspondingly, genetic variants that cause phosphorylation changes were mostly different from those causing abundance changes in the respective proteins. Underscoring their relevance for cell physiology, phosphorylation traits were more strongly correlated with cell physiological traits such as chemical compound resistance or cell morphology, compared with transcript or protein abundance. This study demonstrates how molecular networks mediate the effects of genomic variants to cellular traits and highlights the particular importance of protein phosphorylation.
Collapse
Affiliation(s)
- Jan Grossbach
- Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesUniversity of CologneCologneGermany
| | - Ludovic Gillet
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Mathieu Clément‐Ziza
- Center for Molecular Medicine Cologne (CMMC)Medical Faculty, University of CologneCologneGermany
- Lesaffre InternationalMarcq‐en‐BarœulFrance
| | - Corinna L Schmalohr
- Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesUniversity of CologneCologneGermany
| | - Olga T Schubert
- Department of Human GeneticsUniversity of California, Los AngelesLos AngelesCAUSA
| | | | | | | | - Isabell Bludau
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Matthias Weith
- Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesUniversity of CologneCologneGermany
| | - Peter Tessarz
- Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesUniversity of CologneCologneGermany
- Max Planck Institute for Biology of AgeingCologneGermany
| | - Martin Graef
- Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesUniversity of CologneCologneGermany
- Max Planck Institute for Biology of AgeingCologneGermany
| | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Faculty of ScienceUniversity of ZurichZurichSwitzerland
| | - Andreas Beyer
- Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)Medical Faculty, University of CologneCologneGermany
- Institute for GeneticsFaculty of Mathematics and Natural SciencesUniversity of CologneCologneGermany
| |
Collapse
|
29
|
Khondker S, Han GS, Carman GM. Phosphorylation-mediated regulation of the Nem1-Spo7/Pah1 phosphatase cascade in yeast lipid synthesis. Adv Biol Regul 2022; 84:100889. [PMID: 35231723 PMCID: PMC9149063 DOI: 10.1016/j.jbior.2022.100889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 05/03/2023]
Abstract
The PAH1-encoded phosphatidate phosphatase, which catalyzes the dephosphorylation of phosphatidate to produce diacylglycerol, controls the divergence of phosphatidate into triacylglycerol synthesis and phospholipid synthesis. Pah1 is inactive in the cytosol as a phosphorylated form and becomes active on the nuclear/endoplasmic reticulum membrane as a dephosphorylated form by the Nem1-Spo7 protein phosphatase complex. The phosphorylation of Pah1 by protein kinases, which include casein kinases I and II, Pho85-Pho80, Cdc28-cyclin B, and protein kinases A and C, controls its cellular location, catalytic activity, and susceptibility to proteasomal degradation. Nem1 (catalytic subunit) and Spo7 (regulatory subunit), which form a protein phosphatase complex catalyzing the dephosphorylation of Pah1 for its activation, are phosphorylated by protein kinases A and C. In this review, we discuss the functions and interrelationships of the protein kinases in the control of the Nem1-Spo7/Pah1 phosphatase cascade and lipid synthesis.
Collapse
Affiliation(s)
- Shoily Khondker
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
30
|
Personalized phosphoproteomics identifies functional signaling. Nat Biotechnol 2022; 40:576-584. [PMID: 34857927 DOI: 10.1038/s41587-021-01099-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
Protein phosphorylation dynamically integrates environmental and cellular information to control biological processes. Identifying functional phosphorylation amongst the thousands of phosphosites regulated by a perturbation at a global scale is a major challenge. Here we introduce 'personalized phosphoproteomics', a combination of experimental and computational analyses to link signaling with biological function by utilizing human phenotypic variance. We measure individual subject phosphoproteome responses to interventions with corresponding phenotypes measured in parallel. Applying this approach to investigate how exercise potentiates insulin signaling in human skeletal muscle, we identify both known and previously unidentified phosphosites on proteins involved in glucose metabolism. This includes a cooperative relationship between mTOR and AMPK whereby the former directly phosphorylates the latter on S377, for which we find a role in metabolic regulation. These results establish personalized phosphoproteomics as a general approach for investigating the signal transduction underlying complex biology.
Collapse
|
31
|
Sirtuins are crucial regulators of T cell metabolism and functions. Exp Mol Med 2022; 54:207-215. [PMID: 35296782 PMCID: PMC8979958 DOI: 10.1038/s12276-022-00739-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 01/01/2023] Open
Abstract
It is well known that metabolism underlies T cell differentiation and functions. The pathways regulating T cell metabolism and function are interconnected, and changes in T cell metabolic activity directly impact the effector functions and fate of T cells. Thus, understanding how metabolic pathways influence immune responses and ultimately affect disease progression is paramount. Epigenetic and posttranslational modification mechanisms have been found to control immune responses and metabolic reprogramming. Sirtuins are NAD+-dependent histone deacetylases that play key roles during cellular responses to a variety of stresses and have recently been reported to have potential roles in immune responses. Therefore, sirtuins are of significant interest as therapeutic targets to treat immune-related diseases and enhance antitumor immunity. This review aims to illustrate the potential roles of sirtuins in different subtypes of T cells during the adaptive immune response. Sirtuins, enzymes that regulate how cells respond to stress, regulate T cell metabolism and functions, and therefore blocking or boosting sirtuins influences immune responses. As part of the immune system, some types of T cells attack specific targets; others keep the immune response in check. Imene Hamaidi and Sungjune Kim at H. Lee Moffitt Cancer Center, Tampa, USA, have reviewed how sirtuins affect different subsets of T cells to either promote or suppress immune responses. Boosting sirtuins that increase the function of inflammation-suppressing T cells can improve outcomes for transplant recipients or help treat autoimmune diseases. Conversely, stimulating immune-activating sirtuins can help re-energize exhausted antitumor T cells. Understanding the complex web of sirtuin–T cell interactions may help in developing therapeutic strategies for improving transplant outcomes, and for treating autoimmune diseases and cancer.
Collapse
|
32
|
Park Y, Stukey GJ, Jog R, Kwiatek JM, Han GS, Carman GM. Mutant phosphatidate phosphatase Pah1-W637A exhibits altered phosphorylation, membrane association, and enzyme function in yeast. J Biol Chem 2022; 298:101578. [PMID: 35026226 PMCID: PMC8819029 DOI: 10.1016/j.jbc.2022.101578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the dephosphorylation of PA to produce diacylglycerol, controls the bifurcation of PA into triacylglycerol synthesis and phospholipid synthesis. Pah1 is inactive in the cytosol as a phosphorylated form and becomes active on the membrane as a dephosphorylated form by the Nem1-Spo7 protein phosphatase. We show that the conserved Trp-637 residue of Pah1, located in the intrinsically disordered region, is required for normal synthesis of membrane phospholipids, sterols, triacylglycerol, and the formation of lipid droplets. Analysis of mutant Pah1-W637A showed that the tryptophan residue is involved in the phosphorylation-mediated/dephosphorylation-mediated membrane association of the enzyme and its catalytic activity. The endogenous phosphorylation of Pah1-W637A was increased at the sites of the N-terminal region but was decreased at the sites of the C-terminal region. The altered phosphorylation correlated with an increase in its membrane association. In addition, membrane-associated PA phosphatase activity in vitro was elevated in cells expressing Pah1-W637A as a result of the increased membrane association of the mutant enzyme. However, the inherent catalytic function of Pah1 was not affected by the W637A mutation. Prediction of Pah1 structure by AlphaFold shows that Trp-637 and the catalytic residues Asp-398 and Asp-400 in the haloacid dehalogenase-like domain almost lie in the same plane, suggesting that these residues are important to properly position the enzyme for substrate recognition at the membrane surface. These findings underscore the importance of Trp-637 in Pah1 regulation by phosphorylation, membrane association of the enzyme, and its function in lipid synthesis.
Collapse
Affiliation(s)
- Yeonhee Park
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Geordan J Stukey
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Ruta Jog
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Joanna M Kwiatek
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
33
|
Mühlhofer M, Peters C, Kriehuber T, Kreuzeder M, Kazman P, Rodina N, Reif B, Haslbeck M, Weinkauf S, Buchner J. Phosphorylation activates the yeast small heat shock protein Hsp26 by weakening domain contacts in the oligomer ensemble. Nat Commun 2021; 12:6697. [PMID: 34795272 PMCID: PMC8602628 DOI: 10.1038/s41467-021-27036-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Hsp26 is a small heat shock protein (sHsp) from S. cerevisiae. Its chaperone activity is activated by oligomer dissociation at heat shock temperatures. Hsp26 contains 9 phosphorylation sites in different structural elements. Our analysis of phospho-mimetic mutations shows that phosphorylation activates Hsp26 at permissive temperatures. The cryo-EM structure of the Hsp26 40mer revealed contacts between the conserved core domain of Hsp26 and the so-called thermosensor domain in the N-terminal part of the protein, which are targeted by phosphorylation. Furthermore, several phosphorylation sites in the C-terminal extension, which link subunits within the oligomer, are sensitive to the introduction of negative charges. In all cases, the intrinsic inhibition of chaperone activity is relieved and the N-terminal domain becomes accessible for substrate protein binding. The weakening of domain interactions within and between subunits by phosphorylation to activate the chaperone activity in response to proteotoxic stresses independent of heat stress could be a general regulation principle of sHsps.
Collapse
Affiliation(s)
- Moritz Mühlhofer
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Carsten Peters
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Thomas Kriehuber
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany ,grid.420061.10000 0001 2171 7500Present Address: Boehringer Ingelheim, Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany
| | - Marina Kreuzeder
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany ,grid.5252.00000 0004 1936 973XPresent Address: Ludwig-Maximilians-Universität München, Biozentrum Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Pamina Kazman
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany ,grid.424277.0Present Address: Roche Diagnostics, Nonnenwald 2, 82377 Penzberg, Germany
| | - Natalia Rodina
- grid.6936.a0000000123222966BNMRZ, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 2, 85747 Garching, Germany ,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Bernd Reif
- grid.6936.a0000000123222966BNMRZ, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 2, 85747 Garching, Germany ,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Haslbeck
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Sevil Weinkauf
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany.
| |
Collapse
|
34
|
Schastnaya E, Raguz Nakic Z, Gruber CH, Doubleday PF, Krishnan A, Johns NI, Park J, Wang HH, Sauer U. Extensive regulation of enzyme activity by phosphorylation in Escherichia coli. Nat Commun 2021; 12:5650. [PMID: 34561442 PMCID: PMC8463566 DOI: 10.1038/s41467-021-25988-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
Abstract
Protein serine/threonine/tyrosine (S/T/Y) phosphorylation is an essential and frequent post-translational modification in eukaryotes, but historically has been considered less prevalent in bacteria because fewer proteins were found to be phosphorylated and most proteins were modified to a lower degree. Recent proteomics studies greatly expanded the phosphoproteome of Escherichia coli to more than 2000 phosphorylation sites (phosphosites), yet mechanisms of action were proposed for only six phosphosites and fitness effects were described for 38 phosphosites upon perturbation. By systematically characterizing functional relevance of S/T/Y phosphorylation in E. coli metabolism, we found 44 of the 52 mutated phosphosites to be functional based on growth phenotypes and intracellular metabolome profiles. By effectively doubling the number of known functional phosphosites, we provide evidence that protein phosphorylation is a major regulation process in bacterial metabolism. Combining in vitro and in vivo experiments, we demonstrate how single phosphosites modulate enzymatic activity and regulate metabolic fluxes in glycolysis, methylglyoxal bypass, acetate metabolism and the split between pentose phosphate and Entner-Doudoroff pathways through mechanisms that include shielding the substrate binding site, limiting structural dynamics, and disrupting interactions relevant for activity in vivo.
Collapse
Affiliation(s)
- Evgeniya Schastnaya
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | - Zrinka Raguz Nakic
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
- Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Christoph H Gruber
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | | | - Aarti Krishnan
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Nathan I Johns
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Jimin Park
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
35
|
Ashida S, Morita R, Shigeta Y, Harada R. Phosphorylation in the accessory domain of yeast histone chaperone protein 1 exposes the nuclear export signal sequence. Proteins 2021; 90:317-321. [PMID: 34536244 DOI: 10.1002/prot.26240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022]
Abstract
Histone chaperone proteins assist in the formation of the histone octamers, the scaffold proteins that facilitate the packing of DNA into nucleosomes in the cell nucleus. One such histone chaperone protein is yeast nucleosome assembly protein 1 (yNap1), the crystal structure of which has been determined and found to have a nuclear export signal (NES) sequence within its long α-helix. Experimental evidence obtained from mutagenesis studies of the budding yeast suggests that the NES is necessary for the transport of yNap1 from the cell nucleus to the cytosol. However, the NES sequence is masked by an accessory domain, the exact role of which has not yet been elucidated, especially in nucleocytoplasmic transport. To clarify the role of the accessory domain, we focused on its phosphorylation, because proteomic experiments have identified multiple phosphorylation sites on yNap1. To study this phenomenon computationally, all-atom molecular dynamics simulations of the non-phosphorylated yNap1 (Nap1-nonP) and phosphorylated yNap1 (Nap1-P) systems were performed. Specifically, we addressed how the NES sequence is exposed to the protein surface by measuring its solvent-accessible surface area (SASA). It was found that the median of the SASA distribution of Nap1-P was greater than that of Nap1-nonP, indicating that phosphorylation in the accessory domain exposes the NES, resulting in its increased accessibility. In conclusion, yNap1 might modulate the accessibility of the NES by dislocating the accessory domain through its phosphorylation.
Collapse
Affiliation(s)
- Sho Ashida
- College of Biological Sciences, University of Tsukuba, Tsukuba, Japan
| | - Rikuri Morita
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
36
|
Moesslacher CS, Kohlmayr JM, Stelzl U. Exploring absent protein function in yeast: assaying post translational modification and human genetic variation. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:164-183. [PMID: 34395585 PMCID: PMC8329848 DOI: 10.15698/mic2021.08.756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023]
Abstract
Yeast is a valuable eukaryotic model organism that has evolved many processes conserved up to humans, yet many protein functions, including certain DNA and protein modifications, are absent. It is this absence of protein function that is fundamental to approaches using yeast as an in vivo test system to investigate human proteins. Functionality of the heterologous expressed proteins is connected to a quantitative, selectable phenotype, enabling the systematic analyses of mechanisms and specificity of DNA modification, post-translational protein modifications as well as the impact of annotated cancer mutations and coding variation on protein activity and interaction. Through continuous improvements of yeast screening systems, this is increasingly carried out on a global scale using deep mutational scanning approaches. Here we discuss the applicability of yeast systems to investigate absent human protein function with a specific focus on the impact of protein variation on protein-protein interaction modulation.
Collapse
Affiliation(s)
- Christina S Moesslacher
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| | - Johanna M Kohlmayr
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| |
Collapse
|
37
|
Separovich RJ, Wilkins MR. Ready, SET, Go: Post-translational regulation of the histone lysine methylation network in budding yeast. J Biol Chem 2021; 297:100939. [PMID: 34224729 PMCID: PMC8329514 DOI: 10.1016/j.jbc.2021.100939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022] Open
Abstract
Histone lysine methylation is a key epigenetic modification that regulates eukaryotic transcription. Here, we comprehensively review the function and regulation of the histone methylation network in the budding yeast and model eukaryote, Saccharomyces cerevisiae. First, we outline the lysine methylation sites that are found on histone proteins in yeast (H3K4me1/2/3, H3K36me1/2/3, H3K79me1/2/3, and H4K5/8/12me1) and discuss their biological and cellular roles. Next, we detail the reduced but evolutionarily conserved suite of methyltransferase (Set1p, Set2p, Dot1p, and Set5p) and demethylase (Jhd1p, Jhd2p, Rph1p, and Gis1p) enzymes that are known to control histone lysine methylation in budding yeast cells. Specifically, we illustrate the domain architecture of the methylation enzymes and highlight the structural features that are required for their respective functions and molecular interactions. Finally, we discuss the prevalence of post-translational modifications on yeast histone methylation enzymes and how phosphorylation, acetylation, and ubiquitination in particular are emerging as key regulators of enzyme function. We note that it will be possible to completely connect the histone methylation network to the cell's signaling system, given that all methylation sites and cognate enzymes are known, most phosphosites on the enzymes are known, and the mapping of kinases to phosphosites is tractable owing to the modest set of protein kinases in yeast. Moving forward, we expect that the rich variety of post-translational modifications that decorates the histone methylation machinery will explain many of the unresolved questions surrounding the function and dynamics of this intricate epigenetic network.
Collapse
Affiliation(s)
- Ryan J Separovich
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
38
|
Decoding post translational modification crosstalk with proteomics. Mol Cell Proteomics 2021; 20:100129. [PMID: 34339852 PMCID: PMC8430371 DOI: 10.1016/j.mcpro.2021.100129] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modification (PTM) of proteins allows cells to regulate protein functions, transduce signals and respond to perturbations. PTMs expand protein functionality and diversity, which leads to increased proteome complexity. PTM crosstalk describes the combinatorial action of multiple PTMs on the same or on different proteins for higher order regulation. Here we review how recent advances in proteomic technologies, mass spectrometry instrumentation, and bioinformatics spurred the proteome-wide identification of PTM crosstalk through measurements of PTM sites. We provide an overview of the basic modes of PTM crosstalk, the proteomic methods to elucidate PTM crosstalk, and approaches that can inform about the functional consequences of PTM crosstalk. Description of basic modules and different modes of PTM crosstalk. Overview of current proteomic methods to identify and infer PTM crosstalk. Discussion of large-scale approaches to characterize functional PTM crosstalk. Future directions and potential proteomic methods for elucidating PTM crosstalk.
Collapse
|
39
|
Li WJ, Wang CW, Tao L, Yan YH, Zhang MJ, Liu ZX, Li YX, Zhao HQ, Li XM, He XD, Xue Y, Dong MQ. Insulin signaling regulates longevity through protein phosphorylation in Caenorhabditis elegans. Nat Commun 2021; 12:4568. [PMID: 34315882 PMCID: PMC8316574 DOI: 10.1038/s41467-021-24816-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/01/2021] [Indexed: 12/22/2022] Open
Abstract
Insulin/IGF-1 Signaling (IIS) is known to constrain longevity by inhibiting the transcription factor FOXO. How phosphorylation mediated by IIS kinases regulates lifespan beyond FOXO remains unclear. Here, we profile IIS-dependent phosphorylation changes in a large-scale quantitative phosphoproteomic analysis of wild-type and three IIS mutant Caenorhabditis elegans strains. We quantify more than 15,000 phosphosites and find that 476 of these are differentially phosphorylated in the long-lived daf-2/insulin receptor mutant. We develop a machine learning-based method to prioritize 25 potential lifespan-related phosphosites. We perform validations to show that AKT-1 pT492 inhibits DAF-16/FOXO and compensates the loss of daf-2 function, that EIF-2α pS49 potently inhibits protein synthesis and daf-2 longevity, and that reduced phosphorylation of multiple germline proteins apparently transmits reduced DAF-2 signaling to the soma. In addition, an analysis of kinases with enriched substrates detects that casein kinase 2 (CK2) subunits negatively regulate lifespan. Our study reveals detailed functional insights into longevity.
Collapse
Affiliation(s)
- Wen-Jun Li
- School of Life Sciences, Peking University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Chen-Wei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Nanjing University Institute of Artificial Intelligence Biomedicine, Nanjing, Jiangsu, China
| | - Li Tao
- National Institute of Biological Sciences, Beijing, China
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing, China
| | - Mei-Jun Zhang
- National Institute of Biological Sciences, Beijing, China
- Annoroad Gene Tech. Co., Ltd., Beijing, China
| | - Ze-Xian Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Xin Li
- National Institute of Biological Sciences, Beijing, China
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Han-Qing Zhao
- National Institute of Biological Sciences, Beijing, China
| | - Xue-Mei Li
- School of Life Sciences, Peking University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Xian-Dong He
- National Institute of Biological Sciences, Beijing, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Nanjing University Institute of Artificial Intelligence Biomedicine, Nanjing, Jiangsu, China.
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
40
|
Niinae T, Imami K, Sugiyama N, Ishihama Y. Identification of Endogenous Kinase Substrates by Proximity Labeling Combined with Kinase Perturbation and Phosphorylation Motifs. Mol Cell Proteomics 2021; 20:100119. [PMID: 34186244 PMCID: PMC8325102 DOI: 10.1016/j.mcpro.2021.100119] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023] Open
Abstract
Mass-spectrometry-based phosphoproteomics can identify more than 10,000 phosphorylated sites in a single experiment. But, despite the fact that enormous phosphosite information has been accumulated in public repositories, protein kinase–substrate relationships remain largely unknown. Here, we describe a method to identify endogenous substrates of kinases by using a combination of a proximity-dependent biotin identification method, called BioID, with two other independent methods, kinase-perturbed phosphoproteomics and phosphorylation motif matching. For proof of concept, this approach was applied to casein kinase 2 (CK2) and protein kinase A (PKA), and we identified 24 and 35 putative substrates, respectively. We also show that known cancer-associated missense mutations near phosphosites of substrates affect phosphorylation by CK2 or PKA and thus might alter downstream signaling in cancer cells bearing these mutations. This approach extends our ability to probe physiological kinase–substrate networks by providing new methodology for large-scale identification of endogenous substrates of kinases. Identification of novel kinase interactors by BioID. Applying two orthogonal filters, kinase perturbation and phosphorylation motif. Identification of novel CK2 and PKA substrates. A universal method for the identification of endogenous substrates for all kinases.
Collapse
Affiliation(s)
- Tomoya Niinae
- Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Koshi Imami
- Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan; PRESTO, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Naoyuki Sugiyama
- Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yasushi Ishihama
- Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan; Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.
| |
Collapse
|
41
|
Aggarwal S, Tolani P, Gupta S, Yadav AK. Posttranslational modifications in systems biology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:93-126. [PMID: 34340775 DOI: 10.1016/bs.apcsb.2021.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biological complexity cannot be captured by genes or proteins alone. The protein posttranslational modifications (PTMs) impart functional diversity to the proteome and regulate protein structure, activity, localization and interactions. Their dynamics drive cellular signaling, growth and development while their dysregulation causes many diseases. Mass spectrometry based quantitative profiling of PTMs and bioinformatics analysis tools allow systems level insights into their network architecture. High-resolution profiling of PTM networks will advance disease understanding and precision medicine. It can accelerate the discovery of biomarkers and drug targets. This requires better tools for unbiased, high-throughput and accurate PTM identification, site localization and automated annotation on a systems level.
Collapse
Affiliation(s)
- Suruchi Aggarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India; Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| | - Priya Tolani
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Srishti Gupta
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Amit Kumar Yadav
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
42
|
Gerdes H, Casado P, Dokal A, Hijazi M, Akhtar N, Osuntola R, Rajeeve V, Fitzgibbon J, Travers J, Britton D, Khorsandi S, Cutillas PR. Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs. Nat Commun 2021; 12:1850. [PMID: 33767176 PMCID: PMC7994645 DOI: 10.1038/s41467-021-22170-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Artificial intelligence and machine learning (ML) promise to transform cancer therapies by accurately predicting the most appropriate therapies to treat individual patients. Here, we present an approach, named Drug Ranking Using ML (DRUML), which uses omics data to produce ordered lists of >400 drugs based on their anti-proliferative efficacy in cancer cells. To reduce noise and increase predictive robustness, instead of individual features, DRUML uses internally normalized distance metrics of drug response as features for ML model generation. DRUML is trained using in-house proteomics and phosphoproteomics data derived from 48 cell lines, and it is verified with data comprised of 53 cellular models from 12 independent laboratories. We show that DRUML predicts drug responses in independent verification datasets with low error (mean squared error < 0.1 and mean Spearman's rank 0.7). In addition, we demonstrate that DRUML predictions of cytarabine sensitivity in clinical leukemia samples are prognostic of patient survival (Log rank p < 0.005). Our results indicate that DRUML accurately ranks anti-cancer drugs by their efficacy across a wide range of pathologies.
Collapse
Affiliation(s)
- Henry Gerdes
- Cell Signalling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Pedro Casado
- Cell Signalling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Arran Dokal
- Cell Signalling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Kinomica Ltd, Alderley Park, Alderley Edge, Macclesfield, UK
| | - Maruan Hijazi
- Cell Signalling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Nosheen Akhtar
- Cell Signalling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ruth Osuntola
- Mass spectrometry Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Vinothini Rajeeve
- Mass spectrometry Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Jude Fitzgibbon
- Personalised Medicine Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Jon Travers
- Astra Zeneca Ltd, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - David Britton
- Cell Signalling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Kinomica Ltd, Alderley Park, Alderley Edge, Macclesfield, UK
| | | | - Pedro R Cutillas
- Cell Signalling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK.
- Mass spectrometry Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK.
- The Alan Turing Institute, The British Library, 2QR, London, UK.
| |
Collapse
|
43
|
Bradley D, Viéitez C, Rajeeve V, Selkrig J, Cutillas PR, Beltrao P. Sequence and Structure-Based Analysis of Specificity Determinants in Eukaryotic Protein Kinases. Cell Rep 2021; 34:108602. [PMID: 33440154 PMCID: PMC7809594 DOI: 10.1016/j.celrep.2020.108602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
Protein kinases lie at the heart of cell-signaling processes and are often mutated in disease. Kinase target recognition at the active site is in part determined by a few amino acids around the phosphoacceptor residue. However, relatively little is known about how most preferences are encoded in the kinase sequence or how these preferences evolved. Here, we used alignment-based approaches to predict 30 specificity-determining residues (SDRs) for 16 preferences. These were studied with structural models and were validated by activity assays of mutant kinases. Cancer mutation data revealed that kinase SDRs are mutated more frequently than catalytic residues. We have observed that, throughout evolution, kinase specificity has been strongly conserved across orthologs but can diverge after gene duplication, as illustrated by the G protein-coupled receptor kinase family. The identified SDRs can be used to predict kinase specificity from sequence and aid in the interpretation of evolutionary or disease-related genomic variants.
Collapse
Affiliation(s)
- David Bradley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Cristina Viéitez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Vinothini Rajeeve
- Integrative Cell Signalling & Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Joel Selkrig
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Pedro R Cutillas
- Integrative Cell Signalling & Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK.
| |
Collapse
|
44
|
Separovich RJ, Wong MWM, Chapman TR, Slavich E, Hamey JJ, Wilkins MR. Post-translational modification analysis of Saccharomyces cerevisiae histone methylation enzymes reveals phosphorylation sites of regulatory potential. J Biol Chem 2021; 296:100192. [PMID: 33334889 PMCID: PMC7948420 DOI: 10.1074/jbc.ra120.015995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/06/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Histone methylation is central to the regulation of eukaryotic transcription. In Saccharomyces cerevisiae, it is controlled by a system of four methyltransferases (Set1p, Set2p, Set5p, and Dot1p) and four demethylases (Jhd1p, Jhd2p, Rph1p, and Gis1p). While the histone targets for these enzymes are well characterized, the connection of the enzymes with the intracellular signaling network and thus their regulation is poorly understood; this also applies to all other eukaryotes. Here we report the detailed characterization of the eight S. cerevisiae enzymes and show that they carry a total of 75 phosphorylation sites, 92 acetylation sites, and two ubiquitination sites. All enzymes are subject to phosphorylation, although demethylases Jhd1p and Jhd2p contained one and five sites respectively, whereas other enzymes carried 14 to 36 sites. Phosphorylation was absent or underrepresented on catalytic and other domains but strongly enriched for regions of disorder on methyltransferases, suggesting a role in the modulation of protein-protein interactions. Through mutagenesis studies, we show that phosphosites within the acidic and disordered N-terminus of Set2p affect H3K36 methylation levels in vivo, illustrating the functional importance of such sites. While most kinases upstream of the yeast histone methylation enzymes remain unknown, we model the possible connections between the cellular signaling network and the histone-based gene regulatory system and propose an integrated regulatory structure. Our results provide a foundation for future, detailed exploration of the role of specific kinases and phosphosites in the regulation of histone methylation.
Collapse
Affiliation(s)
- Ryan J Separovich
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Mandy W M Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Tyler R Chapman
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Eve Slavich
- Stats Central, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
45
|
Phosphoproteomics Meets Chemical Genetics: Approaches for Global Mapping and Deciphering the Phosphoproteome. Int J Mol Sci 2020; 21:ijms21207637. [PMID: 33076458 PMCID: PMC7588962 DOI: 10.3390/ijms21207637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Protein kinases are important enzymes involved in the regulation of various cellular processes. To function properly, each protein kinase phosphorylates only a limited number of proteins among the thousands present in the cell. This provides a rapid and dynamic regulatory mechanism that controls biological functions of the proteins. Despite the importance of protein kinases, most of their substrates remain unknown. Recently, the advances in the fields of protein engineering, chemical genetics, and mass spectrometry have boosted studies on identification of bona fide substrates of protein kinases. Among the various methods in protein kinase specific substrate identification, genetically engineered protein kinases and quantitative phosphoproteomics have become promising tools. Herein, we review the current advances in the field of chemical genetics in analog-sensitive protein kinase mutants and highlight selected strategies for identifying protein kinase substrates and studying the dynamic nature of protein phosphorylation.
Collapse
|
46
|
Velázquez D, Albacar M, Zhang C, Calafí C, López-Malo M, Torres-Torronteras J, Martí R, Kovalchuk SI, Pinson B, Jensen ON, Daignan-Fornier B, Casamayor A, Ariño J. Yeast Ppz1 protein phosphatase toxicity involves the alteration of multiple cellular targets. Sci Rep 2020; 10:15613. [PMID: 32973189 PMCID: PMC7519054 DOI: 10.1038/s41598-020-72391-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Control of the protein phosphorylation status is a major mechanism for regulation of cellular processes, and its alteration often lead to functional disorders. Ppz1, a protein phosphatase only found in fungi, is the most toxic protein when overexpressed in Saccharomyces cerevisiae. To investigate the molecular basis of this phenomenon, we carried out combined genome-wide transcriptomic and phosphoproteomic analyses. We have found that Ppz1 overexpression causes major changes in gene expression, affecting ~ 20% of the genome, together with oxidative stress and increase in total adenylate pools. Concurrently, we observe changes in the phosphorylation pattern of near 400 proteins (mainly dephosphorylated), including many proteins involved in mitotic cell cycle and bud emergence, rapid dephosphorylation of Snf1 and its downstream transcription factor Mig1, and phosphorylation of Hog1 and its downstream transcription factor Sko1. Deletion of HOG1 attenuates the growth defect of Ppz1-overexpressing cells, while that of SKO1 aggravates it. Our results demonstrate that Ppz1 overexpression has a widespread impact in the yeast cells and reveals new aspects of the regulation of the cell cycle.
Collapse
Affiliation(s)
- Diego Velázquez
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marcel Albacar
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Chunyi Zhang
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Carlos Calafí
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - María López-Malo
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Ramón Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Sergey I Kovalchuk
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Laboratory of Bioinformatic Approaches in Combinatorial Chemistry and Biology, Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Benoit Pinson
- Bordeaux University, IBGC CNRS UMR 5095, Bordeaux, France
- Service Analyses Metaboliques TBMcore CNRS UMS3427/INSERM US05, Université de Bordeaux, Bordeaux, France
| | - Ole N Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
47
|
Li J, Paulo JA, Nusinow DP, Huttlin EL, Gygi SP. Investigation of Proteomic and Phosphoproteomic Responses to Signaling Network Perturbations Reveals Functional Pathway Organizations in Yeast. Cell Rep 2020; 29:2092-2104.e4. [PMID: 31722220 PMCID: PMC7382779 DOI: 10.1016/j.celrep.2019.10.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/30/2019] [Accepted: 10/09/2019] [Indexed: 12/25/2022] Open
Abstract
Governance of protein phosphorylation by kinases and phosphatases constitutes an essential regulatory network in eukaryotic cells. Network dysregulation leads to severe consequences and is often a key factor in disease pathogenesis. Previous studies revealed multiple roles for protein phosphorylation and pathway structures in cellular functions from different perspectives. We seek to understand the roles of kinases and phosphatases from a protein homeostasis point of view. Using a streamlined tandem mass tag (SL-TMT) strategy, we systematically measure proteomic and phosphoproteomic responses to perturbations of phosphorylation signaling networks in yeast deletion strains. Our results emphasize the requirement for protein normalization for more complete interpretation of phosphorylation data. Functional relationships between kinases and phosphatases were characterized at both proteome and phosphoproteome levels in three ways: (1) Gene Ontology enrichment analysis, (2) Δgene-Δgene correlation networks, and (3) molecule covariance networks. This resource illuminates kinase and phosphatase functions and pathway organizations.
Collapse
Affiliation(s)
- Jiaming Li
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David P Nusinow
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Mirheydari M, Dey P, Stukey GJ, Park Y, Han GS, Carman GM. The Spo7 sequence LLI is required for Nem1-Spo7/Pah1 phosphatase cascade function in yeast lipid metabolism. J Biol Chem 2020; 295:11473-11485. [PMID: 32527729 DOI: 10.1074/jbc.ra120.014129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/09/2020] [Indexed: 11/06/2022] Open
Abstract
The Nem1-Spo7 complex in the yeast Saccharomyces cerevisiae is a protein phosphatase that catalyzes the dephosphory-lation of Pah1 phosphatidate phosphatase, required for its translocation to the nuclear/endoplasmic reticulum membrane. The Nem1-Spo7/Pah1 phosphatase cascade plays a major role in triacylglycerol synthesis and in the regulation of phospholipid synthesis. In this work, we examined Spo7, a regulatory subunit required for Nem1 catalytic function, to identify residues that govern formation of the Nem1-Spo7 complex. By deletion analysis of Spo7, we identified a hydrophobic Leu-Leu-Ile (LLI) sequence comprising residues 54-56 as being required for the protein to complement the temperature-sensitive phenotype of an spo7Δ mutant strain. Mutational analysis of the LLI sequence with alanine and arginine substitutions showed that its overall hydrophobicity is crucial for the formation of the Nem1-Spo7 complex as well as for the Nem1 catalytic function on its substrate, Pah1, in vivo Consistent with the role of the Nem1-Spo7 complex in activating the function of Pah1, we found that the mutational effects of the Spo7 LLI sequence were on the Nem1-Spo7/Pah1 axis that controls lipid synthesis and related cellular processes (e.g. triacylglycerol/phospholipid synthesis, lipid droplet formation, nuclear/endoplasmic reticulum membrane morphology, vacuole fusion, and growth on glycerol medium). These findings advance the understanding of Nem1-Spo7 complex formation and its role in the phosphatase cascade that regulates the function of Pah1 phosphatidate phosphatase.
Collapse
Affiliation(s)
- Mona Mirheydari
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Prabuddha Dey
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Geordan J Stukey
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Yeonhee Park
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
49
|
Ólafsson G, Thorpe PH. Polo kinase recruitment via the constitutive centromere-associated network at the kinetochore elevates centromeric RNA. PLoS Genet 2020; 16:e1008990. [PMID: 32810142 PMCID: PMC7455000 DOI: 10.1371/journal.pgen.1008990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/28/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
The kinetochore, a multi-protein complex assembled on centromeres, is essential to segregate chromosomes during cell division. Deficiencies in kinetochore function can lead to chromosomal instability and aneuploidy-a hallmark of cancer cells. Kinetochore function is controlled by recruitment of regulatory proteins, many of which have been documented, however their function often remains uncharacterized and many are yet to be identified. To identify candidates of kinetochore regulation we used a proteome-wide protein association strategy in budding yeast and detected many proteins that are involved in post-translational modifications such as kinases, phosphatases and histone modifiers. We focused on the Polo-like kinase, Cdc5, and interrogated which cellular components were sensitive to constitutive Cdc5 localization. The kinetochore is particularly sensitive to constitutive Cdc5 kinase activity. Targeting Cdc5 to different kinetochore subcomplexes produced diverse phenotypes, consistent with multiple distinct functions at the kinetochore. We show that targeting Cdc5 to the inner kinetochore, the constitutive centromere-associated network (CCAN), increases the levels of centromeric RNA via an SPT4 dependent mechanism.
Collapse
Affiliation(s)
- Guðjón Ólafsson
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Peter H. Thorpe
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| |
Collapse
|
50
|
Sugiyama N. Mass Spectrometry-Based Discovery of in vitro Kinome Substrates. ACTA ACUST UNITED AC 2020; 9:A0082. [PMID: 32547896 PMCID: PMC7242781 DOI: 10.5702/massspectrometry.a0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/10/2020] [Indexed: 12/28/2022]
Abstract
Protein phosphorylation mediated by protein kinases is one of the most significant posttranslational modifications in many biological events. The function and physiological substrates of specific protein kinases, which are highly associated with known signal transduction elements or therapeutic targets, have been extensively studied using various approaches; however, most protein kinases have not yet been characterized. In recent decades, many techniques have been developed for the identification of in vitro and physiological substrates of protein kinases. In this review, I summarize recent studies profiling the characteristics of kinases using mass spectrometry-based proteomics, focusing on the large-scale identification of in vitro substrates of the human kinome using a quantitative phosphoproteomics approach.
Collapse
Affiliation(s)
- Naoyuki Sugiyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|