1
|
Torres Robles J, Stiegler AL, Boggon TJ, Turk BE. Cancer hotspot mutations rewire ERK2 specificity by selective exclusion of docking interactions. J Biol Chem 2025; 301:108348. [PMID: 40015635 PMCID: PMC11982978 DOI: 10.1016/j.jbc.2025.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
The protein kinase ERK2 is recurrently mutated in human squamous cell carcinomas and other tumors. ERK2 mutations cluster in an essential docking recruitment site that interacts with short linear motifs found within intrinsically disordered regions of ERK substrates and regulators. Cancer-associated mutations do not disrupt ERK2 docking interactions altogether but selectively inhibit some interactions while sparing others. However, the full scope of disrupted or maintained interactions remains unknown, limiting our understanding of how these mutations contribute to cancer. We recently defined the docking interactome of wild-type ERK2 by screening a yeast two-hybrid library of proteomic short linear motifs. Here, we apply this approach to the two most recurrent cancer-associated mutants. We find that most sequences binding to WT ERK2 also interact with both mutant forms. Analysis of differentially interacting sequences revealed that ERK2 mutants selectively lose the ability to bind sequences conforming to a specific motif. We solved the co-crystal structure of ERK2 in complex with a peptide fragment of ISG20, a screening hit that binds exclusively to the WT kinase. This structure demonstrated the mechanism by which cancer hotspot mutations at Glu81, Arg135, Asp321, and Glu322 selectively impact peptide binding. Finally, we found that cancer-associated ERK2 mutations had decreased activity in phosphorylating GEF-H1/ARHGEF2, a known ERK substrate harboring a WT-selective docking motif. Collectively, our studies provide a structural rationale for how a broad set of interactions are disrupted by ERK2 hotspot mutations, suggesting mechanisms for pathway rewiring in cancers harboring these mutations.
Collapse
Affiliation(s)
- Jaylissa Torres Robles
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
2
|
Skeens E, Maschietto F, Manjula R, Shillingford S, Lolis EJ, Batista VS, Bennett AM, Lisi GP. Dynamic and structural insights into allosteric regulation on MKP5 a dual-specificity phosphatase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611520. [PMID: 39282375 PMCID: PMC11398491 DOI: 10.1101/2024.09.05.611520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Dual-specificity mitogen-activated protein kinase (MAPK) phosphatases (MKPs) directly dephosphorylate and inactivate the MAPKs. Although the catalytic mechanism of dephosphorylation of the MAPKs by the MKPs is established, a complete molecular picture of the regulatory interplay between the MAPKs and MKPs still remains to be fully explored. Here, we sought to define the molecular mechanism of MKP5 regulation through an allosteric site within its catalytic domain. We demonstrate using crystallographic and NMR spectroscopy approaches that residue Y435 is required to maintain the structural integrity of the allosteric pocket. Along with molecular dynamics simulations, these data provide insight into how changes in the allosteric pocket propagate conformational flexibility in the surrounding loops to reorganize catalytically crucial residues in the active site. Furthermore, Y435 contributes to the interaction with p38 MAPK and JNK, thereby promoting dephosphorylation. Collectively, these results highlight the role of Y435 in the allosteric site as a novel mode of MKP5 regulation by p38 MAPK and JNK.
Collapse
Affiliation(s)
- Erin Skeens
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | | | - Ramu Manjula
- Department of Pharmacology, Yale School of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shanelle Shillingford
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Department of Pharmacology, Yale School of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Elias J. Lolis
- Department of Pharmacology, Yale School of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Anton M. Bennett
- Department of Pharmacology, Yale School of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| | - George P. Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Jänes J, Müller M, Selvaraj S, Manoel D, Stephenson J, Gonçalves C, Lafita A, Polacco B, Obernier K, Alasoo K, Lemos MC, Krogan N, Martin M, Saraiva LR, Burke D, Beltrao P. Predicted mechanistic impacts of human protein missense variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596373. [PMID: 38854010 PMCID: PMC11160786 DOI: 10.1101/2024.05.29.596373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Genome sequencing efforts have led to the discovery of tens of millions of protein missense variants found in the human population with the majority of these having no annotated role and some likely contributing to trait variation and disease. Sequence-based artificial intelligence approaches have become highly accurate at predicting variants that are detrimental to the function of proteins but they do not inform on mechanisms of disruption. Here we combined sequence and structure-based methods to perform proteome-wide prediction of deleterious variants with information on their impact on protein stability, protein-protein interactions and small-molecule binding pockets. AlphaFold2 structures were used to predict approximately 100,000 small-molecule binding pockets and stability changes for over 200 million variants. To inform on protein-protein interfaces we used AlphaFold2 to predict structures for nearly 500,000 protein complexes. We illustrate the value of mechanism-aware variant effect predictions to study the relation between protein stability and abundance and the structural properties of interfaces underlying trans protein quantitative trait loci (pQTLs). We characterised the distribution of mechanistic impacts of protein variants found in patients and experimentally studied example disease linked variants in FGFR1.
Collapse
Affiliation(s)
- Jürgen Jänes
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Müller
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Senthil Selvaraj
- Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Diogo Manoel
- Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - James Stephenson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
- Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Catarina Gonçalves
- Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Benjamin Polacco
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Manuel C. Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Nevan Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
| | - Maria Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
- Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Luis R. Saraiva
- Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - David Burke
- Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Pedro Beltrao
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
- Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| |
Collapse
|
4
|
Chen Y, Luo M, Tu H, Qi Y, Guo Y, Zhang X, Cui Y, Gao M, Zhou X, Zhu T, Zhu H, Situ C, Li Y, Guo X. STYXL1 regulates CCT complex assembly and flagellar tubulin folding in sperm formation. Nat Commun 2024; 15:44. [PMID: 38168070 PMCID: PMC10761714 DOI: 10.1038/s41467-023-44337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Tubulin-based microtubule is a core component of flagella axoneme and essential for sperm motility and male fertility. Structural components of the axoneme have been well explored. However, how tubulin folding is regulated in sperm flagella formation is still largely unknown. Here, we report a germ cell-specific co-factor of CCT complex, STYXL1. Deletion of Styxl1 results in male infertility and microtubule defects of sperm flagella. Proteomic analysis of Styxl1-/- sperm reveals abnormal downregulation of flagella-related proteins including tubulins. The N-terminal rhodanese-like domain of STYXL1 is important for its interactions with CCT complex subunits, CCT1, CCT6 and CCT7. Styxl1 deletion leads to defects in CCT complex assembly and tubulin polymerization. Collectively, our findings reveal the vital roles of germ cell-specific STYXL1 in CCT-facilitated tubulin folding and sperm flagella development.
Collapse
Affiliation(s)
- Yu Chen
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- Medical Research Center, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China
| | - Mengjiao Luo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Haixia Tu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Yaling Qi
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yueshuai Guo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangzheng Zhang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yiqiang Cui
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengmeng Gao
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhou
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Tianyu Zhu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Zhu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chenghao Situ
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yan Li
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Xuejiang Guo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
5
|
Torres Robles J, Lou HJ, Shi G, Pan PL, Turk BE. Linear motif specificity in signaling through p38α and ERK2 mitogen-activated protein kinases. Proc Natl Acad Sci U S A 2023; 120:e2316599120. [PMID: 37988460 PMCID: PMC10691213 DOI: 10.1073/pnas.2316599120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are essential for eukaryotic cells to integrate and respond to diverse stimuli. Maintaining specificity in signaling through MAPK networks is key to coupling distinct inputs to appropriate cellular responses. Docking sites-short linear motifs found in MAPK substrates, regulators, and scaffolds-can promote signaling specificity through selective interactions, but how they do so remains unresolved. Here, we screened a proteomic library for sequences interacting with the MAPKs extracellular signal-regulated kinase 2 (ERK2) and p38α, identifying selective and promiscuous docking motifs. Sequences specific for p38α had high net charge and lysine content, and selective binding depended on a pair of acidic residues unique to the p38α docking interface. Finally, we validated a set of full-length proteins harboring docking sites selected in our screens to be authentic MAPK interactors and substrates. This study identifies features that help define MAPK signaling networks and explains how specific docking motifs promote signaling integrity.
Collapse
Affiliation(s)
- Jaylissa Torres Robles
- Department of Chemistry, Yale University, New Haven, CT06520
- Department of Pharmacology, Yale School of Medicine, New Haven, CT06520
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT06520
| | - Guangda Shi
- Department of Pharmacology, Yale School of Medicine, New Haven, CT06520
| | | | - Benjamin E. Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT06520
| |
Collapse
|
6
|
Juyoux P, Galdadas I, Gobbo D, von Velsen J, Pelosse M, Tully M, Vadas O, Gervasio FL, Pellegrini E, Bowler MW. Architecture of the MKK6-p38α complex defines the basis of MAPK specificity and activation. Science 2023; 381:1217-1225. [PMID: 37708276 PMCID: PMC7615176 DOI: 10.1126/science.add7859] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
The mitogen-activated protein kinase (MAPK) p38α is a central component of signaling in inflammation and the immune response and is, therefore, an important drug target. Little is known about the molecular mechanism of its activation by double phosphorylation from MAPK kinases (MAP2Ks), because of the challenge of trapping a transient and dynamic heterokinase complex. We applied a multidisciplinary approach to generate a structural model of p38α in complex with its MAP2K, MKK6, and to understand the activation mechanism. Integrating cryo-electron microscopy with molecular dynamics simulations, hydrogen-deuterium exchange mass spectrometry, and experiments in cells, we demonstrate a dynamic, multistep phosphorylation mechanism, identify catalytically relevant interactions, and show that MAP2K-disordered amino termini determine pathway specificity. Our work captures a fundamental step of cell signaling: a kinase phosphorylating its downstream target kinase.
Collapse
Affiliation(s)
- Pauline Juyoux
- European Molecular Biology Laboratory (EMBL), Grenoble, France
| | - Ioannis Galdadas
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Dorothea Gobbo
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Jill von Velsen
- European Molecular Biology Laboratory (EMBL), Grenoble, France
| | - Martin Pelosse
- European Molecular Biology Laboratory (EMBL), Grenoble, France
| | - Mark Tully
- European Synchrotron Radiation Facility, Grenoble, France
| | - Oscar Vadas
- Protein and peptide purification platform, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Luigi Gervasio
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Department of Chemistry, University College London, London, UK
- Institute of Structural and Molecular Biology, University College London, London, UK
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | | | | |
Collapse
|
7
|
Shi G, Song C, Torres Robles J, Salichos L, Lou HJ, Lam TT, Gerstein M, Turk BE. Proteome-wide screening for mitogen-activated protein kinase docking motifs and interactors. Sci Signal 2023; 16:eabm5518. [PMID: 36626580 PMCID: PMC9995140 DOI: 10.1126/scisignal.abm5518] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Essential functions of mitogen-activated protein kinases (MAPKs) depend on their capacity to selectively phosphorylate a limited repertoire of substrates. MAPKs harbor a conserved groove located outside of the catalytic cleft that binds to short linear sequence motifs found in substrates and regulators. However, the weak and transient nature of these "docking" interactions poses a challenge to defining MAPK interactomes and associated sequence motifs. Here, we describe a yeast-based genetic screening pipeline to evaluate large collections of MAPK docking sequences in parallel. Using this platform, we analyzed a combinatorial library based on the docking sequences from the MAPK kinases MKK6 and MKK7, defining features critical for binding to the stress-activated MAPKs JNK1 and p38α. Our screen of a library consisting of ~12,000 sequences from the human proteome revealed multiple MAPK-selective interactors, including many that did not conform to previously defined docking motifs. Analysis of p38α/JNK1 exchange mutants identified specific docking groove residues that mediate selective binding. Last, we verified that docking sequences identified in the screen functioned in substrate recruitment in vitro and in cultured cells. Together, these studies establish an approach to characterize MAPK docking sequences and provide a resource for future investigation of signaling downstream of p38 and JNK.
Collapse
Affiliation(s)
- Guangda Shi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claire Song
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jaylissa Torres Robles
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Leonidas Salichos
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA.,Keck MS and Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
8
|
Kliche J, Ivarsson Y. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Biochem J 2022; 479:1-22. [PMID: 34989786 PMCID: PMC8786283 DOI: 10.1042/bcj20200714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Cellular function is based on protein-protein interactions. A large proportion of these interactions involves the binding of short linear motifs (SLiMs) by folded globular domains. These interactions are regulated by post-translational modifications, such as phosphorylation, that create and break motif binding sites or tune the affinity of the interactions. In addition, motif-based interactions are involved in targeting serine/threonine kinases and phosphatases to their substrate and contribute to the specificity of the enzymatic actions regulating which sites are phosphorylated. Here, we review how SLiM-based interactions assist in determining the specificity of serine/threonine kinases and phosphatases, and how phosphorylation, in turn, affects motif-based interactions. We provide examples of SLiM-based interactions that are turned on/off, or are tuned by serine/threonine phosphorylation and exemplify how this affects SLiM-based protein complex formation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| |
Collapse
|
9
|
De novo germline mutation in the dual specificity phosphatase 10 gene accelerates autoimmune diabetes. Proc Natl Acad Sci U S A 2021; 118:2112032118. [PMID: 34782469 DOI: 10.1073/pnas.2112032118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
Insulin-dependent or type 1 diabetes (T1D) is a polygenic autoimmune disease. In humans, more than 60 loci carrying common variants that confer disease susceptibility have been identified by genome-wide association studies, with a low individual risk contribution for most variants excepting those of the major histocompatibility complex (MHC) region (40 to 50% of risk); hence the importance of missing heritability due in part to rare variants. Nonobese diabetic (NOD) mice recapitulate major features of the human disease including genetic aspects with a key role for the MHC haplotype and a series of Idd loci. Here we mapped in NOD mice rare variants arising from genetic drift and significantly impacting disease risk. To that aim we established by selective breeding two sublines of NOD mice from our inbred NOD/Nck colony exhibiting a significant difference in T1D incidence. Whole-genome sequencing of high (H)- and low (L)-incidence sublines (NOD/NckH and NOD/NckL) revealed a limited number of subline-specific variants. Treating age of diabetes onset as a quantitative trait in automated meiotic mapping (AMM), enhanced susceptibility in NOD/NckH mice was unambiguously attributed to a recessive missense mutation of Dusp10, which encodes a dual specificity phosphatase. The causative effect of the mutation was verified by targeting Dusp10 with CRISPR-Cas9 in NOD/NckL mice, a manipulation that significantly increased disease incidence. The Dusp10 mutation resulted in islet cell down-regulation of type I interferon signature genes, which may exert protective effects against autoimmune aggression. De novo mutations akin to rare human susceptibility variants can alter the T1D phenotype.
Collapse
|
10
|
Kumar GS, Page R, Peti W. 1H, 15N and 13C sequence specific backbone assignment of the MAP kinase binding domain of the dual specificity phosphatase 1 and its interaction with the MAPK p38. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:243-248. [PMID: 34101142 DOI: 10.1007/s12104-021-10012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The sequence-specific backbone assignment of the mitogen-activated protein kinase (MAPK) binding domain of the dual-specificity phosphatase 1 (DUSP1) has been accomplished using a uniformly [13C, 15N]-labeled protein. These assignments will facilitate further studies of DUSP1 in the presence of inhibitors/ligands to target MAPK associated diseases and provide further insights into the function of dual-specificity phosphatase 1 in MAPK regulation.
Collapse
Affiliation(s)
- Ganesan Senthil Kumar
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA.
- Integrative Structural Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
11
|
Functional interrogation and therapeutic targeting of protein tyrosine phosphatases. Biochem Soc Trans 2021; 49:1723-1734. [PMID: 34431504 DOI: 10.1042/bst20201308] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Abstract
Protein tyrosine phosphatases (PTPs) counteract the enzymatic activity of protein tyrosine kinases to modulate levels of both normal and disease-associated protein tyrosine phosphorylation. Aberrant activity of PTPs has been linked to the progression of many disease states, yet no PTP inhibitors are currently clinically available. PTPs are without a doubt a difficult drug target. Despite this, many selective, potent, and bioavailable PTP inhibitors have been described, suggesting PTPs should once again be looked at as viable therapeutic targets. Herein, we summarize recently discovered PTP inhibitors and their use in the functional interrogation of PTPs in disease states. In addition, an overview of the therapeutic targeting of PTPs is described using SHP2 as a representative target.
Collapse
|
12
|
Gannam ZTK, Min K, Shillingford SR, Zhang L, Herrington J, Abriola L, Gareiss PC, Pantouris G, Tzouvelekis A, Kaminski N, Zhang X, Yu J, Jamali H, Ellman JA, Lolis E, Anderson KS, Bennett AM. An allosteric site on MKP5 reveals a strategy for small-molecule inhibition. Sci Signal 2020; 13:eaba3043. [PMID: 32843541 PMCID: PMC7569488 DOI: 10.1126/scisignal.aba3043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mitogen-activated protein kinase (MAPK) phosphatases (MKPs) have been considered "undruggable," but their position as regulators of the MAPKs makes them promising therapeutic targets. MKP5 has been suggested as a potential target for the treatment of dystrophic muscle disease. Here, we identified an inhibitor of MKP5 using a p38α MAPK-derived, phosphopeptide-based small-molecule screen. We solved the structure of MKP5 in complex with this inhibitor, which revealed a previously undescribed allosteric binding pocket. Binding of the inhibitor to this pocket collapsed the MKP5 active site and was predicted to limit MAPK binding. Treatment with the inhibitor recapitulated the phenotype of MKP5 deficiency, resulting in activation of p38 MAPK and JNK. We demonstrated that MKP5 was required for TGF-β1 signaling in muscle and that the inhibitor blocked TGF-β1-mediated Smad2 phosphorylation. TGF-β1 pathway antagonism has been proposed for the treatment of dystrophic muscle disease. Thus, allosteric inhibition of MKP5 represents a therapeutic strategy against dystrophic muscle disease.
Collapse
Affiliation(s)
- Zira T K Gannam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kisuk Min
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shanelle R Shillingford
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Lei Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James Herrington
- Yale Center for Molecular Discovery, Yale West Campus, West Haven, CT 06516, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale West Campus, West Haven, CT 06516, USA
| | - Peter C Gareiss
- Yale Center for Molecular Discovery, Yale West Campus, West Haven, CT 06516, USA
| | - Georgios Pantouris
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xinbo Zhang
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Physiology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Haya Jamali
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | | | - Elias Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
- Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Li Z, Zhang D, Li Q, Yang X, Zhang R, Zhang D, Yang X, Wang C, Tan X, Xiong Y. Effects of methylation of deiodinase 3 gene on gene expression and severity of Kashin-Beck disease. J Cell Physiol 2020; 235:9946-9957. [PMID: 32458485 DOI: 10.1002/jcp.29809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 12/26/2022]
Abstract
Kashin-Beck disease (KBD) is a complex endemic osteoarthropathy, which mainly occurs in the northeast to southwest China. Iodothyronine deiodinases 3 (DIO3) is one of the selenoproteins, which is closely related to bone metabolism and unclear to KBD. This study aims to investigate the role and associated mechanisms of methylation and expression of DIO3 with disease severity in patients with KBD. We performed a bioinformatics analysis first to identify the biological mechanisms involved in selenoproteins. The methylation status of the DIO3 gene and DIO3 gene expression, as well as DIO3-related regulatory genes in patients with KBD, were analyzed. We found that 15 CpG sites of six selenoproteins were hypomethylated with 5-azacytidine treatment. DIO3 hypermethylation was associated with an increased risk of KBD and may lead to downregulation of DIO3 gene expression as well as be an indicator of the severity of KBD, which may provide a new insight for gene-environment correlations and interactions in etiology and pathogenesis of KBD.
Collapse
Affiliation(s)
- Zhaofang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Di Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Qiang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiaoli Yang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Rongqiang Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Dandan Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xuena Yang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Chen Wang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiwang Tan
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yongmin Xiong
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
14
|
Yang L, Sun X, Ye Y, Lu Y, Zuo J, Liu W, Elcock A, Zhu S. p38α Mitogen-Activated Protein Kinase Is a Druggable Target in Pancreatic Adenocarcinoma. Front Oncol 2019; 9:1294. [PMID: 31828036 PMCID: PMC6890821 DOI: 10.3389/fonc.2019.01294] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Abstract
p38 mitogen-activated protein kinases are signaling molecules with major involvement in cancer. A detailed mechanistic understanding of how p38 MAPK family members function is urgently warranted for cancer targeted therapy. The conformational dynamics of the most common member of p38 MAPK family, p38α, are crucial for its function but poorly understood. Here we found that, unlike in other cancer types, p38α is significantly activated in pancreatic adenocarcinoma samples, suggesting its potential for anti-pancreatic cancer therapy. Using a state of the art supercomputer, Anton, long-timescale (39 μs) unbiased molecular dynamics simulations of p38α show that apo p38α has high structural flexibility in six regions, and reveal potential catalysis mechanism involving a “butterfly” motion. Moreover, in vitro studies show the low-selectivity of the current p38α inhibitors in both human and mouse pancreatic cancer cell lines, while computational solvent mapping identified 17 novel pockets for drug design. Taken together, our study reveals the conformational dynamics and potentially druggable pockets of p38α, which may potentiate p38α-targeting drug development and benefit pancreatic cancer patients.
Collapse
Affiliation(s)
- Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Ye
- Department of Oral Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Yongtian Lu
- Department of ENT, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Adrian Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Shun Zhu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Taylor CA, Cormier KW, Keenan SE, Earnest S, Stippec S, Wichaidit C, Juang YC, Wang J, Shvartsman SY, Goldsmith EJ, Cobb MH. Functional divergence caused by mutations in an energetic hotspot in ERK2. Proc Natl Acad Sci U S A 2019; 116:15514-15523. [PMID: 31296562 PMCID: PMC6681740 DOI: 10.1073/pnas.1905015116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associated with this mutation, other than apparent increases in tumor resistance to pathway inhibitors. ERK2 E-K, like the mutation of the preceding aspartate (ERK2 D321N [D-N]) known as the sevenmaker mutation, causes increased activity in cells and evades inactivation by dual-specificity phosphatases. As opposed to findings in cancer cells, in developmental assays in Drosophila, only ERK2 D-N displays a significant gain of function, revealing mutation-specific phenotypes. The crystal structure of ERK2 D-N is indistinguishable from that of wild-type protein, yet this mutant displays increased thermal stability. In contrast, the crystal structure of ERK2 E-K reveals profound structural changes, including disorder in the CD site and exposure of the activation loop phosphorylation sites, which likely account for the decreased thermal stability of the protein. These contiguous mutations in the CD site of ERK2 are both required for docking interactions but lead to unpredictably different functional outcomes. Our results suggest that the CD site is in an energetically strained configuration, and this helps drive conformational changes at distal sites on ERK2 during docking interactions.
Collapse
Affiliation(s)
- Clinton A Taylor
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Kevin W Cormier
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Shannon E Keenan
- Department of Chemical and Biological Engineering, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Svetlana Earnest
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Steve Stippec
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Chonlarat Wichaidit
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Yu-Chi Juang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Junmei Wang
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | | | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390;
| |
Collapse
|
16
|
Zhang B, Zhu L, Dai Y, Li H, Huang K, Luo Y, Xu W. An in vitro attempt at precision toxicology reveals the involvement of DNA methylation alteration in ochratoxin A-induced G0/G1 phase arrest. Epigenetics 2019; 15:199-214. [PMID: 31314649 DOI: 10.1080/15592294.2019.1644878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Precision toxicology evaluates the toxicity of certain substances by isolating a small group of cells with a typical phenotype of interest followed by a single cell sequencing-based analysis. In this in vitro attempt, ochratoxin A (OTA), a typical mycotoxin and food contaminant, is found to induce G0/G1 phase cell cycle arrest in human renal proximal tubular HKC cells at a concentration of 20 μM after a 24h-treatment. A small number of G0/G1 phase HKC cells are evaluated in both the presence and absence of OTA. These cells are sorted with a flow cytometer and subjected to mRNA and DNA methylation sequencing using Smart-Seq2 and single-cell reduced-representation bisulfite sequencing (scRRBS) technology, respectively. Integrated analysis of the transcriptome and methylome profiles reveals that OTA causes abnormal expression of the essential genes that regulate G1/S phase transition, act as signal transductors in G1 DNA damage checkpoints, and associate with the anaphase-promoting complex/cyclosome. The alteration of their DNA methylation status is a significant underlying epigenetic mechanism. Furthermore, Notch signaling and Ras/MAPK/CREB pathways are found to be suppressed by OTA. This attempt at precision toxicology paves the way for a deeper understanding of OTA toxicity and provides an innovative strategy to researchers in the toxicology and pharmacology field.
Collapse
Affiliation(s)
- Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yaqi Dai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| |
Collapse
|
17
|
Lang R, Raffi FAM. Dual-Specificity Phosphatases in Immunity and Infection: An Update. Int J Mol Sci 2019; 20:ijms20112710. [PMID: 31159473 PMCID: PMC6600418 DOI: 10.3390/ijms20112710] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Kinase activation and phosphorylation cascades are key to initiate immune cell activation in response to recognition of antigen and sensing of microbial danger. However, for balanced and controlled immune responses, the intensity and duration of phospho-signaling has to be regulated. The dual-specificity phosphatase (DUSP) gene family has many members that are differentially expressed in resting and activated immune cells. Here, we review the progress made in the field of DUSP gene function in regulation of the immune system during the last decade. Studies in knockout mice have confirmed the essential functions of several DUSP-MAPK phosphatases (DUSP-MKP) in controlling inflammatory and anti-microbial immune responses and support the concept that individual DUSP-MKP shape and determine the outcome of innate immune responses due to context-dependent expression and selective inhibition of different mitogen-activated protein kinases (MAPK). In addition to the canonical DUSP-MKP, several small-size atypical DUSP proteins regulate immune cells and are therefore also reviewed here. Unexpected and complex findings in DUSP knockout mice pose new questions regarding cell type-specific and redundant functions. Another emerging question concerns the interaction of DUSP-MKP with non-MAPK binding partners and substrate proteins. Finally, the pharmacological targeting of DUSPs is desirable to modulate immune and inflammatory responses.
Collapse
Affiliation(s)
- Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Faizal A M Raffi
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
18
|
The Dual-Specificity Phosphatase 10 (DUSP10): Its Role in Cancer, Inflammation, and Immunity. Int J Mol Sci 2019; 20:ijms20071626. [PMID: 30939861 PMCID: PMC6480380 DOI: 10.3390/ijms20071626] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer is one of the most diagnosed diseases in developed countries. Inflammation is a common response to different stress situations including cancer and infection. In those processes, the family of mitogen-activated protein kinases (MAPKs) has an important role regulating cytokine secretion, proliferation, survival, and apoptosis, among others. MAPKs regulate a large number of extracellular signals upon a variety of physiological as well as pathological conditions. MAPKs activation is tightly regulated by phosphorylation/dephosphorylation events. In this regard, the dual-specificity phosphatase 10 (DUSP10) has been described as a MAPK phosphatase that negatively regulates p38 MAPK and c-Jun N-terminal kinase (JNK) in several cellular types and tissues. Several studies have proposed that extracellular signal-regulated kinase (ERK) can be also modulated by DUSP10. This suggests a complex role of DUSP10 on MAPKs regulation and, in consequence, its impact in a wide variety of responses involved in both cancer and inflammation. Here, we review DUSP10 function in cancerous and immune cells and studies in both mouse models and patients that establish a clear role of DUSP10 in different processes such as inflammation, immunity, and cancer.
Collapse
|
19
|
Wang Y, Zhang Y, Lu C, Zhang W, Deng H, Wu J, Wang J, Wang Z. Kinetic and mechanistic studies of p38α
MAP
kinase phosphorylation by
MKK
6. FEBS J 2019; 286:1030-1052. [DOI: 10.1111/febs.14762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/29/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Yu‐Lu Wang
- Key Laboratory of Ministry of Education for Protein Science School of Life Sciences Tsinghua University Beijing China
| | - Yuan‐Yuan Zhang
- Key Laboratory of Ministry of Education for Protein Science School of Life Sciences Tsinghua University Beijing China
| | - Chang Lu
- Key Laboratory of Ministry of Education for Protein Science School of Life Sciences Tsinghua University Beijing China
| | - Wenhao Zhang
- Key Laboratory of Ministry of Education for Protein Science School of Life Sciences Tsinghua University Beijing China
| | - Haiteng Deng
- Key Laboratory of Ministry of Education for Protein Science School of Life Sciences Tsinghua University Beijing China
| | - Jia‐Wei Wu
- Key Laboratory of Ministry of Education for Protein Science School of Life Sciences Tsinghua University Beijing China
- Institute of Molecular Enzymology Soochow University Suzhou China
| | - Jue Wang
- Institute of Molecular Enzymology Soochow University Suzhou China
| | - Zhi‐Xin Wang
- Key Laboratory of Ministry of Education for Protein Science School of Life Sciences Tsinghua University Beijing China
- Institute of Molecular Enzymology Soochow University Suzhou China
| |
Collapse
|
20
|
Huntley RP, Kramarz B, Sawford T, Umrao Z, Kalea A, Acquaah V, Martin MJ, Mayr M, Lovering RC. Expanding the horizons of microRNA bioinformatics. RNA (NEW YORK, N.Y.) 2018; 24:1005-1017. [PMID: 29871895 PMCID: PMC6049505 DOI: 10.1261/rna.065565.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
MicroRNA regulation of key biological and developmental pathways is a rapidly expanding area of research, accompanied by vast amounts of experimental data. This data, however, is not widely available in bioinformatic resources, making it difficult for researchers to find and analyze microRNA-related experimental data and define further research projects. We are addressing this problem by providing two new bioinformatics data sets that contain experimentally verified functional information for mammalian microRNAs involved in cardiovascular-relevant, and other, processes. To date, our resource provides over 4400 Gene Ontology annotations associated with over 500 microRNAs from human, mouse, and rat and over 2400 experimentally validated microRNA:target interactions. We illustrate how this resource can be used to create microRNA-focused interaction networks with a biological context using the known biological role of microRNAs and the mRNAs they regulate, enabling discovery of associations between gene products, biological pathways and, ultimately, diseases. This data will be crucial in advancing the field of microRNA bioinformatics and will establish consistent data sets for reproducible functional analysis of microRNAs across all biological research areas.
Collapse
Affiliation(s)
- Rachael P Huntley
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Barbara Kramarz
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Tony Sawford
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge CB10 1SD, United Kingdom
| | - Zara Umrao
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Anastasia Kalea
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Vanessa Acquaah
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Maria J Martin
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge CB10 1SD, United Kingdom
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London SE5 9NU, United Kingdom
| | - Ruth C Lovering
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
21
|
Cho SSL, Han J, James SJ, Png CW, Weerasooriya M, Alonso S, Zhang Y. Dual-Specificity Phosphatase 12 Targets p38 MAP Kinase to Regulate Macrophage Response to Intracellular Bacterial Infection. Front Immunol 2017; 8:1259. [PMID: 29062315 PMCID: PMC5640881 DOI: 10.3389/fimmu.2017.01259] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/21/2017] [Indexed: 12/24/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascades are activated in innate immune cells such as macrophages upon the detection of microbial infection, critically regulating the expression of proinflammatory cytokines and chemokines such as TNF-α, IL-6, and MCP-1. As a result, activation of MAPKs is tightly regulated to ensure appropriate and adequate immune responses. Dual-specificity phosphatases (DUSPs) are a family of proteins which specifically dephosphorylates threonine and tyrosine residues essential for MAPK activation to negatively regulate their activation. DUSP12 is a member of atypical DUSPs that lack MAPK-binding domain. Its substrate and function in immune cells are unknown. In this study, we demonstrated that DUSP12 is able to interact with all the three groups of MAPKs, including extracellular signal-regulated protein kinase, JNK, and p38. To investigate the function of DUSP12 in macrophages in response to TLR activation and microbial infection, we established RAW264.7 cell lines stably overexpressing DUSP12 and found that overexpression of DUSP12 inhibited proinflammatory cytokine and chemokine production in response to TLR4 activation, heat-inactivated Mycobacterium tuberculosis stimulation as well as infections by intracellular bacteria including Listeria moncytogenesis and Mycobacterium bovis BCG by specifically inhibiting p38 and JNK. In addition, a scaffold protein known as signal transducing adaptor protein 2 (STAP2), was found to mediate the interaction between DUSP12 and p38. Thus, DUSP12 is a bona fide MAPK phosphatase, playing an important role in MAPK-regulated responses to bacterial infection. Our study provides a model where atypical DUSPs regulate MAPKs via scaffold, thereby regulating immune responses to microbial infection.
Collapse
Affiliation(s)
- Sharol Su Lei Cho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Jian Han
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Sharmy J James
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Chin Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Madhushanee Weerasooriya
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Kuzmanic A, Sutto L, Saladino G, Nebreda AR, Gervasio FL, Orozco M. Changes in the free-energy landscape of p38α MAP kinase through its canonical activation and binding events as studied by enhanced molecular dynamics simulations. eLife 2017; 6. [PMID: 28445123 PMCID: PMC5406204 DOI: 10.7554/elife.22175] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/06/2017] [Indexed: 01/03/2023] Open
Abstract
p38α is a Ser/Thr protein kinase involved in a variety of cellular processes and pathological conditions, which makes it a promising pharmacological target. Although the activity of the enzyme is highly regulated, its molecular mechanism of activation remains largely unexplained, even after decades of research. By using state-of-the-art molecular dynamics simulations, we decipher the key elements of the complex molecular mechanism refined by evolution to allow for a fine tuning of p38α kinase activity. Our study describes for the first time the molecular effects of different regulators of the enzymatic activity, and provides an integrative picture of the activation mechanism that explains the seemingly contradictory X-ray and NMR data. DOI:http://dx.doi.org/10.7554/eLife.22175.001
Collapse
Affiliation(s)
- Antonija Kuzmanic
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ludovico Sutto
- Department of Chemistry, University College London, London, United Kingdom
| | - Giorgio Saladino
- Department of Chemistry, University College London, London, United Kingdom
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain.,Department of Biochemistry, University of Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Shah M, Smolko CM, Kinicki S, Chapman ZD, Brautigan DL, Janes KA. Profiling Subcellular Protein Phosphatase Responses to Coxsackievirus B3 Infection of Cardiomyocytes. Mol Cell Proteomics 2017; 16:S244-S262. [PMID: 28174228 DOI: 10.1074/mcp.o116.063487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/31/2017] [Indexed: 01/23/2023] Open
Abstract
Cellular responses to stimuli involve dynamic and localized changes in protein kinases and phosphatases. Here, we report a generalized functional assay for high-throughput profiling of multiple protein phosphatases with subcellular resolution and apply it to analyze coxsackievirus B3 (CVB3) infection counteracted by interferon signaling. Using on-plate cell fractionation optimized for adherent cells, we isolate protein extracts containing active endogenous phosphatases from cell membranes, the cytoplasm, and the nucleus. The extracts contain all major classes of protein phosphatases and catalyze dephosphorylation of plate-bound phosphosubstrates in a microtiter format, with cellular activity quantified at the end point by phosphospecific ELISA. The platform is optimized for six phosphosubstrates (ERK2, JNK1, p38α, MK2, CREB, and STAT1) and measures specific activities from extracts of fewer than 50,000 cells. The assay was exploited to examine viral and antiviral signaling in AC16 cardiomyocytes, which we show can be engineered to serve as susceptible and permissive hosts for CVB3. Phosphatase responses were profiled in these cells by completing a full-factorial experiment for CVB3 infection and type I/II interferon signaling. Over 850 functional measurements revealed several independent, subcellular changes in specific phosphatase activities. During CVB3 infection, we found that type I interferon signaling increases subcellular JNK1 phosphatase activity, inhibiting nuclear JNK1 activity that otherwise promotes viral protein synthesis in the infected host cell. Our assay provides a high-throughput way to capture perturbations in important negative regulators of intracellular signal-transduction networks.
Collapse
Affiliation(s)
- Millie Shah
- From the ‡Department of Biomedical Engineering
| | | | | | | | - David L Brautigan
- the ‖Center for Cell Signaling and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | | |
Collapse
|
24
|
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev 2016; 80:793-835. [PMID: 27466283 DOI: 10.1128/mmbr.00043-14] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states.
Collapse
|
25
|
de Oliveira PSL, Ferraz FAN, Pena DA, Pramio DT, Morais FA, Schechtman D. Revisiting protein kinase-substrate interactions: Toward therapeutic development. Sci Signal 2016; 9:re3. [PMID: 27016527 DOI: 10.1126/scisignal.aad4016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the efforts of pharmaceutical companies to develop specific kinase modulators, few drugs targeting kinases have been completely successful in the clinic. This is primarily due to the conserved nature of kinases, especially in the catalytic domains. Consequently, many currently available inhibitors lack sufficient selectivity for effective clinical application. Kinases phosphorylate their substrates to modulate their activity. One of the important steps in the catalytic reaction of protein phosphorylation is the correct positioning of the target residue within the catalytic site. This positioning is mediated by several regions in the substrate binding site, which is typically a shallow crevice that has critical subpockets that anchor and orient the substrate. The structural characterization of this protein-protein interaction can aid in the elucidation of the roles of distinct kinases in different cellular processes, the identification of substrates, and the development of specific inhibitors. Because the region of the substrate that is recognized by the kinase can be part of a linear consensus motif or a nonlinear motif, advances in technology beyond simple linear sequence scanning for consensus motifs were needed. Cost-effective bioinformatics tools are already frequently used to predict kinase-substrate interactions for linear consensus motifs, and new tools based on the structural data of these interactions improve the accuracy of these predictions and enable the identification of phosphorylation sites within nonlinear motifs. In this Review, we revisit kinase-substrate interactions and discuss the various approaches that can be used to identify them and analyze their binding structures for targeted drug development.
Collapse
Affiliation(s)
- Paulo Sérgio L de Oliveira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Felipe Augusto N Ferraz
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Darlene A Pena
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Dimitrius T Pramio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Felipe A Morais
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil.
| |
Collapse
|
26
|
A conserved motif in JNK/p38-specific MAPK phosphatases as a determinant for JNK1 recognition and inactivation. Nat Commun 2016; 7:10879. [PMID: 26988444 PMCID: PMC4802042 DOI: 10.1038/ncomms10879] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 01/28/2016] [Indexed: 02/06/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs), important in a large array of signalling pathways, are tightly controlled by a cascade of protein kinases and by MAPK phosphatases (MKPs). MAPK signalling efficiency and specificity is modulated by protein–protein interactions between individual MAPKs and the docking motifs in cognate binding partners. Two types of docking interactions have been identified: D-motif-mediated interaction and FXF-docking interaction. Here we report the crystal structure of JNK1 bound to the catalytic domain of MKP7 at 2.4-Å resolution, providing high-resolution structural insight into the FXF-docking interaction. The 285FNFL288 segment in MKP7 directly binds to a hydrophobic site on JNK1 that is near the MAPK insertion and helix αG. Biochemical studies further reveal that this highly conserved structural motif is present in all members of the MKP family, and the interaction mode is universal and critical for the MKP-MAPK recognition and biological function. The important MAPK family of signalling proteins is controlled by MAPK phosphatases (MKPs). Here, the authors report the structure of MKP7 bound to JNK1 and characterise the conserved MKP-MAPK interaction.
Collapse
|
27
|
Zeke A, Bastys T, Alexa A, Garai Á, Mészáros B, Kirsch K, Dosztányi Z, Kalinina OV, Reményi A. Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases. Mol Syst Biol 2015; 11:837. [PMID: 26538579 PMCID: PMC4670726 DOI: 10.15252/msb.20156269] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mitogen‐activated protein kinases (MAPK) are broadly used regulators of cellular signaling. However, how these enzymes can be involved in such a broad spectrum of physiological functions is not understood. Systematic discovery of MAPK networks both experimentally and in silico has been hindered because MAPKs bind to other proteins with low affinity and mostly in less‐characterized disordered regions. We used a structurally consistent model on kinase‐docking motif interactions to facilitate the discovery of short functional sites in the structurally flexible and functionally under‐explored part of the human proteome and applied experimental tools specifically tailored to detect low‐affinity protein–protein interactions for their validation in vitro and in cell‐based assays. The combined computational and experimental approach enabled the identification of many novel MAPK‐docking motifs that were elusive for other large‐scale protein–protein interaction screens. The analysis produced an extensive list of independently evolved linear binding motifs from a functionally diverse set of proteins. These all target, with characteristic binding specificity, an ancient protein interaction surface on evolutionarily related but physiologically clearly distinct three MAPKs (JNK, ERK, and p38). This inventory of human protein kinase binding sites was compared with that of other organisms to examine how kinase‐mediated partnerships evolved over time. The analysis suggests that most human MAPK‐binding motifs are surprisingly new evolutionarily inventions and newly found links highlight (previously hidden) roles of MAPKs. We propose that short MAPK‐binding stretches are created in disordered protein segments through a variety of ways and they represent a major resource for ancient signaling enzymes to acquire new regulatory roles.
Collapse
Affiliation(s)
- András Zeke
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Tomas Bastys
- Max Planck Institute for Informatics, Saarbrücken, Germany Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | - Anita Alexa
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágnes Garai
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Bálint Mészáros
- Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Klára Kirsch
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | | | - Attila Reményi
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
28
|
Piala AT, Humphreys JM, Goldsmith EJ. MAP kinase modules: the excursion model and the steps that count. Biophys J 2015; 107:2006-15. [PMID: 25418086 DOI: 10.1016/j.bpj.2014.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 01/04/2023] Open
Abstract
MAP kinase modules propagate diverse extracellular signals to downstream effectors. The two dual phosphorylation reactions catalyzed by the modules are thought to control the switch behavior of the pathway. Here we review recent approaches to understand these pathways through signal-to-response studies in cells and in vitro. These data are reconciled with physical models as well as predictions made on mathematical and theoretical grounds. Biochemical analysis has shown recently that the dual phosphorylation reactions catalyzed by MAP kinase modules are sequential at both levels of the cascade. The observed order of phosphorylation events suggests an excursion from the Ser/Thr kinase activity of the MAP3K into Tyr kinase activity of the central dual specificity MAP2K. How the order of events might be encoded in the structures and interactions is discussed. The ordered mechanism confirms predictions that reactions should be sequential to generate the steep signal-to-response curves and delayed responses observed in cells.
Collapse
Affiliation(s)
- Alexander T Piala
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - John M Humphreys
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Elizabeth J Goldsmith
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.
| |
Collapse
|
29
|
Lountos GT, Austin BP, Tropea JE, Waugh DS. Structure of human dual-specificity phosphatase 7, a potential cancer drug target. Acta Crystallogr F Struct Biol Commun 2015; 71:650-6. [PMID: 26057789 PMCID: PMC4461324 DOI: 10.1107/s2053230x1500504x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/12/2015] [Indexed: 11/10/2022] Open
Abstract
Human dual-specificity phosphatase 7 (DUSP7/Pyst2) is a 320-residue protein that belongs to the mitogen-activated protein kinase phosphatase (MKP) subfamily of dual-specificity phosphatases. Although its precise biological function is still not fully understood, previous reports have demonstrated that DUSP7 is overexpressed in myeloid leukemia and other malignancies. Therefore, there is interest in developing DUSP7 inhibitors as potential therapeutic agents, especially for cancer. Here, the purification, crystallization and structure determination of the catalytic domain of DUSP7 (Ser141-Ser289/C232S) at 1.67 Å resolution are reported. The structure described here provides a starting point for structure-assisted inhibitor-design efforts and adds to the growing knowledge base of three-dimensional structures of the dual-specificity phosphatase family.
Collapse
Affiliation(s)
- George T. Lountos
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| | - Brian P. Austin
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| | - Joseph E. Tropea
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| |
Collapse
|
30
|
Francis DM, Koveal D, Tortajada A, Page R, Peti W. Interaction of kinase-interaction-motif protein tyrosine phosphatases with the mitogen-activated protein kinase ERK2. PLoS One 2014; 9:e91934. [PMID: 24637728 PMCID: PMC3956856 DOI: 10.1371/journal.pone.0091934] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/18/2014] [Indexed: 12/16/2022] Open
Abstract
The mitogen-activation protein kinase ERK2 is tightly regulated by multiple phosphatases, including those of the kinase interaction motif (KIM) PTP family (STEP, PTPSL and HePTP). Here, we use small angle X-ray scattering (SAXS) and isothermal titration calorimetry (ITC) to show that the ERK2:STEP complex is compact and that residues outside the canonical KIM motif of STEP contribute to ERK2 binding. Furthermore, we analyzed the interaction of PTPSL with ERK2 showing that residues outside of the canonical KIM motif also contribute to ERK2 binding. The integration of this work with previous studies provides a quantitative and structural map of how the members of a single family of regulators, the KIM-PTPs, differentially interact with their corresponding MAPKs, ERK2 and p38α.
Collapse
Affiliation(s)
- Dana M. Francis
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Dorothy Koveal
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Antoni Tortajada
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
- Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
31
|
Jeong DG, Wei CH, Ku B, Jeon TJ, Chien PN, Kim JK, Park SY, Hwang HS, Ryu SY, Park H, Kim DS, Kim SJ, Ryu SE. The family-wide structure and function of human dual-specificity protein phosphatases. ACTA ACUST UNITED AC 2014; 70:421-35. [PMID: 24531476 DOI: 10.1107/s1399004713029866] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/31/2013] [Indexed: 11/10/2022]
Abstract
Dual-specificity protein phosphatases (DUSPs), which dephosphorylate both phosphoserine/threonine and phosphotyrosine, play vital roles in immune activation, brain function and cell-growth signalling. A family-wide structural library of human DUSPs was constructed based on experimental structure determination supplemented with homology modelling. The catalytic domain of each individual DUSP has characteristic features in the active site and in surface-charge distribution, indicating substrate-interaction specificity. The active-site loop-to-strand switch occurs in a subtype-specific manner, indicating that the switch process is necessary for characteristic substrate interactions in the corresponding DUSPs. A comprehensive analysis of the activity-inhibition profile and active-site geometry of DUSPs revealed a novel role of the active-pocket structure in the substrate specificity of DUSPs. A structure-based analysis of redox responses indicated that the additional cysteine residues are important for the protection of enzyme activity. The family-wide structures of DUSPs form a basis for the understanding of phosphorylation-mediated signal transduction and the development of therapeutics.
Collapse
Affiliation(s)
- Dae Gwin Jeong
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Chun Hua Wei
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Bonsu Ku
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Tae Jin Jeon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Pham Ngoc Chien
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jae Kwan Kim
- Department of Industrial Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - So Ya Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun Sook Hwang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sun Young Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Deok-Soo Kim
- Department of Industrial Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seung Jun Kim
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Peti W, Page R. Molecular basis of MAP kinase regulation. Protein Sci 2013; 22:1698-710. [PMID: 24115095 DOI: 10.1002/pro.2374] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 12/11/2022]
Abstract
Mitogen-activated protein kinases (MAPKs; ERK1/2, p38, JNK, and ERK5) have evolved to transduce environmental and developmental signals (growth factors, stress) into adaptive and programmed responses (differentiation, inflammation, apoptosis). Almost 20 years ago, it was discovered that MAPKs contain a docking site in the C-terminal lobe that binds a conserved 13-16 amino acid sequence known as the D- or KIM-motif (kinase interaction motif). Recent crystal structures of MAPK:KIM-peptide complexes are leading to a precise understanding of how KIM sequences contribute to MAPK selectivity. In addition, new crystal and especially NMR studies are revealing how residues outside the canonical KIM motif interact with specific MAPKs and contribute further to MAPK selectivity and signaling pathway fidelity. In this review, we focus on these recent studies, with an emphasis on the use of NMR spectroscopy, isothermal titration calorimetry and small angle X-ray scattering to investigate these processes.
Collapse
Affiliation(s)
- Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, 02912; Department of Chemistry, Brown University, Providence, Rhode Island, 02912
| | | |
Collapse
|
33
|
Kumar GS, Zettl H, Page R, Peti W. Structural basis for the regulation of the mitogen-activated protein (MAP) kinase p38α by the dual specificity phosphatase 16 MAP kinase binding domain in solution. J Biol Chem 2013; 288:28347-56. [PMID: 23926106 PMCID: PMC3784751 DOI: 10.1074/jbc.m113.499178] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/01/2013] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) fulfill essential biological functions and are key pharmaceutical targets. Regulation of MAPKs is achieved via a plethora of regulatory proteins including activating MAPKKs and an abundance of deactivating phosphatases. Although all regulatory proteins use an identical interaction site on MAPKs, the common docking and hydrophobic pocket, they use distinct kinase interaction motif (KIM or D-motif) sequences that are present in linear, peptide-like, or well folded protein domains. It has been recently shown that a KIM-containing MAPK-specific dual specificity phosphatase DUSP10 uses a unique binding mode to interact with p38α. Here we describe the interaction of the MAPK binding domain of DUSP16 with p38α and show that despite belonging to the same dual specificity phosphatase (DUSP) family, its interaction mode differs from that of DUSP10. Indeed, the DUSP16 MAPK binding domain uses an additional helix, α-helix 4, to further engage p38α. This leads to an additional interaction surface on p38α. Together, these structural and energetic differences in p38α engagement highlight the fine-tuning necessary to achieve MAPK specificity and regulation among multiple regulatory proteins.
Collapse
Affiliation(s)
| | - Heiko Zettl
- From the Departments of Molecular Pharmacology, Physiology and Biotechnology
| | - Rebecca Page
- Molecular Biology, Cell Biology, and Biochemistry, and
| | - Wolfgang Peti
- From the Departments of Molecular Pharmacology, Physiology and Biotechnology
- Chemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
34
|
Braun L, Brenier-Pinchart MP, Yogavel M, Curt-Varesano A, Curt-Bertini RL, Hussain T, Kieffer-Jaquinod S, Coute Y, Pelloux H, Tardieux I, Sharma A, Belrhali H, Bougdour A, Hakimi MA. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. ACTA ACUST UNITED AC 2013; 210:2071-86. [PMID: 24043761 PMCID: PMC3782045 DOI: 10.1084/jem.20130103] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Toxoplasma gondii secretes a novel dense granule protein, GRA24, that traffics from the vacuole to the host cell nucleus where it prolongs p38a activation and correlates with proinflammatory cytokine production. Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan parasite that resides inside a parasitophorous vacuole. During infection, Toxoplasma actively remodels the transcriptome of its hosting cells with profound and coupled impact on the host immune response. We report that Toxoplasma secretes GRA24, a novel dense granule protein which traffics from the vacuole to the host cell nucleus. Once released into the host cell, GRA24 has the unique ability to trigger prolonged autophosphorylation and nuclear translocation of the host cell p38α MAP kinase. This noncanonical kinetics of p38α activation correlates with the up-regulation of the transcription factors Egr-1 and c-Fos and the correlated synthesis of key proinflammatory cytokines, including interleukin-12 and the chemokine MCP-1, both known to control early parasite replication in vivo. Remarkably, the GRA24–p38α complex is defined by peculiar structural features and uncovers a new regulatory signaling path distinct from the MAPK signaling cascade and otherwise commonly activated by stress-related stimuli or various intracellular microbes.
Collapse
Affiliation(s)
- Laurence Braun
- Centre National de la Recherche Scientifique (CNRS), UMR5163, Laboratoire Adaptation et Pathogénie des Microorganismes, F-38041 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Andrews SS, Hill ZB, Perera BGK, Maly DJ. Label transfer reagents to probe p38 MAPK binding partners. Chembiochem 2013; 14:209-16. [PMID: 23319368 DOI: 10.1002/cbic.201200673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Indexed: 11/06/2022]
Abstract
Protein kinases are essential enzymes for cellular signaling, and are often regulated by participation in protein complexes. The mitogen-activated protein kinase (MAPK) p38 is involved in multiple pathways, and its regulation depends on its interactions with other signaling proteins. However, the identification of p38-interacting proteins is challenging. For this reason, we have developed label transfer reagents (LTRs) that allow labeling of p38 signaling complexes. These LTRs leverage the potency and selectivity of known p38 inhibitors to place a photo-crosslinker and tag in the vicinity of p38 and its binding partners. Upon UV irradiation, proteins that are in close proximity to p38 are covalently crosslinked, and labeled proteins are detected and/or purified with an orthogonal chemical handle. Here we demonstrate that p38-selective LTRs selectively label a diversity of p38 binding partners, including substrates, activators, and inactivators. Furthermore, these LTRs can be used in immunoprecipitations to provide low-resolution structural information on p38-containing complexes.
Collapse
Affiliation(s)
- Simeon S Andrews
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA
| | | | | | | |
Collapse
|
36
|
Bose AK, Janes KA. A high-throughput assay for phosphoprotein-specific phosphatase activity in cellular extracts. Mol Cell Proteomics 2012; 12:797-806. [PMID: 23233447 DOI: 10.1074/mcp.o112.024059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein phosphatases undo the post-translational modifications of kinase-signaling networks, but phosphatase activation in cells is difficult to measure and interpret. Here, we report the design of a quantitative and high-throughput assay platform for monitoring cellular phosphatase activity toward specific phosphoprotein targets. Protein substrates of interest are purified recombinantly, phosphorylated in vitro using the upstream kinase, and adsorbed to 96-well plates. Total phosphatase extracts from cells are then added to trigger a solid-phase dephosphorylation reaction. After stopping the reaction, phosphoprotein levels are quantified by ELISA with a phospho-specific antibody, and the loss of phospho-specific immunoreactivity is used as the readout of phosphatase activity. We illustrate the generality of the method by developing specific phosphatase-activity assays for the three canonical mitogen-activated protein phospho-kinases: ERK, JNK, and p38. The assays capture changes in activity with a dynamic range of 25-100-fold and are sensitive to a limit of detection below 25,000 cells. When applied to cytokine-induced signaling, the assays revealed complex and dynamic regulation of phosphatases suggesting cross-communication and a means for cellular memory. Our assay platform should be beneficial for phosphoproteomic surveys and computational-systems models of signaling, where phosphatases are known to be important but their activities are rarely measured.
Collapse
Affiliation(s)
- Anjun K Bose
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
37
|
Piserchio A, Francis DM, Koveal D, Dalby KN, Page R, Peti W, Ghose R. Docking interactions of hematopoietic tyrosine phosphatase with MAP kinases ERK2 and p38α. Biochemistry 2012; 51:8047-9. [PMID: 23030599 DOI: 10.1021/bi3012725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hematopoietic tyrosine phosphatase (HePTP) regulates orthogonal MAP kinase signaling cascades by dephosphorylating both extracellular signal-regulated kinase (ERK) and p38. HePTP recognizes a docking site (D-recruitment site, DRS) on its targets using a conserved N-terminal sequence motif (D-motif). Using solution nuclear magnetic resonance spectroscopy and isothermal titration calorimetry, we compare, for the first time, the docking interactions of HePTP with ERK2 and p38α. Our results demonstrate that ERK2-HePTP interactions primarily involve the D-motif, while a contiguous region called the kinase specificity motif also plays a key role in p38α-HePTP interactions. D-Motif-DRS interactions for the two kinases, while similar overall, do show some specific differences.
Collapse
Affiliation(s)
- Andrea Piserchio
- Department of Chemistry, The City College of New York, New York, NY 10031, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Denise Martin E, De Nicola GF, Marber MS. New therapeutic targets in cardiology: p38 alpha mitogen-activated protein kinase for ischemic heart disease. Circulation 2012; 126:357-68. [PMID: 22801653 DOI: 10.1161/circulationaha.111.071886] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Eva Denise Martin
- King's College London British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital Campus, United Kingdom
| | | | | |
Collapse
|
39
|
Abstract
Dual-specificity MAP kinase phosphatases (MKPs) provide a complex negative regulatory network that acts to shape the duration, magnitude and spatiotemporal profile of MAP kinase activities in response to both physiological and pathological stimuli. Individual MKPs may exhibit either exquisite specificity towards a single mitogen-activated protein kinase (MAPK) isoform or be able to regulate multiple MAPK pathways in a single cell or tissue. They can act as negative feedback regulators of MAPK activity, but can also provide mechanisms of crosstalk between distinct MAPK pathways and between MAPK signalling and other intracellular signalling modules. In this review, we explore the current state of knowledge with respect to the regulation of MKP expression levels and activities, the mechanisms by which individual MKPs recognize and interact with different MAPK isoforms and their role in the spatiotemporal regulation of MAPK signalling.
Collapse
|
40
|
Diversity and specificity of the mitogen-activated protein kinase phosphatase-1 functions. Cell Mol Life Sci 2012; 70:223-37. [PMID: 22695679 DOI: 10.1007/s00018-012-1041-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/09/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
Abstract
The balance of protein phosphorylation is achieved through the actions of a family of protein serine/threonine kinases called the mitogen-activated protein kinases (MAPKs). The propagation of MAPK signals is attenuated through the actions of the MAPK phosphatases (MKPs). The MKPs specifically inactivate the MAPKs by direct dephosphorylation. The archetypal MKP family member, MKP-1 has garnered much of the attention amongst its ten other MKP family members. Initially viewed to play a redundant role in the control of MAPK signaling, it is now clear that MKP-1 exerts profound regulatory functions on the immune, metabolic, musculoskeletal and nervous systems. This review focuses on the physiological functions of MKP-1 that have been revealed using mouse genetic approaches. The implications from studies using MKP-1-deficient mice to uncover the role of MKP-1 in disease will be discussed.
Collapse
|
41
|
|