1
|
Abstract
Increased control of biological growth and form is an essential gateway to transformative medical advances. Repairing of birth defects, restoring lost or damaged organs, normalizing tumors, all depend on understanding how cells cooperate to make specific, functional large-scale structures. Despite advances in molecular genetics, significant gaps remain in our understanding of the meso-scale rules of morphogenesis. An engineering approach to this problem is the creation of novel synthetic living forms, greatly extending available model systems beyond evolved plant and animal lineages. Here, we review recent advances in the emerging field of synthetic morphogenesis, the bioengineering of novel multicellular living bodies. Emphasizing emergent self-organization, tissue-level guided self-assembly, and active functionality, this work is the essential next generation of synthetic biology. Aside from useful living machines for specific functions, the rational design and analysis of new, coherent anatomies will greatly increase our understanding of foundational questions in evolutionary developmental and cell biology.
Collapse
Affiliation(s)
- Mo R. Ebrahimkhani
- Department of Pathology, School of Medicine, University of Pittsburgh, A809B Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
2
|
Mondal A, Sharma SK, Upadhyay RK, Aziz-Alaoui MA, Kundu P, Hens C. Diffusion dynamics of a conductance-based neuronal population. Phys Rev E 2019; 99:042307. [PMID: 31108709 DOI: 10.1103/physreve.99.042307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Indexed: 06/09/2023]
Abstract
We study the spatiotemporal dynamics of a conductance-based neuronal cable. The processes of one-dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage. A 2D Morris-Lecar (ML) model is introduced to investigate the nonlinear responses of an excitable conductance-based neuronal cable. We explore the parameter space of the uncoupled ML model and, based on the bifurcation diagram (as a function of stimulus current), we analyze the 1D diffusion dynamics in three regimes: phasic spiking, coexistence states (tonic spiking and phasic spiking exist together), and a quiescent state. We show (depending on parameters) that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, we explore a 2D diffusion acting on the membrane voltage, where striped and hexagonlike patterns can be observed. To validate our numerical results and check the stability of the existing patterns generated by 2D diffusion, we use amplitude equations based on multiple-scale analysis. We incorporate 1D diffusion in an extended 3D version of the ML model, in which irregular bursting emerges for a certain diffusion strength. The generated patterns may have potential applications in nonlinear neuronal responses and signal transmission.
Collapse
Affiliation(s)
- Argha Mondal
- Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
- Computational Neuroscience Center, University of Washington, Seattle, Washington 98195, USA
| | - Sanjeev Kumar Sharma
- Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Ranjit Kumar Upadhyay
- Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - M A Aziz-Alaoui
- UniHavre, LMAH, CNRS No. 3335, ISCN, Normandie University, 76600 Le Havre, France
| | - Prosenjit Kundu
- National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Chittaranjan Hens
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Barrackpore Trunk Road, Kolkata, West Bengal 700108, India
| |
Collapse
|
3
|
Santorelli M, Perna D, Isomura A, Garzilli I, Annunziata F, Postiglione L, Tumaini B, Kageyama R, di Bernardo D. Reconstitution of an Ultradian Oscillator in Mammalian Cells by a Synthetic Biology Approach. ACS Synth Biol 2018; 7:1447-1455. [PMID: 29727574 DOI: 10.1021/acssynbio.8b00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Notch effector gene Hes1 is an ultradian clock exhibiting cyclic gene expression in several progenitor cells, with a period of a few hours. Because of the complexity of studying Hes1 in the endogenous setting, and the difficulty of imaging these fast oscillations in vivo, the mechanism driving oscillations has never been proven. Here, we applied a "build it to understand it" synthetic biology approach to construct simplified "hybrid" versions of the Hes1 ultradian oscillator combining synthetic and natural parts. We successfully constructed a simplified synthetic version of the Hes1 promoter matching the endogenous regulation logic. By mathematical modeling and single-cell real-time imaging, we were able to demonstrate that Hes1 is indeed able to generate stable oscillations by a delayed negative feedback loop. Moreover, we proved that introns in Hes1 contribute to the transcriptional delay but may not be strictly necessary for oscillations to occur. We also developed a novel reporter of endogenous Hes1 oscillations able to amplify the bioluminescence signal 5-fold. Our results have implications also for other ultradian oscillators.
Collapse
Affiliation(s)
- Marco Santorelli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Daniela Perna
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Akihiro Isomura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | | | - Lorena Postiglione
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Barbara Tumaini
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| |
Collapse
|
4
|
Li S, Bhave D, Chow JM, Riera TV, Schlee S, Rauch S, Atanasova M, Cate RL, Whitty A. Quantitative analysis of receptor tyrosine kinase-effector coupling at functionally relevant stimulus levels. J Biol Chem 2015; 290:10018-36. [PMID: 25635057 DOI: 10.1074/jbc.m114.602268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Indexed: 01/16/2023] Open
Abstract
A major goal of current signaling research is to develop a quantitative understanding of how receptor activation is coupled to downstream signaling events and to functional cellular responses. Here, we measure how activation of the RET receptor tyrosine kinase on mouse neuroblastoma cells by the neurotrophin artemin (ART) is quantitatively coupled to key downstream effectors. We show that the efficiency of RET coupling to ERK and Akt depends strongly on ART concentration, and it is highest at the low (∼100 pM) ART levels required for neurite outgrowth. Quantitative discrimination between ERK and Akt pathway signaling similarly is highest at this low ART concentration. Stimulation of the cells with 100 pM ART activated RET at the rate of ∼10 molecules/cell/min, leading at 5-10 min to a transient peak of ∼150 phospho-ERK (pERK) molecules and ∼50 pAkt molecules per pRET, after which time the levels of these two signaling effectors fell by 25-50% while the pRET levels continued to slowly rise. Kinetic experiments showed that signaling effectors in different pathways respond to RET activation with different lag times, such that the balance of signal flux among the different pathways evolves over time. Our results illustrate that measurements using high, super-physiological growth factor levels can be misleading about quantitative features of receptor signaling. We propose a quantitative model describing how receptor-effector coupling efficiency links signal amplification to signal sensitization between receptor and effector, thereby providing insight into design principles underlying how receptors and their associated signaling machinery decode an extracellular signal to trigger a functional cellular outcome.
Collapse
Affiliation(s)
- Simin Li
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Devayani Bhave
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Jennifer M Chow
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Thomas V Riera
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Sandra Schlee
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Simone Rauch
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Mariya Atanasova
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Richard L Cate
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Adrian Whitty
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
5
|
Mustard J, Levin M. Bioelectrical Mechanisms for Programming Growth and Form: Taming Physiological Networks for Soft Body Robotics. Soft Robot 2014. [DOI: 10.1089/soro.2014.0011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jessica Mustard
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| |
Collapse
|
6
|
Marquez-Lago TT, Padilla P. A selection criterion for patterns in reaction-diffusion systems. Theor Biol Med Model 2014; 11:7. [PMID: 24476200 PMCID: PMC3925790 DOI: 10.1186/1742-4682-11-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alan Turing's work in Morphogenesis has received wide attention during the past 60 years. The central idea behind his theory is that two chemically interacting diffusible substances are able to generate stable spatial patterns, provided certain conditions are met. Ever since, extensive work on several kinds of pattern-generating reaction diffusion systems has been done. Nevertheless, prediction of specific patterns is far from being straightforward, and a great deal of interest in deciphering how to generate specific patterns under controlled conditions prevails. RESULTS Techniques allowing one to predict what kind of spatial structure will emerge from reaction-diffusion systems remain unknown. In response to this need, we consider a generalized reaction diffusion system on a planar domain and provide an analytic criterion to determine whether spots or stripes will be formed. Our criterion is motivated by the existence of an associated energy function that allows bringing in the intuition provided by phase transitions phenomena. CONCLUSIONS Our criterion is proved rigorously in some situations, generalizing well-known results for the scalar equation where the pattern selection process can be understood in terms of a potential. In more complex settings it is investigated numerically. Our work constitutes a first step towards rigorous pattern prediction in arbitrary geometries/conditions. Advances in this direction are highly applicable to the efficient design of Biotechnology and Developmental Biology experiments, as well as in simplifying the analysis of morphogenetic models.
Collapse
Affiliation(s)
- Tatiana T Marquez-Lago
- Department of Mathematics and Center for the Spatiotemporal Modeling of Cell Signaling (STMC), University of New Mexico, Albuquerque, NM 87131, USA
- Integrative Systems Biology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0412, Japan
| | - Pablo Padilla
- IIMAS, Universidad Nacional Autónoma de México, Circuito Escolar. Cd. Universitaria, 04510 México DF, Mexico
| |
Collapse
|
7
|
Lim WA, Lee CM, Tang C. Design principles of regulatory networks: searching for the molecular algorithms of the cell. Mol Cell 2013; 49:202-12. [PMID: 23352241 DOI: 10.1016/j.molcel.2012.12.020] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/30/2012] [Indexed: 12/28/2022]
Abstract
A challenge in biology is to understand how complex molecular networks in the cell execute sophisticated regulatory functions. Here we explore the idea that there are common and general principles that link network structures to biological functions, principles that constrain the design solutions that evolution can converge upon for accomplishing a given cellular task. We describe approaches for classifying networks based on abstract architectures and functions, rather than on the specific molecular components of the networks. For any common regulatory task, can we define the space of all possible molecular solutions? Such inverse approaches might ultimately allow the assembly of a design table of core molecular algorithms that could serve as a guide for building synthetic networks and modulating disease networks.
Collapse
Affiliation(s)
- Wendell A Lim
- Center for Systems and Synthetic Biology, University of California, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
8
|
Schaerli Y, Isalan M. Building synthetic gene circuits from combinatorial libraries: screening and selection strategies. MOLECULAR BIOSYSTEMS 2013; 9:1559-67. [DOI: 10.1039/c2mb25483b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|